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1. INTRODUCTION 

1.1. RESEARCH FIELD 

The research field is data mining methods and algorithms of large dimensional data 

and rare events. 

Efficient searching and using of the information, hidden in the data, is one of the 

most important factors in a dynamic field of the current research and business. Data 

mining is a contemporary field of information analysis, arising from the interconnection 

of database technologies, artificial intelligence, and statistical data analysis. Data mining 

has a wide scope, encompassing many methods, algorithms, software systems, and 

applications. If the usual methods of data analysis help to disclose the dependency 

variables, data mining is unique in that the result of the analysis is discovery of new 

dependencies unknown, or their existence was not even suspected. The modern data 

mining technology is based on the patterns, that represent the relationship between the 

data. 

The main factors taken into account in solving data mining problems are as 

follows: 

• a large amount of various types of information to be processed, 

• results of the analysis could be presented to various users with different interests. 

Data mining methods in decision making have two phases. The first one is taking 

advantage of a sample of the data collected, disclosing data structures and properties. 

The second one is forecasting and decision-making, based on the disclosed data 

structures and properties. The wide variety of the methods and algorithms reveals the 

complexity of data mining and its technologies adapted to the different situations. Often 

several methods and complex combinations of methods are used to solve data mining 

problems. The variety of the tasks and methods is complemented by a group of data 

mining algorithms. None of them are universal or beyond reproach. The choice of an 

algorithm takes into account the complexity of its operational and logical analysis, the 

time required, as well as the memory required, and reliability of the analysis. 

The knowledge discovered using data mining methods and technologies is formally 

presented as a hypotheses on data models or estimates of model parameters, e.g., it is 
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necessary to assess whether the data have a tendency to form clusters or groups of 

objects, or certain features are correlated, and whether the data can be squashed without 

losing the essential information, etc. In data mining the following methods are widely 

used: clusterization, multidimensional scaling, classification, support vector machines, 

regression analysis, principal component analysis, etc. 

The Bayesian decision theory is wide used in data mining, when information about 

the parameters is given in the form of a probability distribution function. The methods 

based on Bayesian decision theory have many advantages (see., e.g., DeGroot (1970), 

Carlin, Louis (1996), Rossi et al. (2003), Diaconis (2009), Press et al. (2007), Richey 

(2010)), as compared to the classical („frequentist“) methods. However, these methods 

were started to be applied only in recent decades mainly because of two reasons. One of 

the reasons is the fact that they may not be objective, i.e., if the statistical calculations are 

performed without a thorough examination and evaluation of the characteristics of the 

object under consideration, it might make a subjective impact on the results. The other 

important reason is a rapid development of computer hardware from about 1980, because 

the Bayesian methods, even in quite simple cases, need a considerable amount of 

calculations. 

 

1.2. RELEVANCE OF THE PROBLEM 

Sufficiently accurate and fast processing of large data sets is one of the main goals of 

data mining. One of the solutions is usage of a more efficient hardware and software; 

however, this kind of solution is not always available in practice. Another solution is to 

replace the initial data set with a smaller data set preserving, much as possible, the main 

properties of the initial data set. 

Data mining problems that use large populations and large dimensions often occur in 

biometrics, medicine, insurance, computer networks, etc. For example, estimation of rare 

events (e.g., probabilities of some disease, homicides, suicides, etc.) in large populations 

is of high relevance in statistical epidemiology. An adequate estimation of the 

probabilities of insured events can have a significant practical effect on the insurance. 

Thus far, there is no generally accepted methodology for the multivariate 

nonparametric hypothesis testing. Traditional approaches to multivariate nonparametric 
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hypothesis testing are based on the empirical characteristic function (Baringhaus and 

Henze (1988)), nonparametric distribution density estimators and smoothing (Bowman 

and Foster (1993), Huang (1997)), as well as on the classical univariate nonparametric 

statistics calculated for data projected onto the directions found via the projection pursuit 

(L. Zhu, Fang, and Bhatti (1997), Szekely and Rizzo (2005)). A more advanced 

technique is based on the Vapnik-Chervonenkis theory, the uniform functional central 

limit theorem and inequalities for large deviation probabilities (see, e.g., Marcoulides, 

Hershberger (1997), Hirukawa (2012)). Recently, especially in applications, the Bayes 

approach and Markov chain Monte-Carlo methods have been widely used (see, e.g., 

Andrieu et al. (2003), Berg (2004), Asmussen, Glynn (2007), Sakalauskas, Vaičiulytė 

(2012), Vaičiulytė, Sakalauskas (2011)). 

Hence the analysis and application of empirical Bayes methods and algorithms in 

testing nonparametric hypotheses if wee use large dimensional data and in estimating the 

parameters of statistical models of large populations are a relevant theoretical and 

practical data mining problem. 

 

1.3. THE RESEARCH OBJECT 

The research object is data mining empirical Bayes methods and algorithms applied in 

the analysis of large populations of large dimensions. 

1.4. THE AIM AND OBJECTIVES OF THE RESEARCH 

The aim and objectives of the research are to create methods and algorithms for 

testing nonparametric hypotheses for large populations and for estimating the parameters 

of data models.  

The following problems are solved to reach these objectives: 

1. To create an efficient data partitioning algorithm of large dimensional data. 

2. To apply the data partitioning algorithm of large dimensional data in testing 

nonparametric hypotheses. 

3. To apply the empirical Bayes method in testing the independence of components of 

large dimensional data vectors. 
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4. To develop an algorithm for estimating probabilities of rare events in large 

populations, using the empirical Bayes method and comparing Poisson-gamma and 

Poisson-Gaussian mathematical models, by selecting an optimal model and a respective 

empirical Bayes estimator. 

5. To create an algorithm for logistic regression of rare events using the empirical 

Bayes method. 

1.5. SCIENTIFIC NOVELTY 

The following new results have been obtained: 

1. A new binary data partitioning method is developed, based on the CART algorithm, 

which enables very fast and efficient partitioning of large dimensional data. 

2. A new method for testing the independence of selected components of large 

dimensional data. 

3. A new method for selecting the optimal model in the estimation of probabilities of 

rare events, using the Poisson-gamma and Poisson-Gaussian mathematical models and 

empirical Bayes estimators. A new nonsingularity condition in the case of the Poisson-

gamma model is presented. 

 

1.6. PRACTICAL SIGNIFICANCE OF THE WORK 

The following practical results have been obtained: 

1. Th presented data partitioning algorithm enables us to reduce the calculation time 

of clusterization procedures of multidimensional Gaussian mixtures. 

2. The criterion presented for testing the independence of the components of high 

dimensional random vectors has higher power as compared to the classical criterion for 

larger dimensions. 

3. The algorithms presented for empirical Bayes estimation of the model parameters 

were applied to the analysis of medical and sociological data, taking into account the 

nonsingularity condition of the Poisson-gamma model. 

 

1.7. APPROVAL OF THE RESULTS 
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The research results have been presented in the following national and international 

conferences: 

1. Jakimauskas, Gintautas. Gamma and logit models in empirical Bayesian 

estimation of probabilities of rare events // STOPROG 2012: Stochastic 

programming for implementation and advanced applications: international 

workshop, July 3-6, 2012, Neringa, Lithuania. 

2. Jakimauskas, Gintautas; Sakalauskas, Leonidas. Empirical Bayesian estimation 

for Poisson-gamma model // 24th Mini EURO conference on continuous 

optimization and information-based technologies in the financial sector (MEC 

EurOPT 2010), Vilnius 

3. Gurevičius, Romualdas; Jakimauskas, Gintautas; Sakalauskas, Leonidas. 

Empirical Bayesian estimation of small mortality rates // 5th international Vilnius 

conference [and] EURO-mini conference "Knowledge-based technologies and 

OR methodologies for decisions of sustainable development" (KORSD-2009): 

September 30 – October 3, 2009, Vilnius, Lithuania. 

4. Sakalauskas, Leonidas; Jakimauskas, Gintautas; Sušinskas, Jurgis. Analysis of 

medical data by empirical Bayes method // Computer data analysis and 

modeling: complex stochastic data and systems: Ninth international conference: 

Minsk, September 7-11, 2010. 

5. Radavičius, Marijus; Jakimauskas, Gintautas; Sušinskas, Jurgis. Empirical Bayes 

testing goodness-of-fit for high-dimensional data // Computer data analysis and 

modeling: complex stochastic data and systems: Ninth international conference: 

Minsk, September 7-11, 2010. 

6. Radavičius, Marijus; Jakimauskas, Gintautas; Sušinskas, Jurgis. Testing of 

independency for high-dimensional data // Computer data analysis and modeling: 

complex stochastic data and systems: Eighth international conference: Minsk, 

September 11-15, 2007. 

7. Radavičius, Marijus; Jakimauskas, Gintautas; Sušinskas, Jurgis. Clustering and 

Testing in High-Dimensional Data, 8th Tartu Conference on Multivariate 

Statistics, Tartu, 26-29 June 2007. 
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8. Jakimauskas, Gintautas; Sušinskas, Jurgis. Testing independence of high-

dimensional random vectors, Nordic Conference on Mathematical Statistics 

2008, Vilnius, 16-19 June 2008. 

 

1.8. STRUCTURE OF THE DISSERTATION 

The dissertation consists of 5 chapters, references, and appendices. 

Chapter 1 is introductory. In this chapter, we present a research field of the dissertation, 

relevance of the problem, the aim and objectives of the research, scientific novelty, 

practical significance of the work, approval of the results and publications. 

In Chapter 2, we present a large dimensional data partitioning algorithm for data 

squashing in data mining and other implementations, which is one of the procedures of 

the software for classification of Gaussian mixtures, created in the Institute of 

Mathematics and Informatics, Vilnius. The methods using this data partitioning 

algorithm are used in the next chapter. 

In Chapter 3, we present implementations of the data partitioning algorithm, given in 

Chapter 2. 

In section 3.1, we present the procedure for testing the goodness-of-fit hypothesis that, 

for some k we have the standard Gaussian distribution in the complementary space Rd-k, 

as well as multidimensional Gaussian mixture in the space Rk (testing of this hypothesis 

is used in the projection pursuit method). Th main results of this section are presented in 

the journal Liet. mat. rink. LMD darbai – Jakimauskas (2009). 

In section 3.2, the procedure for testing the independence of components of large 

dimensional random vectors is presented. The main results of this section are published 

in the journal Austrian Journal of Statistics – Jakimauskas, Radavičius, Sušinskas 

(2008). 

In section 3.3, we propose a more efficient statistics, for problems given in previous two 

sections, which is based on the empirical Bayes method. The main results of this section 

are presented in the journal Liet. mat. rink. LMD darbai – Jakimauskas, Sušinskas 

(2010). 
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In Chapter 4, we analyze the implementation of the empirical Bayes method in the 

problem of estimation of small probabilities (e.g., probabilities of some disease, suicides, 

etc.) in large populations. 

In section 4.1, simulation of rare events using the empirical Bayes method, is considered. 

The main results of this section are presented in the proceedings of the Vilnius 

International Conference KORSD-2009 – Gurevičius, Jakimauskas, Sakalauskas (2009). 

We use the data submitted by the Lithuanian Institute of Hygiene. 

In section 4.2, the Poisson-Gaussian and Poisson-gamma models are considered. The 

main results of this section are presented in the proceedings of the Neringa International 

Conference STOPROG-2012 – Jakimauskas (2012). We use the data from the Database 

of the Statistics Lithuania. 

In section 4.3, we consider a modified regression Poisson-Gaussian model. The main 

results of this section are presented in the journal Liet. mat. rink. LMD darbai – 

Jakimauskas, Sakalauskas (2012). In this section we also use the data from the Database 

of the Statistics Lithuania. 

In Chapter 5, we present the results and conclusions. 

At the end of the dissertation, we present the list of references and appendices. 

 

 

2. DATA SQUASHING IN DATA MINING 

Data mining is a contemporary field of information analysis on the intersection of 

database technologies, artificial intelligence and statistical data analysis. Data mining is a 

very wide area, including many methods, algorithms and applied software systems. 

Processing of large data sets is one of the main goals of data mining, applying 

interactive on-line analytical processing systems. In order to define the term ‘large data 

set’, we need to take into account the productivity of hardware and software, and the 

considered problem. Realization of some complex data models can raise great problems 

even for moderate data sizes. 

One of the solutions is to use more efficient hardware and software, however this type 

of solution is not always available in practice. Another solution is to replace the initial 

data set by a smaller data set, preserving the main properties of the initial data set. A 
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trivial solution is a random selection of a smaller data set from the initial data set 

(random sampling). However, in this case, the variance of the parameters of the 

mathematical model can increase drastically, so it must be taken into account. Sampling 

methods are very widely used in the cases where collection of data is expensive (e.g., in 

demographics statistics, economics statistics, sociology research, etc.). 

Assume that us have a large data set and we need to replace the initial data set by a 

smaller data set, preserving the main characteristics of the initial data set and using the 

information from all the elements of the initial data set. Various methods are used for 

this purpose, which can be divided into two groups: partitioning and hierarchical (Zhou, 

Sander, 2003) methods. Partitioning algorithms partition data set into clusters, 

hierarchical algorithms present a hierarchical cluster structure, however they do not 

define the clusters in explicit form. 

Recently the data squashing method (DuMouchel et al, 1999) is wide used. This 

method ‘squashes’ the data so that the statistical analysis, using the squashed data, gives 

the results that are similar to that obtained using the full data set. In such a case, data 

analysis could be made using standard methods and the results are much more precise 

than that obtained using a random sample of the corresponding size. There is an example 

(Madigan et al., 2002) that, in the case of logistic regression with 750000 observations, 

the calculations with the squashed data set with 8443 observations have yielded 500 

times less mean square error of regression coefficients than that with a randomly selected 

data set of size 7543. In this article, the data squashing method (likelihood-based data 

squashing) uses not necessarily a rectangular grid, so the partitions can be irregular. 

One of the wide used methods in the classification and regression analysis is the 

CART (classification and regression tree) method (see, e.g. Hastie et al. (2001). 

In this method the selected region (multidimensional rectangular parallelepiped) is 

step-by-step divided into partitions, until a certain stopping condition is fulfilled. In 

terms of graph theory, the steps performed by the CART method, can be described as a 

tree starting from the root node, then the nodes branching into two or more nodes 

connected to the parent node by edges. If, at each step, the node branches into two nodes 

(binary partitions), this method is a binary tree method. The CART method is mostly 

used (according to its name) for the classification and regression analysis. 
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Let us consider a modification of the CART algorithm for fast grouping of large data 

sets of large dimensions. This problem is similar to the application of the CART 

algorithm to the regression analysis, but, in our case, we use a large number of partitions 

and the simplest partitioning in order to minimize the calculation time. Our aim is to 

apply grouped data to a certain classification procedure of the Gaussian mixtures at a 

certain stage of this procedure in order to minimize the total calculation time. 

Suppose, we have a sample XN of size N. If N is sufficiently large, e.g., N=2000 

(software limit to the abovementioned classification procedure N=10000), we can group 

the sample and obtain a shorter sample XGrp
NGrp, where NGrp is substantially smaller 

than N (e.g., NGrp can be equal around 150). The first steps of the classification 

procedure are performed using initial sample XN, then main calculations are performed 

with the grouped sample XGrp
NGrp (many steps: adding a new cluster, deleting a cluster, 

refinement of the parameters using iterations of the EM algorithm, testing goodness-of-

fit, etc.). When the main calculations are finished, we return to the initial sample XN and 

perform final refinements using the initial sample. It is very important to implement a 

fast grouping procedure, only in this case, we can get the total decrease in calculation 

time of both the grouping procedure and the classification procedure. 

In 1991–1993, the Institute of Mathematics and Informatics (MII), Vilnius, the 

software for classification of multidimensional Gaussian mixtures was developed. This 

software was created in collaboration with the Central Economic-Mathematical Institute 

(CEMI), Moscow, where it was thoroughly tested and included int the software Class 

Master by the company Stat-Dialogue. This software later was distributed as the 

commercial software. One of the original algorithms in the software created in MII, is 

binary data partitioning procedure for large dimensional data which is used to reduce 

calculation time of the classification procedure. 

Mathematical description of the algorithm. Let X = (X(1);…;X(N)) be a sample in 

Rd, i.e., 

 

.,...,2,1,))(),...,(),(()( T

21 NjjXjXjXjX d

d  R   
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We will use counts of observations (this situation often occurs in practice) qj, j = 1, 

2, ... , N, i.e., the observation X(j) is repeated qj times. If there are no repeated 

observations, then simply qj = 1, j = 1, 2, ... , N. 

Let us have d-dimensional parallelepiped S, defined by intervals on each axis [ai, bi], 

i = 1, 2, ... , d, (it can be selected freely, but it is recommended to use as small 

parallelepiped as possible, e.g., using the minimal and maximal values on each axis), 

such that all observations fit into this rectangular parallelepiped: 

 

.,...,2,1,,...,2,1,)( NjdibjXa iii    

 

The aim of the procedure is to split a d-dimensional rectangular parallelepiped into sets 

of d-dimensional rectangular parallelepipeds (each of them contains at least one 

observation of the sample X) S(k) = {Sk(1), Sk(2),..., Sk(k)}, k = 1,2,...,kmax,  (by 

definition S(1) = S), in such a way that the grouping error of the sample is minimized. 

The number M, M > 1, , is preset at the initial stage, which defines the 

smallest division of each axis. Let Zk(j), j = 1, 2, ... , k, be grouping points at each 

finished step k, and the corresponding total grouping error is 

Nk max

,...}16,8,4,2{M
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After finishing the k-th step we calculate in advance the maximum possible 

decreases of the grouping error, dividing all the k rectangular parallelepipeds for each 

dimension. We select a rectangular parallelepiped and the axis with the maximum 

decrease of the grouping error to be in line for the next step. At the (k+1)-th step we split 

this rectangular parallelepiped into two rectangular parallelepipeds. We cut (several 

times, if needed) these two rectangular parallelepipeds, if one half contains no 

observations. 
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Fig. 2.1. Behaviour of the mean square grouping error depending on the 

dimension of uniformly distributed observations. 
 

The algorithm stops when all the rectangular parallelepipeds are partitioned to the 

smallest size, defined by the number M. We can force a stop of the algorithm, if certain k 

is reached, or a certain mean square grouping error is reached. 2/12 )/( NEk

Simulation results. Let us consider uniformly distributed observations in a d-

dimensional cube. We compare mean square grouping error  for various 

dimensions (see Fig. 2.1, here N = 2000). On the axis x we have the number of partitions 

k. 

2/12 )/( NEk
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Fig. 2.2. Behaviour of the mean square grouping error depending on the 

dimension of observations of the 3-component Gaussian mixture. 
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Alternatively, let us consider observations well suited for the implementation of the 

abovementioned algorithm. Assume that we have observations in a d-dimensional cube 

(sample size N = 2000), a small part of which (3 per cent) is uniformly distributed and 

the other observations are the sample of the 3-component (equal probabilities) Gaussian 

mixture with unit covariance matrices, multiplied by the constant c = 0.02, and means 

(0.5–0.15, 0.5–0.1, 0.5, 0.5, ... , 0.5), (0.5, 0.5+0.2, 0.5, 0.5, ... , 0.5), (0.5+0.15, 0.5–0.1, 

0.5, 0.5, ... , 0.5). The behaviour of  is shown in Fig. 2.2. 2/12 )/( NEk

Conclusions. Partitioning algorithms are widely used for data squashing in order to 

use information of all the elements of the data. The presented partitioning algorithm is 

well suited for use if the data have a cluster structure. After a comparatively small 

number of partitions, we can reduce the mean square grouping error to a level such that 

we can successfully perform classification procedures of the Gaussian mixture, using a 

substantially smaller number of observations, and thus reducing the calculation time. 

 

3. APPLICATION OF THE DATA PARTITIONING PROCEDURE IN TESTING 
GOODNESS-OF-FIT 

In this chapter, application of the data partitioning procedure in testing goodness-of-fit 

is considered. We present implementations of this procedure for testing goodness-of-fit 

in the projection pursuit procedure, for testing the independence of components of a 

large dimensional random vector. We present a more powerful criterion using the 

empirical Bayesian approach. 

When considering the testing goodness-of-fit, we can apply a certain direct method. 

Assume that we have distinct subsets A1, A2. ... , Ak, in a d-dimensional space, and that 

we know probabilities of a certain d-dimensional random variable of these subsets, i.e., 

p1 = P(A1), p2 = P(A2), ... , pk = P(Ak). It is important that the sum of the probabilities is 

near to 1. Then goodness-of-fit of the d-dimensional data XN = (X1, X2, ... , XN) can be 

tested by comparing the probabilities p1, p2, ... , pk with the corresponding empirical 

probabilities q1, q2, ... , qk, where qj is the number of observations of XN contained in the 

subset Aj, divided by N, j = 1, 2, ... k.  
 
Thus far, there is no generally accepted methodology for multivariate nonparametric 

hypothesis testing. Traditional approaches to multivariate nonparametric hypothesis 
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testing are based on the empirical characteristic function (Baringhaus, Henze (1988)), 

nonparametric density estimators and smoothing (Bowman, Foster (1993), Huang 

(1997)), and classical nonparametric statistics calculated for data projected onto the 

directions found via the projection pursuit (Zhu et al. (1997), Szekely, Rizzo (2005)). A 

more advanced technique is based on Vapnik-Chervonenkis theory, the uniform 

functional central limit theorem, and inequalities for large deviation probabilities 

(Vapnik (1988), Bousquet et al. (2004)). 

In Jakimauskas et al. (2008), a simple data-driven and computationally efficient 

procedure is proposed for testing the independence of high-dimensional random vectors. 

The procedure is based on the randomization and bootstrap, sequentional data 

partitioning procedure, and χ2-type statistics. In Jakimauskas (2009), it was implemented 

for testing goodness-of-fit in some stage of the projection pursuit algorithm. In 

Jakimauskas, Sušinskas (2010), a more powerful statistics as compared to χ2-type 

statistics is proposed implementing the empirical Bayesian approach. 

3.1. EFFICIENT ALGORITHM FOR TESTING GOODNESS-OF-FIT FOR 

CLASSIFICATION OF LARGE DIMENSIONAL DATA 

Projection pursuit is used in data mining to reduce the dimension of initial data (see, 

e.g. Aivazyan S. A. (1996)).  

Let X = XN be a sample of size N of d-dimensional Gaussian mixture (let the 

dimension d be large) with the distribution function (d.f.) F. 

Because of the high dimension it is natural to project the sample X to linear subspaces 

of the dimension k (k = 1, 2, …) using a projection pursuit method (see, e.g., Aivazyan, 

S. A. (1996), Friedman, J. H. (1987)). Having the estimate of the discriminant subspace, 

provided by the projection pursuit method, it is easier to classify using the projected 

sample. 

One of the problems in the projection pursuit method is calculation of a certain 

nonparametric estimate in a high-dimensional space. As an alternative we use Monte-

Carlo method and the data partitioning procedure thus avoiding ‘curse of dimensionality’ 

(see, e.g., Hastie et al. (2001)). We use a joined sample of the initial sample and the 

simulated sample with the known distribution for which the hypothesis holds. The 
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number of observations of the each sample will be counted corresponding to partition 

elements, and a certain statistics will be used. The critical value of the criterion is 

obtained by simulating sufficient number of realizations for which the hypothesis holds. 

The efficiency of the criterion is based on a weak dependence on the dimension and the 

considered distribution. 

Test statistics. Let nj,k, resp., mj,k, be the number of initial sample elements, 

respectively, the number of simulated sample elements, in the j-th element of the k-th 

partition of the joined sample. Define the χ2-type statistics 
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Simulation results. Let us consider a sample of 3-component Gaussian mixture in a 

10-dimensional space with means (–4, –1, 0, … , 0), (0, 2, 0, … , 0), (4, –1, 0, … , 0) and 

unit covariance matrices. It is known that the dimension of the discriminant subspace 

equals 2. 
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Fig. 3.1.1.: Minima and maxima of Tk (projection to a 1-dimensional subspace). 
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Fig. 3.1.2.: Minima and maxima of Tk (projection to a 2-dimensional subspace). 

We compare the behaviour of the test statistics projecting data to a 1-dimensional 

subspace (i.e., the dimension that is not sufficient) and projecting data to 2-dimensional 

subspace (see Fig. 3.1.1, resp., Fig. 3.1.2). We present minima and maxima of the test 

statistics of 100 independent realizations and minima and maxima excluding 5 per cent 

of the largest and 5 per cent of the smallest values. 

Conclusions. The simulation results show that there is a weak dependence on the 

dimension and distribution. The criterion based on the test statistics, excluding 5 per cent 

of the largest and 5 per cent of the smallest values is suitable to test the hypothesis on the 

dimension of the discriminant subspace. 

 

3.2. TESTING THE INDEPENDENCE OF COMPONENTS OF LARGE 

DIMENSIONAL DATA 

Our goal is to propose a relatively simple, data-driven and computationally efficient 

procedure for testing the independence of components of the d-dimensional random 

vector X, in case the dimension d is large. We will compare the power of the proposed 

criterion with that of classical criterion proposed by Blum, Kiefer, Rosenblatt (1961).  

Let X = (X(1),…,X(N)) be a sample of the size N of i.i.d. observations of a random 

vector X with the distribution function F on Rd. We are interested in testing some 

properties of F. Let FH and FA be disjoint classes of d-dimensional distributions. 
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Let us consider a non-parametric hypothesis testing problem  vs. HFH F: AFA F: . 

Testing the independence of two components  and , d1 + d2 = d, of 

 corresponds to 

1

1

dRX  2

2

dRX 

),( 21 XXX 
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where G1 and G2 are marginal distributions of G that correspond to the components X1 

and X2, respectively. 

The proposed procedure is based on randomization and bootstrap, elements of the 

sequential testing, and data partitioning procedure. Monte-Carlo simulations are used to 

assess the performance of the procedure. 

Test statistics. Let X(H) := (X(H)(1), … , X(H)(M)) be a sample of i.i.d. random vectors, 

for which the independence hypothesis holds. The joint sample is denoted by Y. 

We will use the χ2-type statistics defined in the previous section. The critical value of 

c is obtained by the Monte-Carlo method using the selected significance level .  

Simulation results. To generate a sample from FH = F1 · F2, we simulate two 

independent samples with distribution F, and combine sample elements by taking first d1 

coordinates from the first sample and the remaining d2 components from the second 

sample. 

For the tests we use standard multivariate Student distribution with m degrees of 

freedom. Although the components of X are uncorrelated they are dependent. Since X 

converges in distribution to a standard Gaussian random vector as m , the 

dependence of the components vanishes for large m.  

The results of Monte Carlo simulations show that there is a weak dependence on the 

wide range of dimensions, sample sizes and null distributions. 

The computer simulations were performed for d ≤ 20, 200 ≤ N, M ≤ 1000, and m = 1; 

2, … ; 7; 25; 100. The dimensions d1 and d2 of the independent components X1 and X2, 

respectively, were chosen in two ways. In the first case d1 = d2 = d/2, and in the second 

case d1 = 1, d2 = d – 1. The typical number of simulations R = 1000. Below we present 

the results for d = 20 and N =1000 (see Fig. 3.2.1).  
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Fig. 3.2.1 Maxima, minima and two-side 0.9 confidence levels of statistic Tk 

for a sample from the Cauchy distribution (m = 1) and for the corresponding 

control data; d = 20, d1 = d2 = 10, N = 1000. 

 

Fig. 3.2.2. Power functions of BKR and JRS tests, significance level  = 0.05. 

 
The proposed test procedure is referred to as JRS test (see Jakimauskas, Radavičius, 

Sušinskas (2008)) for brevity. The performance of the procedure is compared with the 

classical criterion of Blum, Kiefer, Rosenblatt (1961) (for brevity, BKR test) based on 

the Cramer-Von Mises-type test statistics for testing the independence: 
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Here  is the empirical distribution function of the component Xi based on the sample X 

(i = 1; 2). 

iF̂

The power of the JRS test is compared with that of BKR test. To evaluate the power 

functions of the independence tests, Monte-Carlo simulations with R = 1000 realizations 

have been performed. The results are presented in Fig. 3.2.2 for the significance level  

= 0.05 and dimensions d = 2 and d = 10 with d1 = d2 = d/2. The power of the JRS test 

slightly decreases for growing dimension d, and for d = 10 it is close to the power of the 

BKR test for d = 2. The power of the BKR test for d = 10 is very low. 

Conclusions. The results of the Monte Carlo simulations show that the proposed 

procedure is promising. It outperforms the classical Blum-Kiefer-Rosenblatt test even for 

low dimensional data. The dependence of the critical value c on the dimensionality d 

and the partition procedure is weak and can be reduced by imposing appropriate 

additional requirements on it. 

 
 

3.3. APPLICATION OF THE EMPIRICAL BAYES APPROACH TO 

NONPARAMETRIC TESTING FOR HIGH-DIMENSIONAL DATA 

The abovementioned 2-type statistics does not take into account the distribution of 

the number of elements in individual partition sets. In some cases (e.g., if distributions 

are similar in a large part of the space Rd and differ significantly only in a small part), 

the large number of insignificant deviations can mask a smaller number of significant 

deviations, thus reducing efficiency of hypothesis testing. We can apply a simple 

method: reject some part (e.g., one fourth) of the smallest deviations in absolute value 

and use for hypothesis testing only the deviations that are largest in absolute values. 

However, this simple method, besides advantages, has a disadvantage – the distribution 

of the statistics for a null hypothesis strongly depends on the distribution under the null 

hypothesis. Below we will present (based on Jiang, Zhang (2009)) the method based on 

the empirical Bayesian approach. 

Let X = (X(1), … ,X(N)) be a sample of the size N of i.i.d. observations of a random 

vector X with a distribution P on Rd. We consider testing of nonparametric properties of 

P in case the dimension d of observations is large. 
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In Jakimauskas et al. (2008), a simple, data-driven and computationally efficient 

procedure of nonparametric testing for high-dimensional data has been introduced. The 

procedure is based on randomization and resampling (bootstrap), a special sequential 

data partition procedure, and χ2-type statistics. The goal is to find a more efficient test 

statistics based on the nonparametric maximum likelihood (NML) and the empirical 

Bayes (NEB) estimators in an auxiliary nonparametric mixture model. 

Auxiliary testing problem and empirical Bayes approach. Let us consider an 

auxiliary testing problem: 

    nH 0: 00  E   vs.  nH 0: 01  E

nR

.  

where  ~ N(, In) and   is an unknown mean vector. In the (empirical) Bayes 

approach, the unknown parameter   is treated as random. Thus, we consider a 

nonparametric Gaussian mixture model with a mixture distribution G: 

 =  +z ,    and z are independent,  

         z ~ N(0n, In),  

        i ~ G,  {i, i = 1, 2, … , n} are i.i.d. r.v‘s. 

Computer simulation results. The following three alternatives of i are analyzed:  

   (a1)   i = aui,  ui ~ N(0, 1),  

       (a2)   i = a(2zi–1),  zi ~ B(1/2, 1), 

       (a3)   .  nmmia i
i  1},{)1( 1

For various combinations of the parameters a, n, and m, simulations with 1000 

replications have been performed. The parameter a > 0 represents the difficulty of the 

testing problem. The simulations show some improvements in power of the NEB test in 

comparison with the power of the 2-type test. Fig. 3.3.1–3.3.3 illustrate the typical 

results. Here we give power plots for the empirical Bayes statistics and for 2 statistics 

depending on the parameter a. We use n = 50, and m = 8. 

Conclusions. When applying the empirical Bayes method, we use an auxiliary 

Gaussian mixture model. Empirical Bayes estimates are obtained using the EM 

algorithm with some restrictions. The simulation results have showed a certain 

improvement of the power of the criterion in some natural cases (e.g., when distributions 

coincide on a large area and significantly differ only in a small area). 
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Fig. 3.3.1. Test power for the alternative (a1). 

 

Fig. 3.3.2. Test power for the alternative (a2). 

 

Fig. 3.3.3. Test power for the alternative (a3). 
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4. ANALYSIS OF PROBABILITIES OF RARE EVENTS USING THE 

EMPIRICAL BAYES METHOD 

Let us consider the problem of probability estimation of rare events in large 

populations (e.g., probabilities of some disease, homicides, suicides, etc.). The respective 

number of events depends on the population size and on the probability of a single event. 

The classical estimator of probabilities is often not suitable because of too large 

estimation errors. Assume that the number of events in populations has the Poisson 

distribution with certain parameters. Note that this approximation is sufficiently accurate 

for large populations and for small (not too small) probabilities. 

In the empirical Bayesian approach, an assumption is made that probabilities of 

events are random and have a certain distribution. It is well known that empirical Bayes 

estimators have a significantly less mean square error as compared to that obtained using 

simple mean relative risk estimates (see, e.g.,  Clayton, Caldor, (1987), Meza (2003), 

Sakalauskas (2010)). 

4.1. SIMULATION OF RARE EVENTS USING THE EMPIRICAL BAYES 
METHOD 

Let us consider the Lithuanian mortality data set in the period of 2003–2004 

submitted by the Lithuanian Institute of Hygiene. The main purpose of mapping is to 

describe the geographical variation of mortality or decease in an attempt to demonstrate 

that a particular event may be caused by factors of a spatial structure. We investigate 

important numerical features of empirical Bayesian estimation techniques for the 

Poisson-Gaussian model, when a prior distribution of logits is normal with the 

parameters estimated by the maximum likelihood (ML) method (Tsutakava et al. (1985), 

Sakalauskas (2009)). We utilize a Lithuanian mortality data set of 2003–2004 years to 

estimate the underlying true risks and show the applicability of the approach considered. 

Implementation in data analysis. The method developed has been applied in the 

data analysis on homicide and suicide mortality in 2003–2004 in Lithuania (all the 

events in population, for men and women). Integration and minimization of the ML 

function was performed using mathematical software MATHCAD and the Pascal 

programming language. 
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Let us consider K populations, where each population consists of  individuals. 

Assume that some event (e.g., suicide or homicide) can occur in these populations. Our 

goal is to estimate unknown probabilities of the events , when the number of events  

,

jN

jP jY

Kj ,1 , in populations is observed. The mean relative risk estimate P of the probabilities 

is obtained dividing the total number of events by the total size of populations. 
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P*105     

AllSuic 14255.1/1434=9.941 41.656 -7.652 0.281 

AllHom 453.3/325=1.395 9.440 -9.260 0.136 

MenSuic 9484.2/1199=8.297 74.582 -7.707 0.288 

MenHom 356.0/232=1.534 14.431 -8.840 0.159 

WomenSuic 692.9/256=2.705 13.952 -8.826 0.371 

WomenHom 76.8/100=0.768 5.450 -9.817 0.000 

 

Table 4.1.1. Empirical Bayesian estimation of suicide/homicide mortality in 2003. 
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P*105     

AllSuic 15421/1381 40.334 -7.652 0.278 

AllHom 287/294 8.587 -9.260 0.000 

MenSuic 11889/1124 70.337 -7.707 0.305 

MenHom 313/200 12.515 -8.840 0.234 

WomenSuic 1573.2/257 14.075 -8.826 0.257 

WomenHom 84.1/93 5.093 -9.817 0.000 

 

Table 4.1.2. Empirical Bayesian estimation of suicide/homicide mortality in 2004. 
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We will use the Poisson-Gaussian model, where the probabilities are considered 

random, and their logits are independent Gaussian random variables with mean   and 

variance 2. Some spatial analysis of data in administrative territories was made. The 

results of analysis of the nonsingularity condition and estimation of probabilities using 

the empirical Bayes method illustrated in Tables 4.2.1, 4.2.2. 

Conclusions. Implementation of the empirical Bayesian approach allows detecting 

certain spatial effects of distribution of suicide/homicide probabilities in administrative 

territories of Lithuania. 

 

4.2. GAMMA AND LOGIT MODELS IN THE EMPIRICAL BAYESIAN 
ESTIMATION OF PROBABILITIES OF RARE EVENTS 

Let us consider the problem of estimation of small probabilities in large 

populations (e.g., estimation of probability of some disease, death, suicides, etc.). We 

consider two models of distribution of unknown probabilities: the probabilities have the 

gamma distribution (model (A)), or logits of the probabilities have Gaussian distribution 

(model (B)). We have selected real data from Database of Indicators of Statistics 

Lithuania (see http://www.stat.gov.lt/): Working-age persons recognized as disabled for 

the first time by the administrative territory (Table M3140706), in 2010 (number of 

populations  K = 60). We have used average annual population data by the administrative 

territory (Table M3010211). We have obtained initial parameters (using simple iterative 

procedures described below) for models (A) and (B). At the second stage, we performed 

various tests using the Monte-Carlo simulation (using model (A) or model (B)) of 

sample data varying one selected parameter and obtaining maximum likelihood 

estimates by means of (independently) model (A) and model (B). The main goal was to 

select an appropriate model for a specified parameter set and to propose some 

recommendations for using gamma and logit models for the empirical Bayesian 

estimation.  

Let us have K populations A1, A2, … , AK, consisting of Nj individuals, respectively, 

and some event (e.g., death or some disease), can occur in these populations. We observe 

the number of events {Yj} = Yj, j = 1, 2,…, K. 
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We assume that the number of events is caused by unknown probabilities {j} = j, 

j = 1, 2, … , K, which are equal for each individual from the same population. Then the 

number of events {Yj} is a sample of independent random variables (r.v.) {Yj} = Yj, 

j = 1, 2,…, K, with a binomial distribution (resp., with the parameters (j, Nj), j = 1, 2, … 

, K. Clearly, 

 

EYj = jNj, j = 1, 2, … , K. (1) 

 

An assumption is often made (see, e.g., (Tsutakawa et al., 1985), (Clayton, Caldor, 

1987)), that r.v.’s {Yj} have a Poisson distribution with the parameters jNj, j = 1, 

2,…, K, 
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Under such an assumption, (1) hlds as well. 

We consider the mathematical model assuming that unknown probabilities {j} are 

independent identically distributed (i.i.d.) r.v.’s with the distribution function F from a 

certain class F. Our problem is to find estimates of unknown probabilities  from the 

observed number of events {Yj}, assuming that  F

}ˆ{ j

F. 

Assume that {j} are i.i.d. gamma r.v’s with a shape parameter  > 0 and a scale 

parameter  > 0, i.e., d.f. F has a distribution density 
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Then, Ej =  / , and Dj =  / 2. Moreover, 
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Denote this model by (A). 

Regardless of distribution of {j} we can use the mean relative risk (MRR) estimate 
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so we assume that .,...,2,1,}{ KjMRRMRR

j    Also we can use the relative risk (RR) 

estimate ,}{ RR

j
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j   j = 1, 2, … , K, where 
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Let us consider an empirical Bayes estimate , that is a certain compromise 

between the mean relative risk estimate 

}ˆ{ j

}{ MRR

j  and the relative risk estimate }.{ RR

j  This 

estimate is obtained by (5) using parameter estimates )ˆ,ˆ(  . 

Alternatively, we consider Bayes estimate }
~

{ j , obtained under the assumption that 

unknown probabilities are i.i.d. r.v.’s, such that their logits 
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are i.i.d. Gaussian r.v.’s with mean   and variance 2. Denote this model by (B). In this 

case, the conditional expectation of {j} is of the following form (see (Sakalauskas 

(1995), Gurevičius et al., (2009)): 
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When considering model (A), the respective maximum likelihood function is of the 

following form: 
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In this case, if for the number of observed events {Yj} = Yj, j = 1, 2, … , K, in 

populations A1, A2, … , AK, consisting of Nj, j = 1, 2, … , K, individuals, the non-

singularity condition 
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holds, then there exists a maximum of the maximum likelihood function (11) for some 

finite  and  , because, for sufficiently small values of  and , the derivative by   of 

the maximum likelihood function is larger than zero. 

Considering the model (B), the corresponding maximum likelihood function is of the 

following form: 
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The maximum likelihood estimates are obtained by maximizing (11), resp., (12) and 

replacing parameter values in (5) or (10) by  or . In practice, 

approximate estimates  and 

),( **  ))(,( 2** 

}ˆ{ j }
~

{ j  are obtained using numerical methods (usually 

iterative procedures) for finding the approximate parameter values )ˆ,ˆ(  , resp. . )~,~( 2

Simulation results. As initial data for the simulation of {Yj} we have selected real 

data from Database of Indicators of Statistics Lithuania: Working-age persons 
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recognized as disabled for the first time by the administrative territory, in 2010 (number 

of populations (K = 60), 9 data sets in total (Table M3140706). 

We have used average annual population data by the administrative territory (Table 

M3010211); the total population in all administrative territories equals 3286820. 

At the initial stage, real sample data were evaluated using model (A) and model (B), 

i.e. we obtained starting estimates  and 0}ˆ{ j 0}
~

{ j . The simulation and estimation were 

performed by both models for 1000 independent realizations, and the respective values 

of maximum likelihood function were compared (see Fig.’s 4.2.1, 4.2.2). Also 

simulation of number of events using various values of  and  , was performed as well. 
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Fig. 4.2.1. Differences of LA – LB (simulation by model (A), data set no. 1). 
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Fig. 4.2.2. Differences of LA – LB (simulation by model (B), data set no. 1). 
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Conclusions. The results show that for most realizations of data sets 1–9 

(simulation by model (A), and simulation by model (B)) are typically  > )~,~( 2BL )ˆ,ˆ( AL . 

For simulated data sets, a preferable model depends mostly on the value /, 

specifically, for lower values the Poisson-gamma model is preferable, and for bigger 

values the Poisson-Gaussian model becomes preferable. The results show that the 

Monte-Carlo simulation method enables us to determine which estimation model is 

preferable. 

 

4.3. EMPIRICAL BAYESIAN REGRESSION MODEL FOR ESTIMATION OF 
PROBABILITIES OF RARE EVENTS 

The problem of adding an additional regression variable to the Poisson-Gaussian 

model when estimating probabilities of rare events in large populations is investigated 

here. We deal with two models of distribution for unknown probabilities: the 

probabilities have the gamma distribution (Poisson-gamma model, model (A)), or, 

alternatively, logits of the unknown probabilities have the Gaussian distribution 

(Poisson-Gaussian model, model (B)). In a modified regression model (B), the additional 

regression variable will be used for the mean of Gaussian distribution (model BR). 

As a basis for the regression variable we use real data from Database of Indicators of 

Statistics Lithuania: Number of hospital discharges by administrative territory, in 2010 

(Table M3140312). 

Mathematical models. We use the same models as in the previous section. In 

addition, we introduce model (BR), adding an auxiliary regression variable Zj, assuming 

that  = ( j) = 0 + 1Zj,  j = 1, 2, … , K. This variable is considered non-random. 

Computer simulation results. The results show that the Monte-Carlo simulation 

method enables us to determine which estimation model is preferable and, in some cases, 

model (BR) is preferable, whilst model (A) is preferable to model (B) (see Fig.’s 4.3.1, 

4.3.2). 
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Fig. 4.3.1. Difference of LA–LB (data set 6, simulation by model (B). 
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Fig. 4.3.2. Difference of LA–LBR (data set 6, simulation by model (B). 

 

5. RESULTS AND CONCLUSIONS 

The following new results have been obtained: 

1. The presented binary data partitioning algorithm of large dimensional data enables 

us to perform efficient data partitioning with implementations in the classification of 

Gaussian mixtures and testing goodness-of-fit. 
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2. The new method for testing independence of components of random vectors 

enables testing the independence of large dimensional random vectors. 

3. The new method of selecting the method for estimating probabilities of rare events 

in populations allows us to select the preferable model for empirical Bayes estimation. 

The following practical results have been obtained: 

1. The presented data partitioning algorithm enables us to reduce the calculation time 

of clusterization procedures of multidimensional Gaussian mixtures. 

2. Th criterion proposed for testing the independence of components of high-

dimensional random vectors has a higher power as compared to the classical criterion for 

larger dimensions. 

3. The algorithms presented for empirical Bayesian estimation of model parameters 

were applied in the analysis of medical and sociological data, taking into account the 

nonsingularity condition of the Poisson-gamma model. 

The following conclusions can be drawn: 

1. The binary data partitioning procedure is best suited for data with an explicit 

cluster structure. After a comparatively small number of steps of the procedure we can 

achieve quite a small value of mean grouping error, so we can use the grouped data for 

the classification by a selected distribution model, reducing the calculation time. 

2. The method of testing goodness-of-fit has a weak dependence on the dimension 

and on the distribution, thus allowing us to use minima and maxima of the test statistics 

as a criterion to test goodness-of-fit. 

3. The criterion for testing the independence of components of random vectors has a 

higher power as compared to the classical Blum-Kiefer-Rosenblatt criterion for larger 

dimensions. 

4. Implementation of the empirical Bayesian approach enables us to construct more 

powerful criterion for testing nonparametric hypotheses as compared to the 2-type 

criterion in some natural cases (e.g., when distributions coincide on a large area and 

significantly differ only in a small area). Note that this criterion requires considerably 

larger amount of calculations. 

5. In the estimation of probabilities of rare events in some cases of estimation of the 

parameters we have a singularity issue. The nonsingularity condition for the Poisson-

gamma model enables us to avoid using such data for estimation. 
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6. The numerical algorithm for empirical Bayes estimation enables us to obtain the 

estimates of the parameters of the Poisson-gamma model, including the nonsingularity 

condition. 

7. The Monte-Carlo simulation is helpful in selecting the preferable model for 

empirical Bayes estimation with regard to Poisson-gamma, Poisson-Gaussian and 

modified regression Poisson-Gaussian models. 
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Reziumė 

Darbo tyrimų objektas yra duomenų tyrybos empiriniai Bajeso metodai ir algoritmai, 

taikomi didelio matavimų skaičiaus didelių populiacijų duomenų analizei. 

Darbo tyrimų tikslas yra sudaryti metodus ir algoritmus didelių populiacijų 

neparametrinių hipotezių tikrinimui ir duomenų modelių parametrų vertinimui.  

Šiam tikslui pasiekti yra sprendžiami tokie uždaviniai: 

1. Sudaryti didelio matavimo duomenų skaidymo algoritmą. 

2. Pritaikyti didelio matavimo duomenų skaidymo algoritmą neparametrinėms 

hipotezėms tikrinti. 

3. Pritaikyti empirinį Bajeso metodą daugiamačių duomenų komponenčių 

nepriklausomumo hipotezei tikrinti su skirtingais matematiniais modeliais, nustatant 

optimalų modelį ir atitinkamą empirinį Bajeso įvertinį. 

4. Sudaryti didelių populiacijų retų įvykių dažnių vertinimo algoritmą panaudojant 

empirinį Bajeso metodą palyginant Puasono-gama ir Puasono-Gauso matematinius 

modelius. 

5. Sudaryti retų įvykių logistinės regresijos algoritmą panaudojant empirinį Bajeso 

metodą. 

Darbo metu gauti šie nauji rezultatai: 

1. Didelio matavimo duomenų binarinio skaidymo metodas, paremtas erdvės 

skaidymu, naudojamu duomenų klasifikavime, kuris įgalina atlikti didelio matavimo 

duomenų skaidymą, pritaikomą duomenų grupavimui bei neparametrinių hipotezių 

tikrinimui. 

2. Naujas metodas didelio matavimo nekoreliuotų duomenų pasirinktų komponenčių 

nepriklausomumo tikrinimui. 

3. Naudojant skirtingus matematinius modelius parengtas naujas metodas parenkant 

didelių populiacijų retų įvykių optimalų modelį ir atitinkamą empirinį Bajeso įvertinį. 

Pateikta nesinguliarumo sąlyga Puasono-gama modelio atveju. 

Disertaciją sudaro 5 skyriai, literatūros sąrašas ir priedai. 
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1-asis skyrius yra įvadinis. Jame pateikiama disertacijos tyrimų sritis, problemos 

aktualumas, tyrimų objektas, tyrimų tikslas ir uždaviniai, mokslinis naujumas, praktinė 

darbo reikšmė bei darbo rezultatų aprobavimas ir publikavimas. 

2-ajame skyriuje pateikiamas didelės apimties ir didelio matavimo duomenų skaidymo 

algoritmas ir juo paremtos procedūros pritaikymas klasifikavimo procedūros skaičiavimų 

laiko sumažinimui. Kiti šios procedūros taikymai yra pateikiami sekančiame skyriuje, o 

jos aprašymas patogumo dėlei išskirtas į atskirą skyrių, taip pat priede pateikiamas 

algoritminis procedūros aprašymas. Šiuo algoritmu paremta viena iš procedūrų iš 1992–

1995 metais MII sukurtos programinės įrangos daugiamačių Gauso mišinių 

klasifikavimui. 

3-ajame skyriuje pateikiami 2-ajame skyriuje aprašyto didelės apimties ir didelio 

matavimo duomenų skaidymo algoritmo taikymai. 1-ajame skyrelyje pateikiama 

procedūra duomenų modelio verifikavimui. 2-ajame skyrelyje pateikiama procedūra 

neparametriniam didelio matavimo atsitiktinių vektorių nepriklausomumo testavimui. 3-

ajame skyrelyje pateikiama procedūra naudojanti empirinį Bajeso metodą, kuri leidžia 

gauti efektyvesnius hipotezių tikrinimo kriterijus uždaviniams pateiktiems pirmuose 

dviejuose skyreliuose. 

4-ajame skyriuje pateikiami empirinio Bajeso metodo taikymai retų dažnių 

populiacijose analizei. 1-ajame skyrelyje nagrinėjamas retų įvykių modeliavimas 

naudojant empirinį Bajeso metodą. 2-ajame skyrelyje nagrinėjami Puasono-Gauso ir 

Puasono-gama modeliai empiriniame Bajeso mažų tikimybių vertinime. 3-ajame 

skyrelyje pateikiamas modifikuotas regresinis empirinis Bajeso įvertis mažų tikimybių 

vertinimui. 

5-ajame skyriuje pateikiami rezultatai ir išvados. 

Pabaigoje pateikiamas literatūros sąrašas ir priedai. 
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