
VYTAUTAS MAGNUS UNIVERSITY
INSTITUTE OF MATHEMATICS AND INFORMATICS

OF VILNIUS UNIVERSITY

Jūratė SKŪPIENĖ

EVALUATION OF ALGORITHM-CODE COMPLEXES IN
INFORMATICS CONTESTS

Doctoral Dissertation
Physical Sciences (P 000)

Informatics (09 P)
Informatics, Systems Theory (P 175)

Vilnius, 2010

This research was accomplished in the period from 2006 to 2010 at the Institute of Mathe-
matics and Informatics of Vilnius University.
Scientific Advisor:

prof. habil. dr. Antanas Žilinskas (Institute of Mathematics and Informatics of Vil-
nius University, Physical Sciences, Informatics - 09 P).

Acknowledgements

To my advisor Prof. Dr. Habil. Antanas Žilinskas and to Dr. Tom
Verhoeff, I would like to express my sincere gratitude for your professional
support and guidance.
To Dr. Olga Kurasova, Prof. Dr. Habil. Juvencijus Mačys, Janina
Kazlauskaitė, Aidas Žandaris, and Mārtiņš Opmanis, thank you for your
thorough review of my thesis. Your advice and criticism was invaluable.
To my colleagues at the Informatics Methodology Department of the In-
stitute of Mathematics and Informatics, and Vilnius International School,
your encouragement was greatly appreciated.
To my family, my husband Bronius and my daughter, Rusnė, thank you
for your help, patience and understanding. You were there for me all
hours of the day and night.

Jūratė Skūpienė

Abstract

Informatics contests for high school and undergraduate students is one
of the fastest expanding extra-curricula activity. There is a large com-
munity of national, regional, international, on-line and on-site contest
organisers and participants. During an informatics contest, the contes-
tants get algorithmic tasks, they have to design an algorithm, implement
it, and submit it in a form of source code in allowed programming lan-
guage. The term algorithm-code complex stands for a program which
contains an implementation of an unknown algorithm designed to solve
the given task.
The dominant form of evaluation in informatics contests is black-box
testing which does not take into account internal design and structure
of an algorithm-code complex. Thus we get a contradiction between the
contest goals to challenge contestants in algorithmic problem solving and
the dominant form of evaluation which does not take into account the
algorithm itself.
The objective of this research was to investigate the background of eval-
uation in informatics contests, in particular in Lithuanian Informatics
Olympiads, and to propose a better motivated evaluation scheme.
First we analyse the background of evaluation of algorithm-code com-
plexes, and concerns regarding the current evaluation practice. Then
we overview the experience of evaluation of programming assignments in
programming courses with a search for experience to be transferred to
informatics contests.
Next we present the multiple criteria decision analysis (MCDA) concepts
and processes and present evaluation in informatics contests as an MCDA
problem. We also look for suitable MCDA approaches to be applied for
evaluation in informatics contests.
In the next part we analyse the alternative possibilities to introduce
semi-automated evaluation for tasks with graphs.
Before applying MCDA approaches we analyse evaluation in informatics
contests from the point of view of existing quality standards.
In the final part we follow the required MCDA stages, apply fuzzy logic
and group decision making methods, and propose the evaluation scheme
to use it in Lithuanian Informatics Olympiads.

Contents

List of Figures ix

List of Tables xi

Glossary xiii

1 Introduction 1
1.1 Statement of the Problem and its Relevance 1
1.2 Research Objectives and Tasks . 2
1.3 Defended Statements . 3
1.4 Research Methods . 3
1.5 Research Findings and Results . 3
1.6 Scientific Novelty . 4
1.7 Approbation and Publications . 4
1.8 Synopsis . 6

2 Problematic of Evaluation of Algorithm-Code Complexes 8
2.1 Introduction . 8
2.2 Concepts . 10
2.3 Goals of Informatics Contests . 12
2.4 Background of Concept of Informatics Contest 14
2.5 Structure of LitIO . 16
2.6 Domain of Problems in Informatics Contests 17
2.7 Structure of a Batch Task . 18
2.8 Concept of Quality . 19
2.9 Different Points of View of Evaluation of Algorithm-Code Complex . 20
2.10 Current Evaluation Scheme in LitIO 23

2.10.1 Evaluating the Verbal Description of an Algorithm 24
2.10.2 Testing Functionality and Efficiency 25
2.10.3 Evaluating the Programming Style 26

2.11 Automated Evaluation of Submission to Programming Assignments
in Programming Courses . 27
2.11.1 Development of the Automated Evaluation of Programming

Assignments . 28
2.11.2 New Role of Automated Evaluation in Programming

Courses . 29
2.11.3 Evaluating Programming Assignments by Testing 31
2.11.4 Automated Evaluation of Programming Style 32
2.11.5 Automated Evaluation of Test Sets 36

v

CONTENTS

2.12 Black-Box Evaluation in Informatics Contests 36
2.12.1 Concerns about Black-Box Evaluation 37
2.12.2 Partial Scoring . 40
2.12.3 All-or-Nothing Scoring . 40
2.12.4 All-or-Nothing Batch Scoring 41
2.12.5 Other Black-Box Scoring Possibilities 42

2.13 Overview of the Experience of Semi-Automated and Manual
Evaluation . 44

2.14 Conclusions . 46

3 Overview of the MCDA Process and Methods 48
3.1 Concept of MCDA . 48
3.2 Main Concepts . 48
3.3 Evaluation in LitIO as an MCDA Problem 49
3.4 Roles in MCDA . 50
3.5 Classification of MCDA Problems . 52
3.6 Stages of MCDA . 53
3.7 Problem Structuring . 54

3.7.1 General Overview . 54
3.7.2 GQM (Goal/Question/Metric) Approach 56

3.8 Model Building . 57
3.8.1 Requirements for the Model 57
3.8.2 Single Decision Maker Problem 58
3.8.3 Choice of the MCDA Approach 58
3.8.4 Value Measurement Theory 60
3.8.5 Fuzzy Set Theory and Its Applications in MCDA 62

3.8.5.1 Main Crisp and Fuzzy Set Related Concepts 63
3.8.5.2 Application of Fuzzy Numbers in Quantifying

Linguistic Variables 66
3.8.5.3 Application of Fuzzy Logic in Solving MCDA

Problems . 66
3.8.5.4 Group Decision Making 70
3.8.5.5 Group Decision Support Algorithm 71

3.9 Sensitivity Analysis . 72
3.9.1 The Most Critical Criterion 72
3.9.2 The Most Critical Measure of Performance 73

3.10 Conclusions . 74

4 Semi-Automated Visualisation: Aid for Tasks Involving Graphs 76
4.1 Introduction . 76
4.2 Choice of Visualisation Approach . 76
4.3 Overview of Graph Implementation in Algorithm-Code Complexes

Designed During the Contests . 78
4.4 Graphs’ Visualisation in the Experimental Tool 81
4.5 Conclusions . 85

vi

CONTENTS

5 Evaluation in Terms of the Existing Quality Standards 86
5.1 Comparing Life Cycles of a Submission and Software 86
5.2 Evaluation of Quality of an Algorithm-Code Complex in Terms of the

ISO-9126-1 Quality Standard . 89
5.3 Evaluating Functionality and Efficiency: Analysis How Much Testing

Results Conform with Expected Scores 92
5.3.1 Brief Introduction to the Nescafé Algebra Task 93
5.3.2 Quantitative Overview of Submissions to Nescafé Algebra

Task . 94
5.3.3 Analysis of Algorithm-Code Complexes with Incorrect

Strategies: Incomplete Algorithm-Code Complexes 97
5.3.4 Analysis of Algorithm-Code Complexes with Incorrect

Strategies: Random Strategies 98
5.3.5 Analysis of Algorithm-Code Complexes with Incorrect

Strategies: Heuristic Strategies 99
5.3.6 Analysis of Algorithm-Code Complexes with Incorrect

Strategies: Other Strategies 100
5.3.7 Analysis of Partial Solutions 101
5.3.8 Analysis of Correct Solutions: Exhaustive Search 101
5.3.9 Analysis of Correct Solutions: Dynamic Programming 102
5.3.10 Comparison of Black-Box Scoring Results with the Expected

Scores of Submissions to Nescafé Algebra 103
5.4 Evaluating Maintainability (Programming Style) 105

5.4.1 Introduction . 105
5.4.2 The Subjectivity Factor in Evaluating Programming Style . . 106
5.4.3 Relating Evaluation of Programming Style to Program

Correctness . 107
5.4.4 Case Study: Analysis of Evaluating Programming Style of one

LitIO’2006 Task . 107
5.4.5 Good Programming Style in Informatics Contests – Advantage

or Necessity . 109
5.5 Conclusions . 110

6 Improvement of Evaluation Scheme Using MCDA 111
6.1 Problem Structuring . 111

6.1.1 Introduction . 111
6.1.2 The Background of Evaluation in the LitIO Problem Provided

to the Experts . 112
6.1.3 Defining the Concept of a Submission 113
6.1.4 Submission Attributes . 116
6.1.5 The Choice of Metrics for the Attributes 119

6.1.5.1 Quality of Reasoning on Design 120
6.1.5.2 Performance of the Compiled Code 121
6.1.5.3 Quality of the Programming Style 122
6.1.5.4 Quality of a Set of Tests 123

vii

CONTENTS

6.1.5.5 Conformance to the Task Description Requirements 124
6.2 Model Building and Piloting . 125

6.2.1 Specification of the Components of the Evaluation Scheme for
Concrete Tasks . 125
6.2.1.1 Scales for Linguistic Variables 125
6.2.1.2 Weights of Importance of the Jury Members 127
6.2.1.3 List of Required Components of Submission 128
6.2.1.4 List of Attributes to be Evaluated 129
6.2.1.5 Weights of the Evaluated Attributes 129
6.2.1.6 Inter-Attribute Function for Relating the

Programming Style to the Performance of the
Compiled Code . 131

6.2.1.7 List of Criteria Selected for Evaluation of the Quality
of Attributes . 133

6.2.1.8 Weights for the Evaluation Criteria 133
6.2.1.9 Partial Value Functions for the Evaluation Criteria 135

6.2.2 Evaluation of Submissions to the Pilot Tasks 138
6.2.3 Feedback About the Piloted Evaluation Scheme 140
6.2.4 Sensitivity Analysis of the Scores of the Piloted Tasks 142

6.2.4.1 The Most Critical Criterion 142
6.2.4.2 The Most Critical Measure of Performance 143

6.3 Conclusions . 144

7 Conclusions 146

A Appendices 147
A.1 Nescafé Algebra, Sample of a Batch Task 147
A.2 Material and Questionnaire Distributed to the Experts 148

References 151

viii

List of Figures

2.1 Relationship of goals of informatics contests 12
2.2 Most important goals and characteristics of informatics contests . . . 13
2.3 Definition of the informatics contest 15
2.4 Sequence diagram of the submission process 16
2.5 The skills measured in informatics contests 21
2.6 Forms of evaluation of programming assignments 22
2.7 Current evaluation targets in LitIO 23
2.8 Evaluation of verbal algorithm description 24
2.9 The directions of development of automated evaluation in programming

courses and in informatics contests 30
2.10 Holistic versus automated evaluation of programming style 33
2.11 Programming style marking scheme suggested by (Rees, 1982) 34
2.12 Function mapping run-time to points 43

3.1 Model of relationship among different roles in decision analysis of
evaluation in the LitIO problem . 51

3.2 Basic stages of the MCDA process 53
3.3 Decomposition of the problem structuring process 55
3.4 The GQM paradigm . 56
3.5 Operation of the intersection of two fuzzy sets 64
3.6 Triangular fuzzy number . 65
3.7 Trapezoidal fuzzy number . 65
3.8 Trapezoidal fuzzy numbers are used to quantify the nine-item

linguistic scale . 67
3.9 Conversion of a triangular fuzzy number to a crisp value 68

4.1 Choice of the visualisation approach in informatics contests 77
4.2 Graph in the task Acquaintance . 79
4.3 Visualised graph after reading input data 82
4.4 Visualised graph in task Acquaintances 82
4.5 Visualised graph in task Virus . 83
4.6 Misrepresented graph in task Acquaintances 83
4.7 Fixed graph representation in task Acquaintances 84

5.1 Waterfall life cycle model . 87
5.2 Waterfall life cycle model of a submission 87
5.3 Comparison of partial scoring (straight line) and all-or-nothing batch

scoring (dotted line) results . 96
5.4 Box-plot of points assigned by partial scoring 97

ix

LIST OF FIGURES

5.5 Histogram of points assigned by partial scoring to algorithm-code
complexes with a random strategy 98

5.6 Histogram of points assigned by partial scoring to algorithm-code
complexes with other incorrect strategies 100

5.7 Histogram of points assigned by partial scoring to algorithm-code
complexes that implemented exhaustive search 102

5.8 Scatterplot of the points for testing and the points for programming
style . 108

5.9 Scatterplot of the points for implementation correctness and the points
for programming style . 109

6.1 The framework of the evaluation scheme 113
6.2 Suggestions of the experts to modify the current submission concept 115
6.3 Attribute level of the current evaluation scheme 117
6.4 Attribute level of the evaluation model which separates the problem

solving part from the engineering part 118
6.5 The proposed attribute level of the evaluation scheme 119
6.6 The scale for determining a relative importance of decision makers . 126
6.7 The scale for determining a relative importance of the evaluation

criteria . 127

x

List of Tables

3.1 Weights of a trapezoidal distribution of the linguistic scale 66
3.2 Calculation of crisp values of the nine-item linguistic scale 69

4.1 Graph implementation in the analyzed algorithm-code complexes . . 80
4.2 Statistics of the graph components implemented separately from the

main graph . 84

5.1 Life cycle of a submission using the Waterfall model 88
5.2 Overview of the current LitIO evaluation scheme in terms of six

software quality model ISO-9126-1 characteristics 90
5.3 Suitability of the submitted solutions for automated evaluation . . . 94
5.4 Classification of solution strategies applied by the contestants 95
5.5 Statistics of unjustified scores in the analysed submissions 103

6.1 Suggestions for metrics to measure quality of reasoning for design . . 120
6.2 Suggestions for metrics to measure performance of the compiled code 121
6.3 Suggestions for metrics to measure the quality of programming style 123
6.4 Proposals for metrics to measure the quality of a set of tests 124
6.5 Proposals for metrics to measure the conformance to task description

requirements . 124
6.6 Weights of the linguistic scale for determining a relative importance

of decision makers . 126
6.7 Weights of the linguistic scale for determining a relative importance

of the evaluation criteria . 127
6.8 Relative importance weights of jury members 128
6.9 Templates for a set of the required submission components 129
6.10 Templates of the evaluation scheme at the attribute level 129
6.11 List of the required submission components and the measured

attributes for the piloted tasks . 130
6.12 Relative importance of the four attributes proposed by the jury

members . 130
6.13 Templates of possible weights of the attributes 131
6.14 Distribution of points for the piloted tasks 133
6.15 Weights of criteria for the attribute Quality of reasoning on design . 133
6.16 Weights of criteria for the attribute Performance of the compiled code 134
6.17 Weights of criteria for the attribute Quality of programming style . . 134
6.18 Weights of criteria for the attribute Quality of a set of test cases . . 135
6.19 Data about the submissions for the piloted tasks 139
6.20 Evaluation of reasoning on design . 139

xi

LIST OF TABLES

6.21 Evaluation of performance of the compiled code 140
6.22 Evaluation of the quality of programming style 140
6.23 Evaluation of the set of test cases . 141
6.24 Aggregate scores of the piloted tasks 141
6.25 The most critical criterion measures 142
6.26 The criticality degree and sensitivity coefficient values 143
6.27 The criticality degree ∆′ij (%) and the sensitivity coefficients

sens(vj(Ai)) for each performance measure for Task1 144
6.28 The criticality degree ∆′ij (%) and the sensitivity coefficients

sens(vj(Ai)) for each performance measure for Task2 145

A.1 Sample tests for Nescafé Algebra . 148

xii

Glossary

Informatics Contests
ACM-ICPC ACM International Collegiate

Programming Contest (ACM,
2010a). It is a team informat-
ics contest for university students
where team of members shares one
computer and where all-or-nothing
scoring is applied.

Algorithm-code complex A program which
contains an implementation of an
unknown algorithm designed to
solve the given task.

All-or-nothing batch soring A scoring
scheme, where all-or-nothing scor-
ing is applied to a test case (but
not to the whole set of tests). See
Subsection 2.12.4.

All-or-nothing scoring A scoring scheme
which classifies the submissions
into two categories: accepted or not
accepted without any intermediate
values. See Subsection 2.12.3.

Automated evaluation A form of evalua-
tion in which a computer program
aids the evaluator in grading stu-
dent’s work and facilitates the feed-
back process. See Sections 2.9 and
2.11.

Batch task A task where all the tests used for
grading are fixed before the begin-
ning of evaluation and do not de-
pend upon program behaviour. See
Section 2.7.

Black-box testing is testing that ignore in-
ternal logic of a program and fo-
cuses solely on the outputs gen-
erated in response to selected
inputs and execution conditions
(Williams, 2006). See Section 2.12.

Contest Management System (CMS) A
group of server applications and
modules to support informatics
contests by providing submit, test,
backup, restore, feedback and au-
tomated grading facilities.

Contestant The participant of informatics
contests.

Correct algorithm An algorithm which for
every valid input instance halts
with the correct output (Cormen
et al., 1992).

Correctness tests Tests designed with the
intention to check algorithm-code
complex correctness in order to sep-
arate correct algorithm-code com-
plexes from incorrect ones.

Dynamic evaluation A form of evaluation
based on observations of program
behaviour during its execution.

Efficiency A characteristic of an algorithm-
code complex described as run time
performance and memory usage
and expressed in big O notation.
For each task, big O characteris-
tic is associated to a linguistic scale
(like inefficient, low efficiency, effi-
cient) and the table of the expected
scores. This association is a con-
structed notion for each task. See
Subsection 2.10.2.

Efficiency tests Tests designed with the in-
tention to check the algorithm-code
complex efficiency and distinguish
between different efficiency cate-
gories of solutions.

Evaluation scheme List of evaluation crite-
ria together with the corresponding
metrics, and the score aggregation
function.

Expected score Expectations (of the jury)
about the score of a particular type
of solution(s) assigned as the out-
come of black-box testing.

xiii

GLOSSARY

Full feedback A form of feedback where
black-box testing with grading
tests is performed during the con-
test from the point of view of the
contestant. The exact feedback
provided to the contestant during
the contest is not explicitly defined
by this concept.

Grading tests A set of tests used for eval-
uation (i.e. the score is related
to algorithm-code complex perfor-
mance with these tests) and often
they are not disclosed to the con-
testants before the competition is
over.

Informatics contest A task-based problem
solving contest with exam sessions
where the tasks are such that they
have a correct and efficient algo-
rithm, the solutions should be im-
plemented as algorithm-code com-
plexes, tested automatically and
the final ranking of the contestants
is derived. See Section 2.4. Note,
that we narrowed the very general
term for the use in the thesis.

International Olympiad in Informatics
(IOI) An international individ-
ual on-site informatics competition
for students in secondary educa-
tion (IOI, 2010; Verhoeff, 2009).
The submission is limited to an
algorithm-code complex, the eval-
uation consists of black-box testing
only.

Jury A group of people with background
in informatics responsible for per-
forming evaluation in informatics
contests. In LitIO the jury and the
scientific committee are the same
group of people.

Lithuanian Olympiads in Informatics
(LitIO) A national state sup-
ported individual informatics con-
test for students in secondary edu-
cation in Lithuania. (Lit, 2010).

Manual evaluation Evaluation which is per-
formed by human evaluators.

Partial scoring A scoring scheme, where
points are assigned for each grad-
ing test, and the score for a task is
calculated as the sum of scores for
each grading test. See Subsection
2.12.2.

Problem A well-specified computational
problem, where the statement of
the problem specifies in general
terms the desired input/output re-
lationship and which requires to
design an algorithm in order to
solve it (Cormen et al., 1992).

Programming assignment A task given as
an assignment during programming
courses.

Scientific Committee A group of people
with background in informatics re-
sponsible for informatics contest
syllabus, choice of tasks and task
preparation for the contest. In
LitIO, the Scientific Committee is
the same as the Jury.

Scoring function Explanation to the contes-
tants how the points will be dis-
tributed for a task. It is announced
to the contestants together with the
task formulation.

Scoring scheme A scheme for assigning and
aggregating points for black-box
testing.

Semi-automated evaluation A form of
evaluation where human evalua-
tors perform (part of) work, but
a computer program simplifies the
process.

Static evaluation A form of evaluation
which involves analysis of the pro-
gram without executing it.

Submission The material presented for the
evaluation of the jury by the con-
testant. We assume that each sub-

xiv

GLOSSARY

mission consists of an algorithm-
code complex and/or other mate-
rial required by the task.

Task A detailed specification of the prob-
lem which determines requirements
for the solutions to be submitted
and evaluated. See Section 2.7.

Task discrimination The ability of a task to
separate contestants who vary in
their degree of skills of the mate-
rial tested.

Test A valid input for the task together
with a corresponding output.

Test case A set of one or more tests typ-
ically targeting the same well-
defined characteristic of the sub-
mitted algorithm-code complex.

Multiple Criteria Decision Analysis

Alternatives Different choices available to
the decision maker. In case of eval-
uation in LitIO problem the set of
alternatives consists of all the sub-
missions designed to solve a partic-
ular task in an exam session of an
informatics contest.

Attribute A statement of something that is
desired to be achieved. Attributes
represent the different dimensions
from which the alternatives can
be viewed. Attribute specification
does not require measure specifica-
tion. It is possible that attributes
are arranged in a hierarchical man-
ner.

Crisp set Any collection of objects from the
given universe without regard of
their order. For any object from
the given universe its membership
in the crisp set must be unambigu-
ously defined.

Criteria Each attribute of an MCDA prob-
lem is measured in terms of one or
more criteria. The same criteria

may be used for measuring different
attributes. Different criteria might
be associated with different units of
measure.

Decision weights Weights of importance as-
signed by the decision makers to
each criteria.

Evaluation in LitIO problem By this term
we understand an MCDA problem
the goal of which is to investigate
the context of evaluation in LitIO
and other informatics contests, to
construct the concept of submis-
sion, the list of attributes and cri-
teria, to propose partial value and
value functions for score aggrega-
tion using MCDA approaches.

Fuzzy set Any set that allows its members
to have different degree of member-
ship in the interval [0, 1].

Group decision making (GDM) A deci-
sion making process based on the
opinions of several individuals.

Interval scale A measurement scale where
one unit on the scale represent the
same magnitude across the whole
range of the scale.

Linguistic variables Variables whose values
are linguistic terms and not num-
bers. They are used to express re-
sults of subjective qualitative eval-
uation or the fuzzy data.

Measurement The assignment of numbers to
objects or events in a systematic or-
der.

Objective (adj.) Based on observable phe-
nomena and uninfluenced by emo-
tions and personal prejudices.

Partial value function A function assigning
a non-negative number to each al-
ternative indicating the desirability
(or preference) of the alternative in
terms of one or more criteria.

xv

GLOSSARY

Ratio scale An interval scale which where
zero represents the absence of thing
being measured.

Scale A rule using which the measure-
ment is performed (Stevens, 1946).

Value function A function assigning a non-
negative number to each alterna-
tive indicating the desirability (or
preference) of the alternative.

xvi

1 Introduction

1.1 Statement of the Problem and its Relevance
Algorithmic problems and analysis of their solutions and properties are an important
part of computer science studies. Informatics contests for high school students also
deal with algorithmic problems in a specific way. The contestants are given an
algorithmic problem and have to design an algorithm, to implement it, and submit as
a working program. However, the students are not required to submit a formal proof
of algorithm correctness and efficiency, because they are still at high or secondary
schools, and such a task would be beyond their capabilities.

Thus we get the concept of an algorithm-code complex. The term was invented
in this thesis, and it stands for a program which contains the implementation of an
unknown algorithm designed to solve the given task. An algorithm-code complex
combines the outcome of both an algorithm design and program development. As a
result, it becomes difficult to evaluate the characteristics of algorithm and its imple-
mentation in the algorithm-code complex, because it is difficult to distinguish them
and tell whether a feature of the algorithm-code complex belongs to the algorithm or
to its implementation. Thus, evaluation of qualities of the algorithm-code complex
in informatics contests becomes an interesting scientific problem.

Current practice of many contests of this kind is that the dominant part of
evaluation (i.e., making a decision on the properties and qualities of the implemented
algorithm and implementation in the form of scores) is based on empirical black-box
testing of the algorithm-code complex. Task designers have certain expectations
about the relationship of the quality and characteristics of solutions to the measure
of those qualities expressed by points.

However, the essence of black-box testing is that no knowledge of the key ideas of
algorithm, internal logic, and code structure is revealed. Therefore, the conclusions
about the qualities of the algorithm-code complexes made in the form of assigned
scores pose various educational and scientific questions.

This imbalance between the goal to challenge the contestants to algorithmic
problem solving and the commonly accepted practice of evaluation, based on black-
box testing, served as the key motive to start this research.

It is considered that at present there is no alternative to the automated evalua-
tion in informatics contests. Therefore it is highly important to conduct a broader
more structured research in order to identify the main concerns, priorities, and alter-
natives, to improve and scientifically investigate evaluation schemes which involve
not only black-box testing, but also other types of automated evaluation.

Even though the dissertation investigates evaluation issues in Lithuanian Infor-
matics Olympiads (LitIO), the problem is relevant in a much broader context. LitIO
follow the model of International Olympiads in Informatics (IOI). IOI is the most

1

1. INTRODUCTION

prestigious world contest in programming for individual contestants from various
invited countries. There are many other national, regional and international, on-
line and on-site olympiads and contests for secondary school students which follow
the IOI model, apply black-box testing as the main evaluation approach and at the
same time confront similar challenges related to task design and evaluation.

The research focuses on the evaluation in LitIO since the author has been in-
volved in the jury of LitIO for many years, and is familiar with the evaluation
challenges and concerns. Involvement in the organization of LitIO made it possible
to use submissions of LitIO for the investigation as well as provided opportunities
to initiate practical application of the research results.

1.2 Research Objectives and Tasks
The objectives of this dissertation are: to investigate the evaluation criteria and the
evaluation schemes applied in the evaluation of algorithm-code complexes; to develop
the evaluation scheme based on the multiple criteria decision analysis methods,
suitable to be applied in LitIO.

The tasks of the dissertation are as follows:

1. To present a survey of evaluation practice and problems in informatics con-
tests. To analyse the evaluation of submissions to programming assignments in
undergraduate studies. To determine whether this experience could be trans-
ferred to informatics contests.

2. To analyse the possibilities of including a semi-automated evaluation in infor-
matics contests using visualisation of algorithm-code complexes (the case of
tasks with graphs).

3. To analyse a chosen set of algorithm-code complexes, to determine the pre-
cision of measurements of the quality of algorithm-code complexes based on
the testing results. To establish whether the the quality of the algorithm im-
plementation in an algorithm-code complex is related to the quality of the
programming style.

4. To define the evaluation in informatics contests as a multiple criteria decision
problem. To analyse the multiple criteria decision process and methods, and
to propose methods suitable for solving the evaluation problem.

5. Using the MCDA methods, to construct the evaluation scheme for LitIO, con-
sisting of the list of components of a submission, the list of its measurable
attributes, the list of evaluation criteria for each attribute, and the score ag-
gregation function.

2

1.3 Defended Statements

1.3 Defended Statements
1. It is reasonable to improve the evaluation scheme currently applied in infor-

matics contests for evaluating the quality of algorithm-code complexes.

2. Semi-automated evaluation fastens the evaluation process, and allows intro-
duction of additional evaluation criteria into the evaluation scheme.

3. Use of MCDA facilitates the development of more grounded evaluation schemes.

1.4 Research Methods
Systematisation and a comparative analysis were applied when preparing the ana-
lytical part of the thesis.

Submissions of the contestants were analysed by applying the analysis of algo-
rithms and the obtained results were processed using the statistical package SPSS
and descriptive statistics. The validity of LitIO evaluation criteria was investigated
by applying the methods of software development.

Approaches and methods proposed by MCDA, in particular, modelling, the Goal/
Question/ Metric framework and the expert evaluation, Value measurement theory
and the fuzzy logic, were applied in the creation of the evaluation scheme for LitIO.

1.5 Research Findings and Results
1. We have investigated the experience of evaluation in informatics contests, anal-

ysed and classified the problems related to testing in informatics contests. We
have also explored the experience of using testing for evaluating submitted
programs in undergraduate courses.

2. We have examined the possibilities of visualisation of the graphs implemented
in algorithm-code complexes, and selected the visualisation paradigm. We have
analysed and classified the graph implementation methods in 191 algorithm-
code complex, solving graph tasks. Basing on the results of the investigation,
we have created a tool for semi-automated visualisation of the graphs imple-
mented in the algorithm-code complexes.

3. We have analysed the validity of the evaluation criteria currently applied
in LitIO in regard to ISO-9126-1 quality model. We have investigated 290
algorithm-code complexes and determined a deviation from the expected scores
of the quality measurements obtained using two testing score aggregation
schemes: partial soring (20.2% of scores are unjustified) and all or nothing
batch scoring (8.4% of scores are unjustified). We have calculated the corre-
lation between the quality of programming style and the quality of algorithm
implementation: 0.468.

3

1. INTRODUCTION

4. We have defined the evaluation in informatics contests as an MCDA problem
that belongs to group decision making, and repeated classes, and to the ranking
problematique category. We have analysed the MCDA approaches and meth-
ods and selected suitable ones for solving this problem: Goal/Question/Metric
framework, and the Group decision support algorithm combined with the ap-
proach of Chen.

5. By applying the chosen methods, we have constructed the evaluation scheme
and suggested to be applied in LitIO.

6. We have piloted the suggested evaluation scheme with four tasks during a
small contest. We have summarised the piloting results and feedback, and have
presented proposals how to adapt the evaluation scheme to concrete tasks.

1.6 Scientific Novelty
• The thesis provides the first extensive analysis of the problem field of evaluation

in informatics contests (to our knowledge).

• A novel idea has been suggested and investigated to apply visualisation in a
semi-automated evaluation of algorithm-code complexes solving graph tasks.

• The MCDA theory including the fuzzy logic and group decision making ap-
proaches was applied to developing of the evaluation scheme for LitIO.

1.7 Approbation and Publications
The results of the dissertation were presented and discussed in the following national
and international conferences:

• The Fourteenth International Scientific Conference “Computer Days – 2009”,
2009, Kaunas, Lithuania, Kaunas University of Technology.

• The Ninth International Conference on Teaching Mathematics “Retrospective
and Perspectives”, 2008, Vilnius, Lithuania, Vilnius Pedagogical University.

• The Thirteenth International Scientific Conference “Computer Days – 2007”,
2007, Panevėžys, Lithuania, Panevėžys Institute of Kaunas University of Tech-
nology.

• The First International Olympiads in Informatics Conference “Country Expe-
riences and Developments”, 2007, Zagreb, Croatia.

• The XLVIII’th Conference of the Lithuanian Mathematical Society, 2007, Vil-
nius, Vilnius Gediminas Technical University.

• The Second International Conference ISSEP “Informatics Education – the
bridge between using and understanding computers”, 2006, Vilnius, Lithuania.

4

1.7 Approbation and Publications

• The Fourth E-learning Conference “Computer Science Education”, 2007, Is-
tanbul, Turkey.

• The Third E-learning Conference “Computer Science Education”, 2006, Coim-
bra, Portugal.

• 2’nd International Conference on Information Technology “Research and Ed-
ucation”, 2004, London, UK.

• Scientific Conference “Information Technologies’2004”, 2004, Kaunas, Lithua-
nia, Kaunas University of Technology.

The main results of the dissertation were published in the following papers:

1. Skūpienė, J. (2010). Score Calculation in Informatics Contests using Multi
Criteria Decision Methods. Informatics in Education, accepted for publication.

2. Skūpienė, J. (2010). Improving the Evaluation Model for the Lithuanian Infor-
matics Olympiads. Informatics in Education, ISSN 1648-5832, 9(1):141-158.

3. Skūpienė, J. (2009). Lietuvos informatikos olimpiados darbų vertinimas pro-
graminės įrangos kokybės modelio požiūriu. Informacijos mokslai, ISSN 1392-
0561, 50: 153–159.

4. Skūpienė, J. (2009). Credibility of Automated Assessment in Lithuanian In-
formatics Olympiads: One Task Analysis. Pedagogika, ISSN 1392-0340, 96:
143–151.

5. Skūpienė, J. (2007). Assumptions for Automated Grading of Programming
Style in Informatics Olympiads. Lithuanian Mathematical Journal, ISSN 0132-
2818, 47: 273–278.

6. Skūpienė, J. (2007). Development and Perspectives of Automated Grading in
Informatics Olympiads. Information Sciences, ISSN 1392-0561, 42–43: 43–49.

7. Skūpienė, J., and Žilinskas, A. (2007). Automated Grading of Programming
Tasks Fulfilled by Students: Evolution and Perspectives. In Proceedings of the
4’th E-learning’07 Conference. Istanbul Turkey.

8. Skūpienė, J. and Žilinskas, A. (2006). Evaluation in Informatics Contests:
Aids for Tasks Involving Graphs. The Journal for the Integrated Study of Ar-
tificial Intelligence, Cognitive Science and Applied Epistemology, ISSN: 0773-
182, 23(1–4): 39–46.

9. Skūpienė, J. (2006). Programming style – Part of Grading Scheme in Informat-
ics Olympiads: Lithuanian Experience. In Information Technologies at School,
Proceedings of the Second International Conference “Informatics in Secondary
Schools: Evolution and Perspectives”. Vilnius, Lithuania, 2006, pages 545 –
552, (ISI Proceedings List).

5

1. INTRODUCTION

10. Skūpienė, J., and Žilinskas, A. (2006). Evaluation of programs in Informatics
Contests: Case of Implementation of Graph Algorithms. In Proceedings of
The Third E-learning conference “Computer Science Education”. Coimbra,
Portugal, 2006.

11. Skūpienė, J. (2004). Automated testing in Lithuanian Informatics Olympiads.
In Informacinės technologijos 2004, Konferencijos pranešimų medžiaga. Kau-
nas, Technologija, pages 37–41.

1.8 Synopsis
The dissertation consists of seven chapters.

The first chapter is the introduction. It contains the problem statement and
its relevance, research objectives and tasks, methods applied in the research, the
findings and results, scientific novelty of the research, its practical importance as
well as the list of publications which served as a basis for this dissertation.

The second chapter presents an overview of the problematics of evaluation of
algorithm-code complexes. It presents the main terms and concepts in order to
provide terminology for discussion. The investigation of evaluation in informatics
contests cannot be conducted without understanding of the origin, scope, goals,
syllabus and structure (which defines limitations and resources available for evalua-
tion) of informatics contests. The chapter also presents the current LitIO evaluation
scheme, and a survey of scoring schemes applied in other informatics contests. Black-
box testing is a dominant form of evaluation in LitIO as well as in other informatics
contests. The issues regarding black-box testing were identified and structured in
the second chapter.

The analysis of experience in the evaluation of programming assignments with a
view to transfer it to the evaluation in informatics contests is presented.

In the third chapter, we describe the evaluation in LitIO problem as a multiple
criteria decision analysis (MCDA) problem. Therefore we survey the stages of the
MCDA process and various MCDA approaches for solving MCDA problems, among
them the methods that apply the fuzzy logic and group decision making methods.
We elicit the methods that are most suitable for solving the evaluation in LitIO
problem.

The fourth chapter investigates the possibilities for visualisation of the graphs
implemented in the algorithm-code complexes, designed by the contestants. Our
intention was to broaden the possibilities for a semi-automated evaluation in infor-
matics contests. The chapter presents the analysis of a set of submissions for three
different graph tasks. Different graph implementations that were encountered in the
algorithm-code complexes have been analysed and categorised.

In the fifth chapter, the life cycles of a submission and of software are compared
using the waterfall life cycle model. The current LitIO evaluation scheme is analysed
from the point of view of existing quality standards, in particular, the ISO-9126-1
software quality model. We motivate there why reliability, usability and portability

6

1.8 Synopsis

are not included into the evaluation scheme, and separately analyse the evaluation
of the other three quality characteristics.

The concern of the current evaluation is the question whether the results of the
automated testing of functionality presented in the form of scores, correspond to the
intentions of the task designers. To establish this, a set of submissions was analysed
manually, in order to identify whether the expected scores deviated from the scores
obtained during automated testing. Another set of submissions was investigated
with a view to check the hypothesis that a good programming style has an influence
on a successful implementation of algorithms, designed by the contestants.

The aim of the the sixth chapter was to develop an evaluation scheme for LitIO
using MCDA. First, the problem structuring phase was performed, it included the
work with experts and was performed using the Goal/Question/Metric framework.
The work done with experts is presented in detail, illustrating the way to the final
outcome - a refined concept of the submission and a detailed list of evaluation
criteria. By combining the outcome of this chapter with that of the third chapter, we
get the evaluation scheme for applying it in LitIO. Finally, we present a description
of the experiment where four tasks are given to a number of students, evaluated
using the proposed evaluation scheme, and the values of the sensitivity parameters
have been calculated.

7

2 Problematic of Evaluation of
Algorithm-Code Complexes

In this chapter we overview the problematic of evaluation in informatics contests,
and in particular, in Lithuanian Informatics Olympiads (LitIO). We define the main
concepts, look at LitIO goals and structure, domain of problems, present the current
LitIO evaluation scheme, identify the cuts of looking at the evaluation problematic,
identify and structure the main evaluation problems in informatics contests.

The evaluation in informatics contests might have common points with the eval-
uation of programming assignments in programming courses, transferable to evalu-
ation in informatics contests. Therefore, in this chapter we will look at the develop-
ment and the experience of the automated evaluation of programming assignments.

2.1 Introduction
“The programming contests offer a unique environment for research in several ar-
eas of computer science, in particular, computer science education” (Trotman and
Handley, 2006). Informatics contests are introduced as the fastest expanding co-
curricular activity related to computer science which is seen as a good model of
competitive learning (Revilla et al., 2008). Overviews of different aspects of infor-
matics contests can be found in (Cormack et al., 2006; Pohl, 2006; Skienna and
Revilla, 2003; Trotman and Handley, 2006; Vasiga et al., 2008; Verhoeff, 2009).

Informatics contests as an object of scientific interest is rather a new topic.
Most of the early contest related papers were more descriptive rather than present-
ing a deeper scientific analysis of different aspects of informatics contests (Bryson
and Roth, 1981; Comer et al., 1983; Deimel, 1984, 1988; Metzner, 1983; Ryan and
Deimel, 1985; Salniek and Naylor, 1988). One of the recent events that has initiated
treatment of informatics contests as the object of scientific interest in the area of
computer science education was a workshop on informatics contests held in Germany
in 2006 (Per, 2006).

Informatics contests are contests of algorithmic problem solving. The contestants
are given an algorithmic problem and have to design an algorithm, to implement
it, and submit as a working program. The proof of the algorithm correctness and
efficiency is not required. One of the reasons is that it is too dfficult for the the
contestants who are still at high school.

Thus we get the concept of an algorithm-code complex. The term was invented
in this thesis, and it stands for a program which contains an implementation of an
unknown algorithm designed to solve the given task. An algorithm-code complex
combines the outcome of both an algorithm design and program development. As
a result, it becomes hard to evaluate characteristics of the algorithm, and of its
implementation in the algorithm-code complex, because it is hard to separate them

8

2.1 Introduction

and identify whether a feature of an algorithm-code complex belongs to an algorithm
or to its implementation. Thus, evaluation of qualities of an algorithm-code complex
in informatics contests becomes an interesting scientific problem.

Current practice of many such contests is that the dominant part of evaluation
(i.e. making decision about properties and qualities of implemented algorithm and
the implementation in a form of scores) is based on empirical black-box testing
of algorithm-code complex. Task designers have certain expectations about the
relationship of the quality and characteristics of solutions to the measure of those
qualities expressed in points.

However, the essence of black-box testing is that no knowledge of key ideas of
algorithm, internal logic and code structure is revealed. Therefore, the conclusions
about the qualities of the algorithm-code complexes made in the form of assigned
scores raise various educational and scientific questions.

In the earlier papers we already found concerns about such a form of evaluation
(Struble, 1991). Recent papers present a much deeper analysis of various black-box
evaluation related concerns and aspects. In this chapter we overview and structure
these issues.

Typically, static and/or dynamic evaluation is performed to evaluate programs
which are given as an assignment or an exam task in undergraduate courses of
computer science education. Much research has been completed in that area (Douce
et al., 2005; Helmick, 2007; Rahman et al., 2007; Woit and Mason, 1998). A lot of em-
phasis was put on the grading tools and their features, (Ahoniemi and Reinikainen,
2006; Foxley et al., 2004; Harris et al., 2004; Spacco et al., 2005; von Matt, 1994).
In this chapter we look at the experience of evaluating programming assignments
and will identify whether that could be transferred to informatics contests.

We have found references that informatics contests were already organised in the
early sixties (Comer et al., 1983). Currently informatics contests span over a huge
number of participants and scientists involved in organising the contests. Around
300 participants in total come to represent their countries and to compete in IOI
(IOI, 2010), the leading international contest for students in secondary education.
However, IOI is at the top of the pyramid. The bottom part consists of national
contests(Anido and Menderico, 2007; Kolstad and Piele, 2007; Wang et al., 2007).
No more than four contestants can represent their country in IOI. Around 2000
participants join Lithuanian Informatics Olympiads (LitIO) each year to compete
for awards and to be selected as those four to represent Lithuania.

ACM International Collegiate Programming Contest (ACM-ICPC) is a team
contest for university students around the world (ACM, 2010a). The team consists
of up to three members and shares one computer. In ACM-ICPC the algorithm-
code complexes submitted for evaluation are either accepted or rejected without any
intermediate values, i.e. all-or-nothing scoring is applied. Currently it is the leading
team contest for post-secondary students. It is possible to observe the growth of this
contest with less than 500 teams and universities in 1989 and more than 5,000 teams
and 1,500 universities in 2005 (Patterson, 2005). The teams have to pass a tight
competition in regional quarter-finals and semi-finals to proceed to the finals. 103
teams from over 200 regions competed in the world finals of ACM–ICPC in Harbin in

9

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

north-east China in 2010. There were some 22,000 participants in the preliminaries,
and they represented 1,931 universities in 82 different countries (ACM, 2010b).

At present, the leading on-line informatics contest is TopCoder algorithm com-
petition established in 2001. It is an open privately run on-line contest with a large
electronic community of more than 150 thousands registered users (Top, 2010).

2.2 Concepts
The key concepts of the thesis are an algorithm-code complex, informatics contests,
and evaluation. Here we introduce them together with other relevant concepts:

Problem. Well specified computational problem, where the statement of the prob-
lem specifies in general terms the desired input/output relationship and which
requires an algorithm in order to solve it (Cormen et al., 1992).

Algorithm. Well defined computational procedure that takes some value as input
and produces some value as output (Cormen et al., 1992).
We only consider the algorithms that are designed with purpose to solve the
given problem.

Correct algorithm. An algorithm which for every valid input instance halts with
the correct output (Cormen et al., 1992).

Algorithm efficiency. A characteristic of an algorithm described as run time per-
formance and memory usage and expressed in big O notation.
Note, that when we use linguistic terms inefficient, low efficiency, efficient,
etc, we mean that the linguistic terms are associated with big O characteristic
taking into account the context in which the problem is being solved.
For example, if we give a task to sort n numbers, and want to make it an easy
problem, we may decide that an O(n2) algorithm is efficient. If we want to
make the problem difficult, we may define that the same O(n2) algorithm is
inefficient, and an efficient algorithm should have O(nlog(n)) complexity.

Task. A detailed specification of the problem which determines requirements for
the solutions to be submitted and evaluated. We only consider the tasks
that require to implement the algorithm solving the problem in approved pro-
gramming language. The structure and typical format of tasks is discussed in
Subsection 2.7.

Informatics contest. A task-based problem solving contest with exam sessions
where the tasks are such that there exists a correct and efficient algorithm
solving the problem, the solutions are implemented in approved programming
languages, tested, assigned score and the final ranking of the contestants based
on the scores is delivered.

10

2.2 Concepts

We introduced this concept here shortly, so that we could start talking about
the problematics of the thesis. However, the wider background of the concept
and how we arrived to it will be discussed in Subsection 2.4.

Contestant. The participant of informatics contests. We assume that the contes-
tants are either in secondary or in high schools, except for ACM-ICPC contests
for university students.

Algorithm-code complex. A program, submitted as a (part of) solution to a task
in informatics contest in a form of its source code.
It is expected that the program contains an algorithm intended to solve the
task, presented in a form of implementation in approved programming lan-
guage.
Instead of this concept we could have used the term program. However, by
defining an algorithm-code complex, we wanted to emphasise that we are in a
situation when we have both an algorithm and its implementation in one place
and we can not easily measure the qualities of each item separately, or decide
whether a certain feature belongs to the algorithm or to the implementation.
This situation occurs de facto in many informatics contests, like IOI. One
reason may be the willingness of the contest organisers to use black-box testing
as the only form of evaluation. On the other hand, the contestants are students
in secondary education, and providing proof of their algorithm correctness may
be beyond their capabilities.

Submission. Solution to task, submitted for evaluation. The exact specification
of submission (i.e. what a solution should consist of) is written in the task.
We assume that an algorithm-code complex is always the required part of
submission.

Evaluation. A systematic determination of qualities of something against a set of
standards.
In informatics contest we are interested in evaluation of submissions. Infor-
matics contest as an event is not related to any controlled successive teaching
and learning process. Therefore much reasoning which is common when eval-
uation take place in the middle or at the end of some course is not valid here.
There is no context arising from the learning process and its goals. Besides,
the evaluators may not have a direct contact with the contestant if this is an
on-line contest.
Therefore we decided to focus on the quality of a submission in the evaluation.

Test. A valid input for the task together with a corresponding output. Note, that
for some tasks there are many correct outputs to the same input.

11

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

Black-box testing. Testing that ignores internal logic of a program and focuses
solely on the outputs generated in response to selected inputs and execution
conditions (Williams, 2006).

2.3 Goals of Informatics Contests
Many different informatics contests for high school and undergraduate students are
organised every year. Each contest has its own goals. We looked at the goals of most
popular informatics contests (Cormack et al., 2006; Trotman and Handley, 2006),
and noticed that the list of goals is similar in many informatics contests. However,
different contests put different weights and importance to various goals.

B
u
il
d
in
g

co
m
m
u
n
it
ie
s

Prom
oting

contests
Fo
ste
rin
g
in
te
re
st

in
 th
e d
ic
ip
lin
e

C
h
allen

g
in
g
 in

p
ro
b
lem
 so
lv
in
g

Informatics

contests

Tasks and evaluation

Figure 2.1: Relationship of goals of informatics contests

Next we look at the goals that we consider most important in LitIO and in the
context of this research.

“Bringing the discipline of informatics to the attention of young people” (IOI,
2008), illustrating the nature of the discipline, exposing students to the interesting
breath of computer science are the goals emphasised in many informatics contests
(Lie, 2008; Astrachan et al., 1993; Kearse and Hardnett, 2008; Kolstad and Piele,
2007; Pohl and Polley, 2006). Computer science typically is not included (or in-
cluded at a low level) into the informatics teaching curricula at the gymnasium level
(Blonskis and Dagienė, 2008; Dagienė, 2008). Informatics contests serve as a stimu-
lator for the students to get interested in the subject, explore it, develop analytical
skills, challenge themselves and consider informatics as the choice for their future
career.

In the last few years the media announces that interest in computer science
decreases both among gymnasium graduates and undergraduates already enrolled
in informatics. Informatics contests attract to the discipline (Patterson, 2005; Shilov
and Kwangkeun, 2002). High school informatics contests organised by universities

12

2.3 Goals of Informatics Contests

have become an important component of recruiting efforts (Kaz, 2010; Bowring,
2008; Myers and Null, 1986; Sherrel and McCauley, 2004). Analysis of surveys of the
contestants has corroborated that the contests increased interest in computer science
of more than 70% of respondents and had other positive effects on the contestants
(Sherrel and McCauley, 2004).

G
o
a
ls
 o
f
in
fo
rm
a
ti
cs
 c
o
n
te
st
s Text

Promote interest in

Computer science

Text
Illustrate the nature

of the dicipline

Text
Recognise

achievement

Text

Disseminate good

programming

practices

Characteristics of informatics contests

High scientific quality

Attractive to public and participants

Gender neutral contests

Give recognition to the best in the discipline

High scientific quality

Attractive and challenging tasks

Good discrimination of contestants

Give recognition to the best in the discipline

Motivated evaluation scheme

Motivated evaluation scheme

Figure 2.2: Most important goals and characteristics of informatics contests

A high scientific quality of informatics contests is an important goal of LitIO and
of IOI (Verhoeff, 2006). Universities that take into account the awards obtained in
informatics contests during enrollment are also interested in a high scientific quality.

Another important role is recognising achievement of each contestant, not only of
those who are on the top (Cormack et al., 2006). Contests attract a large community
of contestants with diverse skills. The contestants with lower abilities should feel
that they can also succeed and that their efforts are recognised. There are many
ways how to try to achieve this goal especially through task selection and evaluation.
This goal defines the direction of contests.

Recognising achievement is closely related to discrimination of the contestants.
Discrimination refers to how well the task differentiates between high and low scorers
(Dis, 2010). It should be good over a broad range of ability levels (Kemkes et al.,
2006). In each contest the gold, silver, and bronze winners have to be nominated. If
discrimination is poor among the top contestants, then it becomes difficult to make

13

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

that decision. The contestants may doubt whether their achievement or luck and
other random factors play the most important role in identifying the winners. A
good discrimination among the bottom part of contestants is important in order to
keep those contestants motivated.

LitIO emphasise educational goals of informatics contests, especially dissemi-
nation of good programming practices. An important reason for that is that many
teachers in Lithuania take LitIO evaluation practice as a model for teaching students
of programming. However, this goal may not be treated as a goal in informatics con-
tests in general.

A high scientific quality of informatics contests, good discrimination of contes-
tants, contests attractive to the general public, new and current contestants, recog-
nition of the best ones in the discipline, making the contests more gender neutral and
thereby more attractive to the female students are important characteristics of in-
formatics contests to be achieved (Boersen and Phillips, 2006; Cormack et al., 2006;
Pohl and Polley, 2006). Fig. 2.1 and 2.2 provide an overview of goals important in
LitIO.

2.4 Background of Concept of Informatics Contest
Informatics contest is one of the key concepts in the thesis. The purpose of this
section is to provide the background for this concept. Note, that informatics contest
is a very general term. However in this thesis we define and use the very general
term for specific purposes.

(Pohl, 2006) suggested the definition of a typical informatics contest:
“The typical informatics contest is a task-based contest with short-time exam

sessions, where task solutions are submitted as source code only and evaluated auto-
matically” .

Automated evaluation is a wider concept than black-box testing. However since
black-box testing is the dominant form of evaluation in informatics contests, some
sources use these words as synonyms in the context of informatics contests.

We modified the definition of the informatics contest for the use in this research:

• It is a problem solving task-based contest.

• The contest is organised in a form of short term exam session(s).

• The tasks are such that there are known correct and efficient algorithms for
solving the tasks.

• An algorithm-code complex is an obligatory part of submission.

• Black-box testing is included into evaluation.

• Each submission is graded, the score is assigned, and the final ranking based
on the scores is delivered.

14

2.4 Background of Concept of Informatics Contest

This is a generalised concept and each concrete contest has its own peculiarities.
The extended definition (illustrated in Fig. 2.3) used in this dissertation is wider

than that of Pohl’s mainly in two aspects: it requires to include an algorithm-
code complex in submission, however allows additional materials to be included into
submission. Even though black-box testing remains obligatory in the evaluation, it
makes room to introduce other forms of evaluation as well.

Problems

have

correct and

efficient

solutions

Algorithm

implemen-

tation

required

Short term

exam

sessions

Each

submission

graded

Final ranking

derived

Black box

testing –

part of

evaluation

Problem solving

task based

Informatics

contest

Figure 2.3: Definition of the informatics contest

The obligatory requirement for a problem to have fully correct and efficient
solution means that heuristic tasks are not part of the investigation.1 The definition
of a task is adapted to the scope of investigation of this dissertation, i.e., it does
not consider other types of tasks which would be natural to discuss if informatics
contests were analysed in a broader context.

There is a variety in naming of informatics contests, used both in the scientific
papers and the competition communities. The word informatics sometimes is re-
placed by programming, algorithmic, computer science or computing science. The
word contest sometimes is replaced by olympiad or competition. Naming of this kind
of events is more a matter of a tradition, scope, prestige, but not of the content.

The above defined understanding of informatics contest will be used throughout
the thesis and will not assume any other types of informatics contests unless explic-
itly stated otherwise. We did not try to define an ideal informatics contest, we just
generalised the concept in view of the currently existing contests and adopted it to
this research.

1In reality in LitIO the use of such tasks is highly avoided or at least is the subject of serious
discussions.

15

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

2.5 Structure of LitIO
The contests have many dimensions, like coverage, location, divisions, audience,
rounds, duration, evaluation, score announcement, ranking factors, and other di-
mensions which form taxonomy of the contests (Pohl, 2006; Trotman and Handley,
2006). The structure of each contest has its own peculiarities. In this section we
present the structure of LitIO. A detailed description of LitIO structure can be found
in (Dagienė and Skūpienė, 2007).

We describe here the structure of the final round, because namely this round
corresponds to the definition of the informatics contest accepted in the thesis. The
contest is organised in a form of three five-hour exam sessions, held on separate days.
The contest is individual and each contestant is assigned a separate computer for
the time of the contest. The regional winners participate in the first session which is
held on-line. Only the best contestants of the first session are invited to participate
in the two on-site sessions (called finals).

At the beginning of a session the contestants get from two to four tasks to be
solved during the session. Each task requires to design and implement an algorithm
in one of the allowed programming languages. Currently the languages allowed in
LitIO (as well as in IOI) are Pascal, C/C++. Other types of tasks are rare in LitIO
(as well as in IOI) and not part of this investigation.

Contestant

CMS Grading client

Submission
Request to grade submission

Compile

Execute test run

Analyse results

opt, loop [Compiled = true]

Grading results

Filtered grading results

loop

Figure 2.4: Sequence diagram of the submission process

16

2.6 Domain of Problems in Informatics Contests

The contestants have to submit their solutions for evaluation using the Contest
Management System (CMS). CMS is a group of server applications and modules
to support informatics contests. The main functions of CMS are to support the
contest by providing submit, test, print, backup, restore facilities during the contest
and to support automated grading of contestants’submissions (IOI, 2002; Mareš,
2007). Modern CMSs provide more facilities.

After the submission has been submitted, the program is compiled and executed
with sample tests. An immediate feedback is provided to the contestant, and they
can modify their programs and resubmit (Fig. 2.4). No penalty is given for resub-
mission. Submission consists of the algorithm-code complex, and the algorithm idea
description if required by the task.

Full feedback tasks have been introduced recently to LitIO following IOI devel-
opments. For those tasks all the grading tests are public and the contestants can see
the points for black-box testing immediately1. Evaluation of submissions to other
tasks from the point of view of contestants takes place after the contest. The scores
of a contest session have to be announced within few hours after the session is over.
Official rankings and the winners are announced after the contest.

LitIO is an IOI type contest and its structure corresponds to the IOI structure
with one major difference. In IOI, the submission consists of the source code only
and no additional materials are required. There are more differences between LitIO
and ACM-ICPC type contests. Those are team contests. Each resubmission in
ACM-ICPC is penalised, evaluation takes place during the contest, the team scores
are announced on a live scoreboard.

2.6 Domain of Problems in Informatics Contests
The domain of problems of informatics contests can be roughly characterised as
“programming problems involving college-level computing and mathematics, as well
as associated fields such as operations research” (Cormack et al., 2006).

Russian Informatics Olympiads have a syllabus (Kiryukhin, 2007). However,
many informatics contests do not have a formal syllabus. It is not always possible to
find domain of contest problems in the contest documentation or publications. We
found just general reasoning, (e.g., “problems should be interesting, novel, should re-
quire solutions demonstrating interest in computer science or they must be computer
science problems and not require knowledge from other disciplines” (Trotman and
Handley, 2006)) and considerations about topics which should be excluded from the
contests (e.g. “problems in obscure application areas, numeric problems involving
extensive computations with floating-point values” (Deimel, 1984)).

An informal syllabus of informatics contests can be found in (Skienna and Re-
villa, 2003) where the problems from a variety of previous contests are analysed
and categorised into thirteen groups including arithmetics and algebra, graphs, and
dynamic programming.

1The contestants do not get information about the points scored by their submissions for full
feedback tasks in IOI unless the submission solved the task completely.

17

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

IOI seems to be the only contest among the well-known international informatics
contests that made the efforts towards an official syllabus. The authors of the
recently proposed IOI syllabus tell that “the competition problems are algorithmic
in nature”. They present a proposal for an IOI Syllabus, divided into four main
areas: mathematics, computing science, software engineering, and computer literacy
(Verhoeff et al., 2006). LitIO officially follows the proposed IOI syllabus.

The syllabus includes the following areas of computing science: fundamental pro-
gramming constructs, algorithms and problem solving, fundamental data structures,
recursion, basic algorithmic analysis, algorithmic strategies, fundamental comput-
ing algorithms, advanced algorithmic analysis, and geometric algorithms (Verhoeff
et al., 2006).

Mathematics is inseparable from computing science and it plays several roles, in
particular, the role of a language for expressing formalised models, that of reasoning
about models, computations, algorithms, data structures and their implementations
(Verhoeff et al., 2006). “Concepts that lie beneath informatics problems are often
mathematical in nature and for harder problems students need a sound mathematical
mindset to succeed” (Burton, 2007). It can also play the role of a problem domain,
however, it is still a computational problem in its nature.

Note that software engineering and computer literacy are not the domains for
the problems of informatics contests. The skills in software engineering are needed
in order to implement an algorithm. The syllabus states that “the application of
software engineering concerns the use of light-weight techniques for small, one-off,
single-developer projects under time pressure”. The elements of computer literacy,
included into the syllabus, refer to the basic skills needed to use a standard computer
with a graphical user interface and the provided program development tools.

2.7 Structure of a Batch Task
The most common, “classical” type of tasks in informatics contests is batch tasks. In
a batch task, all the tests are designed and fixed before the beginning of evaluation
and do not depend upon the program behaviour. A batch task has the following
typical components:

The task story. That gives a detailed background of the task, e.g., a precise de-
scription of the model. It is often wrapped up in some kind of story.

The task overview. It contains the statement that explicitly tells which problem
the algorithm should solve.

Input and Output. These explain a detailed format of input and output files the
contestants program must deal with. Sticking to the input/output formats
enables automated testing.

Sample input and output. These illustrate simple input scenarios and their so-
lutions. Their purpose is to help the contestants understand the task and
the input/output format. However, they are considered as a supplementary

18

2.8 Concept of Quality

material for the task, i.e., the task should be understandable without sample
tests.

Data constraints. These provide constraints on input in general, and concrete up-
per and lower boundaries to each input item. In some cases, input constraints
are provided in the form of output constraints (e.g., input will be such that
output will not exceed the value x).

Technical constrains. These contain the memory and run-time limits. All this
combined with data constraints give an opportunity for the contestant to es-
timate the expected performance of his solution.

Deliverables. These explain what should appear in a submission.

Scoring function. It explains to the contestants how the points are to be dis-
tributed. For example, if the task contains sub-tasks, in this section, the points
for each sub-task are explicitly defined. In the case of LitIO, this section also
contains a distribution of points for each evaluated item (verbal algorithm
description, black-box testing, programming style).

An example of a batch task can be found in Appendix A.1.
Batch tasks are much more common than other types of tasks in LitIO and IOI.

In LitIO during 1989-2010, 243 tasks were prepared and used in the final round. Out
of them 226 tasks (93%) were batch tasks. In IOI, 81% of tasks (87 out of 107) were
batch tasks since 1989 (i.e., in the years 1989-2009). In other informatics contests
which are modeled after IOI, e.g., Baltic Olympiads in Informatics, batch tasks also
dominate (Poranen et al., 2009).

Batch tasks do not cover all the types of tasks that are used or considered to
be included into informatics contests. Other types of tasks used in LitIO and IOI
are theoretical, interactive, and output-only tasks. Interactive tasks are tasks where
the program has to interact with some libraries and some output must be produced
before the new input comes. In terms of evaluation, interactive tasks are very close
to the batch tasks.

Detailed analysis of types of tasks, used in LitIO an IOI, as well as considerations
on different types of tasks can be found in (Burton, 2007; Dagienė and Skūpienė,
2003; Kemkes et al., 2007; Pohl, 2007; Verhoeff, 2006, 2009)

In the thesis we focus on the evaluation of batch tasks assuming that most of
it will be applicable to interactive tasks, but will not go into the peculiarities of
interactive tasks.

2.8 Concept of Quality
In this section we explore the concept of quality. This is needed in order to be able
to define quality of a submission.

There are two different trends how the concept of quality can be treated (Hoyer
and Hoyer, 2001). Either quality is conformance to specification, or correspondence

19

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

to the needs of the customer. In the first case, the product is considered to be
qualitative if its measurable characteristics correspond to the requirements defined
in advance. In the latter case, the quality is the ability to conform to the needs of a
customer and is not related to any measurable characteristics. An extensive overview
of different views about quality and software quality can be found in (Lundberg et al.,
2005).

The quality is neither luxury, nor elegance. The quality is a strict conformance to
specifications. The quality standards should be precise and the view ”almost good” is
not acceptable (Crosby, 1979). E. W. Deming (Deming, 1988) suggests that quality
is conformance to the demands of the user, however a difficulty arises when we have
to define the level of quality, i.e., to describe it using measurable characteristics.
He suggests that the quality can only be described in terms of an agent, i.e., a
concrete judge of the quality (Deming, 1988). A similar view is suggested by A. V.
Feigenbaum (Lundberg et al., 2005) who supports the opinion that only the user,
during a real use of the product can determine, its quality. However, the problem is
that the needs of the user are changing, therefore the concept of quality changes as
well. Ishikawa also defines quality as conformance to the requirements of the user
and emphasises that international standards (like ISO, IEEE) have some drawbacks
and do not respond to the changing needs of the user fast enough (Lundberg et al.,
2005).

W. A. Shewart indicates two understandings of quality, i.e., either as an objective
reality independent of the existence of the users, or as a subjective perspective
dependent upon the thoughts and feelings of individuals which occurred due to the
objective reality (Hoyer and Hoyer, 2001).

To sum it up, the concept of quality is not absolute. It is a constructed and
changing concept. Therefore it is not possible to talk about the absolute quality of
a submission (or an algorithm-code complex). When we speak about the quality of
a submission in informatics contests, the two main understandings of quality (cor-
respondence to specification and conformance to the needs of the users) intertwine.
The same group of people (scientific committee) both determine the specification
and, at the same time, are the only users of the submission (i.e. the jury).

2.9 Different Points of View of Evaluation of
Algorithm-Code Complex

The informatics contest is a problem solving contest where the solutions have to be
presented as working programs (algorithm-code complexes). This implies that two
types of skills are important in the contest and have to be evaluated: problem solving
skills (i.e., designing a correct and effective algorithm) and program development
skills (Fig. 2.5).

By problem solving we mean “the use of creative, intelligent, original ideas in
combination with prior knowledge when applied to a new situation” (Vasiga et al.,
2008). Informatics contests test the general problem solving skills. In particular,
understanding the problem, determining the requirements, planning and designing

20

2.9 Different Points of View of Evaluation of Algorithm-Code Complex

a solution, implementing the solution and putting it to a test (Salniek and Naylor,
1988).

In informatics contests the problem solving skills and program development skills
are interrelated. The submission in LitIO is presented as an algorithm-code complex.
We introduced this term to emphasise that it is not always possible to separate those
skills and evaluate them separately. A lot of burden in ensuring that the problem
solving component were properly included goes to task designers (Vasiga et al.,
2008). The task itself should require an original and intelligent approach without
which the contestant would not be able to solve the problem completely. Thus, a
part of burden for evaluating the problem solving skills is transferred from the jury
to task designers. We guess that this might be one of the reasons why black-box
testing has a strong position in the evaluation in the informatics contests despite its
limitations.

Problem solving

Program

development

Figure 2.5: The skills measured in informatics contests

Another point of view about evaluation in the contests is the form of evaluation.
There are two major approaches to the form of evaluating programming assignments:
static and dynamic. The dynamic analysis is based on the observation of program
behaviour during its execution. The static analysis involves the analysis of the
program without executing it (Ala-Mutka, 2005). Once the measures obtained from
the static and dynamic analyses are associated with the scores, we obtain the static
and dynamic evaluation.

Another approach distinguishes the following categories: automated and manual
evaluation. Manual evaluation is evaluation which is performed by human evalu-
ators. The automated evaluation is a method in which a computer program aids
the teacher in grading student’s work and facilitates the feedback process. It can
be semi-automated where the teacher does (part of) work, but the tool simplifies
the process (Jackson, 2000). The basic requirement for the automated evaluation is
measurability of evaluation targets (Ala-Mutka, 2005).

It should be noted that the term automated evaluation is a much broader term
if used outside the context of evaluating programming assignments. For example,

21

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

automatically processing multiple choice questions is also an example of automated
evaluation.

In the dissertation, we assume that each form of evaluation falls under the corre-
sponding category (Fig. 2.6), i.e. it is either dynamic or static, and either automated
or manual. It is more difficult to decide on a semi-automated approach. By formal
definition, evaluation of idea description and programming style is semi-automated
in LitIO, however, conceptually it should be considered as manual evaluation. There-
fore in each case we will specify its meaning.

We felt that we had to present one more point of view about evaluation. We
will look at the main parts of programming assignments, the evaluation of which we
have found discussed in the related publications. At this point we do not make any
references about should be. We just claim that we have found these parts discussed
in the publications and it will be easier to follow the discussions if we know the list
of items in advance. The main items are:

• Written documentation. It might include reasoning on algorithm correctness
and efficiency and the comments on program design.

• Algorithm implementation. Evaluation of implementation might be split into
the following attributes: correctness, efficiency and programming style.

• Set of Tests.

Semi-automated

Dynamic

Manual Automated

Static

Figure 2.6: Forms of evaluation of programming assignments

We listed four different perspectives: skills that are to be evaluated, the extent of
evaluation automation, dynamic or static evaluation, and the list of the main parts
of the algorithm-code complex that are evaluated. Two out of four perspectives
refer to the implementation of evaluation and the other two refer to the conceptual
parts of evaluation. We will look at evaluation from the latter perspective. One
section will be devoted to the automated evaluation, because its development and
availability of tools play a significant role in the choice of the scheme of evaluation.

22

2.10 Current Evaluation Scheme in LitIO

2.10 Current Evaluation Scheme in LitIO
The current evaluation scheme has been applied in LitIO since 1994 without sig-
nificant changes. Historically in the first few olympiads some contest sessions were
conducted without computers and manual grading dominated there. About fifteen
years ago LitIO moved to a combination of semi-automated and automated evalu-
ation. The same scheme with minor changes (which emerged when the CMS were
introduced in LitIO) is applied until now.

In informatics contests, two terms might be used to refer to bodies, responsible
for task preparation and evaluation. Scientific committee is group of people with
background in informatics, responsible for informatics contest syllabus (at least in-
formal), the choice of tasks and task preparation for the contest. The term jury
stands for a group of people with background in informatics responsible for carry-
ing out evaluation in informatics contests. In LitIO we have only one body which
performs functions of both scientific committee and the jury. Therefore these words
are synonyms if we speak about LitIO. The choice of the term will depend upon the
responsibility we want to emphasise.

Verbal

algorithm

description

Program

performance

Programming

style

0 to 20%
 of points

0 to 10%
 of points

70
 to

 10
0%

 of
 po

int
s

Problem solving skills

Problem developm
ent skills Pr

ob
lem
 so
lvi
ng
 a
nd
 p
ro
ble
m
 d
ev
elo
pm
en
t s
kil
ls

M
anual (sem

i-autom
ated evaluation)

Au
to
m
at
ed
 e
va
lua
tio
n

Figure 2.7: Current evaluation targets in LitIO

We will look at evaluation in LitIO from the point of view of current evaluation
targets (Fig. 2.7). A submission in LitIO consists of a verbal algorithm description
and the algorithm-code complex. The evaluation is split into three parts: evaluation
of the verbal algorithm description (0 to 20% of points), black-box testing of the
algorithm-code complex (70%–100% of points), and evaluation of the programming
style (0 to 10% of points).

Testing is performed automatically (dynamic automated evaluation), while the
evaluation of idea description and the programming style is performed by human

23

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

graders, using a special tool implemented in the CMS to support this (static semi-
automated [manual] evaluation).

The exact scoring function for each task is fixed before the contest and announced
to the contestants at the beginning of a contest session. The ranges allow flexibility in
the evaluation. It means that there might be tasks where either the verbal algorithm
description, or the programming style is not graded. Next we overview each part
separately.

2.10.1 Evaluating the Verbal Description of an Algorithm
The verbal description of an algorithm is evaluated using static and semi-automated
(manual) evaluation (Fig. 2.8). By evaluating that the judges evaluate algorithmic
problem solving skills.

The contestant is expected to provide a short description of his algorithm and (if
needed) a mathematical model. The contestant has to decide himself whether the
model should be provided. For example, sometimes modeling task data as a graph
is not obvious and the modeling procedure has to be described before describing
the algorithm itself. The algorithm should be unambiguously clear according to
this description. A strict scientific proof is not required. Because that can not be
expected at the secondary education level.

Semi-automated (manual)

Problem solving skills Up to 20%

task points

Taxonomy of possible

solutions made

May not correspond

implementation

Proof not required

V
er
b
al
al
g
o
ri
th
m
d
es
cr
ip
ti
o
n

E
v
al
u
at
io
n

Figure 2.8: Evaluation of verbal algorithm description

Verbal descriptions are graded by human evaluators. Taxonomy of possible so-
lutions is made in advance for each task. The solutions are sorted into several cat-
egories, depending upon the algorithmic strategy, e.g. greedy strategy, full-search,

24

2.10 Current Evaluation Scheme in LitIO

dynamic programming, etc. The jury associates each category with some range of
points, depending upon the correctness and the big O characteristic of the algorithm.
Thus the concepts of efficient or inefficient solution for this task is defined. Typi-
cally incorrect solutions for verbal algorithm description are awarded no more than
30% of points, correct, but inefficient – 30%-60%. Correct and efficient solutions are
awarded 60%-100% of points. However, other distributions are also possible.

Sometimes there arises a situation where without a scientific proof, it is impos-
sible to decide about the correctness of the described algorithm. In this case, the
jury still has to decide on the score, sometimes taking a more attentive look at the
implementation and testing results (if that corresponds to the written description).

Another common situation is when algorithm descriptions are not clear enough
to identify the algorithm unambiguously. In that case the jury try to identify which
parts of algorithm are clearly described and base their score on that.

There is no requirement to the implementation to correspond to the verbal de-
scription. There are two reasons for that. One of them is that checking whether the
algorithm described matches the implementation is not obvious and time-consuming.
Another reason is that the contestants are allowed to submit algorithm descriptions
without implementations. The contestants who did not have enough time to solve
all the tasks can present just the ideas how to solve the problem and get points if
their ideas are reasonable.

2.10.2 Testing Functionality and Efficiency
Functionality of an algorithm-code complex is defined as the feature of an algorithm-
code complex to terminate and provide correct output for every valid test given as
an input.

Efficiency is a characteristic of an algorithm-code complex described as run time
performance and memory usage in the worst case and expressed in big O notation.
Task designers associate big O characteristic to a linguistic scale (like inefficient,
low efficiency, efficient) and the table of the expected scores for each task. This
association is a constructed notion.

Testing the functionality and efficiency of a submission is performed using the
dynamic automated evaluation. Both problem solving and program development
skills are evaluated that way.

Task designers develop a taxonomy of possible solutions and associate it with
the expected ranges of points. After they design set of correctness tests and a set of
efficiency tests.

Correctness tests are tests designed with the intention to check algorithm-code
complex correctness in order to separate correct complexes from incorrect ones.
Typically the size of correctness tests is limited so that reasonably inefficient correct
solutions would pass these tests. Various modifications of input data are taken into
account during the test design in order to ensure better testing. Efficiency tests
are designed with the intention to check the algorithm-code complex efficiency and
distinguish between different efficiency categories of solutions

25

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

The points for each test are distributed in advance, based on the task taxonomy.
It is expected that testing will distinguish different classes of solutions. Grading
tests often are not disclosed to the contestants before the contest is over.

The contestants submit their source code through the CMS web-interface during
the contest. The source is compiled and if the compilation is successful, the pro-
gram is executed with sample and sometimes with additional tests and the output
is checked for correctness. Thus, it is verified that the program performs something
reasonable and that input/output format is correct. In the case of use of additional
tests, the contestant gets more feedback about the functional correctness and effi-
ciency of his algorithm and implementation. The feedback is given to the contestant
immediately. In the case of errors, the contestant can fix and improve his program
and resubmit it again. Only the last submission is forwarded for the formal grading.

Testing from the point of view of a contestant takes place after the contest.
The only exception is recently introduced full feedback tasks. The purpose of such
tasks is a better differentiation of contestants. Such a task should differentiate the
contestants who have good programming skills, but are weaker in problem solving.
Typically such tasks do not require strong problem solving skills. Full feedback tasks
are tested and graded during the contest in LitIO.

During the grading each algorithm-code complex is compiled and executed with
each test run (input). The test run is considered to be passed if and only if: the
program does not raise any exceptions while being executed with this test run, the
execution is completed within the pre-defined time and memory constraints, the
program output satisfies the output format requirements, and the output is correct
for the given input.

There is no requirement for an algorithm-code complex to pass all the correctness
tests in order to be tested with efficiency tests.

Until 2008, grouping was not used in LitIO. It means that partial scoring (adding
up points for each test) was used for score aggregation. Test grouping together with
all-or-nothing batch scoring was introduced in 2008. Tests are grouped into test
cases, each test case targeting at some specific feature. The points for a test case
are only assigned if all the tests from that test case are passed successfully.

However, among the jury of LitIO there is no unanimous opinion on test group-
ing. Because sometimes it is difficult to define the disjoint correspondence between
the domain of input and the groups of possible solutions (including incorrect ones).
Overlapping might lead to the consequences where a submission is punished several
times for the same mistake. Thus, the points awarded for black-box testing, fall out
of the range defined in the task taxonomy. Therefore, for some tasks partial scoring
is still applied.
2.10.3 Evaluating the Programming Style
The programming style is evaluated using static semi-automated (manual) evalua-
tion. In the evaluation, the program development skills are evaluated.

The programming style has been part of the evaluation scheme in LitIO for
many years. After the set of tasks for a contest session has been prepared, the jury
discusses and approves the scoring scheme for each task. A part of this process

26

2.11 Automated Evaluation of Submission to Programming Assignments in…

is deciding whether to include the programming style into the scoring scheme of a
concrete task. When making the decision, the jury takes into account the amount
of solutions to be graded, available resources for grading, and the nature of a task.
On the average, the programming style is included into the scoring scheme of half
of the tasks.

If the programming style is evaluated, then the following scoring scheme is used.
90% of points are given for the testing results and verbal description of an algorithm,
the remaining 10% points – for the programming style, i.e., program elegance, struc-
ture, and simplicity. Those points can only be awarded if the program scores ≥ 50%
of points for automated testing, in order to avoid awarding points for programs that
do not even try to solve the task. Grading is performed by human graders (jury)
semi-automatically, using a special module of the CMS.

Some formal criteria are developed in LitIO, that give guidelines for the eval-
uators. The criteria also serve as guidelines for the contestants. However, there
is no formal evaluation formula relating metrics (of the programming style quality
according to each criterion) to the points for the programming style. Therefore the
current grading practice should be considered as holistic.

One of the main requirements is consistency everywhere in the program: in text
formatting, naming, processing data, control structures, etc. Other basic require-
ments are: neat and clear text formatting, text indentation revealing the program
structure, spaces used to give more clarity and suggest grouping, appropriate use
of comments, descriptive names, reasonably selected and used data structures, and
the structural program (separate groups of computational steps are separated into
procedures or functions). These requirements were based not only on the general
requirements to the programming style in (Kernighan and Pike, 1999; Miara et al.,
1983), but also on the most common offenses to the programming style the contes-
tants make in LitIO.

2.11 Automated Evaluation of Submission to
Programming Assignments in Programming
Courses

Originally an automated evaluation was developed at universities for evaluating
submissions to programming assignments given in the programming courses, and a
lot of research is designated to that. We will analyse it in this section.

We use the term programming assignment when we refer to the tasks given in
the programming courses.

Technically both in informatics contests and in the programming courses we
deal with an algorithm presented in the form of implementation. However, a task
in an informatics contest is conceptually different from programming assignment.
The tutor evaluating the submission to programming assignment does not have to
concentrate on eliciting what kind of algorithm is implemented. On the one hand, the
programming assignments correspond the course curricula. On the other hand, the

27

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

materials submitted for evaluation in programming courses, are treated differently
because of the nature of the event (learning process versus exclusive contest event).
2.11.1 Development of the Automated Evaluation of

Programming Assignments
The roots of necessity of the automated evaluation are similar both in informatics
contests and in programming courses. Programming problems and assignments are
considered essential elements of software engineering and computer science education
courses (Douce et al., 2005). Academic institutions face the challenge of providing
their students with a better teaching quality. Simultaneously they need to decrease
the amount of additional work for the staff. As a consequence of that, huge numbers
of programming assignments (programs) have to be evaluated and provided with
feedback in a short period of time (Joy and Luck, 1995).

The schedule is even tighter in informatics contests. It can be estimated that over
a thousand of submissions have to be evaluated in a few hours in IOI. Therefore at
present it is considered that there is no alternative to automated evaluation neither
in informatics contests, nor in programming courses (Kemkes et al., 2006).

Automated evaluation tools of programming assignments share common features
like speed, consistency, and availability of evaluation (Ala-Mutka, 2005). A compre-
hensive overview of automated evaluation systems was presented in (Colton et al.,
2006; Douce et al., 2005).

The earliest examples of the automated evaluation system can be found in
(Hollingsworth, 1960). The next step was a system, where automated evaluation
was applied in testing beginner’s student programs written in Algol. Routines had
to be written for each task. The tests were randomly generated and the programs
were executed with those tests. The output was checked for correctness (Forsythe
and Wirth, 1965). New ideas were introduced in (Hext and Winings, 1969). This
system could already compile and run programs without a human intervention and
it was testing each program with two tests. It had implemented the scoring pol-
icy, i.e., assigned points for a successful compilation, a short running time, etc.
Those earliest first generation automated evaluation systems already had the most
important features and demonstrated the power of automated evaluation. Using
automated evaluation tools of the first generation required a certain qualification
and experience.

Automated evaluation systems of the second generation were tool-oriented sys-
tems (Douce et al., 2005). They were developed using existing tools. The focus
of such systems was the same as in the earlier systems, i.e., functional correctness
of submitted programs. Some second generation systems already had already im-
plemented a remote submission and use of a network (Benford et al., 1995; von
Matt, 1994). The automated evaluation systems started to support grading with
generation of grading reports, that allow the tutors to assign the weights to the
tests.

The third generation automated evaluation systems can be called as web-oriented
tools. They use web-technology, adopt more sophisticated testing approaches (e.g.
”diagram” evaluation in CourseMarker (Cou, 2010)), support many programming

28

2.11 Automated Evaluation of Submission to Programming Assignments in…

languages, automatically evaluate the program design, provide a rich feedback for
the student, introduce plagiarism detection, etc. (Douce et al., 2005).

Note that there were developed many informal grading systems, where it is
difficult to transfer the results among institutions and even among course instructors
(Edwards, 2003).

Development of automated evaluation in informatics contests has some parallels.
We have not found a published overview of the development of evaluation systems in
informatics contests. However we observed the appearance of tool-oriented evalua-
tion systems and their development into web-based CMS in LitIO and IOI (Skūpienė,
2004). Earlier systems were more limited technically. For example, they did not pro-
vide real-time feedback during the contest. The contestants had no aid in detecting
errors related with format specification (e.g., the wrong file name or extra space at
the end of the line). As a result, those errors had more weight in informatics contests
than they were supposed to.

Modern web-based contest management systems (IOI, 2002; Mareš, 2007) are
supplied with many features like real-time feedback during the contest, contest
management features, analysis mode after the contest, etc. They have improved
the quality of contests in many aspects. However, the main concern of applying
black-box testing to the evaluation in informatics contests (i.e., detecting all incor-
rect submissions and validity of assigning scores to such submissions) remains.
2.11.2 New Role of Automated Evaluation in Programming

Courses
In recent years the role of automated evaluation tools in computer science and
programming courses has changed significantly.

Looking at the history of automated evaluation in programming courses in uni-
versities, we observe a shift of emphasis. The ability to automatically compile,
run, and test a student’s program and provide the score was most important in
the early systems. These remain important issues both for the contests and for the
programming courses. However, the emphasis was shifted in different directions in
the informatics contests and in the evaluation of programming courses.

A course on a subject (programming) is a lengthy process which involves many
assignments, submissions and resubmissions, deadlines, observation of student’s per-
formance, progress, and feedback from the evaluator. The grading tool compo-
nents that support the course management became important (Benson, 1985). Even
though the main role remains measuring student’s knowledge and skills, the role of
a grading tool as a learning device became very significant. The students need sup-
porting learning (and evaluation) environments, because the learning environments
help to achieve better learning outcomes (Roberts and Verbyla, 2002). Designing a
course and comfortable monitoring of the learning and evaluation process became
important features of learning environments and tools.

Automated evaluation systems try to solve a number of other issues that are
outside the scope of this investigation, for example, plagiarism detection, evaluating
programs with graphical interfaces, performing the formative assessment of program-
ming assignments, evaluating the automated programming assessment with respect

29

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

to the stated objectives, student’s knowledge of language constructions, analysing
the program structure in order to identify whether the program followed the given
skeleton, supporting different types of assignments, parameterising programming
problems, and peer-assisted automated evaluation. These other issues were dis-
cussed in (Amelung et al., 2006; Benson, 1985; Carter et al., 2003; Douce et al.,
2005; Lewis and Davies, 2004; Malmi et al., 2002; Pardo, 2002; Saikkonen et al.,
2001; Woit and Mason, 1998).

• Contest management

• Advertising the contest

• Limited feedback during the contest

• Precise run-time, memory measurement

Early systems:

compile, run, and test the program

Programming courses

Inf
orm
ati
cs

co
nte
sts

• Course design

• Course management

• Learning environment

• Plagiarism detection

• Peer assisted evaluation, etc.

Figure 2.9: The directions of development of automated evaluation in
programming courses and in informatics contests

The new roles require additional features of the environments and they have
become an active topic of research in the area of computing science education. On
the contrary, that did not become an active topic in informatics contests and they
are not relevant in the context of this research.

The CMS does not have to perform the role of a learning tool. Some other fea-
tures (e.g., evaluating programs with graphics) might become relevant if the format
of the contest were different. The attitude towards the support and feedback for
the contestants is different. The contestants are provided support from the CMS
on the issues that might distract them from concentrating on the algorithm. For
example, the CMS detects output formatting errors or provides run-time informa-
tion. Providing too much feedback might conflict with the nature of the contest as
an event. With the growing speed of processors, precise measurement of program
execution time becomes highly important in informatics contests as this is directly
related to the ability of the system to distinguish between different efficiency classes
of solution. Advertising the contest (e.g. the ability to demonstrate the scores of the
contestants on a live score board for the spectators during the contest) is another
new expected feature of CMS.

30

2.11 Automated Evaluation of Submission to Programming Assignments in…

In this section, we have showed that the research of automated evaluation in
computer science education is relevant and active. However, the direction of the
research is different from that in informatics contests (Fig. 2.9). The number of
recent publications directly related to the evaluation of programming assignments
is very limited. That was also mentioned in (Ala-Mutka, 2005).

In the subsequent subsections, we will look over the automated evaluation experi-
ence in informatics contests and programming courses. We discovered the experience
of automated evaluation of three items of programming assignments, and a separate
subsection will be devoted to each. They are: automated evaluation of correctness
and efficiency (Subsection 2.11.3), automated evaluation of the programming style
(Subsection 2.11.4), and automated evaluation of test sets (Subsection 2.11.5).
2.11.3 Evaluating Programming Assignments by Testing
In this subsection we will look through some aspects of applying black-box testing
in the evaluation of programming assignments. We located just a few sources and
the most extensive reference is (Ala-Mutka, 2005).

We did not find any extensive discussions in the published papers based the
fact that testing cannot be used to prove the program correctness (in our case the
algorithm-code complex correctness) (Dijkstra, 1972).

We suggest that one of the reasons is the difference in the difficulty of tasks. The
tasks at high level informatics contests might be a real challenge even for graduates
of computer science studies. Therefore heuristic approaches are common among the
submissions of contestants. They are incorrect, and it is rather difficult to detect all
of them by black-box testing (Verhoeff, 2006).

The situation is different with the course assignments. Much research was de-
voted to the automated evaluation of introductory programming assignments (Califf
and Goodwin, 2002), which are much easier if compared to the contest tasks. The
assignments have to reflect the syllabus and should be solvable after taking the
course.

Despite inability to prove program correctness, testing still can show the absence
of known errors (Leal and Moreira, 1998). For simple assignments (e.g. sorting an
array) that are routinely given to the students, it is much easier to decide on the
known errors and make tests against them. This might be the reason why we
did not find discussions about the ability of black-box testing to detect errors in
programming assignments.

In the informatics contests each task is (expected to be) original, requires problem
solving skills and more complicated techniques. Therefore the concept of known
errors remains rather vague in the informatics contests.

Assigning the score to incorrect solutions is a questionable issue both in eval-
uating the programming assignments and submissions (Verhoeff, 2006). The con-
cept how close the algorithm-code complex is to the correct solution is a subjective
judgement. The subjectivity arises either from the human grader or from the nature
of black-box testing. In general, the black-box testing it does not expose neither
the nature, nor the scope of error). The practice of applying all-or-nothing scoring
with a possibility of resubmission is acceptable for regular programming assignments

31

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

(Colton et al., 2006). In the case of failure, the students might be given the failed test
and have to fix their solutions. This is the essential difference from the practice of
informatics contests. In the contests, the test set is fixed before the contest and the
same set is applied to every submission to ensure the same testing conditions. While
in the evaluation of programming courses, it is usual to apply randomly generated
tests for evaluation and different students might be tested by different sets of tests
(Colton et al., 2006). Such a practice is not directly applicable in the informatics
contests.

We have found one more interesting approach that correlates with informatics
contests. It deals with measuring the solution complexity (efficiency). This is the
experience of assessing individual procedures rather than programs. The automated
evaluation system Scheme-robo was developed and the experience of assessing simple
assignments in introductory programming courses was presented (Saikkonen et al.,
2001). (Hansen and Ruuska, 2003) have implemented it by giving the students an in-
put/output module for the assignments that concentrate on efficient data processing
algorithms. Calculating the number of times, certain structures inside the program
were executed, and comparing the results to model the solution was implemented on
CourseMaster and Assyst systems (Foxley et al., 2004; Jackson and Usher, 1997).

A similar suggestion to use such a metric in the informatics contests was pre-
sented by (Ribeiro and Guerreiro, 2009). They address the difficulties related to
measuring the efficiency. As the computer power increases, the size of input has
to increase in order to separate the solutions of different complexity. Data increase
causes other problems. Measuring behaviour of some structures within the program
might be a solution in this case. The paper suggests asking to submit functions (pro-
cedures) rather than programs and repeating the same function call several times
to increase clock precision. Thus input size, which nowadays has become too large
and started causing problems, is decreased. Curve fitting analysis is proposed to be
used to estimate program complexity rather than referring to the number of passed
test cases. However experiments and the corresponding software are required before
the proposal can be included into the evaluation scheme.

In the subsection, we presented a few examples of similar issues which occur in
both contexts. On the one hand, this shows that concerns about black-box testing
are not so active and severe in the evaluation of programming assignments. We
did not discover the experience that could be directly transferred to informatics
contests. The suggested different measurement of the algorithm-code complex effi-
ciency is interesting and potentially applicable in informatics contests. However, the
implementation and piloting require a separate study and therefore it falls outside
the scope of this thesis.
2.11.4 Automated Evaluation of Programming Style
From the observations in the previous sections we have concluded that much of
research in the area of automated evaluation in the programming courses is outside
the interest of evaluation in the informatics contests. However, we have found an
area where the experience of automated evaluation in the mass programming courses
might be transferred to the informatics contests.

32

2.11 Automated Evaluation of Submission to Programming Assignments in…

It is the automated evaluation of the quality of program design. This involves
performing a static analysis and checking the program source against a set of char-
acteristics. Many grading tools were designed that perform a static analysis and use
software metrics to check readability, maintainability, and complexity of the source
code (Ala-Mutka et al., 2004; Hirch and Heines, 2005; Jackson, 2000; Leal and Mor-
eira, 1998; Spacco et al., 2005). Such tools were applied in evaluating programming
assignments in universities. However, we found no evidence of such automation
being applied in informatics contests.

The ability to write nice and elegant programs is already a skill and a very
important skill which is not usually the focus of computer science and programming
courses (Kernighan and Pike, 1999). It is easy to make a small program working
despite a bad style. Students often treat the programming style as secondary, not
part of the program development process (Schorsch, 1995). That was also noticed
both in the context of programming courses and in the context of informatics contests
(Douce et al., 2005; Grigas, 1995; Struble, 1991).

In order to measure the programming style, we need a common understanding
of programming style. “A programming style is understood as an individual’s in-
terpretation of a set of rules and their application to the writing of source code in
order to achieve the aim” (Mohan and Gold, 2004) that the source code is readable
and understandable. It can be said that everything that is related to program clar-
ity, simplicity and generality, is understood as programming style. These types of
definitions together with guidelines (e.g. as in subsection 2.10.3) can be applied for
holistic approach to evaluate the programming style by human evaluators.

However, in order to introduce the automated evaluation, the elements of the
style should be identified and concrete metrics for each element must be defined
(Fig. 2.10) and associated with ranges of the expected values (Hirch and Heines,
2005).

Programming style

Automated evaluation
Title
Holistic manual evaluation

• Identifying elements of style

• Defining metrics for each element

• Aggregating scores for separate

metrics

• Common understanding of

programming style

• Basic guidelines for evaluation

Figure 2.10: Holistic versus automated evaluation of programming style

The first tools for the automated evaluation of programming style were created
in the eighties. Then the basic guidelines for the programming style were created.

33

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

One of the early systems was a Style system (Rees, 1982) for automated evaluation of
the programming style of Pascal programs. The system had ten style measures that
could be easily calculated. They were: average line length, percentage of comment
lines, numbers of goto’s, average length of identifiers, use of blank lines as separators,
etc. The scoring scheme included five parameters for each metric which defined the
conversion curve presented in Fig. 2.11. The parameter max specifies the maximum
score to be awarded for each measure. If the value of the measure lies in the range
defined by lotol and hitol then the maximum score for that measure is given. If
the value of the measure is lower than lo or higher than hi, then the score is zero.
For example, it the percentage of comment lines in the source is either very low
(basically no comments) or very high (nearly every line is commented) then the
score for this measure would be very low. To get a maximum score the amount of
comments should be within some reasonable range.

The total score was an aggregate of the scores of separate metrics.

Measure

Mark

max

lo lotol hitol hi

Figure 2.11: Programming style marking scheme suggested by (Rees, 1982)
max – maximum score for the programming style. If the value of a concrete style
measure is lower that lo or higher than hi then the score is zero.

Later on, a C analyser was developed for evaluating the programming style. It
served as a basis for developing other automated evaluation tools (Benford et al.,
1995; Berry and Meekings, 1985). The feature of those systems was that the course
designers could configure the parameter values for the metrics. The new tools foresee
other programming languages (Jackson and Usher, 1997; Leal and Moreira, 1998;
Redish and Smyth, 1986) and more metrics. For example, (Dromey, 1995) incorpo-
rated 99 metrics for automated evaluation of C programs. A variety of tools and
the increasing number of metrics resulted in the classification of measurements and
developing taxonomy for the programming style (Oman and Cook, 1990). The tax-
onomy proposed four stylistic factors. These were: general programming practices,
typographic style, control structure style, and information structure style.

Among later systems we could mention Checkstyle for automated evaluation of
Java programs (Burn, 2003). This is an open source tool that provides an extensive

34

2.11 Automated Evaluation of Submission to Programming Assignments in…

analysis of the source code programming style. The feature of this tool is its mod-
ularity. The Checkstyle consists of a variety of checks and additional checks can be
written to include new metrics.

Earlier available systems either did not cover important features of object-oriented
programming or used some obsolete checking which is currently performed by com-
pilers. Therefore a STYLE++ tool has been created for automated evaluation of
the programming style of C++ programs (Ala-Mutka et al., 2004). The tool cov-
ers 64 different measures. Metrics were developed that meet the software quality
requirements. They also included non-functional quality requirements, such as re-
liability and efficiency. Four programming style categories have been introduced:
transportability, understandability, modifiability, and readability. They were de-
composed into nine smaller categories until measurable features of a concrete level
have been reached. Scoring is based on the ideas of (Rees, 1982), however, since
different courses may require to emphasise different style aspects, the system allows
much tailoring, irrelevant measures may be switched off and different weights might
be associated with different measures.

Program documentation (which includes proper commenting) can be considered
as a separate part of programming style. We discovered efforts to create an auto-
mated evaluation tool for evaluating the quality of program code documentation.
Even though currently there are no guidelines (and no measurable standards) how
to perform such an evaluation, there exist tools that help creating such a docu-
mentation. Given those tools students, should be required to produce a qualitative
documentation (Hirch and Heines, 2005).

The interest in the automated programming style has lowered if compared to
the eighties. The efforts to find modern program style development tools or pro-
gramming style evaluation guidelines for C++ evaluation for educational purposes
were unsuccessful (Ala-Mutka et al., 2004). The accessible guidelines are industrial
high-level recommendations for object-oriented program design.

There is one significant difference between the evaluation of programming style
in the programming courses and that in the informatics contests. Universities some-
times develop their own standards, they might ask the students to follow some
specific programming style standards, while the informatics contests should be open
to a variety of programming styles. The contestants do want precision when they
deal with getting or loosing points (Grigas, 1995). To ensure equal conditions for the
contestants, the evaluation of programming style should be language independent.

Note that evaluation of the quality of program design is supported not by all
educators. Design is important if the program works. There is an opinion that, once
the students have learned to program, it is easy to teach them good design, but not
vice versa (Daly and Waldron, 2004).

It can be concluded that much research has been done in the area of evaluating
the programming style of programming assignments in the programming courses,
and we found no evidence of any of that being applied in the informatics contests.
The main idea of the automated evaluation of programming style is performing the
static analysis, calculating different metrics, and associating the expected ranges.
We feel that this experience can be transferred to the informatics contests. In order

35

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

to apply the experience in the informatics contests, the research should be conducted
in two areas. Metrics should be chosen and tailored so that they would not favour
some programming styles and disfavour the others. Another direction of research
is to ensure the evaluation compatibility between different programming languages.
This is a potential area for research, but, due to its scope, it could not be conducted
within the framework of this thesis.

2.11.5 Automated Evaluation of Test Sets
The ability to create comprehensive and effective test data is part of program devel-
opment skills. Testing skills are considered as an important skill while performing
the programming assignment. Writing a test case enforces a student to model and
think how his program will behave.

Even though testing skills are important in software development, most computer
science curricula cover it minimally and it is considered to be poorly suited for a
course topic (Edwards, 2003). Therefore an alternative approach to teaching testing
skills is to re-frame the concept of programming assignment and to require providing
a test case together with implementation.

Automated evaluation tools were created that evaluate the quality of test sets.
The evaluated items that we met were the test set validity, test completeness (i.e.,
measuring how comprehensively a test set designed by a student, covered its own
program or different execution paths of other programs), and the correctness score
(i.e. running test sets against own, others or buggy programs) (Ala-Mutka, 2005;
Allowatt and Edwards, 2005; Chen, 2004; Edwards, 2003; Jackson and Usher, 1997).

2.12 Black-Box Evaluation in Informatics Contests
Black-box testing (also referred to as testing to specification) is testing that ignores
the internal logic of a program and focuses solely on the outputs generated in re-
sponse to the selected inputs and execution conditions (Williams, 2006).

Black-box testing is a form of automated and dynamic evaluation. It is consid-
ered that at present there is no alternative to black-box testing in informatics con-
tests (Kemkes et al., 2006). The procedure of black-box testing, applied in LitIO,
was already described in Sections 2.5 and 2.10.2. Variations of the procedure in
other informatics contests are also possible. However, in our opinion, the differences
are not essential in terms of this research.

The outcome of black-box testing is a vector (test run failed/passed), based on
which the score aggregation is performed and the final score is calculated:

T = (t1, t2, · · · tg), where T is a vector representing outcome of black-box testing,
g > 0 is the total amount of grading test runs, and ti ∈ {0, 1} is the Boolean outcome
of a concrete test run (i.e., failed or passed). In some cases ti might be a record
instead of a Boolean value.

It should be noted that the scoring related terminology in some sources might
differ from that used in this dissertation.

The structure of this section will be as follows. First we will look over the
concerns related to dominant use of black-box testing in informatics contests. The

36

2.12 Black-Box Evaluation in Informatics Contests

search for better score aggregation schemes is performed with a view to preserve
the dominance of black-box testing and, at the same time, to get rid of some of
its drawbacks. Therefore we will look through different black-box score aggregation
schemes applied or suggested to be applied in informatics contests.

2.12.1 Concerns about Black-Box Evaluation
It was acknowledged long ago, that program testability, i.e., the qualitative features
of tasks that allow comprehensive and definitive testing of solutions, is important
and should be taken into account while selecting problems for informatics contests
(Deimel, 1988). It is assumed that now there is no alternative to black-box testing
in informatics contests (Kemkes et al., 2006).The main goal of testing might be
formulated in the following way: to distinguish correct and incorrect solutions and
to distinguish different classes of correct solutions (that are of different difficulty),
regardless of the programming language used to implement them (Diks et al., 2007).

However, the actual role performed by black-box testing is described in a different
way. “Hence, if a submission achieves full score, it can be said to reproduce the input-
output relation given by the test data – no more, no less. The contestant ... cannot
count on a full score to confirm the solution to be perfect” (Pohl, 2008). This is
seconded by (Ernst et al., 2000) who in their paper advise future contestants: “you
do not have to submit a correct program. It only has to produce the right output
for the jury input.” Describing the ACM-ICPC ranking procedure, (Skienna and
Revilla, 2003) indicate that the winner is the team which correctly solves the most
problems and immediately mentions “at least correctly enough to satisfy the judges”.

The concerns of the use of automated testing to prove the program correctness
were known long ago. (Dijkstra, 1972) wrote: “program testing can be a very effective
way to show the presence of bugs, but it is hopelessly inadequate for showing their
absence”. (Forišek, 2006) theoretically shows that there is no (known) way to perform
testing efficiently and with a 100% accuracy as this is an NP-hard problem. (Leal and
Moreira, 1998) stress that automated testing does not prove program correctness,
but the absence of known errors.

We identified the concerns related to use of black-box testing for evaluation in
informatics contests:

• Black-box testing is incapable of identifying interesting and original problem
solving approaches. (Leeuwen, 2005; Verhoeff, 2006) indicate the cases where
the contestants designed interesting original algorithms (not assumed by task
designers), but this was not discovered because of automated grading.

• Incorrect algorithm-code complexes might not be identified, i.e., they still may
be awarded a full score. (Leeuwen, 2005; Verhoeff, 2006) write that during
the analysis of the IOI’2000 task Median, 10 out of 226 submissions were not
identified as incorrect by black-box testing and for task Phidias 57 out of 295
submissions were not identified as incorrect during testing.

37

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

• The expected score differs from the actual score. An algorithm-code complex
where a correct and reasonably efficient algorithm is correctly implemented
should score more than an algorithm-code complex which contains the im-
plementation of an incorrect algorithm or incorrect implementation of either
correct or incorrect algorithm. However, this is not always achieved with
black-box testing (Forišek, 2006).

• After the error has been discovered, black-box testing does not reveal the na-
ture and the dimension of the error. The error could have occurred in under-
standing or analysing the problem, designing an algorithm or implementing it
(Burton, 2008). (Verhoeff, 2006) writes that over 30% of task Median scores
and over 50% of task Phidias scores have not been properly justified. (Forišek,
2006) analysed the tasks of the three past IOI’s and for most of the tasks
detected incorrect solutions that are easy to find, easy to implement and that
would score more than expected by the jury. (Kemkes et al., 2006) point out
that there is no method to measure the number of cases (i.e., the coverage
of input domain by an algorithm-code complex) solved by the algorithm-code
complex of the contestant as it depends entirely on the authors of the test
cases. This raises a pedagogical question how to assign scores to an incorrect
solution and how to justify that one incorrect solution scores more than an-
other. Assigning a partial score is considered rather subjective despite the use
of testing (Colton et al., 2006).

• Too large penalties for minor mistakes. This problem was addressed in many
papers (Burton, 2008; Forišek, 2006; Pohl, 2008). Black-box testing leads
to severe punishment of submissions that implement correct ideas, but show
slight implementation mistakes (e.g., do not implement border cases properly).
(Vasiga et al., 2008) state that time pressure in the contest is high, the chal-
lenge to implement and properly test the solution is overwhelming, and, thus,
even minor errors can be a reason for nearly a correct solution to obtain very
few points. The goal of evaluation should be to achieve that only a small
amount of points could be taken away because of small mistakes. Grouping
test cases makes this problem even more severe.

• Scoring of algorithm-code complexes with different efficiency may also be in-
adequate. In (Leeuwen, 2005) some programs were discovered that received
60 points instead of expected 100 due to a particular combination of the pro-
gramming language and solution technique.

• Black-box scoring does not identify the quality of program design. Even though
that is a problem solving contest, the solutions are communicated as programs.
Therefore it is important to encourage good programming practices and make
a distinction between programs of different design quality (Andrianoff and
Hunkins, 2004; Bowring, 2008; Fitzgerald and Hines, 1996; Sherrel and Mc-
Cauley, 2004; Struble, 1991).

38

2.12 Black-Box Evaluation in Informatics Contests

Concerns regarding the black-box testing based evaluation scheme can be as-
signed to one of the two categories.

The first category is the concerns that cannot be expected to solve by black-box
testing. The source for such concerns is the absence of other forms of evaluation.
That is why they were expressed in the context of discussions on the suitability
of black-box testing. Black-box testing is not supposed to perform certain things
such as identifying original algorithmic ideas or giving a feedback on the quality of
programming style. This cannot be considered as a drawback of black-box testing
as such.

It is a drawback of the evaluation scheme that it does not include any other
grading than black-box testing. If these characteristics are considered to be very
important in informatics contests the only way to take them into account is to
incorporate other forms of evaluation into the scoring scheme.

The second category is the concerns that the jury expects that black-box test-
ing solves on a satisfactory level. Despite the warning issued by (Dijkstra, 1972),
we often observed expectations that black-box testing should identify all incorrect
algorithm-code complexes, provide adequate scoring of efficiency and give hints how
to assign scores among the incorrect algorithm-code complexes. (Forišek, 2006)
summarises the actual situation in informatics contests by saying that sometimes an
incorrect solution scores far too many points, sometimes an asymptotically better
solution scores less points than a worse one, and sometimes a correct solution with
a minor mistake (e.g. a typo) scores zero points.

There can be different ways how to try to tackle this issue 1:

• Include other forms of evaluation. Providing the reasoning for a design might
help identify incorrect algorithms thus ensuring that such algorithm-code com-
plexes are not assigned a full score. This might also help to see the scope of
deviation from the expected score.

• Work towards improving the testing by improving the quality of tests and score
aggregation schemes. (Pohl, 2008) emphasised that the quality and choice
of test data influence the score of automated testing dramatically. (Kemkes
et al., 2006) proposes ideas how to improve the design of test data. Search for
improved score aggregation schemes will become visible in the next subsection,
that presents an overview of scoring schemes applied in informatics contests.

• Search for other options. Providing more feedback during the contest might
help the contestants to minimize the amount of small and subtle errors which
result in big loss of points (Vasiga et al., 2008).

Next we will overview different scoring schemes for black-box testing. Searching for
improved scoring schemes is one of the ways to improve evaluation, especially in the
contests where the evaluation is limited to black-box testing.

1There also might be other approaches (e.g., to consider new types of tasks or a different contest
format), but they are outside the scope of this dissertation.

39

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

2.12.2 Partial Scoring
Partial scoring is a scoring scheme for black-box testing where points are assigned
for each test run independently, and the score S for a task is calculated as the sum
of scores for each test run.

S =
g∑

i=1
witi (2.1)

Here wi (i = 1 · · · g) are the weights of the test runs determined by the task
designers in advance.

The weights are such that
∑g

i=1wi = P , where P is the maximum amount of
points for testing for the task.

Such an approach has been applied in IOI and in many other contests, including
LitIO, for many years. This scoring scheme received a lot of criticism (Kemkes
et al., 2006; Verhoeff, 2006) as partial scoring adds more random noise rather than
addresses the issue, i.e., than evaluates the quality of an algorithm-code complex and
results in reasonable discrimination. This scoring scheme was considered especially
unsuitable for tasks, where a solution (or a specific answer) could be easily guessed.

(Forišek, 2006) investigated the tasks of three IOI’s. The goal was to check
whether there is “an incorrect algorithm that is easy to find, easy to implement (in
particular, easier than a correct algorithm) and scores significantly inappropriate
amount of points”. They succeeded to discover such tasks.

The reason for that could be the task itself or inappropriate choice of tests.
However arguments were presented that partial scoring strengthens this problem.
We will present our own research later. We have not found any recent publications
in favour of this scoring scheme.

2.12.3 All-or-Nothing Scoring
All-or-nothing scoring is a Boolean scoring scheme which classifies the solutions
into two categories: accepted (considered to be correct and efficient) or not accepted
(incorrect or inefficient) without any intermediate values.

This type of evaluation is applied in ACM-ICPC type contests (ACM, 2010a).
ACM-ICPC contests are team contests for younger college students where a team
of at most three students share one computer to solve a set of 8 to 12 tasks. A
submission consists of the program source only. The only form of evaluation applied
in ACM-ICPC is black-box testing. The run time and memory limits are typically
more generous than that in the IOI type contests.

Each submitted solution is immediately evaluated. In the case of failure on at
least one test, the submission is rejected and the team is given some limited feedback
about the reason of the failure. However, the contestants do not know the exact
number of tests and might not know the number of tests their submission passed
successfully. The teams can correct and resubmit their solution.

When the solution is accepted, the team gets a penalty of 1 point for every
minute since the beginning of the contest till the moment it has been accepted and

40

2.12 Black-Box Evaluation in Informatics Contests

20 penalty points for each rejected submission of this task. Penalty points for all
the accepted tasks are summed up.

A submission is accepted if
∏g

i=1 ti = 1.
The score for an accepted submission for the task is a two-parameter vector

S = (1, 20r+m) where r is the number of previously rejected submissions and m is
the number of minutes since the beginning of the contest till the acceptance of the
submission.

The total score ST otal for all the tasks is also calculated as a two-parameter
vector:

ST otal = (
∑

accepted

1,
∑

accepted

(20rtask +mtask)) (2.2)

The ranking is based on two criteria. The primary criteria are the number of
accepted solutions. The secondary criteria, used to break ties, are the amount of
penalty points (Cormack et al., 2006).

This approach when submission is accepted only if all the tests are passed suc-
cessfully is called all-or-nothing. It avoids one most severe concern causing many
discussions – validity of assigning scores to incorrect solutions.

On the other hand it is very strict, adds pressure and might discourage con-
testants especially in individual contests or those with lower skills (Boersen and
Phillips, 2006; Fisher and Cox, 2006). The same approach, but presented in a more
positive way was applied in the Computer Science Olympiad for High School Stu-
dents organised by Northwest Missouri State University. The penalty was replaced
for bonus for each minute till the end of the contest (Myers and Null, 1986).

There was conducted research on IOI submissions which showed that vast ma-
jority of submissions fail on at least one test (Kemkes et al., 2006). The same holds
for LitIO. Under all-or-nothing scoring scheme in the on-line exam session of LitIO
finals in 2010, only 14 out of 249 (5.6%) would have scored points. The differences
in grading schemes between LitIO and IOI in our opinion would not have changed
the scores significantly.

Under current LitIO format (individual contest, two-to four tasks of different
difficulty, average level of big part of contestants) such scoring scheme would not
be appropriate. The majority of contestants would get zero scores. That would
decrease their motivation because they would feel that their efforts were rejected as
their skills are not that low.

2.12.4 All-or-Nothing Batch Scoring
After it has been acknowledged (Kemkes et al., 2006; Verhoeff, 2006) that partial
scoring scheme included large component that can be viewed as a noise, in IOI tests
were replaced by test cases. Each test case consists of a set of test-runs, and each test
case is intended to assess a well-defined characteristic of a submitted algorithm-code
complex. This characteristic can be related to correctness and/or efficiency.

If each test run has a binary (pass or fail) outcome, then a test case is passed
if and only if all test runs are passed. The total score for the task is the sum of

41

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

separate scores for test cases. In the thesis we will call this scoring all-or-nothing
batch scoring. It can be expressed with the following formula:

S =
gc∑

i=1
wi

gci∏
j=1

tj (2.3)

Where gc is the total number of test cases, wi (i = 1 · · · gc) are weights for each
test case, and gci is the number of test runs in test case ci (i = 1, · · · gc). The weights
are such that

∑gc
i=1wi = P where P is the maximum amount of points for the task.

All-or-nothing batch scoring scheme is expected to reduce arbitrariness in scores.
The scheme is considered to be more positive approach than all-or-nothing scoring
(Revilla et al., 2008). Nevertheless the scoring scheme is much more rigorous to
the contestants than partial scoring. This was acknowledged and there appeared
suggestions to introduce more real time feedback together with this scoring so that
the contestants could detect and correct trivial mistakes (Forišek, 2006; Kemkes
et al., 2006; Opmanis, 2006).

The main concern which prevents implementing all-or-nothing batch scoring at
full pace in LitIO was discussed in Subsection 2.10.2, i.e. the difficulty in defining
the disjoint correspondence between the domain of input and the groups of possible
solutions. Similar concerns were expressed at (Helmick, 2007) who emphasises that
functional testing produces Boolean answer and an important goal in automated
testing is to segment the tests such that pieces of functionality are isolated and
tested as independently as possible.

2.12.5 Other Black-Box Scoring Possibilities
We did not found enough material in the published papers on informatics contests,
that would reveal if there is a variety of scoring schemes in informatics contests.
Different scoring typically involved different contest format (Cormack, 2006). Here
we list several interesting scoring ideas that we came across.

• Scoring related to real-time feedback. Real-time feedback is considered as a
mechanism which reduces competitive pressure and allows the contestants eas-
ier track minor errors (or more serious errors depending upon the amount of
feedback). Different forms of feedback were analysed in (Cormack et al., 2006).
Feedback can be integrated into scoring scheme. For example, full feedback
can be provided on correctness tests and a requirement might be introduced
that only the solutions that pass all the correctness tests are tested with the
efficiency tests.

• Graduated difficulty (multi-part tasks). Assigning scores to partially correct
(i.e. incorrect) solutions is one of the most questionable issues in informatics
contests. Multi-part problems are problems where a task is formulated as a
sequence of sub-tasks. Each subsequent sub-task is a straightforward derivative
of the previous one. We suggest that for some tasks that can be properly
decomposed into several sub-tasks even all-or-nothing scoring can be applied

42

2.12 Black-Box Evaluation in Informatics Contests

to each sub-task. We believe that such an approach could be best applied if, it
is possible to construct a solution to each sub-task by augmenting the solution
of the previous sub-task. If there is no such possibility, then some contestants
might be trapped on a decision: whether to risk to implement a complicated
solution to the whole task or choose a simple approach that will yield some
points, but will not lead to the solution of the whole task. Some experience
of applying sub-tasks in informatics contests was presented in (van der Wegt,
2009).

• Speed of execution as an element of the score. The current LitIO and IOI
practice does not include the speed of execution into the scoring scheme. The
run-time limit is fixed in advance and the test is considered to be passed within
the run-time limits as long as the algorithm-code complex does not exceed the
time limit while executing the test. The speed of execution is not considered a
good metric because it may often depend also on the compiler/programming
language implementation, especially in the IOI where run-time limits are very
tight. However we found an example of including the speed of execution into
the scoring scheme in (Diks et al., 2007). If the submitted program fluctuates
over the time limit, then the result may vary in subsequent evaluations. To
solve this, the function which maps the running time to points is made con-
tinuous. The function is flat from zero to half the time limit. Then it linearly
descends to zero at the point of time limit, thus avoiding sharp changes in the
number of points (Fig. 2.12).

Time

Points

Max

T/2 T

Figure 2.12: Function mapping run-time to points T represents time limit for
a test and Max represents maximum number of points for the test.

• Combined scoring. This scoring scheme was proposed in (Kemkes et al., 2006).
It combines all-or-nothing-batch scoring together with a significant progress
scoring scheme. Significant progress scoring is defined as scoring which assigns
full points to a test case, if at least one test run from this test case was solved
correctly. The combined scoring scheme uses two pieces of information on each
test case: whether the algorithm-code complex has passed at least one test run
and whether it has passed all test runs. This scoring scheme was developed
during the research and we have not come across its further development or
application.

43

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

2.13 Overview of the Experience of Semi-Automated
and Manual Evaluation

This section covers the experience of semi-automated and manual evaluation of sub-
missions and programming assignments. The semi-automated evaluation here is
associated with the manual evaluation, because conceptually semi-automated eval-
uation is closer to the manual evaluation than to automated, in this case. Such an
evaluation involves an extended concept of the submission (not limited to the source
code only) and focuses on the manual evaluation of algorithmic ideas and features of
the program design. Black-box testing is not eliminated from the evaluation scheme.

Historically, a submission had to include an informal block-diagram description
and argumentation of the algorithm in IOI. However, the evaluation of these de-
scriptions turned out to be too labour intensive and was dropped (Verhoeff, 2006).

We were looking for papers that describe the experience of applying the man-
ual and semi-automated evaluation in informatics contests and we found very few
references (Pankov and Okruskulov, 2007; Pohl, 2004). The most comprehensive
reference of manual evaluation was in (Pohl, 2008) which presented the experience
of applying the manual evaluation in the BWINF 1 (Pohl, 2007).

The manual evaluation focuses on a qualitative assessment and has been success-
fully applied in BWINF for some years. A written description of solution is manually
evaluated in BWINF. If needed, the source code is also analysed. That explicitly
allows evaluate the problem solving part. We identified two essential differences
from black-box scoring approach.

One difference is that a submission is not restricted to the source code only in
order to provide more materials for evaluation. In the case of BWINF, the necessary
part of a submission is a written description of the solution approach. The descrip-
tion should cover not only the algorithmic solution (which is the case in LitIO),
but also the implementation approach of the solution described. Typically this is
presented in a form of a short description of program components. It should be
stressed that the success of the contestant also heavily relies on his/her ability to
explain algorithmic and implementation solutions in the natural language.

The source code can also be inspected by the jury if other parts of a submission
leave doubts on how to grade, or if they want to understand the reason for the
mistake. This is different from the current LitIO situation where the evaluation
of a verbal algorithm description is not related to the source code and the jury
is not allowed to look into the source code while evaluating the verbal algorithm
descriptions.

The contestants are also asked to design their own examples or test cases in
order to demonstrate the functionality of their program. However, we found no data
how this is graded in BWINF. A similar approach with grading suggestions was
found in (Cormack et al., 2006). Evaluation criteria might include the test validity,
exposition of special cases, and detection of errors. The submitted tests might be

1Bundeswettbewerb Informatik (BWINF) is a German National Computer Science Contest
(Bun, 2010).

44

2.13 Overview of the Experience of Semi-Automated and ManualEvaluation

run either against the programs composed by the jury or against the submissions
of other contestants. The suggestion was that the score should be a fraction of all
incorrect algorithm-code complexes detected by a set of test cases submitted by a
contestant.

Another significant difference from the black-box grading approach is that an
evaluation scheme (a set of evaluation criteria) has to be developed for each task and
refined after the jury examines some selected submissions. The reason for refining
the evaluation scheme is that real submissions may contain unexpected solution
approaches or unexpected flaws. This is very different from the black-box evaluation
where the grading scheme is designed and fixed before the start of evaluation.

Refinement of the grading scheme, after black-box testing has been started, is
not considered appropriate because that would tailor the grading scheme to those
few submissions examined. For example, it would be tailored to catch unexpected
heuristics discovered in those few submissions, but would not catch unexpected flaws
in other submissions that were not examined.

The requirement to create explicit evaluation criteria forces the jury to express
their reasoning about the problem in written form and allows a feedback for the
contestants.

A peculiarity of the BWINF evaluation scheme is that it is negative, i.e. it is
oriented towards discovering weaknesses of submissions. The evaluation is performed
over a weekend when all the jury members meet and each submission is evaluated
by two jury members. However the total score can’t become negative.

Discussions on returning the manual evaluation to informatics contests were
started by (Verhoeff, 2006). One of the proposals was to introduce a motivated and
prepared evaluation scheme supported by measurements.

Most of the recent publications related with evaluation in informatics contests,
discus the evaluation in international contests in particular IOI. However multilin-
gualism of the contestants becomes an issue and has to be analysed separately. The
experience of other international science contests, for example IMO, might be useful
while considering this issue (Verhoeff, 2002).

We also reviewed the experience of manual and semi-automated evaluation in
programming courses. However most of it does not correlate with the informatics
contests. We will show that this time the concerns, relevant to evaluation in the
programming courses, do not have such a relevance in the informatics contests.

Having multiple human graders in the mass programming courses is common
and it is not easy to achieve a consistent grading among multiple graders. There-
fore that becomes a topic for investigation, and semi-automated evaluation systems
are supplemented with additional features to facilitate this issue (Ahoniemi and
Reinikainen, 2006; Daniels et al., 2005; Spacco et al., 2005).

In LitIO, the consistency of multiple human graders is achieved by determining
common evaluation criteria and evaluating each submission by at least two different
graders. Each submission where the scores between graders differ by more than a
fixed amount of points, is revised and discussed separately. Therefore this is not con-
sidered as an issue in LitIO. The difference emerges because the informatics contest

45

2. PROBLEMATIC OF EVALUATION OF ALGORITHM-CODE…

is an event (LitIO is the event of the year) and therefore more human and time re-
sources are available for evaluation. Such an extensive evaluation as in LitIO would
require too much human resources if applied in evaluation of regular programming
assignments in the programming courses.

Black-box grading systems do not provide enough feedback about the origin of
an error. To assist this, semi-automated grading tools might be preferred to fully
automated evaluation (Ahoniemi and Reinikainen, 2006). In such cases, human
graders have a possibility to add their comments, remarks and other suggestions for
the students. Such a feedback is less important in informatics contests. Even if some
feedback of human graders is provided (Pohl, 2008), it is not considered as important
in informatics contests because of a limited role of contests as an educational event.

2.14 Conclusions
Informatics contests are individual contests, where the contestants have to design
and implement an algorithm in order to solve the given task during short term exam
sessions. Informatics contests form the environment for research in the computing
science education. The evaluation of algorithms implemented as programs develop
an educational situation where many submissions have to be evaluated in a short
period of time. The goals of contests imply that both problems solving and problem
development skills have to be taken into account.

The (automated) evaluation of programming assignments is not a new area in
computing education research. Much research on the evaluation of programming
assignments during the programming courses has been conducted and published.
However, the research and development of automated evaluation programming as-
signments are moving into different direction than the informatics contests. An
exception is automated evaluation of programming style. Many tools were created
for this purpose and much research has been pursued on applying such tools to
the programming courses. That this experience might be transferred to informatics
contests. However, it requires a separate study.

Informatics contests are not part of any successive learning process, therefore
many aspects relevant in the learning process are not valid in the informatics con-
tests, so in the evaluation we concentrate on the quality of the submission. Quality
is understood either as a conformance to specifications or as the ability to satisfy
the needs of the user. In the case of informatics contests both the designers of
specifications and users are the same, i.e. the jury (scientific committee).

There are two major approaches to evaluating programming assignments: static
and dynamic. From the point of view of automation, evaluation can be manual,
semi-automated and automated. Evaluation schemes in the informatics contests
can be categorised to those which are limited to black-box testing (dynamic auto-
mated evaluation) and those which foresee another type of evaluation. In LitIO, the
static and dynamic, automated and semi-automated evaluations are applied. The
verbal algorithm description, testing to specifications and efficiency as well as the
programming style are included into the scoring scheme.

46

2.14 Conclusions

The dominant use of black-box testing attracts most criticism and attention.
Note that many concerns are not related to the black-box testing itself, which is
a natural part of software development, but to the conclusions presented in the
form of scores. The concerns can be divided into two categories. The first category
consists of these concerns that are not directly related to black-box testing, but to its
dominant use, i.e. the absence of other forms of evaluation, for example, incapability
to identify interesting and original problem solving approaches. The only way to
solve these problems is to introduce other forms of evaluation. The second category
consists of the concerns that are expected to be solved by black-box testing an a
satisfactory level. For example, it is expected that black-box testing might identify
incorrect solutions on a satisfactory level.

Scoring schemes for black-box evaluation differ from all-or-nothing scoring, where
a submission is either accepted (or not) to partial scoring where points are assigned
for each successfully passed test. There is a tendency to move towards a more
qualitative evaluation.

As for other than black-box scoring, we found very little published experiences.
Such scoring involves an extended concept of submission (not restricted to the source
code only) and focuses on the manual evaluation of algorithmic ideas and features
of program design. Black-box testing is not eliminated from the scoring scheme.

The analysis has showed that there are concerns whether black-box testing
achieves the goals on a satisfactory level. The concerns were based on the presen-
tation of separate cases except for one publication containing an extensive report.
This induced the goal to investigate how much black-box testing corresponds the
expectations of the evaluators in LitIO.

The ultimate goal of this dissertation is to come up with an improved scoring
scheme that would have a motivated list of criteria. Each submission is evaluated
against each criterion and the obtained results are aggregated to get the final score.
However, the evaluation has to be performed taking into account the available human
and time resources. Moreover, there are different views among the jury towards
various aspects of evaluation. Therefore we suggest to attribute this problem to
the category of multiple criteria decision problems and the scoring scheme can be
developed by applying multiple criteria decision techniques and algorithms.

47

3 Overview of the MCDA Process and Methods

3.1 Concept of MCDA
The field of multiple criteria decision analysis (MCDA) is also termed as a multiple
criteria decision aid or multiple criteria decision making (MCDM). Its target is to
help reach a consensus and compromises between conflicting goals (i.e., multiple
criteria) in complex problems.

In real life it is unusual that the problem is presented to the analyst in a form of a
clearly defined set of alternatives and criteria (Belton and Stewart, 2003). Problems
might be complex and confusing and they typically involve a wide range of criteria
that need to be considered. They might involve conflicting criteria, the conflicts
between different stakeholders about the importance of criteria in making a decision.
It might even be required to define criteria as they are not clear at the initial stage
of the problem. The general goal of MCDA is to assist individual or groups of
decision makers to choose the best alternative. Potential problems that MCDA can
be applied come from a variety of areas like business, medicine, public policies or
education.

MCDA is defined as a collection of formal approaches which seek to take into
account multiple criteria in order to help decision makers to explore different decision
alternatives (Belton and Stewart, 2003).

Even though mathematical MCDA algorithms help to arrive at some acceptable
alternative, many authors emphasize that MCDA cannot be used to arrive at the
“right” answer and it cannot provide a fully objective analysis and totally eliminate
subjectivity (Belton and Stewart, 2003). The process of MCDA is emphasised more
than the decision it helps to arrive at (Keeney and Raiffa, 1976; Roy, 1996; Zeleny,
1982). The process involves not only the application of mathematical algorithms
to come up to the final decision, but also learning about the problem, identifying
the key concerns, priorities, uncertainties, values, exploring and generating different
alternatives. This should lead to better explainable and justifiable decisions.

3.2 Main Concepts
We did not find a unique understanding of MCDA concepts and terminology. There-
fore we presented our own definitions which were developed based on (Val, 2002; Li
and Yang, 2004; Triantaphyllou, 2000). In this subsection we also recall a few other
relevant concepts.

Alternatives. Different choices available to the decision maker. In the case of eval-
uation in the LitIO problem, the set of alternatives consists of all the submis-
sions designed to solve a particular task in an exam session of the informatics
contest. We assume that the set of alternatives is finite.

48

3.3 Evaluation in LitIO as an MCDA Problem

Attribute. A statement of something that is desired to be achieved. Attributes
represent the different dimensions from which the alternatives can be viewed.
Attribute specification does not require a measure specification. It is possible
that attributes are arranged in a hierarchical manner.

Criteria. Each attribute of an MCDA problem is measured in terms of one or more
criteria. The same criteria may be used for measuring different attributes.
Different criteria might be associated with different units of measure.

Decision weights. Weights of importance assigned by decision makers to each cri-
terion.

Measurement The assignment of numbers to objects or events in a systematic
order.

Scale. A rule by which the measurement is performed (Stevens, 1946).

Interval scale. A measurement scale where one unit on the scale represents the
same magnitude across the whole range of the scale.

Ratio scale. An interval scale in which zero represents the absence of a thing being
measured.

3.3 Evaluation in LitIO as an MCDA Problem
In LitIO the contestants get algorithmic tasks and have to design and implement an
algorithm in one of the allowed programming languages. A submission consisting
of an algorithm-code complex and a verbal algorithm description is submitted for
evaluation.

At present three submission attributes are identified. They are: the quality of
verbal algorithm description (it includes both the quality of description and charac-
teristics of the algorithm described), algorithm-code complex performance with cor-
rectness and efficiency tests, and the quality of programming style. The algorithm-
code complex performance is evaluated using black-box testing. Other attributes
are evaluated semi-automatically (manually). Partial scores for each criterion are
added up to get the total score. After the contest, the ranking based on the total
scores is derived.

The evaluation scheme is based on the practice of other similar contests, LitIO
traditions, and the school of teaching algorithmics in Lithuania (Dagienė and Skūpi-
enė, 2007). However, the scheme was neither analysed, nor supported by scientific
methods. In the last few years there appeared concerns whether such an evaluation
practice, especially assigning the scores based on the program performance, both in
LitIO and in other similar contests, corresponds to the goals of informatics contests
(Forišek, 2006).

Thus the issue about scientific motivation of the evaluation scheme can be iden-
tified as an MCDA problem. Submissions play the role of alternatives, evaluation

49

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

criteria correspond to the MCDA concept of criteria. The criteria are conflicting.
For example, how to compare a faultless algorithm-code complex which implements
a correct inefficient algorithm with an algorithm-code complex which implements an
efficient algorithm, but contains implementation mistakes. There are many other
decision context issues that have to be investigated and taken into account. Here
are some of them:

• Review the goals of the contest.

• Investigation to which extent the automated performance testing results cor-
respond the expectations of the task designers.

• Investigation whether the metrics used for measuring various characteristics
of software are applicable as the evaluation criteria (submitted algorithm-code
complex is also a piece of software).

• Reconsideration of the concept of submission.

• Reconsideration of the set of evaluation attributes and criteria.

• Reconsideration of the score aggregation function.

• etc.

The answers to some of the questions raised here have already been obtained during
this research and presented in the previous chapters.

It can be concluded from the considerations presented above that evaluation in
the LitIO problem is a complex MCDA problem, and therefore it can be solved using
MCDA techniques and algorithms.

Further we will use the term evaluation in the LitIO problem as a formal term.
By this term we understand an MCDA problem the goal of which is to investigate
the background and problems of evaluation in LitIO and other informatics contests,
to construct the concept of submission, and to propose the evaluation scheme for
use in LitIO.

3.4 Roles in MCDA
Three major roles can be identified in the decision analysis. They are: decision
maker, decision analyst and stakeholder (Val, 2002). A decision maker has the power
to make decisions and typically is responsible for the consequences of this decision.
A decision analyst analyses the problem, generates and suggests alternatives and
facilitates decision making. A stakeholder is a person or a body with an interest
in the decision under consideration. The roles can overlap and there exist different
relationship models among the three roles.

We will add one more role in this study, i.e., the role of expert. By an expert we
assume a person who has the authority and experience in the area of the problem
under consideration. This is a very general definition, while concrete requirements

50

3.4 Roles in MCDA

for someone to be considered as an expert will be made taking into account the
peculiarities of evaluation in the LitIO problem. The main mission of an expert is
to provide valuable insights about the problem. In terms of the three main roles, the
experts are decision analysts. However, we would like to maintain the term expert in
order to emphasise the knowledge and authority in the area versus the responsibility
to perform problem analysis.

Having presented possible roles in the MCDA process, we will look at the roles
of evaluation in the LitIO problem.

The scientific part of LitIO is managed by the scientific committee. The scien-
tific committee also performs the role of jury. Therefore these two terms are used as
synonyms in LitIO. The scientific committee is responsible for all the scientific deci-
sions, i.e., approving the syllabus of the contest, designing tasks and tests, approving
the evaluation procedure, performing evaluation, approving ranking and declaring
winners. In 2010, the scientific committee of LitIO consisted of 13 members (Sci,
2010). The scientific committee is the only decision maker in this context.

The role of a decision analyst is played by the author of this thesis.
The most important stakeholders are interested in programming and algorithmics

students at secondary education from all over Lithuania, as well as the community
of informatics teachers. The community of stakeholders is affected directly by each
decision or change in the evaluation scheme. The scientific committee of LitIO is
also a stakeholder, because possible changes in the evaluation scheme might change
their working procedures, time spent on task design and evaluation.

Other stakeholders include the Ministry of Education and Science of the Repub-
lic of Lithuania (providing financial support to LitIO), the Lithuanian Youth and
Technical Creativity Palace (having the responsibilities for organising LitIO). Even
universities in Lithuania are stakeholders, because they expect the scientific quality
in LitIO and grant the winners of LitIO extra points when entering computer science
studies in the universities.

Experts

Stakeholders

Decision

makers Decision

Analyst

Figure 3.1: Model of relationship among different roles in decision analysis
of evaluation in the LitIO problem

By an expert we define a person having the background in informatics and at
least five-year experience of work in informatics contests either as a member of
the scientific committee or as the jury member. More details about the experts that
took part in this research will be provided in Subsection 6.1.1, where the background

51

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

and the details of involvement of the experts are described. Here we only want to
provide the relationship structure between the different roles. Some of the experts
involved in this research belonged to the Scientific committee of LitIO. We invited
those experts deliberately, because members of the Scientific committee of LitIO
know the peculiarities and problems of carrying out evaluation in LitIO best. The
other experts were invited from outside, i.e. they had some experience in national
informatics contests of other countries as well as in the regional and international
informatics contests.

A model of relationship among the different roles in the decision analysis process
in evaluation in the LitIO problem, is presented in Fig. 3.1.

3.5 Classification of MCDA Problems
Four broad categories of MCDA problems have been proposed (Roy, 1996):

• The choice problematique. Problems fall into this category if there is a need
to make a choice from a set of alternatives. However the set of alternatives
might be either finite or infinite.

• The sorting problematique. In this case the given alternatives have to be sorted
into several categories, such as “definitely acceptable”, “possibly acceptable”,
“definitely unacceptable”.

• The ranking problematique. The alternatives have to be ranked in some order
of preference.

• The description problematique. Possible alternatives and their consequences
have to be described formally in a systematic way so that the decision makers
could evaluate the alternatives.

Variations or amendments to this classification are also possible (Belton and
Stewart, 2003).

Another classification of MCDA problems is one-off versus repeated problems.
In some cases, a decision has to be made only once as the problem is unique. This is
a one-off problem and the process is oriented towards arriving at a specific decision.
In the case of repeated problems the same problem is recurring a few times or
periodically. Then MCDA is oriented towards creating a procedure to be used in
decision making.

An MCDA problem can also be classified either as a single decision making or
group decision making problem. In the case of a group decision making problem,
several decision makers are involved and they can have different values and opinions
how to address the problem. In order to approve the decision, the consensus and
compromise among different decision makers has to be reached.

According to the classifications presented above, evaluation in the LitIO problem
is the ranking problematique as the final outcome of evaluation procedure is a ranked
list of contestants based on which the awards will be distributed. Based on the second

52

3.6 Stages of MCDA

type of categorisation, the evaluation problem is a repeated problem, therefore the
focus of the research is on refining the evaluation scheme which could be applied
annually in LitIO. It is a group decision making problem, because the role of a
decision maker is played by the members of the LitIO Scientific committee and in
order to approve the proposed evaluation scheme, the consensus among the decision
makers is necessary.

3.6 Stages of MCDA
Different authors suggest different stages of the MCDA process. (Val, 2002) proposes
a scheme consisting of four stages in particular, problem structuring (decomposed
into five sub-stages), preference elicitation, recommended decision, and sensitivity
analysis. (Oberti, 2004) suggests four stages of the MCDA process, i.e., beginning
of the study, evaluation of actions, multiple criteria modelling, multiple criteria
processing, and recommendations.

Each stage consists of two or three sub-stages. (Belton and Stewart, 2003) offer
three stages: problem identification and structuring, model building, and using a
model to inform and challenge thinking. The scheme based on (Belton and Stewart,
2003) is presented in Fig. 3.2.

Problem

Structuring
Model

Building
Model

Analysis
Recommended

Decision

Problem

Identification

Figure 3.2: Basic stages of the MCDA process

These stages reflect a variety of approaches to MCDA, however, they confirm
that an extensive problem analysis and structuring are vital before mathematical
algorithms can be applied. In all those approaches the stages are iterative and inter-
active, i.e., they foresee a return to previous stage, review and update its outcome.

Next we would like to comment on a further structure of the thesis. In the subse-
quent sections we will overview the theoretical background of problem structuring,
model building, and sensitivity analysis.

Without actually performing problem structuring (unambiguously describing cri-
teria and alternatives) it is not reasonable to search for the most suitable MCDA
algorithm. Their suitability to solve the problem depends upon the type, structure
and interrelationship of criteria, and other requirements. Therefore, in this study
we have performed problem structuring (presented in Chapter 6) before analysing
MCDA approaches of model building (presented in Section 3.8). We assume that the

53

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

reader will become familiar with the outcome of problem structuring before reading
about model building.

Note that different sources use rather different MCDA terms, and the terms we
are using in the thesis might have different meanings elsewhere.

3.7 Problem Structuring
3.7.1 General Overview
As indicated above, different authors suggest different stages of MCDA, however, in
all the approaches the first big step is a deep analysis of the problem. Its goal is to
initiate thinking about the problem, to capture its complexity and identify the key
issues, external environment, constraints, goals, values, uncertainties, alternatives,
and stakeholders. We will use the term problem structuring to refer to this stage and
assume that, at the end of this stage, not only a complex analysis has been made,
but, in particular, the problem category, the roles, objectives, alternatives, criteria,
i.e., the parts required in order to proceed with the next step of decision analysis
process have been identified.

It is important to understand that problem structuring does not only seek to
modell the existing reality, but also is a constructive one, i.e., tries to abstract
the reality. There is a difference between modelling real life objects and modelling
MCDA problems. Once the real life objects are modelled, it is possible to try to test
how close the model approximates to the reality. However, there is no easy way to
check the validity of a model which encompasses values (Belton and Stewart, 2003)

There are problem oriented and value oriented approaches to problem structur-
ing. In the problem oriented approach, the problem is identified at first and the
goals are figured out afterwards. In the value oriented approach, values and goals
are discussed first, and only then one should start looking for decision opportunities
(Val, 2002).

Many sources stress the importance of this process, but a huge variety of problem
areas and complexities make it difficult to construct a good for all cases method
how to perform problem structuring. Apparently, a decomposition of the problem
structuring process becomes easier when we consider the structuring process of a
more specific problem. An example of the decomposition can be found in Fig. 3.3
(Val, 2002).

If we look at the decomposition from the point of view of evaluation in LitIO, part
of the job of defining the decision context already has been performed by presenting
an extensive analysis of the context of evaluation of algorithm-code complexes. The
remaining part, where the current LitIO evaluation scheme will be analysed from
the point of view of existing software quality standards, will be presented in the
subsequent chapter.

In general, generating alternatives might be quite a complicated issue. However,
in our case, the set of alternatives is clear, i.e., submissions that have to be ranked
based on the evaluation results. However, the concept of submission needs to be
reviewed. The main task of problem structuring still to be performed is identifying
the attributes, creating a hierarchical model of attributes, and specifying the criteria.

54

3.7 Problem Structuring

Defining decison context

Identifying attributes

Generating and identifying decision

alternatives

Creating a hierarchical

model of attributes

Specifying the criteria

Figure 3.3: Decomposition of the problem structuring process (based on (Val,
2002))

Problem structuring can be performed either in an informal or in a formal way.
There exist many general managerial tools, including software, which can support
performing problem structuring in a more formal and systematic way. Examples
of such tools can be SWOT (Strengths, Weaknesses, Opportunities, Threats) (Swo,
2007, 2010; Hill and Westbrook, 1998), SODA (Strategic Options Development and
Analysis) (Eden and Simpson, 1989), JOURNEY (Eden and Ackermann, 1998),
CATWOE (Customers, Actors, Transformation, Worldview, Owners, Environment),
CAUSE (Criteria, Alternatives, Uncertainties, Stakeholders, Environmental fac-
tors), and Cognitive mapping (Eden, 1988). Many tools of this kind are described
in (Keeney and Raiffa, 1976; Keeney, 1992). A lot of those methods are suitable
for or suggest working with experts that need to be interviewed or involved into the
discussion as part of idea generation.

The choice of a particular tool depends upon the type of the problem and other
various aspects of the problem and the environment. Some methods help in defining
a decision context. Some are intended to assist in structuring already generated
ideas. Some methods are more suitable when the experts are discussing the problem
together, others are more suitable when the experts are interviewed separately or
when the experts are located remotely, but need to reach a consensus, and so on.

The methods discussed above are very general, managerial. We went through
many such methods (including those mentioned above) and we did not feel that they
would completely suit the context of the problem. Different methods are different
ways helping to arrive at the same goal. Therefore we decided that the decision
maker makes the decision as to which method should be chosen.

55

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

By performing the search for the best approach, we came across the GQM (Goal/
Question/ Metric) approach, the basic idea of which is defining and interpreting
measurable software.

3.7.2 GQM (Goal/Question/Metric) Approach
GQM framework was the outcome of works of V. Basili and D. Weis, and was
originally designed for evaluating defects of several projects (Basili and Weiss, 1984).
One of the practical applications that GQM is associated with is working towards
the improvement of software.

Formally GQM can be defined in the following way: “GQM presents a system-
atic approach for integrating goals to models of the software processes, products and
quality perspectives of interest based upon the specific needs of the project and the
organization” (Basili et al., 1994). The main idea of the GQM framework is that
measurement should be goal-oriented. It starts from defining a goal, then transforms
the goal into a set of questions and finally defines metrics that present answers to
the questions (Fig. 3.4), i.e., it derives software measures from measurement ques-
tions and goals (van Solingen and Berghout, 1999). This is especially useful in cases
where it is difficult to decide what to measure in order to achieve the goals.

Goal

Question

Metric

Implicit models

Q3 Q4Q1 Q2

M1 M2 M3 M4 M5 M6 M7

D
e
fi

n
it

io
n

In
te

rp
re

ta
ti

o
n

Figure 3.4: The GQM paradigm Metrics are defined in a top-bottom way and
they are interpreted in a bottom-up way (van Solingen and Berghout, 1999).

The obtained measurement model consists of three levels (Basili et al., 1994):

• Conceptual level (Goal). The goal is defined for an object from different points
of view taking into account different quality models. It specifies the purpose
of measurement. Products, processes or resources can be the objects of mea-
surement.

• Operational level (Question). The achievement of each goal is characterised
by a number of questions with respect to a selected quality issue.

56

3.8 Model Building

• Quantitative level (Metric). Each question is associated with one or more
metrics in order to provide the answer to the question in a quantitative way.
The metrics can be either objective or subjective. Objective metrics depend
upon the object being measured, but not upon the viewpoint. Subjective
metrics depend both upon the object being measured and upon the viewpoint.

The same metrics can be associated with different questions under the same
goal. The same metric might have different values if taken from different viewpoints.
The final step of the GQM process is to define the data collection, validation and
analysis mechanism. These final steps can be associated with the final steps of
MCDA performed after problem structuring has been completed.

We suggest that the GQM framework is suitable to perform the required part
of problem structuring, defined in the previous subsection. It foresees a hierarchical
structure and a systematic way of eliciting metrics (criteria). The advantage of
this framework is that it was originally created for deriving software metrics, and a
submission can be treated as software.

3.8 Model Building
3.8.1 Requirements for the Model
We have already introduced evaluation in the LitIO problem as an MCDA problem
in Section 3.3 and indicated that the goal is to come up with an evaluation scheme
for use in LitIO. After problem structuring, the next phase is model building, i.e.,
the choice of an MCDA model. Before analysing various possibilities, we have to
define the requirements for the model.

The decision context of our problem is rather specific. The problem belongs
to the ranking problematique category and is a group decision making problem.
Moreover, the chosen method will be applied in an educational informatics contest
situation. Therefore it is highly important for the approach to be accepted by the
community of informatics contests. (Belton and Stewart, 2003) emphasize that the
ability to explain the chosen approach to a variety of backgrounds is an important
factor in choosing the MCDA approach. It should be noted that our problem is
a repeated problem. It means that the process of ranking submissions will have
to be repeated each time the informatics contest takes place. This strengthens the
importance of method acceptability and understandability by the stakeholders.

The evaluation scheme should be motivating to the contestants and one of im-
portant motivating factors is its understandability. Therefore in search of the best
model we will give the priority, to the models which foresee simpler scoring functions.

Note that the evaluation scheme consists of parts which are revealed to the
contestants, but it also contains the parts hidden from the contestants. For example,
the scores assigned by individual jury members during manual evaluation are not
revealed to the contestants, only the aggregated score is. We emphasise that the
parts of the evaluation scheme which are revealed to the contestants must be easily
understandable and transparent.

57

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

Even though the problem is described as the ranking problematique, it should
be noted that it is not enough to present ranking to the contestants. The values,
based on which the ranking was made, also are to be presented. After the contest,
the contestants are interested not only in their position in the ranking table, but
also in the closeness of their scores to that of their rivals, and to the scores of the
winning positions.

It is commonly accepted in informatics contests that a score aggregation func-
tion mapping the performances for separate criteria into real numbers is defined and
announced to the contestants in advance. From what we managed to find in the
publications, the ACM-ICPC type contest is the only contest where the value func-
tion is mapped to two-variable output (Subsection 2.12.3). However it is still a sore
aggregation function that unambiguously induces ranking. Therefore we will focus
on the MCDA approaches which foresee defining the score aggregation function, in-
ducing the ratio scale, and the ranking is made after the values of the function for
each alternative have been calculated.
3.8.2 Single Decision Maker Problem
Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be
a finite set of criteria. Let xij be the performance of alternative Ai (i = 1, 2, · · · , n)
in terms of criteria Cj (j = 1, 2, · · · ,m). Suppose wj ≥ 0 is a relative weight of the
criterion Cj (j = 1, 2, · · · ,m) and

∑m
j=1wj = 1.

Then a single decision maker MCDA problem can be expressed by the following
decision matrix:

C1 C2 · · · Cm

w1 w2 · · · wm

A1 x11 x12 · · · x1m

A2 x21 x22 · · · x2m

· · · · · · · · · · · · · · ·
An xn1 xn2 · · · xnm

(3.1)

Note that the decision matrix does not indicate the category of the MCDA
problem. The same decision matrix can be used to describe both the choice prob-
lematique and the ranking problematique MCDA problems.

We presented the definition of a single decision making problem, because classical
MCDA methods assume a single decision maker problem, and the existing single
decision making techniques are extended to solve group decision problems.
3.8.3 Choice of the MCDA Approach
From the requirements to the LitIO evaluation scheme, presented at in the beginning
of this section, it follows that we have to focus on MCDA approaches which foresee
defining the score aggregation function and the ranking is made after the values of
the function for each alternative have been calculated.

After the problem structuring stage has been completed, a model representing
preferences of a decision maker has to be constructed. Such a model should contain
two primary components (Belton and Stewart, 2003):

58

3.8 Model Building

• Preferences in terms of each individual criterion.

• An aggregation model, i.e., s model that would combine preferences across
criteria.

Once unambiguous quantitative metrics at the lowest level have been defined,
the first model of the component is not necessarily trivial. In general, the strength of
preference of one alternative over another should be also taken into account. Some
thresholds might be introduced.

If the attributes and metrics are arranged in a hierarchical way, then it is im-
portant that the lowest level of the tree (metrics) induce unambiguous ordering in
terms of each criterion. Aggregation can be applied either in a single operation to
all the criteria or at each tree level separately. Theoretically the formulas describing
both approaches are algebraically equivalent (Belton and Stewart, 2003). This is
one of the reasons why many MCDA methods assume the criteria aggregation in a
single step.

Many different MCDA approaches are presented and categorised in (Belton and
Stewart, 2003; Carlsson and Fullér, 1996; Chen et al., 1992; Kahraman, 2008; Tri-
antaphyllou, 2000). Instead of focusing on separate MCDA methods, we will first
look at the major families of MCDA methods. (Belton and Stewart, 2003) distin-
guish three major families of MCDA approaches:

• Value measurement theory (Keeney and Raiffa, 1976). The main idea of this
approach is to construct a value function that would associate each alternative
with a real number in order to produce ranking of alternatives. The main
idea of this theory correspond to the intentions and reasoning presented at
the beginning of this subsection. Therefore we will include it for a further
consideration.

• Satisficing (or Goal programming) (Simon, 1976). This approach instead of
creating one value function operates on partial value functions. By a partial
value function we understand a value function that maps the performance
of alternatives in terms of a certain criterion to a real number. The main
idea of the approach is that the most important criterion is identified and
the acceptable level of it is determined. Then the alternatives are eliminated
until all the remaining alternatives achieve the acceptable level. At this point,
the second most important alternative together with its satisfactory level is
identified. The alternatives which do not reach the satisfactory level of the
second criterion are eliminated again.
This approach is not suitable for our problem as it does not assume the score
aggregation at all.

• Outranking (Roy, 1996). Outranking methods also operate with partial value
functions and involve pairwise comparisons of alternatives. An alternative
is dominated by another alternative if another alternative performs better in

59

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

terms of one or more criteria and equals in the remaining criteria. The concept
of outranking is introduced. The outranking relationship of two alternatives
describes that even though the two alternatives do not dominate each other
mathematically, the decision maker accepts the risk of regarding one alterna-
tive almost surely better than the other.
We consider this approach also unacceptable in our situation because it again
deals with preferences in terms of separate criteria and does not foresee score
aggregation using a single value function. The concept of outranking, i.e.,
allowing the decision maker to take the risk of considering one alternative
better than the other is not acceptable in a contest community where scoring
is an extremely sensitive issue.

Besides the main families of MCDA approaches, a fuzzy logic is often considered
to be applied to MCDA problems. The fuzzy logic is used in group decision making,
however, the fuzzy logic is not a separate methodology, but a tool that can be applied
within other MCDA approaches including the ones described above. Therefore we
assume that the fuzzy logic might be applicable in the case of this problem and we
will look at the concepts of fuzzy logic as well.

At the same time we must be aware about the MCDA paradox which asks what
decision-making method should be used to choose the best decision-making method
(Triantaphyllou, 2000). This paradox reveals the roots of difficulty of comparing
different MCDA methods in search of the best one.

3.8.4 Value Measurement Theory
This theory was mainly started by Keeney and Raiffa (Keeney and Raiffa, 1976).
More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with
each alternative in order to produce ranking of alternatives. The value function
is defined as a function that assigns a non-negative number to each alternative,
indicating the desirability (or preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1
is preferred to the alternative Ai2 (Ai1 � Ai2) if and only if V (Ai1) > V (Ai2); the
alternatives are indifferent if and only if V (Ai1) = V (Ai2).

Note that the value function must induce complete order. It means that, for
any pair of alternatives Ai1 and Ai2, either one is preferred to the other or there is
indifference between them, i.e. either Ai1 � Ai2 or Ai2 � Ai1 or Ai1 ∼ Ai2. This
fact also means that preferences and indifferences are transitive, i.e., if Ai1 � Ai2
and Ai2 � Ai3, then Ai1 � Ai3. The same holds for indifference.

The value measurement approach introduces partial value functions vj(Ai). They
are constructed for each criterion and partial value functions hold the essential fea-
tures (i.e., induce complete order) of a value function in terms of separate criteria.

We would like to emphasise the difference between xij and vj(Ai), i.e., between
the quantitative performance of alternative Ai in terms of criterion Cj and the value

60

3.8 Model Building

of a partial value function for criterion Cj in terms of alternative Ai. By xij we mean
a direct measure (performance) of a certain alternative in terms of certain criteria.

For example the metrics (criteria) of evaluating the algorithm-code complex ef-
ficiency (attribute) might be the algorithm-code complex performance in seconds.
While the partial value function might be simply a function of xij or it can even be
standardized so that the worst outcome results in zero value and the best outcome
results in a convenient standard value (e.g. 100). The value function does not have
to be linear.

Several value measurement theory algorithms were developed and the most pop-
ular ones are Weighted Sum Model, Weighted Product Model. We would also assign
the Topsis algorithm to the same category of algorithms.

Weighted Sum Model (WSM) is the most commonly used method for single deci-
sion making problems (Triantaphyllou, 2000). It can be described using the following
formula:

V (Ai) =
m∑

j=1
wjvj(Ai) (3.2)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.
One of the reasons for a wide acceptance of this model is its simplicity, i.e., it

can be easily explained by decision makers to a variety of backgrounds (Belton and
Stewart, 2003).

Note that the requirement preferential independence must be satisfied so that
the WSM model could be applied (Belton and Stewart, 2003). Suppose that two
alternatives Ai1 and Ai2 differ only in a set of criteria R ⊂ C (R is a proper subset
of C) and the values of partial functions are equal in all the other criteria. Then it
is possible to decide the relationship of Ai1 and Ai2 (i.e. Ai2 � Ai1 or Ai1 � Ai2 or
Ai1 ∼ Ai2) knowing their performances on criteria from R only, i.e., irrespective of
the values of their performances in all the other criteria.

The criteria obtained after performing the problem structuring phase are pre-
sented in Chapter 6. However, among the criteria there are several dependent cri-
teria, e.g., the quality of programming style is related either to the performance
of an algorithm-code complex or to its efforts to solve the task. Thus a partial
independence of criteria is violated.

We suppose that this does not eliminate WSM from applying it to the score
aggregation in LitIO. WSM can still be applied in aggregating those criteria that
are preferentially independent. The aggregation of dependent criteria will have to
be calculated separately. WSM can be potentially applied to the score aggregation
in LitIO, though the above mentioned condition must be observed.

Weighted Product Model (WPM). WPM can be described using the following
formula:

V (Ai) =
m∏

j=1
[vj(Ai)]wj (3.3)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

61

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

Arguments have been presented that preferences are often perceived in the ratio
scale terms, therefore product is more natural than sum (Lootsma, 1997; Trianta-
phyllou, 2000). The consequence of tradeof an additive approach to a multiplicative
approach is that partial value functions have to satisfy the ratio scale properties
instead of interval scale properties. WPM is also proposed in the cases where a
different than described here version of WSM is used. Then WPM should solve a
problem when different criteria are measured in terms of different measurement units
and there is no way how the values of performance in terms of different criteria can
be added directly (Triantaphyllou, 2000). The WSM presented above uses partial
value functions which can solve this issue.

Simplicity of the approach is a high priority in the choice of the score aggregation
algorithm. We conclude that the WSM algorithm would be more suitable than WPM
as it is simpler and better understandable to a wide audience and, otherwise, they
seem to be identical in terms of the problem under consideration.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian
and Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stating that
Topsis belongs either to Value measurement theory approaches, or to another spe-
cific family of MCDA approaches. However, as it involves calculating the value of the
closeness coefficient and ranking, based on the values of the coefficient, we assume
that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. the positive ideal solu-
tion and the negative ideal solution. The positive ideal solution is calculated as a
function from the best performance values of the concrete decision matrix in terms of
each criterion. The negative ideal solution is calculated as a function from the worst
performance values in terms of each criterion. For each alternative the Euclidean
distance from the ideal positive solution and the ideal negative solution is calculated.
Finally, a relative closeness coefficient to the ideal positive solution is calculated and
the alternatives are ranked, based on the value of the relative closeness coefficient to
the ideal solution of each alternative. This method from the mathematical point of
view is interesting and appealing, however, it concedes to WSM due to the simplicity
of the latter.

After looking at several value measurement theory associated methods, we ar-
rived at the conclusion, that simplicity and the ability of a wide audience to accept
the evaluation scheme plays a significant role in the choice of approaches, therefore
the WSM approach suits best for solving evaluation in the LitIO problem. Though
certain requirements have to be observed. We did not find any evidence that other
methods would be more suitable than WSM.
3.8.5 Fuzzy Set Theory and Its Applications in MCDA
We are all well aware that it is very difficult to present precise descriptions of real
life physical situations. The main problem is that the transition from one situation
to another is sharp in descriptions, but not in the real life. For example, submissions
have to be sorted into two categories: passed and failed. The jury can agree that
the lowest score for passed is 40 out of 100, i.e., all the submissions that scored 40
and more are considered as passed.

62

3.8 Model Building

However, at the same time we understand that in reality the boundary between
passed and failed is not so sharp. The difference between a submission which scored
39 points and failed and a submission which scored 40 points and passed is not
so significant for us that we could claim that they definitely belong to different
categories. Fuzzy sets contrary to the classical crisp sets take into account the
fuzziness of real life situations.

Fuzzy sets were proposed in 1965 (Zadeh, 1965, 1968) in order to quantify fuzzi-
ness that is encountered in real life situations. By fuzziness we mean a situation
associated with sets when there is no sharp transition from the membership to a
non-membership situation, i.e., intermediate values between conventional values like
true/false are allowed. Currently the fuzzy logic is a very powerful tool for using it
in expert systems, complex industrial processes as well as MCDA (Hellmann, 2001;
Triantaphyllou, 2000).

3.8.5.1 Main Crisp and Fuzzy Set Related Concepts
The fuzzy logic concepts presented in this thesis are based on (Lee, 2005; Trianta-
phyllou, 2000).

Crisp set. Any collection of objects from the given universe regardless of their
order. For any object from the given universe its membership in the crisp set
must be unambiguously defined.

Membership function. Crisp sets can be mapped to functions. Suppose X is a
universe. For any crisp set A we define its membership function
µA : X → {0, 1} in the following way:

µA : (x) =
{

1, iff x ∈ A
0, iff x /∈ A , for each x ∈ X (3.4)

Fuzzy set. A fuzzy set is any set that allows its members to have different grades
of membership (membership function) in the interval [0, 1], i.e., for any subset
Ã of the universe X it is possible to define a membership function of a fuzzy
set: µ

Ã
: X → [0, 1].

Ã is completely defined by a set of tuples Ã = {(x, µ
Ã

(x) | x ∈ X}.
A crisp set is a separate case of fuzzy set, and to distinguish between the crisp
and fuzzy sets we will use Ã notation for fuzzy sets.

Convex fuzzy Set. Suppose a ∈ R, b ∈ R, X is defined in R and t = λa+ b(1−λ)
where λ ∈ [0, 1] and is freely chosen. The fuzzy set Ã is convex if
µ

Ã
(t) ≥ min [µ

Ã
(a), µ

Ã
(b)].

Normalised fuzzy set. A fuzzy set Ã is normalised if ∃a ∈ Ã | µ
Ã

(a) = 1.

63

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

Operations on Fuzzy sets. Similarly to the operations on crisps sets, operations
can be introduced on fuzzy sets. Fuzzy operations were proposed by (Zadeh,
1965) and a more detailed reference on fuzzy set operations can be found in
(Lee, 2005; Triantaphyllou, 2000). We present definitions of the main opera-
tions: union, intersection, negation.

• Negation: µ ¯̃
A

(x) = 1− µ
Ã

(x),∀x ∈ X,

• Union: µ
Ã∪B̃

(x) = Max [µ
Ã

(x), µ
B̃

(x)], ∀x ∈ X,

• Intersection: µ
Ã∩B̃

(x) = Min [µ
Ã

(x), µ
B̃

(x)],∀x ∈ X, (Fig. 3.5)

x

µ
Ã∩B̃

(x)

1

Figure 3.5: Operation of the intersection of two fuzzy sets

Fuzzy number. A fuzzy set is called a fuzzy number, if the fuzzy set is convex, nor-
malised, its membership function is defined in R and is piecewise continuous.
Examples of fuzzy numbers are presented in Figs. 3.6, 3.7.

Triangular fuzzy number. A triangular fuzzy number is a fuzzy number repre-
sented by three points as follows: Ã = (a1, a2, a3) and this representation is
interpreted in the following way:

µ
Ã

(x) =


0, x < a1,
x−a1
a2−a1

, a1 ≤ x ≤ a2,
a3−x
a3−a2

, a2 ≤ x ≤ a3,

0, x > a3.

(3.5)

An example of the triangular fuzzy number is given in Fig. 3.6.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number rep-
resented byh four points as follows: Ã = (a1, a2, a3, a4) and this representation

64

3.8 Model Building

x

µ
Ã
(x)

1

a1 a2 a3

Figure 3.6: Triangular fuzzy number Ã = (a1, a2, a3).

is interpreted in the following way:

µ
Ã

(x) =



0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(3.6)

Ifn a2 = a3, the trapezoidal number is coincident with the triangular fuzzy
number. An example of the trapezoidal fuzzy number is given in Fig. 3.7.

x

µ
Ã
(x)

1

a1a2 a3 a4

Figure 3.7: Trapezoidal fuzzy number

Addition and multiplication of triangular fuzzy numbers. These operations
were developed by (Laarhoven and Pedrycz, 1983).

• Addition: Ã⊕ B̃ = (a1 + b1, a2 + b2, a3 + b3)

• Multiplication: Ã⊗ B̃ = (a1 × b1, a2 × b2, a3 × b3)

65

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

Ranking triangular fuzzy numbers. There exist many different algorithms for
ranking fuzzy numbers. (Triantaphyllou, 2000; Zhu and Lee, 1991) proposes
the following one. Let Ã and B̃ bee triangular fuzzy numbers. We define:

e(Ã, B̃) = max
x≥y

[min[µ
Ã

(x), µ
B̃

(y)]] (3.7)

The triangular fuzzy number Ã dominates (or outranks) B̃ if and only if
e(Ã, B̃) = 1 and e(B̃, Ã) < Q, where Q is a fixed positive fraction smaller
than 1 (e.g. 0.9). Value Q is set by the decision analyst and later is possibly
checked for sensitivity.

3.8.5.2 Application of Fuzzy Numbers in Quantifying Linguistic
Variables

In the evaluation in LitIO we deal with both crisp and linguistic data. Linguistic
variables are variables whose values are linguistic terms, not numbers. They are
used to express the results of subjective qualitative evaluation. Linguistic variables
were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal
fuzzy numbers are used for quantifying linguistic variables.

Item of linguistic scale Numerical weights

Very poor (VP) (0, 0, 0, 0.2)
Between poor and very poor (BPV) (0, 0.2, 0.2, 0.4)
Poor (P) (0, 0.2, 0.2, 0.4)
Between poor and fair (BPF) (0, 0.2, 0.5, 0.7)
Fair (F) (0.3, 0.5, 0.5, 0.7)
Between fair and good (BFG) (0.3, 0.5, 0.8, 1)
Good (G) (0.6, 0.8, 0.8, 1)
Between good and very good (BGV) (0.6, 0.8, 0.8, 1)
Very good (VG) (0.8, 1, 1, 1)

Table 3.1: Weights of a trapezoidal distribution of a linguistic scale (Sule, 2001).

Many conversion scales were created for transforming linguistic terms into fuzzy
numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers
of linguistic terms which are commonly used. An example of pretty standard in
fuzzy set theory a nine-item scale is presented in Table 3.1 and Fig. 3.8 (Sule,
2001). The choice of a concrete scale from the available ones is intuitive and left for
the responsibility of the decision maker.

3.8.5.3 Application of Fuzzy Logic in Solving MCDA Problems
In MCDA the data can be categorised into three groups: all data are crisp, all
data are fuzzy, data are either crisp or fuzzy (Zhang, 2004). Many classical MCDA

66

3.8 Model Building

Figure 3.8: Trapezoidal fuzzy numbers are used to quantify the nine-item
linguistic scale (Sule, 2001)

algorithms are modified and adapted to apply them to fuzzy data. Among the
adapted ones are WSM, WPM, and Topsis.

A systematic and critical study of the existing fuzzy MCDA methods was per-
formed. A conclusion was drawn, that the majority of currently existing fuzzy
MCDA approaches involve complicated calculations, require all the elements of de-
cision matrix to be presented in a fuzzy format (though some of them might be
crisp), and are not suitable for solving problems with more than ten alternatives
associated with more than ten criteria (Chen et al., 1992; Rao, 2007).

The method presented by (Chen et al., 1992) is considered to be the one which
avoids the above mentioned problems (Rao, 2007; Zhang, 2004). It consists of the
following phases:

• Linguistic terms (if such are used) are converted to fuzzy numbers.
• Fuzzy numbers are converted into crisp scores.
• Classical MCDA approaches, which assume crisp values, are applied.

The crisp score of the fuzzy number Ã is calculated in the following way. First,
two functions µmax(x) and µmin(x) are defined:

µmax(x) =
{
x, 0 ≤ x ≤ 1
0, otherwise

(3.8)

67

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

µmin(x) =
{

1− x, 0 ≤ x ≤ 1
0, otherwise

(3.9)

Then the left and the right scores of Ã are defined as:

µL(Ã) = Sup
x

[µ
Ã

(x) ∩ µmin(x)] (3.10)

µR(Ã) = Sup
x

[µ
Ã

(x) ∩ µmax(x)] (3.11)

Here Sup stands for the least upper bound. The total crisp score of the fuzzy
number Ã is defined as:

µT (Ã) = (µR(Ã) + 1− µL(Ã))/2 (3.12)

The conversion of a fuzzy number to a crisp value is illustrated in Fig. 3.9.

1
µ
min(x) µmax

(x)
µÃ(x)

µL(Ã)
µR(Ã)

1

0

1-
µ L
(Ã
)

µ R
(Ã
)

x

µT(Ã)

Figure 3.9: Conversion of a triangular fuzzy number to a crisp value

The values of the nine-item linguistic scale, presented in Table 3.1, are converted
to crisp values and presented in Table 3.2. Note that the same linguistic term in
different conversion scales can have different crisp values.

Just for comparison, as an alternative to the approach of (Chen et al., 1992), we
present the fuzzy WSM method (Triantaphyllou, 2000).

Let w̃1, w̃2, · · · , w̃m be the fuzzy weights of the criteria where each weight w̃j is a
triangular fuzzy number1: w̃j = (wja1 , wja2 , wja3), j = 1, 2, · · · ,m. Similarly, x̃ij are

1It is also possible to use trapezoidal numbers. This choice of triangular fuzzy numbers was
made for the sake of simplicity.

68

3.8 Model Building

Item of linguistic scale Fuzzy number Ã µR(Ã) µL(Ã) µT (Ã)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1.00 0.92

Table 3.2: Calculation of crisp values of the nine-item linguistic scale, given in
Table 3.1

performances of each alternative in terms of each criterion expressed as triangular
fuzzy numbers: x̃ij = (xija1

, xija2
, xija3

), i = 1, 2, · · · , n and j = 1, 2, · · · ,m.
Then the fuzzy WSM method can be described by the following value function

formula:

V (Ãi) =
m∑

j=1
w̃j ⊗ vj(Ãi) (3.13)

The calculated value function V (Ãi) values are fuzzy numbers. Afterwards,
the ranking procedure of fuzzy numbers is chosen and the alternatives are ranked.
(Triantaphyllou, 2000) suggests to use the ranking procedure described in 3.8.5.1 for
the fuzzy WSM algorithm.

The fuzzy WSM method gives in to the approach of (Chen et al., 1992) in the
context of our research. Fuzzy WSM requires fuzzification of all the crisp values of
the decision matrix, the value function is a triangular fuzzy number, i.e., it consists
of three real numbers, the true meaning of which might be difficult to explain to
the wide audience interested in programming contests. Ranking is performed by
applying the fuzzy numbers ranking procedure which is also difficult to explain to
the wide audience.

The algorithm for converting fuzzy numbers to crisp values might also be hardly
understandable to the wide audience, however, its application, will remain invisible
for the contestants and their coaches. It will only be applied in dealing with group
decisions and linguistic evaluation. If a criterion requires manual evaluation, the
linguistic scores and the scores of individual jury members are never revealed to the
contestants, just the aggregate score for the criterion is announced. Thus, if fuzzy
techniques are used to aggregate the scores of several jury members, they remain
behind the curtains and do not become the source of discussions and doubts for the
contestants.

69

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

3.8.5.4 Group Decision Making
Group decision making (GDM) can be defined as a decision making process, based on
the opinions of several individuals. The goal of GDM is to arrive at the satisfactory
for the group solution, rather than at the best solution which almost does not exist
(Lu et al., 2007). Various methods are available for group decision making: from
mathematical to psychological and social ones.

Among MCDA approaches explicitly meant for solving group decision making
problems there are techniques that foresee negotiation theory, working with group
dynamics, etc. References to that can be found in (Carlsson and Fullér, 1996; Lu
et al., 2007). Those approaches have been experienced in LitIO many times. In-
vestigation of their suitability in the LitIO evaluation problem would require much
investigations from other sciences, in particular, management and psychology. For
example, most meetings are conducted on-line (as members of the scientific commit-
tee are associated with different universities in different cities and even countries),
some members are reluctant to discuss the issues on-line, less experienced tend to
vote as more experienced members, etc. These aspects should have been investigated
if the above mentioned direction is taken.

Our choice is to focus on mathematical group decision making methods which
assume eliciting concrete information from decision makers and using it in a mathe-
matical algorithm, but do not require interaction and negotiation between decision
makers.

There are different ways how to implement group decision making. Much refer-
ences can be found int (Lu et al., 2007; Rao, 2007). Many common GDM methods
(e.g. authority rule, majority rule, negative minority rule) are not suitable because
they are intended for the choice problematique, but not for the ranking problematique
problems.

(Lu et al., 2007) distinguishes three factors that influence GDM:

The weights of decision makers. Among the decision makers there might be
those who play more important roles in decision making. In this case, the
decision makers should be assigned different weights and that should be re-
flected in the group decision making process.

Weights of criteria. Decision makers may have different views, attitudes, experi-
ence and therefore propose different weights of criteria.

Preferences of decision makers to alternatives. If the performance of an al-
ternative is evaluated subjectively, then different decision makers can have a
different understanding, different experiences and evaluate performance of the
same alternative in a different way.

It is common in GDM that the weight of a decision maker, the proposed weights
for evaluation criteria, and the performances of alternatives suggested by decision
makers are expressed by linguistic terms, since the linguistic terms reflect uncer-
tainty, inaccuracy, and fuzziness of the decision makers (Lu et al., 2007). We also

70

3.8 Model Building

assume that the information, provided by each decision maker is consistent and
non-conflicting.
3.8.5.5 Group Decision Support Algorithm
We have already concluded that the WSM approach suits best for evaluation in
the LitIO problem. We were looking for an extension of WSM to GDM, such that
the extension would use a crisp decision matrix for the final ranking, i.e., it would
be acceptable by the community of LitIO. Many fuzzy GDM algorithms (e.g. an
intelligent FMCGDM method (Lu et al., 2007) or the one described in (Sule, 2001))
assume first aggregating fuzzy numbers and only then deriving the final ranking.

The group decision support algorithm (Csáki et al., 1995) uses crisp values.
Therefore after combining it with the approach of (Chen et al., 1992) we obtain
a GDM algorithm suitable to apply in the LitIO evaluation problem:

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm}
be a finite set of criteria. Let D = {D1, D2, · · · , Dt}, t ≥ 2 be a finite set of decision
makers.

Each decision maker is assigned a linguistic weight of his/her importance p̃ =
{p̃1, p̃2, · · · , p̃t}.

Each criterion is assigned a linguistic weight of its importance by each decision
maker w̃k = {w̃k

1 , w̃
k
2 , · · · , w̃k

m}, k = 1, 2, · · · , t.
Let ṽk

j (Ai) be the values of partial value functions of the performance of alterna-
tive Ai in terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n,
j = 1, 2, · · · ,m, and k = 1, 2, · · · , t. If the evaluation of performance of alternatives
of some criteria is subjective, then the values of the partial value functions are lin-
guistic. Otherwise, they are either crisp or fuzzy.

Following the approach of (Chen et al., 1992) described in 3.8.5.3, first all the
linguistic terms are converted to fuzzy numbers and afterwards all the fuzzy numbers
are converted to crisp values.

Next we apply the group decision support algorithm (Csáki et al., 1995). Note
that this algorithm does not require

∑t
k=1 pk = 1.

First the aggregated group weights for each criterion are calculated:

wj =
∑t

k=1w
k
j pk∑t

k=1 pk
, j = 1, 2, · · · ,m (3.14)

The values of partial value functions of the performance of each alternative in
terms of each criterion are calculated in a similar way:

vj(Ai) =
∑t

k=1 v
k
j (Ai)pk∑t

k=1 pk
(3.15)

The aggregated values for each alternative are calculated in the following way:

v(Ai) =
∑m

j=1 vj(Ai)wj∑m
j=1wj

(3.16)

Based on the calculated values, the ranking of alternatives is performed.

71

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

3.9 Sensitivity Analysis
By sensitivity analysis we understand checking for ranking reversals by changing
relative weights (Rao, 2007).

An extensive overview of research in sensitivity analysis can be found in (Tri-
antaphyllou, 2000). It indicates that there is a considerable sensitivity research for
some types of MCDA problems, such as inventory models or investment analysis,
cases with partial and doubtful data, however the research for deterministic MCDA
problems is very limited.

In decision making it is intuitively supposed that the criterion with the highest
weight is most critical (Winston, 1991). However, this is not always true, especially
when the criteria are qualitative. Being aware how critical each criterion is (i.e.,
how sensitive the ranking of alternatives is to the changes in the current weights of
the criteria), decision makers can make better decisions.

Two major sensitivity analysis problems are defined (Triantaphyllou, 2000). The
first problem is determining the most critical criterion. The second sensitivity prob-
lem is determining the most critical measure of performance.
3.9.1 The Most Critical Criterion
There exist two alternative definitions of the most critical criterion. The first defini-
tion associates the most critical criterion with the answer to the question of whether
the best (top) alternatives reverse. The second definition is associated with the
answer to the question whether there are changes in the ranking of any alternatives.

We assume that the decision matrix of an MCDA problem was defined 3.1 and
the solution to the decision problem is already calculated: F = {F1, F2, · · · , Fn}
where Fi = V (Ai) represent the final preference. We also assume without loss of
generality that F1 ≥ F2 ≥ · · · ≥ Fn, i.e., that the first alternative is the most
preferred one (this can be achieved by simply rearranging the indices).

Next we present several definitions from (Triantaphyllou, 2000).

Minimum change for reversing two alternatives. Let δji1i2 for 1 ≤ i1 < i2 ≤
n, and 1 ≤ j ≤ m, denote the minimum change in the current weight wj of
criterion Cj such that the ranking of two alternatives Ai1 and Ai2 is reversed.
Note that Ai1 is a more preferred alternative than Ai2 due to the assumption
above.

Minimum relative change for reversing two alternatives.

δ′ji1i2 = δji1i2 × 100
wj

, 1 ≤ i1 < i2 ≤ n, and 1 ≤ j ≤ m. (3.17)

The Percent-Top (or PT) critical criterion is the criterion which corresponds
to the smallest value of |δ′j1i2 | where 1 ≤ j ≤ m and 1 ≤ i2 ≤ n.

The Percent-Any (or PA) critical criterion is the criterion which corresponds
to the smallest value of |δ′ji1i2 | where 1 ≤ j ≤ m and 1 ≤ i1 < i2 ≤ n.

72

3.9 Sensitivity Analysis

The criticality degree of criterion Cj denoted as D′j , is the smallest percent
amount by which the current value of wj must change so that the existing
ranking of the alternative will change:

D′j = min
1≤i1<i2≤n

{|δ′ji1i2 |}, for all 1 ≤ j ≤ m. (3.18)

The sensitivity coefficient of criterion Cj denoted as sens(Cj), is the reciprocal
of its criticality degree:

sens(Cj) = 1
D′j

, for all 1 ≤ j ≤ m. (3.19)

If the criticality degree is infeasible, i.e., it is not possible to change the ranking
of alternatives by changing the weight, then the sensitivity coefficient is equal
to zero.

It has been proved theoretically (Triantaphyllou, 2000) that if WSM is used,
then the minimum relative change for reversing two alternatives is given as follows:

δ′ji1i2 <
Fi2−Fi1

vj(Ai1)−vj(Ai2) ×
100
wj
, if vj(Ai1) > vj(Ai2), or

δ′ji1i2 >
Fi2−Fi1

vj(Ai1)−vj(Ai2) ×
100
wj
, if vj(Ai1) < vj(Ai2)

(3.20)

for each 1 ≤ i1 < i2 ≤ n and 1 ≤ j ≤ m.
The following condition should be satisfied for the value to be feasible:

Fi2 − Fi1

vj(Ai1)− vj(Ai2) ≤ wj . (3.21)

3.9.2 The Most Critical Measure of Performance
The sensitivity analysis problem examined in this subsection is determination of the
most critical value of performance vj(Ai).

The threshold value of vj(Ai), denoted as τijk for 1 ≤ i < k ≤ n, 1 ≤ j ≤ m,
is defined as the minimum change which has to occur in the current value of
vj(Ai) so that the current ranking between Ai and Ak will change.

The relative threshold value of vj(Ai) is denoted as τ ′ijk and defined in the fol-
lowing way:

τ ′ijk = τijk × 100
vj(Ai)

, for any 1 ≤ i < k ≤ n, and 1 ≤ j ≤ m. (3.22)

73

3. OVERVIEW OF THE MCDA PROCESS AND METHODS

The most sensitive alternative is the one which is associated with the smallest
threshold value.

The criticality degree of alternative Ai in terms of criterion Cj is defined as
the smallest amount (%) by which the current value of vj(Ai) must change so
that the existing ranking of alternative Ai will change:

∆′ij = min
k 6=i
{|τ ′ijk|}, for any 1 ≤ i ≤ n, and 1 ≤ j ≤ m. (3.23)

The most critical alternative AL is the one which is associated with the small-
est criticality degree:

∆′Lk = min
1≤i≤m

{ min
1≤j≤n

{∆ij}}, for some 1 ≤ k ≤ n. (3.24)

The sensitivity coefficient of alternative Ai in terms of criterion Cj is de-
fined as the reciprocal of the criticality degree:

sens(vj(Ai)) = 1
∆′ij

, for any 1 ≤ i ≤ n, and 1 ≤ j ≤ m. (3.25)

If the criticality degree is infeasible, then the sensitivity coefficient is set to be
equal to zero.

From the definitions above it follows that the most sensitive alternative is the
one with the highest sensitivity coefficient.

It has been proved (Triantaphyllou, 2000) that, if WSM is used, then the relative
threshold value is calculated as follows:τ

′
ijk <

Fi−Fk
wj
× 100

vj(Ai) , when i < k, or

τ ′ijk >
Fi−Fk

wj
× 100

vj(Ai) , when i > k.
(3.26)

The threshold value is feasible, if the following condition is satisfied: τ ′ijk ≤ 100.

3.10 Conclusions
The evaluation in LitIO can be defined as a group decision making repeated problem,
belonging to the category of ranking problematigue. Submissions play the role of
alternatives and evaluation criteria correspond to the concept of criteria in MCDA
terminology. Therefore evaluation in the LitIO problem can be addressed using
MCDA approaches.

There are different options how to decompose an MCDA process, however, we
have chosen a decomposition consisting of three stages: problem structuring, prob-
lem modelling, and problem analysis.

74

3.10 Conclusions

From many methods how to perform problem structuring we selected the Goal/
Question/Metric approach, because it foresees a systematic way of deriving software
metrics for measuring its quality. I.e., differently than other problem structuring
methods, it is intended to deal with software metrics.

Problem modelling requires to define preferences in terms of each individual
criterion and a score aggregation model. However, in informatics contests we deal
with a very sensitive audience, the contestants. The choice of the MCDA algorithm
should be easily understandable by the wide audience and should provide functions
for expressing partial and total scores mapped to real numbers. These requirements
determined our decision that value measurement theory, and, in particular, the WSM
algorithm are the best to apply in the score aggregation.

Nevertheless, we had to look for an extension of WSM that could encompass
group decision making and dealing with linguistic variables. We have found out that
by combining the group decision support algorithm (which assumes group decision
making) and the algorithm proposed by Chen (which uses the fuzzy logic and deals
with linguistic variables), we get an algorithm suitable for modeling our problem.

Note that the use of this algorithm ensures an understandable for the wide
audience scoring function, and more complicated calculations are used only in such
parts of score aggregation which are not revealed to the contestants (e.g., decision
on the weights of evaluation criteria).

For the third part of problem structuring, the model analysis, we identified the
algorithms for calculating the most critical criterion and the most critical measure of
performance. Those two measures can be used for calculating the model sensitivity.

75

4 Semi-Automated Visualisation: Aid for
Tasks Involving Graphs

4.1 Introduction
Automated evaluation dominates in informatics contests, like IOI or LitIO. One
of the reasons is that manual or semi-automated evaluation, takes too much time,
especially if the jury has to analyse the source code and understand how it works.
The programs contain cultural elements (e.g. the contestants name the variables in
their native languages), and the programming style is different or even poor.

A tool that simplifies understanding and analysis of algorithm-code complexes
would be valuable. However, it is hard to create one tool suitable for all cases.
Therefore, we decided to focus on tasks with graphs.

The tasks, that include graphs as a problem and/or solution feature, are very
common in informatics contests. In the final round of LitIO such tasks made over
20% of all the tasks (Dagienė and Skūpienė, 2003). The tasks with graphs made
22% of all the tasks in the Baltic Olympiad in Informatics in the years 1995-2008
(Poranen et al., 2009). Such tasks are common in the IOI and other informatics
contests (Manev, 2008; Verhoeff, 2009).

We analysed graph implementations in submissions of three selected LitIO tasks,
identified most common graph representations, and created an experimental tool for
visualisation of Pascal programs that contain graph implementations.

Note, that this work was done several years ago, when Pascal was popular both
in international contests and in LitIO. The survey of IOI’2004 reveals that 46.58%
of the contestants used Pascal during the contest (IOI, 2004). In BOI’2005 (Baltic
Olympiad in Informatics), 49.1% of contestants used Pascal. In LitIO’2005, 89.3% of
the contestants submitted solutions in Pascal. The available sample of C++ LitIO
submissions in 2005 was not enough for the research. Since 2005 there was a shift
from Pascal to C++ in informatics contests. In 2010 only 27% of LitIO finalists
used Pascal.

By observing the tendencies, we might predict that Pascal as a programming
language will be withdrawn from informatics contests by the contestants themselves.
However, the main idea of semi-automatically visualising the graphs, implemented
in the algorithm-code complexes, remains valid, and is presented as a theoretical
result of this research.

4.2 Choice of Visualisation Approach
Visualization of the graphs can help to analyze the algorithm-code complexes and
their behaviour during the program execution.

76

4.2 Choice of Visualisation Approach

It is important to specify how the visualization is connected or applied to the
algorithm. There are two main approaches to algorithm visualization (Demetrescu
et al., 2002; Kerren and Stasko, 2002). One of them is based on an interesting event
paradigm. The important or interesting events have to be identified in the program
source, and calls to visualization procedures have to be inserted into the source.

The second approach, called state mapping, creates visualization automatically
depending upon the values of the program variables. State mapping approach allows
creating visualization without code modification, but it have some drawbacks. Visu-
alisations can not be easily customized, lack smooth transitions. It is more difficult
to represent abstractions (Sumner et al., 2003).

The choice of approach depends upon the conditions under which the algorithm-
code complexes are analyzed. On the one hand, the jury have no prior knowledge
of how the algorithm-code complex is designed. Moreover, the program source can
have a poor programming style. On the other hand, the jury know the task, its
background, as well as some model solutions. There is also a wide-spread tradition
in informatics contests – the jury do not modify the contestant’s source code.

Informatics contests

• No prior knowledge of code by jury

• Programming style might be poor

• Good understanding of task and model

solutions by jury

• Code modification not allowed

Interesting event paradigm

• Interesting events in the program are identified

• Calls to visualization procedures inserted

• Required detailed understanding of program

• Source modification required

State mapping paradigm

• Creates visualization automatically

• Depends upon values of variables

• Not requires detail understanding of program

• Not requires source modfication

Figure 4.1: Choice of the visualisation approach in informatics contests

The interesting event approach requires good understanding of the source code
in order to identify the interesting points, and source modification or augmenta-
tion. This implies that the state mapping approach should be applied to visualise
algorithm-code complexes (Fig. 4.1).

Conventional debuggers also have some features of the state mapping approach:
they provide changing values of variables during the program execution (Deme-
trescu et al., 2002). Due to this similarity, we decided that the experimental graph
visualization tool for informatics contests has to be designed as a debugger with
visualization possibilities. The user of the tool, willing to get a graph animated,

77

4. SEMI-AUTOMATED VISUALISATION: AID FOR TASKS INVOLVING…

has to interpret the meaning of variables, identify those which represent graph data
structures, and choose the method of graph implementation from the list of the
available methods.

Note that, the experimental tool is not intended to display large graphs. In order
to understand how an algorithm-code complex works, it is enough to analyze the
program execution with small data. Large data sets help to determine how effective
the solutions are. Large data are important in determining the efficiency, but not in
a step by step program execution analysis.

Many other graph visualization environments are created. An example of such an
environment can be EVEGA (An Educational Visualization Environment for Graph
Algorithms) (Khuri and Holapfel, 2001). However, they are meant for the teaching
purposes, and they require intervention into the source code.

4.3 Overview of Graph Implementation in
Algorithm-Code Complexes Designed During the
Contests

There are two common computational representations of graphs: adjacency lists
and adjacency matrices. These representations can be implemented in different
ways, e.g. an adjacency list can be encoded using pointers, an array of records, and
a two-dimensional array. The contestants might think of many other (not necessar-
ily reasonable) implementations. The graphs in the tasks or the solutions can be
different, and have various features or attributes. Moreover, there are some tasks,
where a good solution should use the memory in an efficient way. Therefore, typical
implementations graphs and other data structures do not work because of predefined
memory constraints.

We analyzed three final LitIO round graph tasks graphs together with their
submissions, containing graph implementations. Below we present brief formulations
of the tasks in graph terms. In the original task formulations, neither the word
graph, nor other related terms (e.g. graph vertex, edge, tree, etc.) were used directly.
Typically, in informatics contests they are described indirectly, using some kind of
metaphors (Verhoeff, 2004).

Task 1. Acquaintance (LitIO’2001, Final round). N persons are expected to at-
tend a party. It is known that if any two persons have a common acquaintance
(or make one during the party), they will get acquainted during the party.
However, one person did not come to the party. As a consequence, the people
split into groups with no common friends, i.e., it became impossible for all
the party attendants to become acquainted. Write a program to find a person
whose absence might have caused such a situation.
Comment. Friendship relations represent a connected undirected graph. The
task is to find an articulation vertex, i.e. a vertex removal of which disconnects
the graph. It is known that the graph contains at least one articulation vertex
(Fig.4.2).

78

4.3 Overview of Graph Implementation in Algorithm-Code Complexes…

Figure 4.2: Graph in the task Acquaintance The graph contains two articulation
vertexes marked in black.

Task 2. Virus (LitIO’2003, Final round). The computer network makes an undi-
rected (not necessarily connected) graph. Each computer either has an anti-
virus protection or not. The virus starts from computer A and passes in par-
allel all the edges leaving A. It travels through the network and destroys each
edge it passes through. If the virus reaches the computer with an anti-virus
protection, then both the virus and the anti-virus protection are destroyed.
Write a program to find if and when the virus reaches computer B.

Task 3.Computer Network (LitIO’2005, Final round). A set of computers and
switches are to be connected into one connected network, i.e., to form a tree.
Each computer has to be connected to exactly one switch. Many devices
(either computers or switches) can be connected to the same switch. Given
the expenses of connecting each possible pair of devices. Write a program to
find the cheapest network connection.

We analysed all the submissions to the three tasks. Table 4.1 shows different
options of graph implementations in the analysed algorithm-code complexes.

In the experimental tool we implemented three graph representations: adjacency
lists implemented as an array of records, adjacency lists implemented as a two-
dimensional array, and an adjacency matrix implemented as a two-dimensional array.

Let us comment on other, not implemented, graph representation cases. Set-
based graph implementations use the Pascal set data type. This implementation
is rare, because the number of elements in a Pascal set is limited. Therefore this
type is not suitable to implement graphs that contain more vertexes. Pointers in
graph implementations were used only for memory saving reasons, e.g., instead of
a two-dimensional array, there was a pointer to the two-dimensional array. Graph
representation as a list of edges, in some cases was used to represent a tree. In other
cases, the contestants were presumably affected by the input data format, where the
graph was presented as a list of edges. Complicated or unusual (e.g. array of strings)
graph representations make a very small percentage of the analysed algorithm-code
complexes.

79

4. SEMI-AUTOMATED VISUALISATION: AID FOR TASKS INVOLVING…

Task

Acquaintance Virus Network

Total number of programs 42 32 117

Adjacency lists

Array of records 6 12 –

Two-dimensional array 12 – –

Two-dimensional array
using pointers

– – 1

Two-dimensional bit array 1 – –

Array of records using a
pointer

– – –

Adjacency
matrix

Two-dimensional array 10 20 47

Two-dimensional array
using pointers

5 – 2

List of edges

Two-dimensional array – – 27

Several arrays – – 16

Array of records – – 29

Array of strings – – 6

Stored in a text file – – 4

Other complicated
structure

– – 9

Set-based
implementation

Array of sets 4 1 –

Array of records,
neighbouring vertexes
stored in a set

1 2 –

Bipartite graph Array – – 21

Array of records – – 1

Graph implemented in more than one way 2 3 48

Graph not implemented 6 – 16

Table 4.1: Graph implementation in the analyzed algorithm-code complexes

80

4.4 Graphs’ Visualisation in the Experimental Tool

4.4 Graphs’ Visualisation in the Experimental Tool
In the experimental tool graphs are visualized so, that it were as easy as possible
for the user to use it. The tool has only the main commands of a debugger i.e., only
the features that are important when the program is traced in order to understand
how it works.

Data structures (variables) that represent graphs, are different type of watches.
The user has to indicate the variable(s), which represents the graph(s) and the
implementation type. The latter is chosen from the list of available implementations.
All the visualization settings can be changed or updated during debugging (tracing).

In general, it is difficult to predict which layout of the graph is most suitable
for a particular task (data). Moreover, animations which change graph layouts
automatically are confusing, because it is complicated for the user to follow all
the changes, happening on the screen (Diehl et al., 2002). The experimental tool
does not change the graph layout automatically. However, the graph might lose its
good layout when many new vertexes are added during the algorithm execution.
The choice is left for the user, who decides when and if to rearrange the graph
automatically or manually. The user can drag vertexes and edges and modify the
layout.

The analysis of the algorithm-code complexes, shows that the contestants avoid
using more complicated data structures to represent complicated graphs. Instead,
they create several separate data structures (components), and the graph is assem-
bled from the components.

For example in the Network task it is required to find one graph which connects
all the computers and switches into one network. However, in many contestants’ pro-
grams two different graphs were created. One graph – to represent computer–switch
connections, another – switch interconnections.

Another example comes from the Virus task. The contestants who implemented
the graph as an array of records, used the same data structure (one field of the
record) to store the information whether the computer (graph vertex) has anti-virus
protection or not. The contestants who implemented the graph as a two-dimensional
array, created a separate one-dimensional array to store the existence of the anti-
virus protection.

The components encountered in the analysed algorithm-code complexes were
classified into the following categories. Graph component is a graph that can be
either added as a component to other graph or it can be treated as a separate
graph. Vertex component is a list of all graph vertexes with the values assigned
to each vertex (see Figs. 4.3 and 4.4). It can be added as a component to other
graphs, though it cannot be visualized separately in the tool. Vertex list component
is a list of vertexes without the assigned values, i.e. inclusion into the list already
means possession of a certain attribute. A vertex list component can also be added
to graphs as a component and cannot be visualized separately (see Fig. 4.5). Colour
is used to depict this type of components. The tool allows connecting to the graph
up to two such components.

81

4. SEMI-AUTOMATED VISUALISATION: AID FOR TASKS INVOLVING…

Figure 4.3: Visualised graph after reading input data Task Acquaintances. At
the moment the graph consists of one graph component.

Figure 4.4: Visualised graph in task Acquaintances The same graph as in 4.3.
Edges, leaving from vertex 3, were removed and the connectivity of the remaining
graph is checked by recursively traversing it. The vertex component indicates whether
the vertex has already been reached (true) or not (false).

82

4.4 Graphs’ Visualisation in the Experimental Tool

Figure 4.5: Visualised graph in task Virus Graph vertexes have two additional
components:
1) Vertex component: one dimensional array where each vertex is assigned either ˘1
(computer has anti-virus protection) or 0 (no anti-virus protection) or the time when
the computer was infected.
2) Vertex list component: set of infected vertexes (they are coloured in gray). Computers
1 and 2 were disconnected by the spreading virus.

Figure 4.6: Misrepresented graph in task Acquaintances View of the graph after
reading input data. The graph was implemented as a two-dimensional array, however,
the zero column was introduced to store the degree of a vertex. Therefore the graph is
misrepresented.

83

4. SEMI-AUTOMATED VISUALISATION: AID FOR TASKS INVOLVING…

Figure 4.7: Fixed graph representation in task Acquaintances Zero column is
marked as non displayable. Now the graph representation is correct.

Task

Acquaintance Virus Network

No of programs with graphs implemented 36 32 101

No of programs without extra components 5 7 8

No of programs
with

1 component 17 7 29
2 components 10 7 30
3 components 4 6 18
≥ 4 components – 5 17

Vertex
components

Set 8 3 1
One dimensional array 7 11 4
Dynamical list 1 – –
Array of enumerations – – 1

Vertex list
components

One dimensional array 19 16 26
Array of records 1 5 –
Array of records using a
pointer

– 1 -

Graphs as components 2 3 81

Table 4.2: Statistics of the graph components implemented separately from
the main graph

Statistics of graph components implemented separately from the main graph is
presented in Table 4.2.

84

4.5 Conclusions

The tool allows visualizing several different graphs at the same time, and they
can be assembled from the described components. The same components can be
added to different graphs at the same time.

We also encountered the cases, where the contestants implemented the graph as
a two-dimensional array, and used a column of the same array to store the vertex
components. This cannot be identified automatically by the tool. Therefore the tool
foresees a possibility to mark one column or a row as an non displayable one, or as
a vertex component (see Figs. 4.6 and 4.7).

4.5 Conclusions
The analysis of submissions to the three graph tasks shows that a limited number of
different graph implementations is used in the majority of analysed algorithm-code
complexes. This makes it possible to implement the semi-automated visualisation of
graphs encoded in the algorithm-code complexes. We also discovered the tendency
among the contestants to implement more complicated graphs by decomposing the
graphs into separate structures.

We created an experimental tool for semi-automated visualisation of graphs im-
plemented in Pascal in algorithm-code complexes. The tool is based on the state-
mapping paradigm, which does not require good understanding of the program being
analyzed. This is the main difference from other graph visualisation tools created
for educational purposes. Here we refer to the theoretical result, because the tool
should to be updated with C/C++ languages in order to be applicable in LitIO.

We experimented using the tool for the analysis of algorithm-code complexes
and determined that the tool fastens the process of analysis of algorithm-code com-
plex thus allowing to introduce additional evaluation criteria which require deeper
analysis of the algorithm-code complex.

85

5 Evaluation in Terms of the Existing Quality
Standards

In Section 2.9 we showed that program development skills of the contestants play
an important role in informatics contests. An algorithm-code complex is a program,
i.e. software. We can argue that the whole submission can be treated as software,
if verbal idea description corresponds the implementation.

We already decided, that we evaluate program development skills by evaluating
the quality of the submission. There have been created various software quality
standards, and the evaluation of the quality of the submission can be based on that.

However, the submission differs from the typical understanding of software.
Algorithm-code complexes are designed and used only during the contests. The only
customers and evaluators are jury members, and the complexes are not intended to
be used outside the contests. Therefore it is not possible to apply software qual-
ity standards for evaluation of submission quality without taking into account the
differences.

In this chapter we compare life cycles of a submission and software, identify the
differences, look at the existing software quality standards, and analyse how the
standards can be applied for evaluation in the informatics contests.

5.1 Comparing Life Cycles of a Submission and
Software

A software life cycle is the sequence in which a project specifies, prototypes, designs,
implements, tests, and maintains a piece of software (Kauffman et al., 2001). The
standards for software life cycle processes are defined in ISO/IEC 12207 (ISO, 2008).

For comparison we use the waterfall life cycle model. Even though this model is
not considered flexible, it works well with the projects that have well defined user
interface and performance requirements (Wat, 2009; Royce, 1987). This is the case
in informatics contests.

The comparison of life cycle of a submission and a software project are presented
in Table 5.1, Figs. 5.1 and 5.2. The expected life cycle of a submission is rather
similar to that of software projects. The main differences are: there is no return cycle
from the analysis to system requirements, and there is no return cycle from operation
to testing. Another important difference is that the operation period of a submission
is very short, and no maintenance and support is required. However, the contestants
do not necessarily follow good program developing practices, and there is no control
over the process of program development in informatics contests. Therefore, in
reality the life cycle of a submission and a software project may have more differences

86

5.1 Comparing Life Cycles of a Submission and Software

System and software

requirements

Analysis

Program design

Coding

Testing

Operation

Figure 5.1: Waterfall life cycle model Based on (Royce, 1987).

System and software

requirements

Analysis

Program design

Coding

Testing

Operation

Figure 5.2: Waterfall life cycle model of a submission It is based on observations
how it works in reality.

87

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

Software life
cycle phase

Description Submission

System
requirements,
Software
requirements

Identify and document
functional and scheduling
requirements, required software
features

Only customers (scientific committee)
decide on system requirements. It is
impossible to return to this stage once the
next stage is started. The final outcome
of this phase is a precise task specification
together with all the necessary
constraints.

Analysis Methodically work through the
details of each requirement,
document algorithm

Verbal algorithm description should be
the final outcome of this stage. However,
in practice it happens that the algorithm
analysis made by contestants is not
exhaustive enough. Some contestants
design an algorithm in their minds and
postpone documenting it until the
implementation and testing phases have
been completed.

Program design Use programming techniques to
design software. Design
specification is delivered at the
end of this stage

Design specifications are not required as
part of a submission. Note that some
contestants perform this phase by
presenting a program design in the form
of creating required data structures,
procedure headlines.

Coding Implement the program as
designed in earlier stages

Obligatory phase as the source code that
compiles has to be submitted for
evaluation.

Testing Test the software We observed in LitIO that often
contestants (and even their teachers) do
not know how to perform this phase.
They either skip it or limit to testing with
sample tests.

Operation Provide maintenance and
support of software

The operation phase is very short (big
difference from the real life software
projects). Just a very short period of time
(few seconds or minutes) when the
evaluation is performed. The operation
phase is performed by the customers (i.e.
scientific committee) without involving
the developers (i.e. contestants). No real
maintenance is expected to be performed
during this period.

Table 5.1: Life cycle of a submission using the Waterfall model

88

5.2 Evaluation of Quality of an Algorithm-Code Complex in Terms of the…

(Fig. 5.2). We believe that this deviation does not help the contestants to achieve
better results.

5.2 Evaluation of Quality of an Algorithm-Code
Complex in Terms of the ISO-9126-1 Quality
Standard

Many different software quality models were created. One of the first wide known
models was created by McCall (McCall et al., 1977). The model foresaw three
directions of the software quality: a possibility to change software, a possibility to
adapt it to the new environments, and the performance characteristics. There was
created a hierarchical tree that included factors (i.e. external views to software as
it is seen by the user), quality criteria (as it is seen by the developer), and metrics
for measuring and evaluating various aspects of criteria.

The most popular standard currently is ISO-9126 software quality standard (ISO,
2001). It was based on earlier works, among them, that of McCall. When analysing
the evaluation of algorithm-code complexes, we refer to the ISO-9126 software qual-
ity standard. One of the reasons is, that there exists a huge variety of opinions among
LitIO contestants, their coaches, and even among the jury members. Therefore, a
commonly accepted and wide used standard adds some authority when motivating
the evaluation scheme. This standard can be used as guidelines, while the quality
model has to be adapted to the peculiarities of the informatics contest.

The ISO-9126 standard consists of four parts: quality model, external metrics,
internal metrics, and quality in use metrics (ISO, 2010). The quality model is the
first part of the standard (ISO-9126-1) and it is used to evaluate the quality of a
program based on its source code. The rest three parts are more important for
ensuring the software quality and for improving the process of developing software
(Sof, 2007; ISO, 2010). Since contest organizers have no control of these parts and
only focus only on the quality of the already submitted program, therefore we will
refer to the ISO-9126-1 standard.

The software quality model ISO-9126-1 provides six software quality characteris-
tics: functionality, reliability, usability, efficiency, maintainability, portability. Table
5.2 gives an overview of the current LitIO evaluation scheme in terms of these char-
acteristics. The comments below about each characteristic complement the table.

Functionality. The main function of an algorithm-code complex is to solve the
given task, i.e. to perform calculations and to output the required solution. It
is measured by black-box testing. However, the question is raised in the sci-
entific papers, whether this way of measuring functionality is reliable enough.
It is common to name this characteristic correctness in the community of in-
formatics contests.

Reliability. Input/output format is clearly defined in the task description, and the
contestants are recommended not to check any unexpected situations. After
performing calculations the program should stop its execution. The regulations

89

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

Characteristic Description Is it included into the LitIO
evaluation scheme?

Functionality It is concerned with evaluation
how software performs its main
task, i.e. whether all required
functions are implemented

40%–70% of points.

Reliability Defines the capability of the
system to operate reliably under
the defined conditions.

Some statistics is collected
however it is not included into the
evaluation scheme.

Usability It is related with the ease of using
the system (for the user)

Points are not assigned for this
characteristic, however only the
programs that satisfy interface
requirements are accepted for
evaluation.

Efficiency It is related with the efficiency of
software in terms of use of other
resources.

30%-60% of points.

Maintainability It is related with the ability to
identify and fix a fault or modify
software.

Up to 10% of points.

Portability This characteristic refers to how
well the software can adapt to the
changes in its environment

Not included into evaluation
scheme.

Table 5.2: Overview of the current LitIO evaluation scheme in terms of six
software quality model ISO-9126-1 characteristics

of the contests do not indicate how the program should operate, if it does
not find a solution. Typically, in such situations, the program either loops,
or outputs an incorrect solution or an exception occurs. Even though CMS
provides data about the success of program execution with each test, this is
not measured separately and is equated to the incorrect result (i.e., absence
of functional correctness). This characteristic is not emphasised in informatics
contests, and not included into the evaluation scheme in order to leave more
emphasis to problem solving.

Usability. All the requirements to the user’s interface (i.e. input/output format)
are strictly defined in the task description. CMS assists in checking whether
the submitted program meets these requirements.

Efficiency. Task description defines the exact time and memory limits that should
not be exceeded by the program during its execution with a test. Memory

90

5.2 Evaluation of Quality of an Algorithm-Code Complex in Terms of the…

constraints are imposed on the overall memory usage including the executable
code size, a stack, a heap, etc. If the constraints are exceed when executing
the program with a concrete test, then this test is recorded as failed.
Some tests are designed to check efficiency. Data size and complexity are
gradually increasing in such tests. Thus algorithm-code complexes are grouped
into different categories according to time and memory efficiency.
The efficiency of use of time and memory resources is not related to the evalua-
tion scheme directly, i.e. the program which finished its execution in a shorter
period of time or used less memory will not score more points for a specific
test.

Maintainability. This characteristic is evaluated by assigning points for program-
ming style. Guidelines for the programming style are prepared to the contes-
tants. The guidelines are quite general and do not enforce any specific style,
however, emphasise the most important style requirements. The program-
ming style is evaluated holistically using an ordinal scale. This means that the
source code is not evaluated in terms of each criteria separately.
In order to avoid assigning points for the programming style to programs that
do not solve the task, the style is evaluated only if the algorithm-code complex
scores no less than 50% of points for functionality.

Portability This characteristic is evaluated indirectly1, and when evaluating pro-
gramming style. Attachment to a particular operating system is treated neg-
atively.

From Table 5.2 we see that three out of six characteristics are included into the
evaluation scheme in the current LitIO evaluation practice. They are functionality,
efficiency and maintainability. The other three characteristics, reliability, usability,
and portability are not evaluated.

LitIO jury emphasises that the contestants should focus on designing the algo-
rithm and program development. Technical knowledge should not play the main role
in the contest. Therefore the reliability is eliminated from the evaluation scheme.
Besides, the reliability is important for software with a long life cycle. However the
life cycle and the operation phase of a submission are short.

Submission interface is clearly defined in the contest rules and the task descrip-
tion. CMS assists in ensuring that the submission satisfies the interface require-
ments. Therefore this requirement is considered as purely technical, and not requir-
ing creativity or problem solving skills. Eliminating that from the evaluation scheme
is justifiable.

Portability has many different aspects. Many of them are related to technical as-
pects, e.g. different versions of compilers, use of libraries, etc. The above mentioned

1In LitIO it is common that the contestants use their school labs equipped with Windows OS,
while CMS operates on Linux server. Therefore the contestants who write OS specific programs
have more difficulties while they achieve that their program operates in both environments.

91

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

attitude that the knowledge of the compilers and other technical aspects should not
play the main role, is a motive to exclude portability from the evaluation scheme.

Next, we discuss evaluation of the functionality, the efficiency, and the maintain-
ability of an algorithm-code complex.

5.3 Evaluating Functionality and Efficiency: Analysis
How Much Testing Results Conform with
Expected Scores

Functionality is the first and most important characteristic of the software quality
model ISO-9126-1. Other characteristics have no significance if the software is not
functional. Therefore if an error is detected, it is expected that software developers
will fix it. However, this situation is very different in the contests. If a test shows
that the program is not functional, then in IOI type contests (including LitIO) it is
necessary to assign some score instead of returning it for fixing the error.

The jury sets the evaluation goals. They expect that the evaluation results
correspond the evaluation goals. For example, there is a goal that incorrect programs
do not pass all the tests and thus do not score full points for tests. However, it has
been proved theoretically that testing cannot be used to prove program correctness.
Therefore it is important to investigate how the testing works in reality, and the
extent to which this (detecting all incorrect solutions) and other goals are achieved.

The main reason that initiated this part of research, was the question how reliable
the black-box evaluation is in the informatics contests. Are the black-box testing
goals achieved at a satisfactory level?

The evaluation goals are discussed and fixed for each task. In general, it is
not possible to establish one-to-one correspondence between the points, awarded by
human and by an automated graders. Therefore, acceptable ranges of points are
introduced. The jury decides what is considered as an “acceptable” range of points.

The tests and the scoring schemes are designed to support the evaluation goals
set for a concrete task. However, there are some general guidelines in LitIO that can
be adjusted for a specific task. The guidelines state that, for example, conceptually
incorrect algorithm-code complexes score no more than 30% of points, correct but
inefficient algorithm-code complexes score from 30% to 60% of points, correct and
efficient algorithm-code complexes score from 60% to 100% of points thus ensuring
proper discrimination among the complexes of different efficiency.

In order to investigate to what extent the limitations of black-box testing distort
the expected evaluation results in LitIO, it is required to evaluate a set of submissions
manually, and compare to the black-box testing results. It is time consuming to
perform that, because the contestants do not provide proofs of algorithm correctness
and may not follow a good programming style. This might be the reason why we
found only one scientific paper (master thesis) comparing black-box testing results
to the results of other types of evaluation (Leeuwen, 2005; Verhoeff, 2006). While
other sources only refer to separate cases, where the black-box testing results did

92

5.3 Evaluating Functionality and Efficiency: Analysis How Much Testing…

not (or may haven’t) match the expectations of the jury (Forišek, 2006; Opmanis,
2006).

This section compares the results of human evaluation and the black-box scoring
of 160 programs designed during the final round of LitIO’2008. All the algorithm-
code complexes were evaluated automatically following the typical black-box grading
procedure, and additionally evaluated manually by analysing the source code of
each algorithm-code complex. The scores of black-box testing in this section are
presented in the 100 point scale in order to be more comparable to the expected
scores (expressed in percentage), and to the research conducted by van Leeuwen.
5.3.1 Brief Introduction to the Nescafé Algebra Task
In three exam sessions of the final round of LitIO’2008 14 tasks were presented
both for junior and senior divisions. One of them, Nescafé algebra, was chosen for
research. The choice was motivated by the sample size (we were looking for a task
with more than 100 submissions), and the task should be classified as a “typical”
LitIO contest task. A brief task statement is as follows:

“Nescafé” offers for sale various mixes, like «3 in 1» or «2 in 1». What happens
if we mix «3 in 1» with «2 in 1»? Shall we get a super-mix «5 in 2»?

Task. Let us define that if we mix «x1 in y1» with «x2 in y2» we get a super-mix
«x1 +x2 in y1 +y2». Given a sequence of N coffee mixes «a1 in 1», «a2 in 1»,
· · · , «aN in 1». Which of the given mixes (each can be used only once) have
to be chosen to make a super-mix «b in c».

Constraints. 1 ≤ N ≤ 100; 1 ≤ c ≤ N ; 1 ≤ b ≤ 10000; 1 ≤ ai ≤ 1000. Data will
be such that in tests worth 50% of total points N ≤ 25.

A full task formulation can be found in Appendix A.1.
A trivial, correct, but not efficient solution would be exhaustive search. There

are at most N !
(N−c)! different combinations to be analysed. However, various opti-

mizations can be considered:

• Sorting mixes in a non-increasing order.

• Analysing only different sets of mixes (which brings down the number of pos-
sible combinations to N !

c!(N−c)!).

• Stopping the search immediately after the first good solution has been found,
etc.

The expected solution involves dynamic programming. A two-dimensional table
<b in c> is created. The value of a table cell <x in y> is equal to the index of the
last mix used in making the super-mix <x in y>.

If c = 0, we can get only a <0 in 0> = 0 super-mix. Assume that all the super-
mixes that can be obtained using exactly k mixes, are already calculated. In order

93

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

to get all the super-mixes obtained using exactly k+1 mix, we need to consider each
super-mix <x in k>, and add to it each <ai in 1> mix (constraints: 1 ≤ i ≤ N ; ai

was not used for getting that particular <x in k>). After adding an extra mix, we
get a new mix <(x+ ai) in (k + 1)>. It is possible that the super-mix <(x+ ai) in
(k + 1)> was already obtained. In that case the value of <(x + ai) in (k + 1)> is
not updated. The time complexity of this algorithm is O(cbN). This complexity is
sufficient to solve the given task within the given constraints.

Memory constraints. Memory needed to store the list of mixes used to make
each super-mix would be O(bcN). However, in order to calculate the value of <k+1
in · · ·>, only the values of <k in · · ·> are referred to. Therefore it is enough to
store the list of mixes only for all the values of k. Then memory consumption goes
down to O(bN).
5.3.2 Quantitative Overview of Submissions to Nescafé Algebra

Task
176 students participated in the senior division of the on-line contest of the final
round of LitIO’2008. 160 of them attempted to solve the task, however 6 of them
submitted only verbal descriptions of algorithms (which have been evaluated even if
the accompanying program was not presented) and 1 presented the program which
did not compile. In total there were 153 programs suitable for automated evaluation.
The data are presented in Table 5.3.

No of cases Percentage

Final round participants 176 100%

Presented a solution 160 91%

not suitable for automated evaluation 7 4%

suitable for automated evaluation 153 87%

Table 5.3: Suitability of the submitted solutions for automated evaluation

All the 153 algorithm-code complexes eligible for automated evaluation were
thoroughly analysed. According to the algorithms designed by the contestants,
the submissions were sorted into the categories presented in Table 5.4. A verbal
algorithm description was the required part of submission and it was used as an
additional reference to determine what algorithm was intended to be designed by a
contestant. We also analysed the quality of implementation, but did not take into
account in this categorisation. It means, that e.g. the dynamic programming solu-
tion which contains some critical implementation errors and therefore would receive
low score when evaluating both manually and automatically, in Table 5.4 still falls
into the category of correct algorithms (strategies).

The choice of the algorithm is expected to define the upper bound for the points,
but not the lower one. The data show that about 35% of submissions implemented

94

5.3 Evaluating Functionality and Efficiency: Analysis How Much Testing…

or attempted to implement incorrect algorithms, while about 50% of contestants
implemented or intended to implement correct algorithms.

Solution strategy No of
cases

Percentage Cumulative
percentage

Incorrect
strategy

Incomplete solutions (no
clear algorithm)

21 13.7% 13.7%

Random strategy 11 7.2% 20.9%

Heuristic strategy 4 2.6% 23.5%

Other 18 11.8% 35.3%

Partially
correct

Analysis of separate cases 22 14.4% 49.7%

Correct, but
inefficient

Exhaustive search 58 37.9% 87.6%

Correct and
efficient

Dynamic programming 19 12.4% 100%

Table 5.4: Classification of solution strategies applied by the contestants

A set of 10 test cases was designed with in total 43 test runs. The tests were de-
signed with the intention that the exhaustive search solution with some optimization
would score around 50% of points. We tested by performing the black-box grading
procedure presented in Section 2.10.2. During the contest a partial scoring scheme
was applied. During this research all-or-nothing batch scoring was also applied to
compare both schemes.

The distribution of points, awarded using both scoring schemes is presented in
Fig. 5.3. The mean value of the scores obtained by applying partial scoring is 21.5,
the median is 10, and the standard deviation is 25.3.

It should be noted that over 50 programs (≈ 33%) scored zero points and that
this task is one of the two presented in this exam session. The participants of the
final on-line round of the national contest mainly studied the programming and
algorithms themselves or in after-curricula classes with no real scientific support
from the teachers (Dagienė and Skūpienė, 2007). At this level such a high number
of zero scores might have a negative impact to their motivation.

In IOI a relative task difficulty measure is used. It is based on the percentage of
contestants who solved the task “fully”, i.e. scored 90% or more. There are three
main difficulty levels: easy (> 40% solved the task “fully”), medium (between 40%
and 10% solved the task “fully”) and hard (< 10% solved the task “fully”) (Verhoeff,
2009). According to this measure the task is hard, because only 6 programs (4%)

95

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

Points

C
o
u
n
t

Figure 5.3: Comparison of partial scoring (straight line) and all-or-nothing
batch scoring (dotted line) results

solved the task “fully”. According to another source (Nec, 2007), the task difficulty
measure is calculated as:

Task_difficulty = The sum of possible scores of all contestants
The sum of maximal possible scores of all contestants (5.1)

The task is considered easy if the difficulty is ≥ 70%, average if it is around 50%,
and hard if it is ≤ 30%. The difficulty of Nescafé algebra is equal to 21% and thus
the task is considered difficult under this difficulty measure as well.

One of the important evaluation goals in informatics contests is to discriminate
the contestants in order to deliver ranking and determine the best ones. Item dis-
crimination (Ite, 2010) or IDis is a measure used to evaluate that. To calculate
the item discrimination, the contestants are ranked according to their scores. Then
the top 27% and the lowest 27% in terms of the total score are selected, and the
percentage of correct answers in both items calculated. The formula is:

IDis = (Upper Group%Correct)− (Lower Group%Correct) (5.2)

A negative IDis is considered unacceptable, from 0% to 24% is usually acceptable,
from 25% to 39% is a good item discrimination and from 40% to 100% make an
excellent item discrimination.

In this task IDis = 0.56 which is considered as an excellent overall discrim-
ination. We also calculated the discrimination of the top 50 submissions (good
discrimination of the top contestants is also very important): IDis = 0.45 and it is
still considered as an excellent discrimination. However, this task does not discrim-
inate the bottom part at all. This is not acceptable from the educational point of

96

5.3 Evaluating Functionality and Efficiency: Analysis How Much Testing…

view and is in contradiction with the contest and evaluation goals (Kemkes et al.,
2006).

Another interesting characteristic is relationship between the choice of the algo-
rithm and the points obtained by partial scoring. This relationship is presented in
Fig. 5.4. The most questionable points are that of heuristic approach, since this
approach is considered to be incorrect. The results of each of these categories will
be analysed further.

Dynamic
program-

ming

Exhaustive
search

Separate
cases

HeuristicRandomOtherIncomplete

Method of solving

100

80

60

40

20

0

P
o

in
ts

 f
o

r
te

st
s

Figure 5.4: Box-plot of points assigned by partial scoring

5.3.3 Analysis of Algorithm-Code Complexes with Incorrect
Strategies: Incomplete Algorithm-Code Complexes

There were submitted 21 (13.7%) incomplete programs to the Nescafé Algebra task.
Basically these are programs which read input data, some of them contain just a
few lines of program (too few to decide what kind of algorithm it was supposed
to be) and output either zero, or the value of (uninitialized) data structure for
storing the solution. Under partial scoring 14 submissions received zero scores, and
7 submissions received 10 points. The latter submissions were those which in all
cases output zeroes. In this task zero output represents the case when there is no
solution. It can be concluded that the points during the contest were given against
the expectations of the jury, because only those who correctly determined that the

97

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

solution to the given input does not exist (i.e. there is no way that number b can
be obtained by adding c numbers) should have been awarded points for those tests.

Under the all-or-nothing batch scoring scheme, all the incomplete algorithm-code
complexes did not get any points.

The contestants had to provide a verbal description of their algorithm as part
of a submission and its was evaluated by human evaluators. The mean score for
a verbal description accompanying incomplete algorithm-code complexes was 3.6
points out of 20 (min value 0,max value 7), and the median value was 4. This
indicates that the authors of the submissions did not have a good idea how to solve
the task. The question whether such incomplete algorithm-code complexes should
score some points (e.g., for being able to read data) or not is the topic of another
discussion. Currently the jury expects that such algorithm-code complexes score no
points.

It can be concluded that a partial scoring scheme assigned a few points to some
incomplete algorithm-code complexes, while the all-or-nothing batch scoring scheme
did not give any points for the incomplete algorithm-code complexes, i.e. it fully
corresponded the evaluation expectations.

5.3.4 Analysis of Algorithm-Code Complexes with Incorrect
Strategies: Random Strategies

There were 11 (7.2%) contestants which applied a random strategy to solve the task.
In order to make a super-mix «b in c», they randomly selected c different mixes out
of N available ones and calculated their sum. If the sum was equal to b, the solution
was found, if not – another random c mixes were chosen. Even though at first sight
a random approach does not seem to be very promising, the highest score was 40%
(Fig. 5.5).

Figure 5.5: Histogram of points assigned by partial scoring to algorithm-
code complexes with a random strategy

98

5.3 Evaluating Functionality and Efficiency: Analysis How Much Testing…

There was one notable difference among the submissions, i.e. the number of times
a random selection was repeated. Some algorithms were going on until they found a
solution, some stopped after 50 times, some – after10, 000 times, some stopped after
N3 times. The programs which allowed the random search to be repeated more
times scored more points. All the points were scored for tests designed to check
algorithm correctness (i.e. with N ≤ 25).

In LitIO the acceptable range of points for random strategies is from 0 to 10% of
points. Therefore the partial scoring scheme for Nescafé Algebra was too generous
to such submissions.

After retesting by means of the combined scoring scheme, only 3 submissions
out of 11 were awarded 10 (once) and 30 (twice) points. The total sum of points
scored by all the algorithm-code complexes with a random strategy dropped from
170 to 70. Nevertheless, there were left two submissions the scores of which remained
unacceptable. The verbal descriptions of solution strategies also received very low
grades (mean 3.3 and median 3 out of 20).

None of the two scoring schemes completely correspond to the expected scoring
ranges. More than a half of submissions received too high score using partial scoring.
Only 2 out of 11 submissions received too many points using all-or-nothing batch
scoring.
5.3.5 Analysis of Algorithm-Code Complexes with Incorrect

Strategies: Heuristic Strategies
There exist various definitions of a heuristic algorithm. It can be described as an
algorithm that always provides some kind of solution to the problem, though it may
fail to provide an optimal solution (Brassard and Bratley, 1996). It gives up finding
an optimal solution for the improvement in run-time. Many efficient, but incorrect
strategies (like selecting random coffee mixes) fall under this definition. However,
in this research we distinguished heuristic strategies with optimization, i.e. the ones
that find a solution close to optimal with high probability. For example, randomly
selecting c mixes does not guarantee that their sum will be close to b. While the
strategy which sorts the mixes in a decreasing order and then takes the first ones
which do not cause the sum to exceed b, it is expected to produce a solution close
to optimal.

The tasks in LitIO (as well as in IOI) are designed so that that each of them
has an elegant and efficient correct algorithm (or several ones). Heuristic strategies
are usually much shorter and simpler to implement than the correct ones, their
success also depends a lot on test designers. Therefore heuristic algorithms are
not considered as acceptable ones in LitIO. Some efforts were put to decrease the
possibility that such strategies score more points than the correct, but less efficient
ones (Forišek, 2006). In LitIO it is expected that algorithm-code complexes with
heuristic solutions implemented score no more than 30% of points.

Only 4 heuristic algorithm-code complexes were submitted. They scored 0, 30,
40, and 90 points under the partial scoring scheme. The mean grade for the verbal
description accompanying heuristic algorithm-code complexes is 3.3 points out of 20
(min value 0, max value 5) 0 and the median value is 4.

99

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

Three of them applied the greedy strategy as it was described above. The fourth
algorithm-code complex introduced the following heuristics: select any c mixes and
then repeatedly look for pairs of mixes where one is already among the c selected
mixes, the other is not, however swapping them yields in a more optimal solution.
Then the two mixes are swapped and the search is performed again. The all-or-
nothing batch scoring scheme assigned 0 points to the first three algorithm-code
complexes and 70 points to the fourth one. This score falls out of the expected
range and is the most questionable score among all the analysed submissions.

That reveals one of the largest problems of automated grading: heuristic algo-
rithms with optimization might not be identified by the grader (i.e. by the designers
of the test cases) and the assigned score might be much higher than expected by the
task designers.

5.3.6 Analysis of Algorithm-Code Complexes with Incorrect
Strategies: Other Strategies

There were 18 (11.8%) algorithm-code complexes that fell under this category. The
majority of them (14) considered as possible solutions only sequences of consecutive
mixes. For example, if the given mixes are 1 5 4 3, and c = 3, they only considered 1
5 3 and 5 4 3 combinations, but not 1 4 3. Possible reasons for that might be either
incorrect understanding of the problem, or inability to encode a more complicated
search. The remaining incorrect solutions included one algorithm-code complex that
solved completely different task, and three algorithm-code complexes that applied
the divide and conquer strategy. Fig. 5.6 shows the distribution of partial scoring
points obtained by such algorithm-code complexes.

3020100

Points for testing

6

5

4

3

2

1

0

C
o

u
n

t

Figure 5.6: Histogram of points assigned by partial scoring to algorithm-
code complexes with other incorrect strategies

The points were mainly awarded for the smallest and easiest tests, where the
analysis of consecutive mixes yields a solution, and/or for a small no-solution test.

100

5.3 Evaluating Functionality and Efficiency: Analysis How Much Testing…

Only one algorithm-code complex out of 18 got points for one non-trivial test. After
reevaluating by the all-or-nothing batch scoring scheme, only two algorithm-code
complexes out of 18, were awarded 10 and 20 points. That falls within the acceptable
range (0 to 20% of points).

The mean grade for the verbal description accompanying these algorithm-code
complexes is 2.2 points of 20 (min value 0, max value 8), and the median value is 2.

It can be concluded that partial scoring assigned more points to some algorithm-
code complexes than it was expected, but the all-or-nothing batch scoring scheme
was applicable for evaluating such algorithm-code complexes.
5.3.7 Analysis of Partial Solutions
By partial solutions we mean algorithms that correctly solve a partial task (e.g. only
when c ≤ 4) and do not intend to solve the whole problem. The general attitude
towards partial solutions among members of the scientific committee of LitIO is the
following: partial solutions, even with small constraints, should score some amount
of points.

In this case, test designers thought of and stated in the task two benchmarks:
N ≤ 100 (dynamic programming, full points) and N ≤ 25 (an exhaustive search,
50% of points). However, even smaller benchmarks should have been considered
when combining tests to batches.

There were 22 (14%) such solutions that were assigned from 0 to 20 points during
the formal evaluation in LitIO using partial scoring and this fell within the acceptable
range taking into account implementation errors. The all-or-nothing batch scoring
assigned zero points to all the algorithm-code complexes. The mean grade of the
verbal description accompanying these solutions is 2.7 points out of 20 (min value
0, max value 8), and the median value is 3.

In this case, partial scoring better corresponded to the expected scores. However,
if smaller benchmarks were introduced, both scoring schemes could correspond to
the expectations of evaluating partial solutions.
5.3.8 Analysis of Correct Solutions: Exhaustive Search
An exhaustive search strategy is considered to be correct but inefficient in informatics
contests. Algorithm-code complexes that implement it, score approximately up to
60% of points.This is a typical problem solving strategy applied by the contestants
who have less experience in problem solving and cannot think of a more efficient
algorithm.

An exhaustive strategy was implemented in 58 algorithm-code complexes. Points
assigned by the partial scoring scheme to them are presented in Fig.5.7.

The tests were designed with the intention, that the well implemented solutions
with optimization score around 50% of points, and no more than 60% of points.
However, 2 solutions scored 70% of points using partial scoring scheme. The two
high scores were incidental and were influenced by the direction in which the program
of the contestant was traversing the search tree. This could be easily corrected by
applying all-or-nothing batch scoring. In all-or-nothing batch scoring tests of the
same difficulty but with different search trees are combined into the same test case.

101

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

Figure 5.7: Histogram of points assigned by partial scoring to algorithm-
code complexes that implemented exhaustive search

The algorithm-code complexes, which could score incidental points for one of the
tests, do not score the points for the test case.

The exhaustive search is slow in its nature. Therefore all-or-nothing IOI scoring
works as a good upper bound in the scoring scheme. Practically there is no possibility
for such a solution to earn more points than it is expected to.

However there is another danger: less experienced students make minor imple-
mentation errors and the automated scoring scheme may give fewer points than
expected. Among the analysed solutions 10 such cases were discovered. Partial
scoring gave no points to five of them. Due to minor mistakes the contestants lost
from 20 to 40 points per algorithm-code complex. Even though this problem could
be solved through appeals, at present this is not practiced. Because it is very hard to
put clear boundaries when the error is considered as minor and when it becomes the
major issue. Providing more feedback during the contest might be another option
how to solve this issue.

5.3.9 Analysis of Correct Solutions: Dynamic Programming
There were 19 contestants (12%) which selected dynamic programming as their
solution strategy. Their algorithm-code complexes scored from 10 to 100 points de-
pending upon the quality of implementation. After reevaluation with all-or-nothing
batch scoring scheme, the scores slightly went down, however the total score preci-
sion remained at the acceptable level.

One case was observed where due to a minor error (swapped indexes), the con-
testant lost 80% of points. This mistake had serious consequences to the contestant:

102

5.3 Evaluating Functionality and Efficiency: Analysis How Much Testing…

he lost the possibility to compete for medals. It was practically impossible to de-
tect this kind of mistake automatically. Providing more feedback during the contest
might be helpful in such cases.

The mean grade for the verbal description accompanying these solutions is 11.6
points (min value 0, max value 20) of 20 and the median value is 12.

5.3.10 Comparison of Black-Box Scoring Results with the
Expected Scores of Submissions to Nescafé Algebra

We analysed 153 algorithm-code complexes designed during the final round of LitIO
held in 2008. All the algorithm-code complexes were tested using black-box testing
and graded using two scoring schemes: partial scoring (used during the real contest)
and all-or-nothing batch scoring (currently used in IOI). The ranges of expected
scores for different types of solutions were determined by the jury in advance.

The scores obtained by the two scoring schemes differed from the expected scores
in two ways: algorithm-code complexes were assigned more points than they ought
to or they were assigned fewer than the expected ranges of points. The data about
the two types of score deviations are presented in Table 5.5.

No of unjustified scores

Partial scoring All-or-nothing
batch scoring

Solution strategy No of
cases

Score
too
high

Score
too
low

Score
too
high

Score
too
low

Incorrect
strategy

Incomplete solutions (no
clear algorithm)

21 7 – – –

Random strategy 11 6 – 2 –

Heuristic strategy 4 2 – 1 –

Other 18 3 – – –

Partially
correct

Analysis of separate cases 22 – – – 10*

Correct,
but
inefficient

Exhaustive search 58 2 10 – 10

Correct and
efficient

Dynamic programming 19 – 1 – 1

TOTAL 153 20 11 3 21

Table 5.5: Statistics of unjustified scores in the analysed submissions

103

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

It is difficult to detect the first type of deviation (assigning too many points) dur-
ing the contest. When applying partial scoring, 20 algorithm-code complexes (13%)
received higher than the expected score ranges. Out of those 7 (4.5%) algorithm-
code complexes obtained too high score by 20 or more points. Only 3 algorithm-code
complexes (1.9%) got too many points with all-or-nothing batch scoring. However,
all the 3 algorithm-code complexes got extra 20 or more points.

Too low score can be detected easier. Because the contestants write appeals and
complain.1 We found 11 algorithm-code complexes (7.2%) which obtained too few
points from partial scoring. One of them lost 80% of points due to a minor error.
Even though all-or-nothing batch scoring in its nature tends to lower the scores, it
did not have a strong effect on those algorithm-code complexes. Because their scores
were low enough anyway.

In total 20.2% (partial scoring) and 9.1% (all-or-nothing batch scoring) could
not be justified. 8.4% (partial scoring) and 5.8% (all or nothing batch scoring) of
scores differed from the expected scores by 20 points or more. Therefore, for this
task, all-or-nothing batch scoring better corresponds to the evaluation expectations.
However, this task was too hard. It would have been more appropriate to give it
in the last exam session of the final round, where only the top 30 finalists compete,
and not in the first session, as it was done.

At this point it is interesting to compare the research results to that of (Leeuwen,
2005). His research concerned the tasks Median (from IOI’2000) and Phidias (from
IOI’2004). He analysed 504 submissions, which were graded using the partial scoring
scheme during the contests. For reevaluation he chose a very strict scoring scheme.
The scheme assigned zero score to all the incorrect algorithm-code complexes. Fol-
lowing such a grading policy, over 30% of task Median scores and over 50% of task
Phidias scores could not be properly justified.

A detailed analysis of task Median was presented in (Horvath and Verhoeff, 2002)
after IOI’2002. This means that the problem and various algorithmic approaches
were investigated scientifically. Nevertheless among the submissions additional in-
teresting algorithms were discovered during the reevaluation.

After reevaluating it was suggested that some algorithm-code complexes that
scored 60 points for lack of efficiency, could be qualified for full points. Because the
constraints were too strict for a particular combination of the programming language
and solution technique. There were found 10 incorrect algorithm-code complexes of
task Median and 57 incorrect algorithm-code complexes of task Phidias not identified
as such during official grading.

Both investigations confirm that black-box testing does not fully correspond to
score expectations. The deviation of partial scoring from the expected score ranges
is much higher than that of all-or-nothing batch scoring.

On the one hand, some wrong solutions are not discovered. On the other hand,
there might be interesting algorithmic approaches designed by the contestants and

1These low scores appeared due to incomplete taxonomy and subsequently inadequate choice
of tests. Therefore this number is not taken into account when calculating the percentage of the
+deviation.

104

5.4 Evaluating Maintainability (Programming Style)

not thought of in advance by task designers. To improve the situation we suggest
to provide more feedback for correctness tests and to use a motivated evaluation
scheme not limited to black-box testing.

5.4 Evaluating Maintainability (Programming Style)
5.4.1 Introduction
In terms of qualitative characteristics of software following the standards ISO-9126,
the programming style can be related to software maintainability. “Maintainability
can be described as the ease at which a software system or component can be modified
to correct faults, improve performance or other attributes, or adapt to a changed
environment” (IEE, 1990). ISO-9126 standards describe that maintainability is
affected by source code readability, complexity and modularisation (ISO, 2010).
However the definition does not guide to any hints about measuring maintainability.

We found several approaches towards measuring software maintainability and no
common approach. (Land, 2002) introduces two understandings of software main-
tainability: either it is very informal, or it is a measure directly derived from a
source code. In case it is considered as a formal measure, it is expressed as a func-
tion of directly measurable attributes: M = f(T1, T2, · · · , Tk). At the same time
(Land, 2002) notices that formula that describe maintainability are of rather limited
use. There are serious difficulties in measuring separate attributes, weighting them
against one another and combining them in a function.

This reveals that there is no standard commonly accepted way of measuring soft-
ware maintainability. This fact gives more freedom for constructing the concept of
quality of the programming style in informatics contests. In informatics contests the
term programming style is used to represent what is understood as software charac-
teristic maintainability. However, in the contests it has a more limited meaning.

The programming style has been evaluated in LitIO since the first LitIO. A de-
tailed description of this grading practice can be found in Subsection 2.10.3. We
found no written materials of such extensive grading of the programming style in
other informatics contests. The experience of evaluating programming style in pro-
gramming courses was discussed in Subsection 2.11.4.

We came across many concerns about negative impacts of ignoring the program-
ming style in the evaluation schemes. The discussion on whether the programming
style should be included into the evaluation scheme of the informatics contest is
active. “It is possible to win the contest without writing a piece of code that meets
even the guidelines of structured programming, let alone a more modern philosophy”
(Andrianoff and Hunkins, 2004). The absence of an enforcement mechanism makes
it difficult to promote good programming practices.

The positive part of evaluating the programming style is as follows: program
simplicity and clarity and elegance (which are essential feature of good programs
at all levels of computing) will be taken into account and two equally correct and
efficient programs but only with a different quality of the programming style will
not be equalized. Therefore the grading will be fairer.

105

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

There are many other reasons why there might occur a need to analyze the
program source by others than the author of the program during the contest. The
most obvious one - analyzing appeals. It is known that the programming style has
much influence on its comprehensibility (Mohan and Gold, 2004; Oman and Cook,
1990).

One of the reasons why the implemented algorithm is not analyzed during eval-
uation in LitIO is time constraints. It would take too much time to decide which
algorithm is implemented, is it correct and how well it is implemented by simply
analyzing the program source. That becomes especially difficult if the programming
style is far from perfect. However, this is not true about the programming style.
It does not take too much time to decide whether the program is written in an
understandable manner or not.

There are two other concerns about the inclusion of the programming style into
the grading scheme. One of them is reappearance of the subjectivity factor in in-
formatics contests, the other one – relating grading of the programming style to
program (or algorithm) correctness.

We have already overview the research in the area of automated evaluation of
programming style. We arrived at the conclusion that the experience of automated
evaluation can be potentially transferred to informatics contests, however it requires
a separate study and cannot be conducted within this thesis. Therefore we will
analyse the applied currently in LitIO holistic approach when the evaluation is per-
formed by human evaluators. We must add that the holistic approach also has its
own advantages. With automated evaluation there arises a danger that the contes-
tants might start treating the programming style evaluation criteria as a collection
of language specific rules. (Oman and Cook, 1990) remind that the students should
be taught the principles of programming style according to the taxonomy rather
than the sets of separate rules.
5.4.2 The Subjectivity Factor in Evaluating Programming Style
One of the negative features of including evaluation of programming style into eval-
uation scheme is that it brings back the subjectivity factor to the contest. The
same program might look clearer to one jury member than to another despite the
existence of formal criteria for evaluating programming style. Any personal decision
in grading might be a cause to appeal. An example could be IOI where there is no
human grading and almost no appeals have been in the last few years.

However, there also exist different opinions: “the desire for automation as carried
out in the past has blinded the IOI community: the real work of the contestants re-
mained invisible” (Verhoeff, 2006). The subjectivity factor should not be feared, for
subjective decisions may lead to more justifiable evaluation than impartial black-box
grading. Besides, in other science olympiads, for example in International Mathe-
matics Olympiads (IMO), grading is not automated (Verhoeff, 2002) and therefore
includes subjective decisions. However these contests are not considered too subjec-
tive just because of the absence of automated grading.

In LitIO the programming style has been part of a grading scheme since 1989,
the contestants could be awarded up to 10 points (out of 100) for it. Despite the

106

5.4 Evaluating Maintainability (Programming Style)

existence of formal criteria for evaluation, the practice shows that different jury
members might treat the same program in a different way. Usually this difference is
1-2 points and only in very few worst cases it is 4-5 points. In the case the difference
is larger than 2 points, several more jury members are involved into evaluation and
the score is reconsidered.

The answer to the subjectivity problem can be obtained by answering the fol-
lowing question: whether it is more justifiable to treat programs with a bad and
good programming style as of equal quality (if their performance is the same) or to
make a distinction between them but with 1-2 point error possibility.

5.4.3 Relating Evaluation of Programming Style to Program
Correctness

Another important issue is how to relate the evaluation of programming style to
functional correctness. It is obvious, that a certain relationship should be invented.

For example, a three line program which prints a random number (therefore is
neat, clear and simple) and does not solve the task at all should not be awarded
points for program clarity.1 In LitIO there is an accepted rule, that programming
style is evaluated only if the algorithm-code complex scores more than 50% of points
for tests. This is not quite justifiable because black-box grading covers only func-
tional correctness. There were cases observed where a minor implementation mistake
resulted in low scores (Forišek, 2006) and it would not be fair to lose 10 more points.

There might be another approach to this issue: to look through all the programs,
submitted by the contestants, and to evaluate all those that try to solve the task.
If the program does not try to solve the task (e.g. outputs random numbers or just
solves the sample tests), it can be easily identified by the evaluator by just looking
at the text of the program. If the program does not try to solve the task, but is
obfuscated on purpose (even such cases were observed by (Verhoeff, 2006)) or is so
messy, that it is impossible to determine whether it tries to solve or not, then the
clarity and understandability of such a program would not be worth any points at
all.

To sum it up, certain conditions must be set to algorithm-code complexes which
have to be satisfied in order to evaluate programming style. The conditions can either
be related to functional correctness or to the efforts of implementing a solution.

5.4.4 Case Study: Analysis of Evaluating Programming Style of
one LitIO’2006 Task

An investigation of relationship between programming style and an algorithm-code
complex correctness was performed by (Grigas, 1995). Programming style of nearly
700 hundred algorithm-code complexes developed by contestants from various coun-
tries was analysed. Correlations between functional performance of algorithm-code
complex and programming style were calculated in various ways. However, the
dependencies received were medium.

1Actually, it should not be awarded any points at all. It is just that the black-box testing does
not always guarantee that.

107

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

We repeated the research of (Grigas, 1995) with algorithm-code complexes de-
signed in LitIO. The task, Acorns,1 given in the final round of LitIO in 2006 was
chosen for analysis. Since the task is a typical dynamic programming batch task and
does not imply any specifics in terms of programming style, we will not provide a full
task description. There were submitted 130 algorithm-code complexes to this task
and 34 of them were identified as not solving the task at all or as being in the initial
phase of development where no output was produced. Those programs were not
included into the research. The programming style of all the remaining 96 programs
was evaluated. Figure 5.8 shows the relationship between the points obtained for
programming style and points, obtained for black-box testing. The results obtained
here are very similar to those obtained by G. Grigas.

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10

Points for programming style

P
o
in
ts
 f
o
r
te
s
ti
n
g

Figure 5.8: Scatterplot of the points for testing and the points for program-
ming style The correlation between these two values is 0.33.

The statistics shows that the programming style of nearly half of the contestants
is lower than satisfactory (i.e. below 5 points). We compared the programming
style of algorithm-code complexes solving different tasks, but designed by the same
contestants in the final round in LitIO’2006. There was no real difference between the
programs submitted for the tasks where the programming style was evaluated and
for the tasks where it was not included into the evaluation scheme (the contestants
knew the scoring function in advance). The only visible difference was in the amount
of comments – there were no or considerably less comments in the programs where
the programming style was not evaluated. This can lead us to the conclusion that,
in the contest environment, the students concentrate on the task and apply the

1The idea of the task is as follows: a squirrel is jumping from one position on a branch (a branch
corresponds to a segment) to another. It takes 1 time unit to jump to a neighbouring position.
The acorns are falling from the top of the tree in various positions of the branch at various time
moments. The task is to count the maximum number of acorns the squirrel can catch.

108

5.4 Evaluating Maintainability (Programming Style)

programming style they follow in everyday life and only add some extra comments
to improve it.

The results of testing the functional performance reveal (or are expected to)
a combination of two different things: 1) suitability of the algorithm to solve a
particular task; 2) correctness of the algorithm implementation. The correlation
above shows the relation of programming style with a combination of these two
characteristics. In order to get more exact results, we tried to separate those two
features in the algorithm-code complexes and to calculate the correlation between
the programming style and the correctness of implementation of algorithms.

Therefore we evaluated the quality of the implementations of algorithms of task
Acorn. In this task the submission involved a verbal description of the algorithm as
well. Therefore, in most cases it was possible to determine what kind of algorithm
was implemented (or intended to implement) in the algorithm-code complex. Under
the new evaluation performed during the investigation, the algorithm-code complex
got full marks if it implemented the algorithm correctly, irrespectively of whether
the algorithm itself is correct and effective or not. Figure 5.9 shows the relationship
between the correctness of implementation and the programming style. It shows a
stronger tendency that the better the programming style, the better the contestant
succeeds in implementing his algorithm (not necessarily a correct or efficient one).

0

1

2

3

4

5

0 2 4 6 8 10
Points for programming style

P
o
in
ts
 f
o
r
c
o
rr
e
c
tn
e
s
s
 o
f
im
p
le
m
e
n
ta
ti
o
n

Figure 5.9: Scatterplot of the points for implementation correctness and the
points for programming style The correlation between these two values is 0.468, the
implementation correctness is measured in five points scale, the quality of programming
style – in ten point scale.

5.4.5 Good Programming Style in Informatics Contests –
Advantage or Necessity

B. W. Kernigan and R. Pike made a remark on the style of programs: “In a world
of ... relentless pressure for more of everything, one can lose sight of the basic
principles – simplicity, clarity, generality – that form the bedrock of good software”

109

5. EVALUATION IN TERMS OF THE EXISTING QUALITY STANDARDS

(Kernighan and Pike, 1999). This should not happen in informatics contests. Such
contests are the place where the top high school students come to compete. The
lesson they might take from them is that an algorithm, implemented in “quick and
dirty” style, and giving the satisfactory output, is as good as a clear and elegant
program. This might take this lesson in their further professional lives.

Therefore the approach to force a good programming style as a necessity – to
reject submissions (programs) that do not meet even the minimal requirements to
program clarity – should be considered.

5.5 Conclusions
We compared the life-cycles of a software product and a submission using the water-
fall model and identified differences. The first difference is that the phases system
and software requirements and operation have only one way connection to the other
phases. Another significant difference is that the operation phase of a submission is
very short and no maintenance and support is required.

The software quality model ISO-9126-1 provides six software quality charac-
teristics: functionality, reliability, usability, efficiency, maintainability, portability.
Current evaluation scheme includes three characteristics: functionality, efficiency,
and maintainability. We examined under what conditions and for what reasons each
of the characteristics is either included or excluded from current evaluation scheme
and found that the decision to include only three characteristics is motivated.

Two case studies has been performed on the evaluation of functionality, efficiency,
and maintainability. During it around 250 submissions designed during LitIO’2006
and LitIO’2008 were analysed and classified manually.

In the first case study the expected score range of each submission was identified.
The results were compared to the scores obtained by partial and all-or-noting batch
scoring. The scores obtained by the two scoring schemes differ from the expected
scoring in two ways: either more or fewer than points than expected are assigned. In
total 20.2% (partial scoring) and 9.2% (all-or-nothing batch scoring) differed from
the expected score ranges, 3.2% (partial scoring) and 2.6% (all or nothing batch
scoring) of scores differed from the expected score ranges by 20 points or more.

The results corroborate that black-box testing does not fully correspond to score
expectations. The percentage of unjustified scores in all-or-nothing batch scoring
should be considered as more acceptable. However we suggest that providing more
real time feedback during the contest and considering other forms of evaluation
would anticipate the overall score to the expected one even more.

The second case study is related to evaluating maintainability. We found no com-
monly accepted way of measuring software maintainability. In informatics contests
it is assessed in the form of evaluating the programming style. During the study
we calculated the correlation between the points for implementation correctness and
the points for programming style: it is 0.468. We conclude that the contestants who
follow better style habits tend to implement their algorithms more successfully.

110

6 Improvement of Evaluation in the LitIO
Scheme Using MCDA

In Section 3.3, it has already been shown that search for an improved evalu-
ation in LitIO scheme can be approached using MCDA methods and algorithms.
In Sections 3.4 and 3.5, the category of the problem and the roles involved in the
MCDA process were defined. In this chapter, we will perform the main MCDA
stages, presented in Section 3.6 as well as pilot the proposed evaluation in the LitIO
model.

6.1 Problem Structuring
6.1.1 Introduction
The first step of the problem structuring phase is defining the decision context,
i.e., collecting and structuring information and attitudes towards the problem un-
der consideration, screening the concerns and priorities. That was completed in
Chapters 2, 3, and 5. The concept of informatics contest was defined and screened,
the contest goals, structure, domain of problems, and the current evaluation model
were analysed. The experience of evaluation of algorithm-code complexes was also
investigated in a similar situation, i.e., in programming courses of undergraduate
studies together with the intention to get the answer whether such an experience
can be transferred to informatics contests. The point of view was also motivated
and selected, i.e., the quality of a submission and the concept of quality were anal-
ysed. We have identified that both problem solving and problem developing skills
interrelate in a submission and both aspects should be taken into account during the
evaluation. Before continuing to the construction of the concept of a submission and
the quality of submission, the current evaluation in the LitIO model was analysed
from the point of view of the existing software quality standards.

The main goal of the remaining problem structuring part is identifying objectives,
creating a hierarchical model of objectives, and specifying the evaluation criteria and
the concept of alternatives (submissions). After looking over many formal problem
structuring techniques, we came to a decision to apply the GQM framework to this
purpose. That was motivated in Subsection 3.7.2.

As we have concluded in Section 2.8, the quality is either conformance to very
concrete specifications or conformance to the needs of the users. However, in this
case, there is only one acting subject. It is the scientific committee which determines
the specifications and at the same time is the only user of the submitted solutions.
Therefore, the scientific committee has the final word in determining the quality of
the submission and should take into account the contest goals and resource limi-
tations, the problem solving part of the contest and the software quality models.

111

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

However, even though the final decision about the evaluation model will be made
by the scientific committee, we decided that involvement of experts in the process
of structuring will be beneficial and would provide a less biased result.

To participate in the problem structuring process we invited a group of ten
experts. By an expert we defined a person having the background in informatics
and at least five-year experience of working in national, regional and/or international
informatics contests either as a member of the scientific committee, or as a jury
member. Eight out of ten experts have been involved in the contests for more than
ten years. We made an exception and invited as an expert one person who had
one-year experience of being a member of the scientific committee. However, he had
been the participant and the winner of many national and international Olympiads
before he joined the scientific committee of LitIO.

Even though the object of discussion is the evaluation in LitIO, in order to discuss
it from a broader perspective, the group of experts consisted of half the Lithuanian
and half of international members, all having experience in various national, regional
and international contests. Since the experts were located remotely, there was no
interaction between them as a group during the work.

6.1.2 The Background of Evaluation in the LitIO Problem
Provided to the Experts

The experts were provided all the relevant information about the structure, scope,
and available resources for LitIO. The main part of creating the evaluation scheme
consists of identifying aspects that need to be measured and defining metrics that
measure each aspect. The following hierarchical model (created following the GQM
framework) was designed and used as the basis of the questionnaire distributed to
the experts (Fig. 6.1).

At the conceptual level, the concept of a goal (in GQM) or an objective (MCDA
terminology) was replaced by the concept of submission. Strictly following the GQM
framework, submission should be considered as the object of measurement. However,
the main goal (measuring the quality of a submission) it already defined. By placing
submission as the central item at the conceptual level, we attract the attention of
the experts to the concept of submission and ask for critical attitude and suggestions
for a modification of the current understanding of submission.

The second level is the attribute level. It corresponds to the operational level
of the GQM framework. The third level is quantitative, it contains the metrics for
measuring these attributes. The same metric can be applied for measuring several
attributes.

We asked the experts to answer the following questions:

1. What attributes of a submission are most relevant for determining a score and
can be objectively measured? You can restrict yourself to what you consider
the five most relevant attributes.

112

6.1 Problem Structuring

Submission

Attribute 1

Metric 1 Metric 2 Metric 3 Metric 4 Metric m

...

...

...

Attribute 2 Attribute n

Figure 6.1: The framework of the evaluation scheme

2. What metrics would you propose to measure these attributes (more than one
metric could be used to measure each attribute). Define each metric as precisely
as you can.

3. How would you suggest to implement each metric (taking into account the
resources and limitations described below).
Metrics can be implemented by a manual measurement procedure, or by an
automated procedure, or by their combination. Describe each procedure as
precisely as you can.

4. How would you suggest to integrate separate metrics to get one score (for one
submission).

All the material (the background and questionnaire) provided to the experts at
the beginning of work can be found in Appendix A.2.
6.1.3 Defining the Concept of a Submission
Currently a submission consists of a verbal description of an algorithm and the source
code of the implemented algorithm. It should be noted that the algorithm presented
in the verbal description does not have to match the implemented algorithm. There-
fore, the verbal description is graded independently of the implementation. It is
graded even if the implementation is not submitted.

The experts came with two types of suggestions which could be classified into two
totally opposite categories. One group of experts suggested to shrink a submission
to the source code only, while the other group suggested to expand it by including
test data as a new element of the submission.

The verbal description of an algorithm was the first submission element to be
discussed.

The opinions expressed by the experts were totally opposite (Fig. 6.2). Some
of them suggested removing the verbal description from the submission, motivating

113

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

that “the main skill of a contestant is whether he can make work his program or not;
any other efforts outside this (e.g. verbal description with impressive ideas) are of
a little help if the program does not work.” Others were more lenient, but strongly
emphasized that these are of secondary importance and “whatever is included into
the evaluation model, functional correctness and efficiency are the main attributes
to be evaluated, … verbal algorithm description is for those who did not have enough
time to implement their solution, but not for those who have failed to implement
it. The contestants should submit either a verbal description or the implementation,
but not both.” In the responses of some experts it was mentioned that it was most
likely that the verbal description of an algorithm is used for identifying heuristics.
This helps to achieve that submissions with heuristic algorithms would not get a full
score. The experts suggest other ways to try to avoid this, rather than through a
verbal description.

The other experts suggested to include an implementation description or rea-
soning on the design. Currently the required algorithm description may have no
connection with the implementation. Reasoning on the design might come in the
form of a separate text or comments and “ideally, once the design decisions have
been established, the program code is a straightforward derivative (synthesis).”

None of the experts clearly supported the current practice, where the verbal
algorithm description may have no connection with the implementation. There
had been lengthy discussions in the scientific committee of LitIO whether it should
be required to describe the implemented algorithm or just any algorithm which
solves the given problem. The decision not to connect the description and the
implementation was motivated by a simpler evaluation process. Another reason was
the possibility for the contestants to come up with a better solution, once they have
implemented their solution and realized that it was not good enough.

One more suggestion found in the responses of several experts was to include
the test data, preferably with motivation. Each test should consist of an input file
and the corresponding output file. One of the experts commented that “when equal
programs have been developed by two contestants (or companies), I would have more
trust in the program that was systematically tested over one that was not.” One
suggestion was to include test data in the form of a challenge phase like in the
TopCoder contest (Top, 2010; Opmanis, 2006; Skienna and Revilla, 2003), i.e., the
participants would have to provide test data intended to break other submissions
(prepared by the jury or those of other contestants). Different approaches of the ex-
perts represent the existing variety of views in the community of informatics contests
(Cormack, 2006; Pohl, 2008; Verhoeff, 2006).

To choose a particular submission model, we decided to focus on the goals of
LitIO as the key factor. A very important goal in LitIO is an educational goal, i.e.,
to disseminate good programming practice. Even though we agree with the point
of one of the experts that “contest as an educational event… sounds strange;… you
learn a lot of things before or after, but not during the contest”, it must be taken
into account that there are few qualified teachers in Lithuania, who have experience
in applying and teaching good programming practices and who would know how
to write a program in conformance with the academic standards. Therefore two

114

6.1 Problem Structuring

Reasoning for

design

Solution

implementation
Test dataImplementation

Verbal

description of

an algorithm X

Algorithm Y

implementation

Current concept of submission

Su
gg
es
te
d
co
nc
ep
t

of
 su
bm
iss
io
n

S
uggested concept

of subm
ission

Figure 6.2: Suggestions of the experts to modify the current submission
concept

major events for high-school students, namely, the maturity exams in programming
(Blonskis and Dagienė, 2006) and the Lithuanian Olympiads in Informatics serve as
guidelines and a kind of “reference” for the teachers.
The proposed submission model consists of:

• reasoning on the design which replaces the verbal description of an algorithm,

• solution implementation presented as the source code in one of the allowed
programming languages; it should be based on reasoning on the design, if such
is provided,

• a set of test cases with motivation.

A long experience of the author working in LitIO has shown that it took many
years for the contestants of LitIO and their coaches to get used to providing material
other than the source code (i.e., writing verbal descriptions of an algorithm). In order
to avoid reluctance towards the new element of submission, i.e., a set of test cases,
it would make sense to look for different options to implement the new concept of
submission (for example, to arrange it as some kind of a challenge phase rather than
simply ask for a set of test cases for checking submissions).

There is one more practical motivation for that. Two attributes might be checked
for each separate test case (input data and the corresponding output). One of them

115

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

is validity: is it a valid input file and the correct valid output to this input. Another
attribute is whether the test is really evaluating the feature it claims to. Checking
the latter might be complicated or even require writing several different checkers.
For example, if it is claimed that the test evaluates the performance of a solution
when the input graph satisfies specific conditions, then the jury might need to code
a checker to verify whether the graph modeled in the input file really has those
specific properties.

Another practical issue is related to the contest structure. Flexibility has always
been present in LitIO to reasonably distribute the efforts of the contestants and
the jury. Sometimes two tasks instead of three are given in an exam session, for
some tasks it is not required to present verbal descriptions of the algorithm (those
tasks are chosen very carefully) and for some tasks the programming style is not
graded, as it has been noticed that the programming style of submissions is not
influenced by a concrete grading scheme (i.e., whether the points are awarded for
style or not). Complementing a submission with test cases would require even more
flexibility since generating test cases might require a lot of extra time depending
upon the task.

6.1.4 Submission Attributes
The current grading model presents three measurable attributes of a submission (Fig.
6.3. They are the quality of a verbal description of an algorithm (sub-attributes:
correctness and efficiency of the described solution and quality of the description),
performance of the already compiled program code (sub-attributes: functional cor-
rectness and time and memory efficiency), and programming style (sub-attributes:
consistency, clear layout, use of proper names, suitable explicit substructures, ab-
sence of magic numbers, proper comments).

Concerns of some of the experts about the elements of submission other than
implementation were reflected in the proposals about the attributes. Those who
restricted a submission to the source code only were against any attributes except
for the performance of already compiled code. They especially stressed the program-
ming style. “Once the style is bad enough, the contestant will leave a bug and will
bear consequences. If the implementation is fully correct this means that the style
was good enough” . Here is the opinion of another expert who refers to the research
of (Grigas, 1995) who investigated the relationship of programming style and the
IOI score in IOI’1994: “goto was used by the best and worst students therefore it
is hard to say how particular programming construction influences achievement of
the contestant… defining some formal criteria of what is a good style and what is
not seems to be extremely hard; better style leads to better programs and therefore to
better results”.

Other experts expressed different attitudes. Another interesting model consisting
of five attributes was proposed 1. The first attribute is the quality of the solution
idea. The next three attributes refer to concrete parts of submission, i.e., the quality
of description of the solution idea, correctness of implementation (with respect to

1A similar model is applied in Bundeswettbewerb Informatik (Bun, 2010).

116

6.1 Problem Structuring

the solution idea), the quality of implementation (source code quality). The last
attribute, - conformance to the requirements of the task description, - refers to the
entire submission.

Quality of a submission

Verbal

algorithm

description

Algorithm

implementation

Quality of a verbal

description of an

algorithm

Description

quality

Algorithm

correctness

Algorithm

efficiency

Performance of

compiled code

Functional

correctness

Time efficiency

Memory

efficiency

Programming style

Consistency

Clear layout

Proper names

Substructures

No magic

numbers

Proper comments

Figure 6.3: Attribute level of the current evaluation scheme The sub-attributes
of programming style are not separated because the score is not a direct combination
of evaluation of each of the attributes.

We found this model interesting because it considers the submission as an inte-
gral entity rather than a set of separate submission elements. From all the proposed
models it seems to be most educationally motivated. The quality of the solution idea
is one concept, not divided between the reasoning on design and implementation.
The implementation correctness is related only to implementation, but not to a com-
bination of solution and implementation correctness. The model seems to separate
problem solving and engineering, which is the ongoing problem of the current model
(small implementation mistake resulting in the loss of many points). Despite its
attraction, the most questionable point in this model is its practical implementation
within contest time pressure. For example, “the independent grading of the quality
of the solution idea can be done in the manual way only… otherwise it will be mixed
with implementation correctness”. The model (the expert provided the whole model
not only the attributes) seems to be a good choice for the maturity examination in

117

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

programming or for informatics contests smaller than LitIO. This model might also
be implemented for some separate tasks in the finals of LitIO, where the number of
submissions of one task may be rather low.

Several experts suggested the same decomposition of the quality of the verbal
description of an algorithm as it is used now in LitIO, i.e., to emphasize the cor-
rectness and the efficiency of the described algorithm. However, one of the experts
suggested a different approach by putting emphasis on the design issues. The at-
tribute quality of design reasoning can be decomposed into “story” organization (i.e.,
appropriate separation of concerns, introducing appropriate concepts and notation),
effective reuse of prior knowledge (e.g., standard algorithms and data structures)
and the level of formality and convincingness. This decomposition seems to be more
attractive as it puts emphasis on the design issues to reveal which is the main pur-
pose of the written material rather than serving as double award or punishment for
incorrect or inefficient solutions.

Quality of a set
of test cases

Test validity

Test category

Completeness
of the test set

Functional
correctness of
implementation

Conformance to task
description
requirements

Quality of the solution
idea description

Understandability

Sufficiency of
information to
assess solution

Quality of
implementation

Proper logical
structure

Proper visual
structure

Proper naming
of identifiers

Quality of the solution
idea Solution correctness

Time efficiency Memory efficiency

Quality of a submission

Solution
idea

Solution
implementation

Set of
tests

Figure 6.4: Attribute level of the evaluation model which separates the prob-
lem solving part from the engineering part It is complemented with attributes
to evaluate the quality of test cases.

With a shift of emphasis, there still remains the question whether the correctness
and efficiency of design decisions should be evaluated or not. As this is the only place

118

6.1 Problem Structuring

in the model where the solution idea is evaluated explicitly (it is evaluated implicitly
when testing the implementation), we decided to leave that as a sub-attribute.

Since tests were included into the submission, some attributes should reflect
that. Three sub-attributes referring to a test set can be measured. They are: test
validity and belonging to some category (measured of each test separately), and
completeness of the whole test set.

The attribute conformance to the requirements of the task description was pro-
posed by several experts. The attribute should be in the form of a checklist and also
might act as the coordinator between other attributes. For example, the item of this
attribute might be the correspondence of reasoning on design to the implementation.

None of the experts suggested time spent on solving the task as an attribute,
which is common in ACM-ICPC type contests, where each minute, from the contest
starting time till the moment the submission is accepted, is turned into one penalty
point (ACM, 2010a) or if stated in a more positive way, – the participant gets a
bonus for each minute from the submission time till the end of the contest (Myers
and Null, 1986).

The full scheme of the suggested attribute level is presented in Fig. 6.5.

Conformance to task

description requirements

Quality of a submission

Reasoning

for design

Solution

implementation
Set of tests

Performance of

compiled code

Functional

correctness

Time efficiency

Memory

efficiency

Quality of

programming style

Consistency

Quality of a set of

tests

Test validity

Test category

Completeness of

the test set

Absence of magic

numbers

Clear layout

Proper names

Substructures

Proper comments

Quality of reasoning for

design

Separating concerns,

introducing notations

Reuse of prior

knowledge

Formality,

convincingness

Correctness,

efficiency

Figure 6.5: The proposed attribute level of the evaluation scheme

6.1.5 The Choice of Metrics for the Attributes
The proposed evaluation scheme includes five attributes that can be measured to
evaluate the quality of the submission. Some of those attributes require manual

119

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

grading. All the experts provided suggestions regarding the measuring performance
of the compiled code. About half of the experts provided suggestions of the metrics
for measuring other attributes. We will review all the attributes one by one.

6.1.5.1 Quality of Reasoning on Design

Four sub-attributes were identified in the reasoning on design: separating concerns
and introducing notation, reuse of prior knowledge, formality and convincingness,
and correctness and efficiency (Table 6.1). All these sub-attributes require man-
ual grading. A concrete evaluation scheme that presents the taxonomy of various
approaches to solving the problem should be developed for each task. While it is
accepted that tests are designed prior to the contest and not changed during evalua-
tion, “the taxonomy for grading reasoning on design might have to be adapted during
grading as blind spots might be discovered. This resembles IMO grading” (Verhoeff,
2002).

There were many suggestions to include clarity and understandability in the
evaluation model. However, clarity and understandability seemed to be more im-
portant in the previous model, where the only other sub-attributes were correctness
and efficiency. In this model, clarity as a separate metric seems to be less important.

Metrics Measuring Scale Comments

C1 Level of clarity
and understandability

Manual Ordinal scale Applies to the whole attribute;
might influence other metrics
of this attribute.

C2 Level of story
organization and
concern separation

Manual Ordinal scale

Proper taxonomy should be
developed for each task

C3 Level of reuse of
prior knowledge

Manual Ordinal scale

C4 Level of
convincingness and
formality

Manual Ordinal scale

C5 Level of
correctness of design
decisions

Manual Ordinal scale

C6 Level of efficiency
of design decisions

Manual Ordinal scale

Table 6.1: Suggestions for metrics to measure quality of reasoning for design

120

6.1 Problem Structuring

6.1.5.2 Performance of the Compiled Code
Three sub-attributes were identified in the performance of the compiled code: func-
tional correctness, time efficiency, and memory efficiency. All the three sub-attributes
are part of the current evaluation scheme, and the experts approved the current met-
rics.

It is accepted to check the functional correctness automatically, using the black-
box testing strategy, even though this does not guarantee that all the faults will
be discovered (Williams, 2006). Each submission is executed with each test input.
The test is considered to be passed successfully, if the program finishes its execution
within the given time and memory limits and provides a correct output to the input.
Time and memory efficiency is measured indirectly. Tests are designed in such a
way that they would benchmark solutions with different time or memory efficiency,
i.e., the solutions with a certain efficiency are expected to pass a certain subset of
tests.

Sub-
attribute

Metrics Measuring Scale Comments

Functional
Correctness

C7 Does the program
try to solve the task?

Manual Boolean:
Yes/No

It makes sense to use
the metrics if the tests
are not grouped

Functional
correctness

C8 Small correctness
tests focusing on the
specific basic
categories of input
data

Automated Boolean:
Pass/Fail
for each
test

All these tests cases
should be solved
correctly in order to
score some points for
the performance

Functional
correctness

C9 Correctness tests
focusing on different
categories of input
data

Automated Boolean:
Pass/Fail
for each
test

Grouping test cases
was implied by most
experts

Time
efficiency,
memory
efficiency

C10 Efficiency tests
sorted into groups to
benchmark the
submissions of
different efficiency

Automated Boolean:
Pass/Fail
for each
test

Grouping test cases
was implied by most
experts

Time
efficiency,
memory
efficiency

C11 Efficiency tests
sorted into groups to
benchmark the
submissions of
different efficiency

Automated Ratio:
exact
execution
time for
each test

Execution time might
be used either as
Boolean or ordinal
metrics

Table 6.2: Suggestions for metrics to measure performance of the compiled
code

121

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

However, if the program fails while executing some test, then, in general, without
a closer analysis it is impossible to determine whether it failed due to functional
incorrectness or due to low time or memory efficiency. One of the experts wrote “if
the program fails correctness tests, most of the time it will fail the efficiency tests1,
not to mention the fact that in some cases the line between an incorrect solution
and an inefficient solution is unclear”. It is possible to measure the performance
of the compiled code as an attribute; however it is not always possible to measure
separately each sub-attribute.

Despite that, a majority of the experts suggest to measure two sub-attributes
separately, i.e., to differentiate the tests into functional correctness and efficiency
tests (both efficiency sub-attributes should be merged). Some of them proposed to
introduce small correctness tests. They should test the very basic properties which
the submission would have to solve correctly. I.e., in order to score any points for the
performance, the program must solve correctly some very basic cases of the whole
problem.

Also there were suggestions to measure the exact running time of a program
with each test (i.e. to use it as a metrics) and take it into account when calculating
the score. Measuring the exact program execution time with the purpose to identify
its complexity is a sensitive issue not just due to the choice of test data. Hardware
issues, compiler options, differences between programming languages influence the
program performance.

In our model, we will distinguish correctness and efficiency tests in order to leave
room for exploring various score aggregation models where the points for efficiency
tests are related to the points for correctness tests.

There were suggestions to add one more metrics to functional correctness. The
experts suggested to manually identify the programs which do not try to solve the
task, but output the same answer all the time (e.g. no solution) or simply guess the
answer (we do not refer to using randomization as part of the solution strategy), as
well as to assign zero score for the performance. Indeed, if there are situations where
for some reasons grouping is not used, then this category of submissions may score
an inadequate amount of points. The overview of metrics proposed for measuring
the performance of the compiled code is presented in Table 6.2.
6.1.5.3 Quality of the Programming Style
The quality of programming style has several sub-attributes (consistency, clear lay-
out, proper naming, suitable substructures, absence of magic numbers, and proper
comments). The experts proposed three different metrics for evaluating the quality
of programming style and suggested to use both manual and automated grading.

One metric assumed the evaluation of the quality of programming style as a
whole, taking into account all the sub-attributes, but not evaluating them separately.
This should be manual grading with the grading results presented on an ordinal scale.
Another suggestion was to measure the sub-criteria separately, presenting the results
on an Ordinal scale again and afterwards using each measure to aggregate into one

1We have not found corroborating empirical evidence in the literature.

122

6.1 Problem Structuring

Metrics Measuring Scale Comments

C12 Level of the Quality
of programming style

Manual Ordinal scale This metrics should be used iff
the other metrics from this
table are not used.

C13 Level of Consistency Manual Ordinal scale

Possibilities for
replacing/combining with
automated measuring might be
investigated

C14 Layout clarity Manual Ordinal scale

C15 Level of proper
naming

Manual Ordinal scale

C16 Suitability of
substructures

Manual Ordinal scale

C17 Absence of magic
numbers

Manual Boolean scale:
Yes/No

C18 Suitability of
comments

Manual Ordinal scale

Table 6.3: Suggestions for metrics to measure the quality of programming
style

score for the quality of the programming style. Actually, there is no need to choose
one approach. Both of them can be used depending upon available resources, as
the first approach requires much less time, while the results based on the second
approach would be much clearer to the contestants.

The third approach (suggested by several Lithuanian and foreign experts) in-
cluded a combination of manual and automated grading. However, it has been
emphasized that the possibilities of automated grading of programming style must
be researched first and the proper tools developed. Such an approach is applied
in the evaluation procedure of the Lithuanian maturity exam in programming, and
special software was developed for that. The exam submissions are much simpler in
complexity and shorter in length than the contest submissions, and the only available
compiler is FreePascal (Skūpas and Dagienė, 2008). However, none of the experts
provided concrete metrics for performing this type of semi-automated grading.

The overview of metrics proposed for evaluating the quality of programming style
is presented in Table 6.3.

6.1.5.4 Quality of a Set of Tests
The evaluation scheme proposed three sub-attributes to measure the quality of the
submitted test set. The first sub-attribute is the validity of each test (a pair con-
sisting of an input and the corresponding output). The test validity means that the
input is a valid input according to task specifications and the output is a correct
output to the given input.

123

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

Metrics Measuring Scale Comments

C19 Test validity Automated Boolean: Yes/No for each
input/output pair

C20 Belonging to
a certain test
category

Manual,
Automated

Boolean: Yes/No for each
test and accompanying
motivation

Motivation is evaluated
manually

C21
Completeness of
the whole test set

Automated Ratio: Percentage of
coverage statistics

Special plug-in for the
contest system might be
needed. Percentage of
coverage statistics

Table 6.4: Proposals for metrics to measure the quality of a set of tests

The next sub-attribute is a test category. Each test should be submitted with
motivation, explaining what category of input it targets at. The most sophisticated
challenge seems to be verifying that the provided test really targets at the category
that it claims to be. Checking this automatically might require too many resources
for some tasks.

The final sub-attribute is completeness. This attribute refers to the whole test
set and it checks to which extent the submitted test set covers the domain (Table
6.4).
6.1.5.5 Conformance to the Task Description Requirements
The measurement of the conformance to the task description requirements should
be arranged in the form of a checklist. The checklist might depend on a concrete
task. In some cases, it might be of secondary importance or not needed at all, but if
the absence of some item on the checklist makes it impossible or difficult to evaluate
another item, then a low grade for this attribute will result in a low grade for another
attribute as well.

An obvious item to be included in the checklist is the correspondence of the
reasoning on design to the implementation. Another item to be included is the
presence of motivation for test-cases (Table 6.5).

Metrics Measuring Scale Comments

A checklist based on the
specification of a
concrete task

Manual,
Automated

Boolean:Yes/No
for each item of
the checklist

The need for this attribute in
general and its use in the
evaluation scheme depends
upon a concrete task

Table 6.5: Proposals for metrics to measure the conformance to task de-
scription requirements

124

6.2 Model Building and Piloting

While working on this model, we tried to be reflective, and discuss and incor-
porate as many ideas and suggestions as possible that we found in the responses of
the experts, even if they were not included into the proposed model. The model has
room for flexibility and for tailoring through score aggregation methods.

6.2 Model Building and Piloting
In the previous section, we performed problem structuring and defined a wide set
of evaluation metrics. They can be applied and modified in various situations,
depending upon technical resources, and the preferences of the scientific committee.

The second step is the choice of an MCDA model. The choice was discussed and
made in Section 3.8.

Next we have to illustrate how to adapt the proposed general evaluation scheme
to a concrete task. For this purpose we selected four tasks and gave them to solve
during a small contest held in a training camp. The task descriptions can be found
at (Lit, 2010) (training camp’2010, day1).

In this section, we present all the steps how the evaluation scheme, developed in
the thesis, was applied in practice.

We will not provide the motives for each choice we have made (e.g., why we
decided to include one or exclude another criterion to/from the evaluation scheme).
The decision was made taking into account the goals of the training camp, the
nature of the tasks, and the available human resources for the evaluation and task
preparation, which is not relevant in terms of this piloting. The details would be
excessive, because the main goal of this section is to experiment and illustrate how
the evaluation scheme could be applied in practice.

6.2.1 Specification of the Components of the Evaluation Scheme
for Concrete Tasks

The evaluation scheme, adjusted to a concrete task, should contain the components,
presented in this subsection. Note that some components might be calculated once
and remain valid for more than one task. For example, the weights of importance
of the jury members can be calculated at the beginning of the school year and used
for all the tasks given in the same contest season.

6.2.1.1 Scales for Linguistic Variables
The scales, to be used in the evaluation scheme, could have been defined when
we chose the MCDA algorithm. However, the choice of scales is considered to be
intuitive and left for a decision maker (Chou et al., 2007; Rao, 2007). Therefore, we
decided to select the scales here, thus saying that other scales could be used as well.

The chosen GDM method uses three linguistic scales.
The first scale is used for assigning weights of importance to decision makers.

We will use the four-point scale presented in Table 6.6 and Fig. 6.6. Note that the
scale is empty on the right side, i.e., there will be no jury members whose opinions
will be considered as of a very low value. The crisp values given in Table 6.6 were

125

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

x

µ(x)

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.

Figure 6.6: The scale for determining a relative importance of decision mak-
ers (Lu et al., 2007)

Item of linguistic scale Numerical weights Crisp values

Normal
(
0.3, 0.5, 0.7

)
0.5

Important
(
0.5, 0.7, 0.9

)
0.67

More important
(
0.7, 0.9, 1

)
0.83

Most important
(
0.9, 1, 1

)
0.95

Table 6.6: Weights of the linguistic scale for determining a relative importance of
decision makers

calculated as it has been described in Subsection 3.8.5.3. (Lu et al., 2007) suggest
to use this scale for determining a relative importance of the decision makers.

The second linguistic scale is required for expressing relative importance weights
of evaluation criteria. For this purpose we will use the eleven-point scale proposed
by (Chen et al., 1992). We have deliberately chosen a large scale, because in the end
the weights for criteria will be distributed in a 100 point scale, therefore providing
a larger scale gives more flexibility for decision makers. The scale is presented in
Table 6.7 and illustrated in Fig. 6.7.

The third scale is required for performing the evaluation, i.e., expressing the
scores of manual holistic qualitative evaluation. We will use the nine-item scale
proposed by (Sule, 2001) and already presented in Table 3.1 and Fig. 3.8. This
scale will be repeatedly used in the evaluation of each submission by each jury
member involved in the evaluation. The choice of scale size is motivated by (Miller,
1956) (who showed that individuals cannot simultaneously compare more than seven
objects plus minus two), and the fact that until now a ten or twenty-point scale was

126

6.2 Model Building and Piloting

used for a qualitative holistic evaluation in LitIO.

Figure 6.7: The scale for determining a relative importance of the evaluation
criteria (Chen et al., 1992)

Item of linguistic scale Numerical weights Crisp values

Exceptionally low (EL)
(
0, 0, 0, 0.1

)
0.05

Extremely low (XL)
(
0, 0.1, 0.1, 0.2

)
0.14

Very low (VL)
(
0, 0.1, 0.3, 0.5

)
0.25

Low (L)
(
0.1, 0.3, 0.3, 0.5

)
0.33

Below average (BA)
(
0.3, 0.4, 0.4, 0.5

)
0.41

Average (A)
(
0.3, 0.5, 0.5, 0.7

)
0.50

Above average (AA)
(
0.5, 0.6, 0.6, 0.7

)
0.59

High (H)
(
0.5, 0.7, 0.7, 0.9

)
0.67

Very high (VH)
(
0.5, 0.7, 0.9, 1

)
0.75

Extremely high (XH)
(
0.8, 0.9, 0.9, 1

)
0.86

Exceptionally high (EH)
(
0.9, 1, 1, 1

)
0.95

Table 6.7: Weights of the linguistic scale for determining a relative importance of the
evaluation criteria

6.2.1.2 Weights of Importance of the Jury Members
The weights of relative importance of the decision makers are either decided in
a group discussion or by a higher management level (Lu et al., 2007). We have

127

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

already emphasised that, in this work, we will not involve the decision makers into
discussions. Therefore we decided to assign the weights based on their experience
in LitIO:

Normal. The jury members whose activity was very limited in the last three years.

Important. Active jury members who have been involved in LitIO for less than
five years.

More important. Active jury members who have been involved in LitIO from five
to ten years.

Most important. Active jury members who have been involved in LitIO for more
than ten years.

Currently there are thirteen jury members and the assignment of the importance
weights is presented in Table 6.8.

Jury member His/her relative importance Crisp weight

M1 Most important 0.95
M2 More important 0.83
M3 More important 0.83
M4 Important 0.67
M5 Most important 0.95
M6 Most important 0.95
M7 Normal 0.5
M8 Normal 0.5
M9 Important 0.67
M10 Normal 0.5
M11 More important 0.83
M12 Normal 0.5
M13 Normal 0.5

Table 6.8: Relative importance weights of jury members

Three jury members, whose linguistic values of importances were: more impor-
tant, more important, and normal, participated in the piloting.

6.2.1.3 List of Required Components of Submission
LitIO allows flexibility, and for different tasks it might be required to submit dif-
ferent sets of submission components. A submission can have from one to three
components. Therefore we define the possible templates in advance (Table 6.9).
Note that an algorithm-code complex is always required to be submitted.

The list of the required components for each pilot task is presented in Table 6.11.

128

6.2 Model Building and Piloting

Template ID Reasoning
on design

Algorithm-code
complex

Test
cases

1 SRAT Included Included Included
2 SAT — Included Included
3 SRA Included Included —
4 SA — Included —

Table 6.9: Templates for a set of required submission components.

6.2.1.4 List of Attributes to be Evaluated
The evaluation scheme should include the list of submission attributes the quality
of which will be measured. The flexibility of LitIO allows different sets of attributes
to be included into the evaluation scheme. Therefore we have made a list of possible
templates and presented them in Table 6.10. The list of attributes the quality of
which will be measured for each pilot task is presented in Table 6.11.

Temp-
late

ID Reason-
ing to
design

Perfor-
mance

Pro-
gram-
ming
style

Test
cases

Confor-
mance to
task
descrip-
tion

1 RPSTC Included Included Included Included Included
2 RPST Included Included Included Included —-
3 RPSC Included Included Included — Included
4 RPTC Included Included — Included Included
5 PSTC — Included Included Included Included
6 RPS Included Included Included — —
7 RPT Included Included — Included —
8 RPC Included Included — — Included
9 PSC — Included Included — Included
10 PST — Included Included Included —
11 PTC — Included — Included Included
12 PC — Included — — Included
13 PT — Included — Included —
14 PS — Included Included — —
15 RP Included Included — — —
16 P — Included — — —

Table 6.10: Templates of the evaluation scheme at the attribute level

6.2.1.5 Weights of the Evaluated Attributes
During problem structuring five attributes were identified: quality of reasoning on
design, performance of the compiled code, quality of the programming style, quality

129

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

Task No Submission
Template ID

Attribute
template ID

Task 1 SRAT RPT
Task 2 SA PS
Task 3 SA PS
Task 4 SA P

Table 6.11: List of required submission components and the measured attributes for
the piloted tasks. The explanations of submission and attribute ID’s are given in Tables
6.9 and 6.10.

Jury
member

Reasoning
on design

Perfor-
mance

Program-
ming style

Test
cases

M1 A EH EL L
M2 BA XH VL VL
M3 BA H L BA
M4 A H L A
M5 L EH EL BA
M6 A VH BA AA
M7 XH VH H A
M8 VH XH A H
M9 BA EH L AA
M10 H VH H A
M11 A XH L A
M12 BA H AA AA
M13 L EH XL EL

Table 6.12: Relative importance of the four attributes proposed by the jury members

of a set of test cases, and conformance to the task description requirements.
The last attribute is highly task-specific. It should be used for ensuring the re-

quired relations between other attributes (i.e., partial value inter-criteria functions),
but there will be no points assigned to its criteria separately. An example of a cri-
terion for this attribute might be: does the algorithm-code complex implement the
algorithm described in the reasoning on design. In the case of the negative answer,
the points for the reasoning on design are canceled.

Weights of attributes is a subject of serious discussions in LitIO, therefore we
involved all the jury members in the decision. The jury members were provided the
list of the four attributes and were requested to propose relative weights of their
importance, using the 6.7 scale. The responses of the jury members are presented
in Table 6.12.

Basing on the responses of LitIO jury members, their relative weights, formula
3.14, we calculated the aggregated attribute weights and developed eight templates
of distribution of the points between the attributes.

130

6.2 Model Building and Piloting

No Template
ID

Reasoning
onr design

Perfor-
mance

Program-
ming style

Test
cases

1 RPSTC, RPST 0.23 (0.25) 0.39 (0.40) 0.17 (0.15) 0.21 (0.20)
2 PSTC, PST — 0.50 (0.50) 0.22 (0.20) 0.28 (0.30)
3 RPTC, RPT 0.28 (0.30) 0.47 (0.45) — 0.25 (0.25)
4 RPSC, RPS 0.29 (0.30) 0.49 (0.50) 0.22 (0.20) —
5 PTC, PT — 0.65 (0.65) — 0.35 (0.35)
6 RPC, RP 0.38 (0.40) 0.62 (0.60) — —
7 PSC, PS — 0.70 (0.70) 0.30 (0.30) —
8 PC, P — 1 — —

Table 6.13: Templates of possible weights of the attributes. The rounded attribute
weights are presented in parentheses. The column Template ID indicates for which
attribute templates in Table 6.11 the weights in the corresponding row are valid.

The aggregated attribute weights calculated using formula 3.14 do not necessar-
ily sum up to one, and the method does not require it, because the normalisation is
performed in 6.3. However, the attribute weights must be presented to the contes-
tants, therefore it is reasonable to normalise them before performing the next step.
It also makes sense to round off the calculated weights to look them more natural to
the contestants. The calculated normalised weights (precise normalised values and
the rounded values) are presented in Table 6.13.

Evaluation in the LitIO problem is repeated, which means that the jury members
are free to change their opinions, the composition of the jury may also change, and
the values of aggregated attribute weights can be recalculated following the formula.
Moreover, it might happen that a task is very specific, and the jury might be willing
not to use the templates, but to assign and recalculate weights taking into account
the task specifics.

6.2.1.6 Inter-Attribute Function for Relating the Programming Style
to the Performance of the Compiled Code

The attribute quality of programming style is expected to be related to the attribute
performance of the compiled code and the relationship has to be established by the
jury. Each jury member was asked to propose an inter-attribute function, and three
types of proposals came up:

• Programming style is evaluated only if the score for the program performance
is not smaller than X%. Otherwise the score for the programming style is
zero.

• Programming style is evaluated only if some pre-defined set of tests (e.g.,
at least one test, small functional correctness tests, all functional correctness
tests) is passed. Otherwise the score for the programming style is zero.

131

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

• The final score for the programming style is calculated using the formula:
Scorestylef inal = Scorestyle×P , where P is the percentage of points scored for
the performance of the compiled code.

We did not expect that the proposals will be so different, and asked the jury
members to express their opinions about the proposals in a four-point linguistic scale
as pairwise comparisons. Thus, we modelled this as a small independent MCDA
problem and decided to apply the Analytic Hierarchy Process (AHP) (Lu et al.,
2007). The method uses pairwise comparisons to find the most wanted alternative
and assumes one decision maker and several criteria. To apply the method, we
modelled the problem in the following way.

We had no explicit criteria, just the opinions of all the jury members expressed as
a pairwise comparison of acceptability of alternatives. Therefore we decided that the
jury members act as criteria, and their opinions act as performance of alternatives
in terms of criteria. We constructed a square matrix of relative importance of the
criteria (jury members) and a pairwise comparison matrix of the three alternatives
for each jury member. The weight of each element in each matrix was retrieved
by calculating the geometric mean of a row and normalising the resulting vector
(as suggested by (Saaty, 1980)). The contribution of each alternative to the overall
goal was calculated and the overall priority for each alternative was obtained by
summing the product of the attribute weight and the contribution of the alternative
with respect to that attribute.

After completing the calculations, the following values for each proposed al-
ternative were obtained: 0.3442, 0,3655, and 0,2904. It means that none of the
alternatives was dominating. The most preferred alternative is the second one, and
the first one is just slightly behind the second.

From the three options of the second alternative (at least one test is passed,
a small set of tests for the functional correctness is passed, and all the tests for
functional correctness are passed) the majority of jury members preferred the second
alternative.

Thus we established the following procedure for assigning points for the quality
of programming style:

• The criterion small correctness tests focusing on specific basic categories of
input data (the 2’nd proposed criterion of the attribute performance of the
compiled code) is included into the evaluation scheme.

• The following inter-attribute partial value function is introduced:

vfinal_style(Ai) =
{
vstyle(Ai), if v8(Ai) = vmax

8 ,

0, if v8(Ai) < vmax
8 .

(6.1)

where vmax
8 is the maximum score for the criterion C8 (small correctness tests

focusing on basic categories of input data), v8(Ai) is the actual score of submission
Ai for the same criterion.

132

6.2 Model Building and Piloting

Attribute Task1 Task2 Task3 Task4

Quality of reasoning on design 30 - - -
Performance of the compiled code 45 70 70 100
Quality of the programming style - 30 30 -
Quality of a set of tests 25 - - -

TOTAL 100 100 100 100

Table 6.14: The points for each attribute are taken from Table 6.13, and match the
chosen template.

Criterion Weight wj Points

C1 (clarity) 0.166 5
C2 (story) 0.166 5
C3 (knowledge) 0.166 5
C4 (convincingness) 0.166 5
C5 (correctness) 0.166 5
C6 (efficiency) 0.166 5

SUBTOTAL 1 wpt
reasoning = 30

Table 6.15: Weights of criteria for the attribute Quality of reasoning on design. The
criteria are taken from Table 6.1. The jury decided not to reveal the scores for separate
criteria to the contestants, therefore there was no need to round up the points.

6.2.1.7 List of Criteria Selected for Evaluation of the Quality of
Attributes

The next step is to select a set of criteria for each attribute. For the quality of
reasoning on design and quality of a set of test cases we selected all the criteria
available in Tables 6.1 and 6.4, i.e. from C1 to C6 and from C19 to C21.

For the performance of the compiled code we selected three criteria: small cor-
rectness tests focusing on specific basic categories of input data (C8), correctness
tests focusing on different categories of input data (C9), and efficiency tests sorted
into groups to benchmark submissions of different efficiency (C10, Boolean scale)

For the quality of programming style we selected five criteria: level of consistency
(C13), layout clarity (C14), level of proper naming (C15), suitability of substructures
(C16), and absence of magic numbers (C17).
6.2.1.8 Weights for the Evaluation Criteria
The contest where we performed piloting was small, therefore we decided to assign
the weights to each criterion by discussing them among the three involved jury
members. Note that the weights were selected so that the aggregated weights for
each attribute would sum up to the corresponding weights in the corresponding task
template given in Table 6.13.

133

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

The chosen weights for the evaluation criteria are presented in Tables 6.14, 6.15,
6.16, 6.17, and 6.18

Criterion Test
case

Weight (Points)

Task1 Task2 Task3 Task4

C8 (small) 0.11(5) 0.1 (7) 0.05 (5) 0.08 (8)
e1 0.6 (3) 0.3 (2) 0.6 (3) 1 (8)
e2 0.4 (2) 0.7 (5) 0.4 (2)

C9 (correctness) 0.33 (15) 0.35 (24) 0.35 (25) 0.46 (46)
e1 0.133 (2) 0.6 (14) 0.48 (12) 0.5 (23)
e2 0.133 (2) 0.2 (5) 0.52 (13) 0.5 (23)
e3 0.133 (2) 0.2 (5)
e4 0.133 (2)
e5 0.133 (2)
e6 0.133 (2)
e7 0.202 (3)

C10 (efficiency) 0.56 (25) 0.55 (39) 0.6 (40) 0.46 (46)
e1 0.12 (3) 0.15 (5) 0.16 (8) 0.5(23)
e2 0.12 (3) 0.15 (6) 0.42 (16) 0.5(23)
e3 0.12 (3) 0.35 (14) 0.42 (16)
e4 0.16 (4) 0.35 (14)
e5 0.16 (4)
e6 0.16 (4)
e7 0.16 (4)

SUBTOTAL 1(45) 1(70) 1(70) 1(100)

Table 6.16: Weights of criteria for the attribute Performance of the compiled code. The
criteria are taken from Table 6.2. The points derived from the weights were rounded.

Criterion Weight wj Points

C13 (consistency) 0.33 9.9
C14 (layout) 0.2 6
C15 (naming) 0.2 6
C16 (substructures) 0.2 6
C17 (magic) 0.07 2.1

SUBTOTAL 1 wpt
style = 30

Table 6.17: Weights of criteria for the attribute Quality of programming style. The
criteria are taken from Table 6.3. The jury decided not to reveal the scores for separate
criteria to the contestants, therefore there was no need to round up the points.

134

6.2 Model Building and Piloting

Criterion Weight wj Points

C19 (validity) 0.2 5
C20 (category) 0.4 10
C21 (completeness) 0.4 10

SUBTOTAL 1 wpt
tests = 25

Table 6.18: Weights of criteria for the attribute Quality of a set of test cases. The
criteria are taken from Table 6.4.

6.2.1.9 Partial Value Functions for the Evaluation Criteria
Quality of reasoning on design. We have defined the partial value function for
each criterion from C1 to C6. Therefore, further we assume that j = 1, · · · , 6 (the
indices of criteria from C1 to C6), i = 1, · · · , 14 (the indexes of submissions A1 to
A14), and k = 1, · · · , 3, where k is the index of the jury member.

The performance of submissions in terms of all the criteria from C1 to C6, denoted
as xk

j (Ai), and measured using the linguistic scale taken from Table 3.1. These are
the inputs to the partial value function which should perform the following:

1. Convert each linguistic term xk
j (Ai) into a fuzzy number using Table 3.1.

2. Convert each fuzzy number into a crisp number using Table 3.2.

3. Calculate the aggregated crisp score vaggr
j (Ai) (i.e., taking into account the

evaluations of each involved jury member) using Formula 3.15.

4. In order to relate the scores of each criterion to the score of criteria correct-
ness of design decisions (C5), apply the following inter-criterion formula to
vaggr

j (Ai), j 6= 5:

vj(Ai) =
vaggr

j (Ai)× vaggr
5 (Ai)

vmax
(6.2)

where vmax is the maximum possible value of vaggr
5 (Ai). vmax is equal to the

maximum µT (Ã) value in Table 3.2, i.e. 0.92. For j = 5: v5(Ai) = vaggr
5 (Ai).

The score for the whole attribute is calculated using Formula 6.3 and rescaled:

vreasoning(Ai) =
∑6

j=1 vj(Ai)wj

vmax
× wpt

reasoning (6.3)

Performance of the compiled code. The performance of submissions in
terms of the three criteria from C8 to C10 is measured objectively and the jury is
not involved in measuring directly (i.e. only in deciding the weights).

135

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

We defined the partial value function for each criterion from C8 to C10. There-
fore, further we assume that j = 8, · · · , 10 (the indices of criteria from C8 to C10),
i = 1, · · · , 14 (the indexes of submissions A1 to A14).

The performance in terms of each criterion is measured by one or more test cases,
and each test case consists of one or more tests. We assume that e = 1, · · ·Ej (Ej

is the number of test cases for the criterion j), and r = 1, · · ·Re (Re is the number
of tests for test case e).

The performance of submissions in terms of all the criteria from C8 to C10,
denoted as xer

j (Ai) is measured using the Boolean scale, i.e., xer
j (Ai) = 0 or 1.

These are the inputs to the partial value function.
The partial value function should perform the following:

1. Calculate the Boolean score for each test case e:

xe
j(Ai) =

Re∏
r=1

xer
j (Ai) (6.4)

2. Calculate the rescaled score for each test case e (that is required, because the
scores for each test case are made available to the contestants:

xe_scaled
j (Ai) = xe

j(Ai)× we_pt
j (6.5)

3. Calculate the value of the partial value function:

vj(Ai) =
Ej∑

e=1
xe_scaled

j (Ai) (6.6)

Then the score for the whole attribute is calculated:

vperformance(Ai) =
10∑

j=8
vj(Ai) (6.7)

Note that, in this case, the classical WSM was applied, because neither GDM
nor linguistic variables were involved.

Quality of the programming style. We defined the partial value function
for each criterion from C13 to C17. Therefore further we assume that j = 13, · · · , 17
(the indices of criteria from C13 to C17), i = 1, · · · , 14 (the indices of submissions
A1 to A14), and k = 1, · · · , 3, where k is the index of a jury member.

The performance of submissions in terms of all the criteria from C13 to C17,
denoted as xk

j (Ai), and measured using the linguistic scale, is shown in Table 3.1.
These are the inputs to the partial value function which should perform the following:

136

6.2 Model Building and Piloting

1. Apply the inter-atribute function defined by Formula 6.1:

vj(Ai) = 0, if v8(Ai) < vmax
8 , (6.8)

where vmax
8 is the maximum score for the criterion C8 (small correctness tests

focusing on the basic categories of input data).
The inter-attribute function is applied in the first step, so that the jury would
not spend their time on evaluating the quality of programming style if the
score is intended to be cancelled.

2. Convert each linguistic term xk
j (Ai) into a fuzzy number using Table 3.1 for

those i values that were not processed by Formula 6.8.

3. Convert each fuzzy number into a crisp number using Table 3.2.

4. Calculate the aggregated crisp score vj(Ai) (i.e. taking into account the eval-
uations of each involved jury member) using Formula 3.15.

The score for the whole attribute is calculated and rescaled:

vstyle(Ai) =
∑17

j=13 vj(Ai)wj

vmax
× wpt

style (6.9)

where vmax is equal to the maximum µT (Ã) value in Table 3.2, i.e. vmax = 0.92.
Quality of a set of test cases. Further we assume that j = 19, · · · , 21 (the

indices of criteria from C19 to C21), i = 1, · · · , 14 (the indices of submissions from
A1 to A14), k = 1, · · · , 3, t = 1, · · · , Ti, where t is the index of the submitted test
and Ti is the total number of tests submitted by Ai.

We define partial value functions for each of the three criteria separately.

• Validity of a set of test cases (C19)

v19(Ai) =
∑Ti

t=1 xt(Ai)
Ti

× w19 (6.10)

where xt(Ai) represents the validity of test t submitted by Ai and its value is
either 0 or 1. Ti is the total number of test cases submitted by Ai.

• Belonging to a certain test category (C20)

v20(Ai) =
∑Ti

t=1 yt(Ai)
×

w20 (6.11)

where yt(Ai) = 0 or 1, and it shows whether the test belongs to the test
category indicated by the contestant, or not. Ti is the total number of test
cases submitted by Ai.

137

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

Note that the decision, whether a test belongs to a certain category or not, is
made by jury. Nevertheless, we do not apply GDM or linguistic variables. The
reason is that we require a Boolean decision and believe that the jury should
be unanimous on that.

• Completeness of the whole set of tests (C21)

v21(Ai) = g(Ai)
gjury

× w21 (6.12)

where g(Ai) is the number of different test categories provided by a contestant,
and gjury is the number of different test categories suggested by the jury.

The aggregated score for the attribute is calculated in the following way:

vtests(Ai) =
21∑

j=19
vj(Ai) (6.13)

The attribute is new and the contestants are not used to it. Therefore we elab-
orated sample partial value functions which we considered to be good for the first
piloting, but which should be gradually updated when the contestants start getting
used to the attribute.

6.2.2 Evaluation of Submissions to the Pilot Tasks
For piloting we chose a small contest which was held in the training camp for
IOI’2010. 14 contestants and 3 jury members took part in the contest. All the
tasks were solved in the same day. Table 6.19 presents data about the submissions
that were received for each task.

Quality of reasoning on design. This attribute was evaluated for Task 1. We re-
ceived five submissions to this task and two of them contained reasoning on design.
In Table 6.20, we present the results of evaluation in linguistic terms and the corre-
sponding crisp scores which were obtained after using the partial scoring function,
defined in Subsection 6.2.1.9

Performance of the compiled code. This attribute was evaluated for all four tasks.
In Table 6.21, we present the scores for each of the three criteria and the total score
for this attribute for each task.

Quality of the programming style. This attribute was evaluated for Task2 and
Task3. We received 23 submissions to those tasks and the style of 5 submissions
was not evaluated, because they did not score enough points for the criterion C8.

In Table 6.22, we present the partial scores for separate criteria and the aggre-
gated scores for the whole attribute of Task2. The scores were obtained after using
the partial scoring function, defined in Subsection 6.2.1.9. The scores for Task3 were
calculated in a similar way, therefore for this task, we only provide the aggregated
score for the whole attribute.

138

6.2 Model Building and Piloting

Contestant ID Task1 Task2 Task3 Task4

A1 + +
A2 + +
A3 + +
A4 +
A5 + +
A6 + +
A7 + + + +
A8 + +
A9 + + + +
A10 + + +
A11 + + +
A12 + + + +
A13 + + +
A14 +

TOTAL (33) 4 10 13 6

Table 6.19: Data about the submissions for the piloted tasks.

Criteria A12 A13

M2 M3 M13 vj(A12) M2 M3 M13 vj(A13)

C1 (clarity) P P P 0.10 F VG G 0.37
C2 (story) P BFG P 0.15 G VG VG 0.43
C3 (knowledge) BPF F VP 0.14 F VG G 0.37
C4 (convincingness) BPV BPF P 0.11 BFG F BFG 0.29
C5 (correctness) BPF BPF BPV 0.35 F P BFG 0.45
C6 (efficiency) BPF BFG BPF 0.18 BFG G BPF 0.29

Table 6.20: Evaluation of reasoning on design. The columns contain the evaluations
of three jury members: M2, M3, and M13. The aggregated values calculated at the
attribute level are: vreasoning(A12) = 5.58, and vreasoning(A13) = 12. The opinions
of jury members differ significantly on v5(A13) (written in italics). In general, such
submissions are reviewed and discussed to find out why the opinions of jury members
differ so much.

Quality of a set of test cases. This attribute was evaluated for Task 1. We
received 4 submissions to those tasks and two submissions contained sets of test
cases. In none of the submissions comments were provided about what kind of tests
were created. Consequently, we could only apply the criterion validity of a set of
test cases. The scores are given in Table 6.23.

The final ranking Table 6.24 contains the final ranking of the contestants based
on the scores presented and discussed above.

139

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

Contes-
tant ID Task1 Task2 Task3 Task4

A1 7+24+25=56 5+12+0=17
A2 7+24+25=56 5+25+24=54
A3 5+12+0=17 8+0+0=8
A4 0+0+0=0
A5 7+24+0=31 5+25+0=30
A6 7+10+19=36 8+0+0=8
A7 3+0+0=3 7+24+6=37 5+25+40=70 8+23+0=31
A8 2+0+0=2 3+0+0=3
A9 5+2+3=10 7+0+0=7 5+25+8=38 8+0+0=8
A10 5+12+0=17 8+0+0=8
A11 7+24+39=70 5+25+40=70 8+23+0=31
A12 3+0+0=3 7+0+0=7 3+0+0=3 8+0+0=8
A13 3+0+0=3 7+19+0=26 5+12+8=25
A14 3+0+0=3

Table 6.21: Evaluation of performance of the compiled code. The columns contain
the evaluations of the three attributes (simple cases, correctness, efficiency) and the
aggregated score for the performance of the compiled code.

Task2 Task3

v13(Ai) v14(Ai) v15(Ai) v16(Ai) v17(Ai) vstyle(Ai) vstyle(Ai)

A1 0.65 0.55 0.78 0.37 0.92 20.34 27.30
A2 0.85 0.85 0.70 0.85 0.92 27.00 23.34
A3 23.83
A5 0.74 0.76 0.78 0.85 0.92 25.82 30.00
A6 0.85 0.55 0.55 0.59 0.50 21.56
A7 0.59 0.65 0.62 0.74 0.66 21.13 26.62
A9 0.48 0.65 0.48 0.75 0.66 19.01 28.89
A10 17.85
A11 0.79 0.79 0.75 0.85 0.92 26.19 23.62
A12 0.42 0.50 0.56 0.85 0.55 18.33
A13 0.75 0.82 0.75 0.85 0.50 25.02 25.93

Table 6.22: Evaluation of the quality of programming style. The columns contain
partial scores for separate criteria of Task 2, and the aggregated score for the whole
attribute of Tasks 2 and 3. Spaces are left if the submission was not delivered

6.2.3 Feedback About the Piloted Evaluation Scheme
The overall conclusion is that piloting of the proposed scheme was successful and
can be applied in LitIO. Below we provide the feedback of the jury members who
participated in the piloting.

140

6.2 Model Building and Piloting

Criteria A10 A12

No of submitted tests 9 7
No of valid tests 5 6
C19 (validity) 3 4
C20 (category) - -
C21 (completeness) - -

TOTAL 3 4

Table 6.23: Evaluation of set of test cases. The submitted sets of test cases were not
eligible to be evaluated in terms of criteria C20 and C21.

No. Contestant ID Task1 Task2 Task3 Task4 Total

1 A11 96.19 93.62 31 220.81
2 A7 3 58.13 96.62 31 188.75
3 A2 83 77.34 160.34
4 A1 76.34 44.3 120.64
5 A13 15 51 50.93 116.93
6 A5 56.82 60 116.82
7 A9 10 26.01 66.89 8 110.9
8 A6 57.56 8 65.56
9 A12 12.58 25.33 3 8 48.91
10 A3 40.38 8 48.38
11 A10 3 34.85 8 45.85
12 A8 2 3 5
13 A14 3 3
14 A4 0 0

Table 6.24: Aggregate scores of the piloted tasks.

• Even though the description of partial value functions seems to be compli-
cated, in practice the values are calculated automatically and do not add any
additional burden to the jury.

• It would be better to have two scales for expressing the scores of manual
linguistic evaluation. The first scale should be small in size and used for
criteria of a small scope (e.g., C17 absence of magic numbers). The second
scale should be larger and used for criteria of a larger scope (e.g. C12, Level
of quality of programming style).

• It would be more convenient to use a conversion scale (i.e., a scale that asso-
ciates linguistic variables with fuzzy numbers) for manual linguistic evaluations
that provides full and zero scores. Currently, if all the jury members assign
the highest linguistic score, the corresponding crisp value is 0.92, but not 1.

141

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

• It is convenient to use submission and attribute templates.

• During piloting (as well as in LitIO) the tasks are assigned equal weights. How-
ever, for the tasks where submission includes both an algorithm-code complex
and a set of test cases, a higher weight should be considered.

• It is good to apply the GDM method proposed for deciding weights of at-
tributes, important criteria, important inter-criteria partial value functions,
because the GDM method ensures that the opinion of each decision maker
is taken into account. However, for smaller issues (e.g., weights of test cases
within the criterion small correctness tests C8) there is no need to apply MCDA
algorithms. The weights can be decided by a few jury members involved.

• The evaluation time increases a lot if many criteria requiring manual evaluation
are included into the evaluation scheme. That should be taken into account
when composing the evaluation scheme for a concrete task set.

• It might take several years till the contestants and their coaches get used to
the new element of a submission: a set of test cases. The partial value function
for this attribute will have to be reconsidered for several times, until we arrive
at the satisfactory one.

6.2.4 Sensitivity Analysis of the Scores of the Piloted Tasks
In Subsection 3.9, the formula were provided how to calculate the most critical crite-
ria and the most critical measure of performance. The calculated data of sensitivity
measures are provided in the following two subsections.
6.2.4.1 The Most Critical Criterion
During the experiment, the contestants solved four tasks. We decided to calculate
not only the most critical criterion for each task, but also the most critical criterion
for the whole set of tasks. The data are presented in Table 6.25.

Task1 Task2 Task3 Task4 Task set

PT C19 C10 C10 C9 C10 (task2)
δ′

ji1i2 -58.96 94.92 18.75 50 97.64
wj in points 5 39 40 46 39

PA C19 C10 C10 C9 C9 (task3)
δ′

ji1i2 -58.96 3.47 -86.17 50 -0.248
wj in points 5 39 40 46 25

Table 6.25: The most critical criterion measures. δ′
ji1i2

values presented in the table
are the signed |δ′

ji1i2
| value which corresponds to PT and PA indices.

It can be concluded from the data that the best alternative for each task and
the best overall alternatives are not very sensitive to the changes of weights of the

142

6.2 Model Building and Piloting

criteria. The smallest relative change is 18.75 for the weight of the criterion C10 in
Task3.

Task1 Task2 Task3 Task4

D′
k sens(Ck) D′

k sens(Ck) D′
k sens(Ck) D′

k sens(Ck)

C8 129.89 0.0076 100 0.01 100 0.01 0
C9 129.89 0.0076 4.67 0.2141 65.59 0.0152 50 0.02
C10 86.59 0.0115 3.47 0.2882 18.75 0.0539 0
C13 23.38 0.0428 436.83 0.023
C14 48.17 0.0208 1009.84 0.0010
C15 43.98 0.0227 598.42 0.0017
C16 38.91 0.0257 812.21 0.0012
C17 68.82 0.0145 0
C19 58.96 0.0169

Table 6.26: The criticality degree and sensitivity coefficient values for each criterion.
The sensitivity coefficient values for non-feasible values of D′

k are equal to 0.

The data about the criticality degree and the sensitivity coefficient of each cri-
terion are presented in Table 6.26. The most sensitive criterion is C10 criterion of
Task2. Its sensitivity coefficient is 0.2882. In this case, this is the criterion with the
highest weight. The same holds for the most sensitive criteria of the other tasks.

It can be concluded that in this pilot contest, the criteria related to the perfor-
mance of the compiled code are the most important ones. In particular, C10 (ef-
ficiency tests sorted into groups to benchmark the solutions of different efficiency)
and C9 (correctness tests focusing on different categories of input data).

6.2.4.2 The Most Critical Measure of Performance

The goal of calculating the most critical measure of performance is to analyse how
easy it is to change the ranking of alternatives by changing the performances of
alternatives. The data about the first and the second tasks are given in Tables 6.27,
6.28. Extensive data about the other two tasks are not provided for the lack of
space. Note that the alternatives in each table are ranked in the order of preference
to a particular task, i.e., v(F1) ≥ v(F2) ≥ · · · ≥ v(Fn). Therefore different notation
(Fi instead of Ai) is used.

The most sensitive alternative in Task1 is F3, the most sensitive alternative in
Task2 is F4. The most sensitive alternative in Task3 is F1 with ∆′12 = 7.502 and
sens(v10(A1)) = 0.1333. There are no sensitive alternatives in Task4, i.e., there is
no way to change ranking by relatively decreasing or increasing the values of partial
value functions. The alternatives that perform equally with all the criteria are not
taken into account.

143

6. IMPROVEMENT OF EVALUATION SCHEME USING MCDA

Task1

C1 C2 C3 C4

F2 434 (0.0023) F1 289.33 (0.0034) F1 310 (0.003) F1 394.54 (0.0025) F1

C5 C6 C8 C9

F1 96.44 (0.0103) F2 78.62 (0.0127) F2
F2 124 (0.0080) F1 241.11 (0.0041) F1 78.62 (0.0127) F1
F3 51.95 (0.0192) F2 129.89 (0.0076) F2

C10 C19

F2 58.96 (0.0169) F1
F3 86.59 (0.011) F2

Table 6.27: The criticality degree ∆′
ij (%), the sensitivity coefficients sens(vj(Ai)) (in

parentheses), and the corresponding alternative are given for each vj(Ai) performance
measure of Task1. Here F1, F2, F3 represent the alternatives sorted in the order of
preference, i.e., v(F1) ≥ v(F2) ≥ v(F3). Non-feasible values are not represented.

6.3 Conclusions
The goal of this chapter was to reconsider the evaluation scheme, using the MCDA
approaches. To accomplish the required stage of the MCDA process, problem struc-
turing, we followed the Goal/Question/Metric framework and invited a group of
Lithuanian and international experts to discuss and the evaluation scheme for LitIO.
We provided the experts with a description of the Olympiad structure, scope and
resources as well as a three-level (submission, attributes, metrics) hierarchical eval-
uation model pattern to be discussed and filled.

The experts represented two trends that can be distinguished in informatics
contests. Some of them associate the quality of a submission with the performance
of implementation only, while the others think that a high-quality submission should
have both reasoning on design and test data to check the implementation.

The educational goals of LitIO were the key factor in deciding in favour of the
latter concept of quality of a solution. Two significant changes were introduced
into the current model. The verbal algorithm description which was not related to
the implementation and emphasized the correctness and efficiency was replaced by
reasoning on the design, which should be related to the implementation and shifted
the focus to design issues. The other new aspect was introducing a set of tests as
part of a solution.

In the proposed model the concept of a submission is altered. The attributes
that need to be measured about the submission are identified, as well as metrics to
measure each of the attributes.

During the model analysis stage, the evaluation scheme proposed was piloted in
a small contest. A procedure was elaborated and demonstrated how to adjust the
evaluation scheme to concrete tasks and how to apply it in practice. The piloting

144

6.3 Conclusions

Task2

C8 C9 C10 C13

F1 55.37 (0.0181) F2 34.07 (0.0293) F2
F2 95.96 (0.0104) F3 27.99 (0.0357) F3 26.87 (0.0372) F3 73.44 (0.0136) F3
F3 95.6 (0.0104) F2 27.99 (0.0357) F2 26.87 (0.0372) F2 96.04 (0.0104) F2
F4 9.35 (0.0170) F5 2.73 (0.3668) F5 10.91 (0.0917) F5 10.31 (0.0970) F5
F5 9.35 (0.0170) F4 6.54 (0.1528) F4 3.44 (0.2904) F4 7.15 (0.1398) F4
F6 9.43 (0.1061) F5 2.75 (0.3638) F5 8.29 (0.1207) F5
F7 80.79 (0.0124) F6 29.77 (0.336) F6 70.07 (0.0143) F6
F8 10.02 (0.0998) F9 13.57 (0.0737) F9
F9 10.02 (0.0998) F8 15.51 (0.0645) F8
F10 1161.58 (0.009) F9

C14 C15 C16 C17

F1
F2 239.73 (0.0042) F1 291.10 (0.0034) F1 239.73 (0.0042) F1 632.82 (0.0016) F1
F3 187.27 (0.0053) F2 132.05 (0.0076) F2 278.38 (0.0036) F2 319.88 (0.0031) F2
F4 15.44 (0.0648) F5 16.18 (0.0618) F5 13.56 (0.0738) F5 43.43 (0.0230) F5
F5 18.24 (0.0548) F4 18.24 (0.0548) F4 17.01 (0.0588) F4 57.33 (0.0174) F4
F6 13.31 (0.0751) F5 12.97 (0.0771) F5 11.90 (0.0840) F5 31.42 (0.0318) F5
F7 105.75 (0.0095) F6 115.62 (0.0086) F6 102.02 (0.0098) F6 495.52 (0.0020) F6
F8 16.54 (0.0605) F9 22.40 (0.0447) F9 14.33 (0.0698) F9 46.54 (0.0215) F9
F9 21.50 (0.0465) F8 19.20 (0.0521) F8
F10 12.65 (0.0791) F8 55.84 (0.0179) F8

Table 6.28: The criticality degree ∆′
ij (%), the sensitivity coefficients sens(vj(Ai))

(in the parentheses) and the corresponding alternatives are given to each vj(Ai) per-
formance measure for Task1. Here F1, F2, · · · , F10 represent the alternatives sorted in
the order of preference, i.e., v(F1) ≥ v(F2) ≥ · · · ≥ v(F10). Non-feasible values are not
represented.

confirmed that the proposed evaluation scheme is suitable to be applied in LitIO. The
feedback with suggestions for improvement, especially about the scheme adjustment
process was received. We have calculated the sensitivity measures. They have
showed that the winner is strong, i.e., the score of the contest winner was not very
sensitive either in terms of criteria weights or in terms of performances of other
contestants. In general, the sensitivity coefficient values were not high, which is
positive and implies that the ranking could not be easily changed.

145

7 Conclusions

1. The evalutation scheme currently applied in LitIO should be improved.
The practice of evaluating the solutions to programming assignments in un-
dergraduate courses in many cases is not applicable in informatics contests,
because of different goals, different task complexity, and different evaluation
methods.

2. The tasks with graphs are suitable for a semi-automated evaluation conducted
by applying visualisation of the graphs, implemented in the algorithm-code
complexes.

3. The attributes that describe the quality of an algorithm-code complex and are
included into the current evaluation scheme are valid in terms of the ISO-9126-
1 quality model. The precision of measurements of the quality of algorithm-
code complexes, obtained by using black-box testing, is 80% or more depending
upon the scoring function.

4. The evaluation scheme, developed applying the MCDA methods is suitable for
LitIO.

146

A Appendices

A.1 Nescafé Algebra, Sample of a Batch Task
The whole text of problem Nescafé Algebra was presented in the first exam session
in the finals of LitIO’2008 for senior division contestants. Constraints on this task
are given in the input section.

Task story. Linas is studying informatics and even though he says he enjoys morn-
ings, most of his work he completes at the night time. To avoid falling asleep
during the night, he... drinks «coffee».
As many IT people, Linas is rather lazy and therefore he got used to buying
instant “Nescafé” coffee, because it is very easy to prepare it. There are
different sorts of “Nescafé”. For example, the «2 in 1» packet contains coffee
and milk powder while the «3 in 1» packet there includes sugar as well.
“«2 in 1», «3 in 1»... Hmm, if you mix them both, would you get «5 in 2»
coffee?”, – enjoyed Linas! And being full of inspiration he continued reasoning
in a similar way:
“Suppose we have coffee mixes «p in r» and «s in t». If we mix those two,
the resulting super-mix will be «(p+ s) in (r + t)». Which of the following N
packages of coffee «a1 in 1», «a2 in 1», · · · «aN in 1» we need to mix in order
to get a super-mix «b in c»?”

Task. Write a program to solve the task.

Input. The input data are presented in the file kava.in. The first line contains three
integers b, c, and N . The following N lines contain numbers a1, a2, ..., aN

that describe the corresponding coffee mixes. The numbers are written one
number per line. All the input numbers are positive.
The following constraints are valid: ai ≤ 1, 000, b ≤ 10, 000, c ≤ N ≤ 100.

Output. Your program should output a solution to the file kava.out. The solution
consists of the numbers of mixes that have to be mixed in order to get a super-
mix «b in c». The numbers of mixes can be presented in any order, one number
per line. Each mix can be used only once for obtaining the super-mix.
If there is no way to make a super-mix «b in c», then the only line of the
output file should contain zero (0). In the case of several possible solutions,
the program should output any of them.

Examples are provided in Table A.1.

147

A. APPENDICES

Input Output Comments

5 2 3
2
3
1

1
2

If we mix the content of the first and the second packet, we
will get a super-mix «5 in 2» The solution could be written
in the inverse order: first 2 and then 1.

6 2 3
2
3
1

0 It is only possible to get a super-mix «6 in 3», but there is
no way to get a super-mix «6 in 2».

12 3 6
6
7
5
2
3
2

2
4
5

Other possible solution would be to mix the content of the
second, fifth and the sixth packages because the sixth and
the fourth packages are identical. The program can output
any solution

Table A.1: Sample tests for Nescafé Algebra

A.2 Material and Questionnaire Distributed to the
Experts

I am inviting you to be one of the experts in the investigation, as part of my PhD
research. The research concerns grading in the (Lithuanian) Informatics Olympiads,
which are contests in algorithmic problem solving for high school students described
below.

The contest has several objectives. However, in this research, the most important
contest goals are the challenge in algorithmic problem solving and the educational
aspect of the contest, i.e., to forward the message to the contestants that the solu-
tions should be designed in conformance with the academic standards (as much as
it is possible under the contest pressure).

The purpose of my research is to develop a framework for producing motivated
grading schemes for contest tasks. Such a grading scheme is applied to the contes-
tants’ submissions in order to determine a score that reflects their abilities. The
framework defines the aspects that are taken into account and how they are mea-
sured.

The current framework for grading schemes (described below) lacks transparency
and a scientific foundation.

The main work I am asking you to do is to propose the list of aspects to be
measured and the corresponding measures.

148

A.2 Material and Questionnaire Distributed to the Experts

Further I explain a few concepts used in the research.

Submission. 1 Currently, the submission consists of a verbal description of the
algorithm and the implementation of the algorithm (not necessarily the same
as in the verbal description) presented in the form of a compilable source code
(in Pascal/C/C++).
The concept of submission is not status quo and can be altered, if there is a
motivation for that (e.g., if an important aspect that can be used to determine
a score requires alterations in the understanding of a submission)

Quality of a submission. The quality is understood as a constructed notion, i.e.,
determined by the decisions of experts to choose metrics.

Metric. A metric consists of:

1. The domain (input set) of the metric; the broadest possible domain is a
submission; if the metric applies to some part of a submission, it should
be indicated which part is that.

2. The range (output set) of the metric (a scale). The scale is expected to
be either a ratio scale where the measurement is expressed as an integer
from the interval [0 to 100], or an ordinal scale.

3. The description of the corresponding output for a valid input that de-
scribes how to determine the metric’s value for a given submission (this
could be given as an algorithm, i.e. recipe)

4. A motivation for why 1, 2 and 3 are a valid way of measuring this at-
tribute.

I would like to ask you as an expert to answer the following questions:

• What attributes of a submission are most relevant for determining a score and
can be objectively measured? You can restrict yourself to what you consider
the not more than five most relevant attributes.

• What metrics would you propose to measure these attributes (more than one
metrics could be used to measure each attribute). Define each metric as pre-
cisely as you can.

• How would you suggest to implement each metric (taking into account the
resources and limitations described below). The metrics can be implemented
by a manual measurement procedure, or by an automated procedure, or by
their combination. Describe each procedure as precisely as you can.

1The concept of submission (i.e. material presented for evaluation) is unambiguously understood
in the community of informatics contests and there was no need to repeat it here. The purpose of
explaining it here was to provide the components of a submission in LitIO.

149

A. APPENDICES

• How would you suggest to integrate the separate metrics to get one score (for
one submission).

DESCRIPTION OF THE CONTEST (Lithuanian Informatics Olympiad at the
national level) and its resources
There are two divisions (junior and senior) in LitIO. The national contest consists
of two parts. The first part is an on-line round which lasts 5 hours. The second part
is a face-to-face contest with two consecutive contest days, 4-5 hours each round.

During one 4-5 hour round the contestants have to solve two-three tasks in each
division. Altogether, the organizers have to provide from 10 to 15 contest tasks.
Some of the tasks may overlap.

The number of contestants varies from 50 (on-site contest) to 300 (on-line con-
test). On average there are 5-8 jury members available for task design and grading.
They agree to spend up to 3-5 working days for preparing one task for senior stu-
dents and up to 2-3 days for preparing one task for junior students. Those who have
more time available are preparing more than one task.

The time available for grading is from 4-5 hours (on-site contest) to two working
days (on-line contest). In case of on-line contest, the scores have to be produced
within two weeks. However, no member of the jury will agree to spend more than a
couple of full working days on grading.

The technical resources are 6-8 grading machines for the on-line contest (more
are available on request) and one grading machine for the final round.

DESCRIPTION OF THE CURRENT GRADING PROCEDURE
Each algorithmic task is assigned the same number of points (maximum 100)

independently of its difficulty. The points are distributed over the verbal description
of an algorithm (0-20% of points), testing results (70-100%) and the programming
style (0-10%).

The algorithm description is to be written in natural language and is graded
independently whether the program is provided or not. There is no requirement
for the description to match the implementation. The program performance (cor-
rectness and efficiency) is tested by running the program with set of tests designed
in advance and not disclosed to the contestants until after the contest. Tests are
grouped, each group targeting a specific goal. The points for the tests in a group
are only given if all the tests in the group are passed successfully.

The programming style is graded only if the program scores 50% or more points
for the tests.

150

References

(1990). IEEE Standard Glossary of Software En-
gineering Terminology. Report IEEE Std
610.12-1990, IEEE. 105

(2001). ISO 9126-1:2001, Software engineering -
Product Quality, Part 1: Quality model. ISO,
International Organization for Standardiza-
tion. http://www.sqa.net/iso9126.html. 89

(2002). IOI’2002 manual. http://www.ioi2002.
or.kr/eng/PracticeCompetitionMaterial/
ContestSystemManual.pdf. 17, 29

(2002). Value Tree Analysis. Multiple Criteria
Decision Analysis E-learning site created in
the EU project ORWorld by System Analysis
Laboratory of Helsinki University of Technol-
ogy. http://www.mcda.hut.fi/value_tree/
theory/. 48, 50, 53, 54, 55

(2004). IOI’2004 material. http://olympiads.win.
tue.nl/ioi/ioi2004/surveys/contestants.
html. 76

(2006). Perspectives on computer science competi-
tions for (high school) students. In Workshop,
Dagstuhl, Germany. http://www.bwinf.de/
competition-workshop/. 8

(2007). 2007 m. informacinių technologijų val-
stybinio brandos egzamino rezultatų anal-
izė. http://www.nec.lt/failai/339_rez_
analize_2007_VBE_statistine_IT.pdf. Na-
cionalinis egzaminų centras. 96

(2007). Software Quality ISO Standards. Arisa -
Controlling Software Quality. http://www.
arisa.se/compendium/node6.html. 89

(2007). SWOT analysis. Strategic manage-
ment. http://www.quickmba.com/strategy/
swot/. 55

(2008). IOI regulations. http://ioinformatics.
org/rules/reg08.pdf. 12

(2008). ISO/IEC 12207:2008 Software life cycle pro-
cesses. In Software Engineering Process tech-
nology (SEPT). http://www.12207.com. 86

(2008). Regulations of Lithuanian Informat-
ics Olympiad. http://www.lmitkc.lt/lt/
informatikos. (in Lithuanian). 12

(2009). Waterfall lifecycle model, softde-
vteam. http://www.softdevteam.com/
waterfall-lifecycle.asp. 86

(2010a). ACM-ICPC International Collegiate Pro-
gramming Contest. http://cm.baylor.edu.
xiii, 9, 40, 119

(2010b). The ACM-ICPC World Finals 2010. http:
//www.cs.helsinki.fi/en/news/761. 10

(2010). Bundeswettbewerb informatik. http://
www.bwinf.de/. 44, 116

(2010). CourseMarker. Automatic Marking and
Feedback for Students and Teachers. School of
Computer Science and IT, The University of
Nottingham, UK. http://www.cs.nott.ac.
uk/~cmp/cm_com/index.html. 28

(2010). Dr. Juozo Petro Kazicko moksleivių kompi-
uterininkų forumas. http://forumas.ktu.lt.
13

(2010). IOI – International Olympiad in Informat-
ics. http://www.ioinformatics.org. xiv, 9

(2010). ISO 9126 Software Quality Characteristics.
http://www.sqa.net/iso9126.html. 89, 105

(2010). Item analysis. http://fcit.usf.edu/
assessment/selected/responsec.html. 13

(2010). Item discrimination. Website
of University of Wisconsin Oshkosh,
USA. http://www.uwosh.edu/testing/
facultyinfo/itemdiscrimone.php. 96

(2010). Lithuanian Olympiads in Informatics.
http://ims.mii.lt/olimp. (in Lithuanian).
xiv, 125

(2010). Scientific Committee of Lithuanian Infor-
matics Olympiads. 51

(2010). SWOT analysis: Lesson. http:
//marketingteacher.com/Lessons/lesson_
swot.htm. 55

(2010). TopCoder algorithm competition. http:
//www.topcoder.com/tc. 10, 114

151

http://www.sqa.net/iso9126.html
http://www.ioi2002.or.kr/eng/PracticeCompetitionMaterial/ContestSystemManual.pdf
http://www.ioi2002.or.kr/eng/PracticeCompetitionMaterial/ContestSystemManual.pdf
http://www.ioi2002.or.kr/eng/PracticeCompetitionMaterial/ContestSystemManual.pdf
http://www.mcda.hut.fi/value_tree/theory/
http://www.mcda.hut.fi/value_tree/theory/
http://olympiads.win.tue.nl/ioi/ioi2004/surveys/contestants.html
http://olympiads.win.tue.nl/ioi/ioi2004/surveys/contestants.html
http://olympiads.win.tue.nl/ioi/ioi2004/surveys/contestants.html
http://www.bwinf.de/competition-workshop/
http://www.bwinf.de/competition-workshop/
http://www.nec.lt/failai/339_rez_analize_2007_VBE_statistine_IT.pdf
http://www.nec.lt/failai/339_rez_analize_2007_VBE_statistine_IT.pdf
http://www.arisa.se/compendium/node6.html
http://www.arisa.se/compendium/node6.html
http://www.quickmba.com/strategy/swot/
http://www.quickmba.com/strategy/swot/
http://ioinformatics.org/rules/reg08.pdf
http://ioinformatics.org/rules/reg08.pdf
http://www.12207.com
http://www.lmitkc.lt/lt/informatikos
http://www.lmitkc.lt/lt/informatikos
http://www.softdevteam.com/waterfall-lifecycle.asp
http://www.softdevteam.com/waterfall-lifecycle.asp
http://cm.baylor.edu
http://www.cs.helsinki.fi/en/news/761
http://www.cs.helsinki.fi/en/news/761
http://www.bwinf.de/
http://www.bwinf.de/
http://www.cs.nott.ac.uk/~cmp/cm_com/index.html
http://www.cs.nott.ac.uk/~cmp/cm_com/index.html
http://forumas.ktu.lt
http://www.ioinformatics.org
http://www.sqa.net/iso9126.html
http://fcit.usf.edu/assessment/selected/responsec.html
http://fcit.usf.edu/assessment/selected/responsec.html
http://www.uwosh.edu/testing/facultyinfo/itemdiscrimone.php
http://www.uwosh.edu/testing/facultyinfo/itemdiscrimone.php
http://ims.mii.lt/olimp
http://marketingteacher.com/Lessons/lesson_swot.htm
http://marketingteacher.com/Lessons/lesson_swot.htm
http://marketingteacher.com/Lessons/lesson_swot.htm
http://www.topcoder.com/tc
http://www.topcoder.com/tc

REFERENCES

Ahoniemi, T. and Reinikainen, T. (2006). ALOHA -
a grading tool for semi-automatic assessment
of mass programming courses. In Proceedings
of the 6th Baltic Sea conference on Comput-
ing education research: Koli Calling 2006,
pages 139–140, Uppsala, Sweden. 9, 45, 46

Ala-Mutka, K. (2005). A survey of automated
assessment approaches for programming as-
signments. Computer Science Education,
15(2):83–102. 21, 28, 31, 36

Ala-Mutka, K., Uimonen, T., and Jarvinen, H. M.
(2004). Supporting students in c++ program-
ming courses with automatic program style
assessment. Journal of Information Technol-
ogy Education, 3:245–262. 33, 35

Allowatt, A. and Edwards, S. (2005). IDE support
for test-driven development and automated
grading in both Java and C++. In OOP-
SLA’05 Eclipse Technology exchange (ETX)
Workshop, San Diego, California, USA. 36

Amelung, M., Piotrowski, M., and Rosner, D.
(2006). EduComponents: experiences in e-
assessment in computer science education.
ACM SIGCSE Bulletin, 38(3):1–5. 30

Andrianoff, S. K. and Hunkins, D. R. (2004).
Adding objects to the traditional ACM pro-
gramming contest. In Proceedings of the 35th
SIGCSE technical symposium on Computer
science education. 38, 105

Anido, R. O. and Menderico, R. M. (2007). Brazil-
ian olympiad in informatics. Olympiads in
Informatics, 1:5–14. 9

Astrachan, O. L., Khera, V., and Klotz, D. (1993).
The internet programming contest: Report
and philosophy. ACM SIGCSE Bulletin,
25(1):48–52. 12

Basili, V. R., Caldiera, C., and Rombach, H. D.
(1994). Goal Question Metric paradigm. En-
cyclopaedia of Software Engineering, John
Wiley & Sons, 1:528–532. 56

Basili, V. R. and Weiss, D. M. (1984). A method-
ology for collecting valid software engineer-
ing data. IEEE Transactions, Software En-
gineering, SE-10(6):728–738. 56

Belton, V. and Stewart, T. J. (2003). Multiple Cri-
teria Decision Analysis: An Integrated Ap-
proach. Kluwer Academic Publishing, Boston.
48, 52, 53, 54, 57, 58, 59, 61

Benford, S. D., Burke, E. K., Foxley, E., and Hig-
gins, C. A. (1995). The Ceilidh system for the
automatic grading of students on program-
ming courses. In Proceedings of the 33rd an-
nual on Southeast regional conference, pages
176–182. 28, 34

Benson, M. (1985). Machine assisted marking of
programming assignments. ACM SIGCSE
Bulletin, 17(3):24–25. 29, 30

Berry, R. E. and Meekings, B. A. E. (1985). A style
analysis of C programs. Communications of
the ACM, 28(1):80–88. 34

Blonskis, J. and Dagienė, V. (2006). Evolu-
tion of informatics maturity exams and chal-
lenge for learning programming. Informat-
ics Education – The Bridge between Using
and Understanding Computers (Editor: R.
T.Mittermeir), Lecture Notes in Computer
Science, 4226:220–229. 115

Blonskis, J. and Dagienė, V. (2008). Analysis of
students’ developed programs at the maturity
exams in information technologies. In Mitter-
meir, R. T. and Syslo, M. M., editors, Lecture
Notes in Computer Science, Informatics Ed-
ucation – Supporting Computational Think-
ing, volume 5090, pages 204–215. 12

Boersen, R. and Phillips, M. (2006). Programming
contests: two innovative models from new
Zealand. In Perspectives on Computer
Science Competitions for (High School) Stu-
dents, Workshop, Dagstuhl, Germany. http:
//www.bwinf.de/competition-workshop/
Submissions/1_BoersenPhillipps.pdf. 14,
41

Bowring, J. F. (2008). A new paradigm for pro-
gramming competitions. ACM SIGCSE Bul-
letin, 24(1):87–91. 13, 38

Brassard, G. and Bratley, P. (1996). Fundamentals
of algorithms. Prentice Hall. 99

Bryson, D. and Roth, R. W. (1981). Programming
contest. topics. In Computer Education for
Elementary and Secondary Schools, pages 60–
65. Joint Issue Education Board of ACM. 8

Burn, O. (2003). CheckStyle. SourceForge.net.
http://checkstyle.sourceforge.net/. 34

Burton, B. (2007). Informatics olympiads: Ap-
proaching mathematics through code. To ap-
pear in Mathematics Competitions. 18, 19

152

http://www.bwinf.de/competition-workshop/Submissions/1_BoersenPhillipps.pdf
http://www.bwinf.de/competition-workshop/Submissions/1_BoersenPhillipps.pdf
http://www.bwinf.de/competition-workshop/Submissions/1_BoersenPhillipps.pdf
http://checkstyle.sourceforge.net/

REFERENCES

Burton, B. A. (2008). Breaking the routine: Events
to complement informatics olympiad training.
Olympiads in Informatics, 2:5–15. 38

Califf, M. E. and Goodwin, M. (2002). Testing
skills and knowledge: introducing a labora-
tory exam in CS1. ACM SIGCSE Bulletin,
34(1):217–221. 31

Carlsson, C. and Fullér, R. (1996). Fuzzy multi-
ple criteria decision making: recent develop-
ments. Fuzzy Sets and Systems, 78(2):139–
153. 59, 70

Carter, J., Ala-Mutka, K., Fuller, U., Dick, M., En-
glish, J., Fone, W., and Sheard, J. (2003).
How shall we assess this? ACM SIGCSE Bul-
letin, 35(4):107–123. 30

Chen, P. (2004). An automated feedback system for
computer organization projects. IEEE Trans-
actions on Education, 47:232–240. 36

Chen, S. J., Hwang, C. L., and Hwang, F. P.
(1992). Fuzzy multiple attribute decision
making: Methods and applications. In Lec-
ture Notes in Economics and Mathematical
Systems, volume 375. Springer-Verlag, Berlin,
Germany. 59, 66, 67, 68, 69, 71, 126, 127

Chou, S. Y., Chang, Y. H., and Shen, C. Y. (2007).
A fuzzy simple additive weighting system un-
der group decision-making for facility location
selection with objective/subjective attributes.
European Journal of Operational Research.
125

Colton, D., Fife, L., and Thompson, A. (2006).
A web-based automatic program grader. In
Proceedings of ISECON, the Conference for
Information Systems Educators, volume 23,
pages 1–9, Dallas, USA. 28, 32, 38

Comer, J. R., Wier, J. R., and Rinewalt, J. R.
(1983). Programming contests. In Pro-
ceedings of the fourteenth SIGCSE technical
symposium on Computer science education,
pages 241–244. 8, 9

Cormack, G. (2006). Random factors in IOI 2005
test case scoring. Informatics in Education,
5(1):5–14. 42, 114

Cormack, G., Kemkes, G., Munro, I., and Vasiga,
T. (2006). Structure, scoring and purpose of
computing competitions. Informatics in Ed-
ucation, 5(1):15–36. 8, 12, 13, 14, 17, 41, 42,
44

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and
Stein, C. (1992). Introduction to Algorithms.
MIT Press and McGraw-Hill. xiii, xiv, 10

Crosby, P. B. (1979). Quality is free: the art of
making quality certain. McGraw-Hill, New
York. 20

Csáki, P., Rapcsák, T., Turchányi, P., and Vermes,
M. (1995). Research and development for
group decision aid in Hungary by WINGDSS,
a Microsoft Windows based group decision
support system. Decision Support Systems,
14:205–221. 71

Dagienė, V. (2008). Teaching information technol-
ogy and elements of informatics in lower sec-
ondary schools: curricula, didactic provision
and implementation. In Mittermeir, R. T.
and Syslo, M. M., editors, Lecture Notes in
Computer Science, Informatics Education –
Supporting Computational Thinking, volume
5090, pages 293–304. 12

Dagienė, V. and Skūpienė, J. (2003). Analysis of
tasks in Lithuanian Informatics Olympiad by
type of solution and level of difficulty. Lithua-
nian Mathematical Journal, 43:209–214. (In
Lithuanian). 19, 76

Dagienė, V. and Skūpienė, J. (2007). Contests in
programming: Quarter century of Lithuanian
experience. Olympiads in informatics, 1:37–
49. 16, 49, 95

Daly, C. and Waldron, J. (2004). Assessing the as-
sessment of programming ability. In Proceed-
ings of the 35th SIGCSE technical symposium
on Computer science education, pages 210–
213. 35

Daniels, M., Berglund, A., Pears, A., and Fincher,
S. (2005). Five myths of assessment. In
ACE’04: Proceedings of the sixth conference
on Australasian computing education, pages
57–61, Darlinghurst, Australia. 45

Deimel, L. (1984). 1984 ACM International Scholas-
tic Programming Contest. ACM SIGCSE
Bulletin, 6(3):7–12. 8, 17

Deimel, L. (1988). Problems from the 12’th Annual
ACM Scholastic Programming Contest. ACM
SIGCSE Bulletin, 20(4):19–28. 8, 37

153

REFERENCES

Demetrescu, C., Finocchi, I., and Stasko, J. (2002).
Specifying algorithm visualizations: Interest-
ing events or state mapping? In Software
Visualization, pages 16–30. Springer-Verlag,
Berlin, Heidelberg. 77

Deming, W. E. (1988). Out of the crisis: quality,
productivity and competitive position. Cam-
bridge Univ. Press. 20

Diehl, S., Görg, C., and Kerren, A. (2002). Animat-
ing algorithms live and post mortem. Soft-
ware Visualization, LNCS 2269:46–57. 81

Dijkstra, E. W. (1972). The humble programmer.
Communications of the ACM, ACM Turing
Lecture, 15(10):859–866. 31, 37, 39

Diks, K., Kubica, M., and Stencel, K. (2007). Polish
olympiads in informatics – 14 years of experi-
ence. Olympiads in Informatics, 1:50–56. 37,
43

Douce, C., Livingstone, D., and Orwell, J. (2005).
Automatic test-based assessment of program-
ming: A review. ACM Journal of Educational
Resources in Computing, 5(3):1–13. 9, 28, 29,
30, 33

Dromey, R. G. (1995). A model for software prod-
uct quality. IEEE Transactions on Software
Engineering, 21:146–162. 34

Eden, C. (1988). Cognitive mapping: a review.
European Journal of Operational Research,
36:1–13. 55

Eden, C. and Ackermann, F. (1998). Making strat-
egy: the journey of strategic management. In
SAGE Publications, London. 55

Eden, C. and Simpson, P. (1989). SODA and cog-
nitive mapping in practice. Rosenhead. 55

Edwards, S. H. (2003). Rethinking computer sci-
ence education from a test-first perspective.
In Companion of the 18th annual ACM SIG-
PLAN conference on Object-oriented pro-
gramming, systems, languages, and applica-
tions, pages 148–155, Anaheim, CA, USA. 29,
36

Ernst, F., Moelands, J., and Pieterse, S. (2000).
Teamwork in programming contests: 3*1=4.
Crossroads, The ACM student magazine. 37

Fisher, M. and Cox, A. (2006). Gender and pro-
gramming contests: Mitigating exclusionary
practices. Informatics in Education, 5(1):47–
62. 41

Fitzgerald, S. and Hines, M. L. (1996). The com-
puter science fair: an alternative to the com-
puter programming contest. In Proceedings of
the twenty-seventh SIGCSE technical sympo-
sium on Computer science education, pages
368–372. 38

Forišek, M. (2006). On the suitability of tasks for
automated evaluation. Informatics in Educa-
tion, 5(1):63–76. 37, 38, 39, 40, 42, 49, 93, 99,
107

Forsythe, G. E. and Wirth, N. (1965). Automatic
grading programs. Communications of the
ACM, 8(5):275–278. 28

Foxley, E., Higgins, C., Hrgazy, T., Syme-
onidis, P., and Tsintisfas, A. (2004).
The CourseMaster CBA System: Improve-
ments over Ceilidh. The University of
Nottingham, School of Computer Science
and IT. www.cs.nott.ac.uk/~cah/pdf/EIT_
ImprovementsOverCeilidh_Paper.pdf. 9, 32

French, S. (1988). Decision Theory: an Introduc-
tion to the Mathematics of Rationality. Ellis
Horwood, Chichester. 60

Grigas, G. (1995). Investigation of the relationship
between program correctness and program-
ming style. Informatica, 6(3):265–276. 33,
35, 107, 108, 116

Hansen, H. and Ruuska, M. (2003). Assessing time-
efficiency in a course on data structures and
algorithms. In Koli Calling 2003, 3rd Annual
Finnish/Baltic Sea Conference on Computer
Science Education, pages 86–93. 32

Harris, J. A., Adams, E. S., and Harris, N. L.
(2004). Making program grading easier: but
not totally automatic. Journal of Computing
Sciences in Colleges, 20(1):248–261. 9

Hellmann, M. (2001). Fuzzy Logic Introduction.
The University of Rennes, France. http:
//epsilon.nought.de/. 63

Helmick, M. T. (2007). Interfacebased program-
ming assignments and automatic grading of
java programs. In Proceedings of the 12th
annual SIGCSE conference on Innovation
and technology in computer science educa-
tion, pages 63–67, Dundee, Scotland. 9, 42

154

www.cs.nott.ac.uk/~cah/pdf/EIT_ImprovementsOverCeilidh_Paper.pdf
www.cs.nott.ac.uk/~cah/pdf/EIT_ImprovementsOverCeilidh_Paper.pdf
http://epsilon.nought.de/
http://epsilon.nought.de/

REFERENCES

Hext, J. B. and Winings, J. W. (1969). An au-
tomatic grading scheme for simple program-
ming exercises. Communications of the ACM,
12(5):272–275. 28

Hill, T. and Westbrook, R. (1998). SWOT analy-
sis: It’s time for a product recall. Long Range
Planning, 30(1):46–52. 55

Hirch, B. and Heines, J. M. (2005). Automated
evaluation of source code documentation: In-
terim report. In Proceedings of the 36th
SIGCSE technical symposium on Computer
science education, pages 1–5, S. Louis, Mis-
souri, USA. 33, 35

Hollingsworth, J. (1960). Automatic graders for
programming classes. Communications of the
ACM, 3(10):528–529. 28

Horvath, G. and Verhoeff, T. (2002). Finding the
Median under IOI conditions. Informatics in
Education, 1(1):73–92. 104

Hoyer, R. W. and Hoyer, B. B. I. (2001). What is
quality? Quality Progress, 7:52–62. 19, 20

Jackson, D. (2000). A semi-automated approach
to online assessment. In Proceedings of
the 5th annual SIGCSE/SIGCUE ITiCSE
conference on Innovation and technology in
computer science education, pages 164–167,
Helsinki, Finland. 21, 33

Jackson, D. and Usher, M. (1997). Grading student
programs using ASSYST. ACM SIGCSE Bul-
letin, 29(1):335–339. 32, 34, 36

Joy, M. and Luck, M. (1995). On-line submission
and testing of programming assignments. In
Innovations in Computing Teaching, SEDA,
London. 28

Kahraman, C. (2008). Fuzzy Multi Criteria Deci-
sion Making. Theory and Applications with
Recent Developments., volume 16 of Opti-
mization and its applications. Springer. 59

Kauffman, B., Bettge, T., Buja, L., Craig, T.,
DeLuca, C., Eaton, B., Hecht, M., Kluzek,
E., Rosinski, J., and Vertenstein, M. (2001).
Community climate system model. software
developer’s guide. http://www.ccsm.ucar.
edu/working_groups/Software/dev_guide/
dev_guide/dev_guide.html. 86

Kearse, I. B. and Hardnett, C. R. (2008). Com-
puter science olympiad: Exploring computer
science through competition. In Proceed-
ings of the 39th SIGCSE technical symposium
on Computer science education, pages 92–96,
Portland, USA. 12

Keeney, R. L. and Raiffa, H. (1976). Decisions with
Multiple Objectives: Preferences and Value
Tradeoffs. John Wiley & Sons. 48, 55, 59, 60

Keeney, R. R. (1992). Value-Focused Thinking: A
Path to Creative Decision making. Harvard
University Press, Cambridge, Massachusetts,
London, England. 55

Kemkes, G., Cormack, G., Munro, I., and Vasiga,
T. (2007). New task types at the Canadian
Computing Competition. Olympiads in In-
formatics, 1:79–89. 19

Kemkes, G., Vasiga, T., and Cormack, G. (2006).
Objective scoring for computing competition
tasks. In Proceedings of International Con-
ference in Informatics in Secondary Schools –
Evolution and Perspectives, Lecture Notes in
Computer Science, pages 230–241. Springer-
Verlag. 13, 28, 36, 37, 38, 39, 40, 41, 42, 43,
97

Kernighan, B. W. and Pike, R. (1999). The Prac-
tice of Programming. Addison-Wesley. 27, 33,
110

Kerren, A. and Stasko, J. T. (2002). Algorithm
animation. Software Visualization, LNCS
2269:1–15. 77

Khuri, S. and Holapfel, K. (2001). EVEGA: An
Educational Visualization Environment for
Graph Algorithms. In Proceedings of the 6th
Annual Conference on Innovaton and Tech-
nology in Computer Science Education. ACM
Press. 78

Kiryukhin, V. M. (2007). The modern contents of
the Russian National Olympiads in Informat-
ics. Olympiads in Informatics, 1:90–104. 17

Kolstad, R. and Piele, D. (2007). USA Computing
Olympiad (USACO). Olympiads in Informat-
ics, 1:105–111. 9, 12

Laarhoven, P. J. M. and Pedrycz, W. (1983). A
fuzzy extension of saaty;s priority theory.
Fuzzy Sets and Systems, 11:229–241. 65

155

http://www.ccsm.ucar.edu/working_groups/Software/dev_guide/dev_guide/dev_guide.html
http://www.ccsm.ucar.edu/working_groups/Software/dev_guide/dev_guide/dev_guide.html
http://www.ccsm.ucar.edu/working_groups/Software/dev_guide/dev_guide/dev_guide.html

REFERENCES

Land, R. (2002). Measurements of soft-
ware maintainability. In Proceedings
of ARTES (A network for Real-Time
research and graduate Education in
Sweden)’2002 Conference, pages 23–27.
http://www.artes.uu.se/events/gsconf02/
papers/ARTESproceeding2002.pdf. 105

Leal, P. J. and Moreira, N. (1998). Auto-
matic grading of programming exercises.
Technical report series: Dcc-98-4, Univer-
sity of Porto, Portugal, Department of
Computer Science. www.ncc.up.pt/~nam/
publica/dcc-98-4.ps.gz. 31, 33, 34, 37

Lee, K. H. (2005). First Course on Fuzzy Theory
and Applications. Springer. 63, 64

Leeuwen, W. T. V. (2005). A critical analy-
sis of the ioi grading process with an ap-
plication of algorithm taxonomies. Master’s
Thesis, Technische Universiteit Eindhoven,
Faculty of Mathematics and Computing Sci-
ence. http://alexandria.tue.nl/extra1/
afstversl/wsk-i/leeuwen2005.pdf. 37, 38,
92, 104

Lewis, S. and Davies, P. (2004). The auto-
mated peer-assisted assessment of program-
ming skills. In Proceedings of the 8th JAVA
& The Internet in the Computing Curriculum
Conference JICC8, pages 1–10. 30

Li, D. F. and Yang, J. B. (2004). Fuzzy linear pro-
gramming technique for multiattribute group
decision making in fuzzy environments. In-
formation Sciences, 158:263–275. 48

Lootsma, F. A. (1997). Fuzzy logic for planning and
decision making. Kluwer. 62

Lu, J., Zhang, G., and Ruan, D. (2007). Multi-
Objective Group Decision Making: Meth-
ods, Software and Application with Fuzzy Set
Techniques. Series in Electrical and Com-
puter Engineering. 70, 71, 126, 127, 132

Lundberg, L., Mattson, M., and Wohlin, C. (2005).
Software Quality Attributes and Trade-offs.
BESQ - Blekinge Engineering Software
Qualities, Blekinge Institute of Technol-
ogy. http://sea-mist.se/tek/besq.nsf/
pages/017bd879b7c9165dc12570680047aae2!
OpenDocument. 20

Malmi, L., Korhonen, A., and Saikkonen., R.
(2002). Experiences in automatic assess-
ment on mass courses and issues for design-
ing virtual courses. ACM SIGCSE Bulletin,
34(3):55–59. 30

Manev, K. (2008). Tasks on graphs. Olympiads in
Informatics, 2:90–104. 76

Mareš, M. (2007). Perspectives on grading systems.
Olympiads in Informatics, 1:124–130. 17, 29

McCall, J. A., Richards, P. K., and Walters, G. F.
(1977). Factors in software quality. Vol. I-III,
Rome Air Development Center, Italy. 89

Metzner, J. R. (1983). Proportional advancement
from regional programming contests. ACM
SIGCSE Bulletin, 15(3):27–30. 8

Miara, R. J., Musselman, J. A., Navarro, J. A., and
Shneiderman, B. (1983). Program indenta-
tion and comprehensibility. Communications
of the ACM, 26(11):861–867. 27

Miller, C. A. (1956). The magic number seven plus
or minus two: some limits on our capacity for
processing information. Psychological review,
13:81–97. 126

Mohan, A. and Gold, N. (2004). Programming style
changes in evolving source code. In IEEE
Proceedings of the 12th International Work-
shop on Program Comprehension, pages 236–
240, Italy. 33, 106

Myers, D. and Null, L. (1986). Design and im-
plementation of a programming contest for
high school students. In Proceedings of the
seventeenth SIGCSE technical symposium on
Computer science education, pages 307–312.
13, 41, 119

Oberti, P. (2004). Décision publique et recherche
procédurale: illustration d’une démarche
multicritère à la localisation participative
d’un parc éolien en région corse. In Actes
des journées de l’Association Française de
Science Economique, Economie: aide à la
dècision publique. Université de Rennes.
http://crereg.eco.univ-rennes1.fr/afse/
TEXTES-PAR-SESS/A2/OBERTI.P.75.pdf. 53

Oman, P. and Cook, C. (1990). A taxonomy for
programming style. In 18th ACM Computer
Science Conference Proceedings, pages 244–
250. 34, 106

156

http://www.artes.uu.se/events/gsconf02/papers/ARTESproceeding2002.pdf
http://www.artes.uu.se/events/gsconf02/papers/ARTESproceeding2002.pdf
www.ncc.up.pt/~nam/publica/dcc-98-4.ps.gz
www.ncc.up.pt/~nam/publica/dcc-98-4.ps.gz
http://alexandria.tue.nl/extra1/afstversl/wsk-i/leeuwen2005.pdf
http://alexandria.tue.nl/extra1/afstversl/wsk-i/leeuwen2005.pdf
http://sea-mist.se/tek/besq.nsf/pages/017bd879b7c9165dc12570680047aae2!OpenDocument
http://sea-mist.se/tek/besq.nsf/pages/017bd879b7c9165dc12570680047aae2!OpenDocument
http://sea-mist.se/tek/besq.nsf/pages/017bd879b7c9165dc12570680047aae2!OpenDocument
http://crereg.eco.univ-rennes1.fr/afse/TEXTES-PAR-SESS/A2/OBERTI.P.75.pdf
http://crereg.eco.univ-rennes1.fr/afse/TEXTES-PAR-SESS/A2/OBERTI.P.75.pdf

REFERENCES

Opmanis, M. (2006). Some ways to improve
olympiads in informatics. Informatics in Ed-
ucation, 5(1):113–124. 42, 93, 114

Pankov, P. S. and Okruskulov, T. R. (2007). Tasks
at Kyrgysztani olympiads in informatics: Ex-
perience and proposals. Olympiads in Infor-
matics, 1:131–140. 44

Pardo, A. (2002). A multi-agent platform for
automatic assignment management. ACM
SIGCSE Bulletin, 34(3):60–64. 30

Patterson, A. F. (2005). Reflections on a pro-
gramming olympiad. Communications of the
ACM, 48(7):15–16. 9, 12

Pohl, W. (2004). National computer science
contests. http://www.bwinf.de/olympiade/
national-contests.pdf. 44

Pohl, W. (2006). Computer science contests
for secondary school students: Approaches
for classification. Informatics in Education,
5(1):125–132. 8, 14, 16

Pohl, W. (2007). Computer science contests in Ger-
many. Olympiads in Informatics, 1:141–148.
19, 44

Pohl, W. (2008). Manual grading in an informat-
ics contest. Olympiads in Informatics, 2:122–
130. 37, 38, 39, 44, 46, 114

Pohl, W. and Polley, T. (2006). Experiences with
graduated difficulty in programming contest
problems. In Information Technologies at
School. Proceedings of the Second Interna-
tional Conference Informatics in Secondary
Schools: Evolution and Perspectives, pages
499–508, Vilnius. TEV. 12, 14

Poranen, T., Dagiene, V., Eldhuset, A., Hyro, H.,
Kubica, M., Laaksonen, A., Opmanis, M.,
Pohl, W., Skupiene, J., Soderhjelm, P., and
Truu, A. (2009). Baltic Olympiads in In-
formatics: Challenges for training together.
Olympiads in Informatics, 3:112–131. 19, 76

Rahman, K. A., Ahmad, S., and Nordin, J. (2007).
Interfacebased programming assignments and
automatic grading of java programs. In Pro-
ceedings of the 12th annual SIGCSE confer-
ence on Innovation and technology in com-
puter science education, pages 1–10, Dundee,
Scotland. 9

Rao, R. V. (2007). Decision making in the manu-
factoring environment. Springer. 67, 70, 72,
125

Redish, K. A. and Smyth, W. F. (1986). Program
style analysis: a natural by-product of pro-
gram compilation. Communications of the
ACM, 29(2):126–133. 34

Rees, M. J. (1982). Automatic assessment aids for
Pascal programs. ACM SIGPLAN Notices,
17(10):33–42. ix, 34, 35

Revilla, M. A., Manzoor, S., and Liu, R. (2008).
Competetive learning in informatics: The
Uva Online Judge experience. Olympiads in
Informatics, 2:131–148. 8, 42

Ribeiro, P. and Guerreiro, P. (2009). Improving the
automatic evaluation of problem solutions in
programming contests. Olympiads in Infor-
matics, 3:132–143. 32

Roberts, F. S. (1979). Measurement Theory with
Applications to Decision Making, Utility and
the Social Sciences. Addison-Wesley, London.
60

Roberts, G. B. and Verbyla, J. L. M. (2002). An
online programming assessment tool. In Pro-
ceedings of Australasian Computing Educa-
tion Conference (ACE2003), volume 20 of
Conferences in Research and Practice in In-
formation Technology, pages 69–75, Adelaide,
Australia. 29

Roy, B. (1996). Multicriteria methodology for de-
cision aiding. Kluwer Academic Publishers,
Dordrecht. 48, 52, 59

Royce, W. W. (1987). Managing the development
of large software systems: concepts and tech-
niques. In Proceedings of the 9th interna-
tional conference on Software Engineering,
pages 328–338, Montery, CA, US. 86, 87

Ryan, J. P. and Deimel, E. L. (1985). Contest
problems from the 1985 ACM Scholastic Pro-
gramming Contest. ACM SIGCSE Bulletin,
6(3):7–12. 8

Saaty, T. (1980). The Analytic Hierarchy Process.
McGraw-Hill, New York. 132

Saghafian, S. and Hejazi, S. R. (2005). Multi-
criteria group decision making using a modi-
fied fuzzy topsis procedure. In Computational
Intelligence for Modeling, Control and Au-
tomation, volume IEEE Proceedings. 62

157

http://www.bwinf.de/olympiade/national-contests.pdf
http://www.bwinf.de/olympiade/national-contests.pdf

REFERENCES

Saikkonen, R., Malmi, L., and Korhonen, A. (2001).
Fully automatic assessment of programming
exercises. In Proceedings of the 6th annual
conference on Innovation and technology in
computer science education, pages 133–136,
Canterbury, United Kingdom. 30, 32

Salniek, P. and Naylor, J. (1988). Professional
skills assessment in programming competi-
tions. ACM SIGCSE Bulletin, 20(4):9–14. 8,
21

Schorsch, T. (1995). CAP: An automatic self-
assessment tool to check pascal programs for
syntax, logic and style errors. In Proceedings
of the 26th SIGCSE technical symposium on
Computer science education, pages 168–172,
USA. 33

Sherrel, L. and McCauley, L. (2004). A pro-
gramming competition for high school stu-
dents emphasizing process. In ACM Inter-
national Conference Proceeding Series, vol-
ume 61, pages 173–182. 13, 38

Shilov, N. V. and Kwangkeun, Y. (2002). Engaging
students with theory through ACM Collegiate
Programming Contests. Communications of
the ACM, 45(9):98–101. 12

Simon, H. A. (1976). Administrative Behavior. The
Free Press, New York. 59

Skienna, S. and Revilla, M. (2003). Program-
ming Challenges - the Programming Contest
Training Manual. Springer-Verlag, New York.
8, 17, 37, 114

Skūpas, B. and Dagienė, V. (2008). Is automatic
evaluation useful for the maturity program-
ming exam. In Proceedings of 8th Interna-
tional Conference on Computing Education
Research, Koli Calling’2008, pages 117–118.
123

Skūpienė, J. (2004). Testing in informatics
olympiads (in Lithuanian). In Information
Technologies Conference Proceedings, pages
37–41, Kaunas. Technologija. 29

Spacco, J., Strecker, J., Hovemeyer, D., and
Pugh, W. (2005). Software repository mining
with Marmoset: An automated programming
project snapshot and testing system. In Pro-
ceedings of the 2005 international workshop
on Mining software repositories, pages 1–5.
9, 33, 45

Stevens, S. S. (1946). On the thory of scales of mea-
surement. Science, 103(2684):677–680. xvi,
49

Struble, G. (1991). Experience hosting a high school
level programming contest. ACM SIGCSE
Bulletin, 23(2):36–38. 9, 33, 38

Sule, D. R. (2001). Logistics of facility location and
allocation. Marcel Dekker, New York, Basel.
66, 67, 71, 126

Sumner, N., Banu, D., and Dershem, H. (2003).
JSAVE: Simple and Automated Algorithm
Visualization using the Java collection frame-
work. In Proceedings of the tenth annual Con-
sortium for Computing Sciences in Colleges.
77

Triantaphyllou, E. (2000). Multi-Criteria Deci-
sion Making Methods: a Comparative Study.
Kluwer Academic Publishers. 48, 59, 60, 61,
62, 63, 64, 66, 68, 69, 72, 73, 74

Trotman, A. and Handley, C. (2006). Programming
contest strategy. Computers & Education,
50(6):821–837. 8, 12, 16, 17

van der Wegt, W. (2009). Using subtasks.
Olympiads in Informatics, 3:144–148. 43

van Solingen, R. and Berghout, E. (1999). The
Goal/Question/Metric Method - A Practical
Guide for Quality Improvement of Software
Development. McGraw-Hill Publishing Com-
pany, Maidenhead, England. 56

Vasiga, T., Cormack, G., and Kemkes, G.
(2008). What do olympiads tasks measure?
Olympiads in Infomatics, 2:181–191. 8, 20,
21, 38, 39

Verhoeff, T. (2002). The 43rd International Math-
ematical Olympiad: A reflective report on
IMO 2002. Computing Science Report 02-
11, Faculty of Mathematics and Comput-
ing Science, Eindhoven University of Tech-
nology. http://www.win.tue.nl/~wstomv/
publications/imo2002report.pdf. 45, 106,
120

Verhoeff, T. (2004). Concepts, terminol-
ogy, and notations for IOI competition
tasks. Document presented at IOI’2004 in
Athens. http://scienceolympiads.org/ioi/
sc/documents/terminology.pdf. 78

158

http://www.win.tue.nl/~wstomv/publications/imo2002report.pdf
http://www.win.tue.nl/~wstomv/publications/imo2002report.pdf
http://scienceolympiads.org/ioi/sc/documents/terminology.pdf
http://scienceolympiads.org/ioi/sc/documents/terminology.pdf

Verhoeff, T. (2006). The IOI is (not) a sci-
ence olympiad. Informatics in Education,
5(1):147–158. 13, 19, 31, 37, 38, 40, 41, 44,
45, 92, 106, 107, 114

Verhoeff, T. (2009). 20 years of IOI competition
tasks. Olympiads in Informatics, 3:149–166.
xiv, 8, 19, 76, 95

Verhoeff, T., Horvath, G., Diks, K., and Cor-
mack, G. (2006). A proposal for IOI syl-
labus. Teaching Mathematics and Computer
Science, 4(1):193–216. 18

von Matt, U. (1994). Kassandra: the automatic
grading system. ACM SIGCUE Outlook,
22(1):26–40. 9, 28

Wang, H., Yin, B., and Li, W. (2007). Devel-
opment and exploration of Chinese National
Olympiad in Informatics (CNOI). Olympiads
in Informatics, 1:165–174. 9

Williams, L. (2006). Testing Overview and
Black-Box Testing Techniques. North Car-
olina State University Department of Com-
puter Science. http://agile.csc.ncsu.edu/
SEMaterials/BlackBox.pdf. xiii, 12, 36, 121

Winston, W. L. (1991). Operations Research, Ap-
plications and Algorithms. PWS-Kent Pub-
lishing, New York. 72

Woit, D. M. and Mason, D. V. (1998). Lessons
from on-line programming examinations. In
Proceedings of the 6th annual conference
on the teaching of computing and the 3rd
annual conference on Integrating technology
into computer science education: Changing

the delivery of computer science education,
pages 257–259, Ireland. Dublin City Univer-
sity. 9, 30

Zadeh, L. A. (1965). Fuzzy sets. Information and
Control. 63, 64

Zadeh, L. A. (1968). Fuzzy algorithms. Information
and Control, 12:94–102. 63

Zadeh, L. A. (1975a). The concept of a linguistic
variable and its application to approximate
reasoning - I. Information Sciences, 8(3):199–
249. 66

Zadeh, L. A. (1975b). The concept of a linguis-
tic variable and its application to approxi-
mate reasoning - II. Information Sciences,
8(43):301–357. 66

Zadeh, L. A. (1975c). The concept of a linguis-
tic variable and its application to approxi-
mate reasoning - III. Information Sciences,
9(1):43–80. 66

Zeleny, M. (1982). Multiple Criteria Decision Mak-
ing. McGraw-Hill Book Company: New York.
48

Zhang, W. (2004). Handover decision using fuzzy
MADM in heterogeneous networks. In Wire-
less Communications and Networking Con-
ference, WCNC, IEEE, volume 2, pages 653–
658. 66, 67

Zhu, Q. and Lee, E. S. (1991). Comparison and
ranking of fuzzy nnumbers. Fuzzy Regression
Analysis, pages 23–32. 66

http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf
http://agile.csc.ncsu.edu/SEMaterials/BlackBox.pdf

Jūratė SKŪPIENĖ

EVALUATION OF ALGORITHM-CODE COMPLEXES IN INFORMATICS
CONTESTS

Doctoral Dissertation
Physical Sciences (P 000)

Informatics (09 P)
Informatics, Systems Theory (P 175)

Jūratė SKŪPIENĖ

ALGORITMŲ IR JUOS REALIZUOJANČIŲ PROGRAMŲ VERTINIMAS
INFORMATIKOS VARŽYBOSE

Daktaro disertacija
Fiziniai mokslai (P 000)

Informatika (09 P)
Informatika, sistemų teorija (P 175)

2010 09 27, 11 sp. l. Tiražas 20 egz.
Parengė spaudai ir išleido Vilniaus universiteto Matematikos ir informatikos institutas

Akademijos g. 4, LT-08663 Vilnius
Interneto svetainė: http://www.mii.lt

Spausdino „Kauno technologijos universiteto spaustuvė“
Studentų g. 54, LT-51424 Kaunas

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Statement of the Problem and its Relevance
	1.2 Research Objectives and Tasks
	1.3 Defended Statements
	1.4 Research Methods
	1.5 Research Findings and Results
	1.6 Scientific Novelty
	1.7 Approbation and Publications
	1.8 Synopsis

	2 Problematic of Evaluation of Algorithm-Code Complexes
	2.1 Introduction
	2.2 Concepts
	2.3 Goals of Informatics Contests
	2.4 Background of Concept of Informatics Contest
	2.5 Structure of LitIO
	2.6 Domain of Problems in Informatics Contests
	2.7 Structure of a Batch Task
	2.8 Concept of Quality
	2.9 Different Points of View of Evaluation of Algorithm-Code Complex
	2.10 Current Evaluation Scheme in LitIO
	2.10.1 Evaluating the Verbal Description of an Algorithm
	2.10.2 Testing Functionality and Efficiency
	2.10.3 Evaluating the Programming Style

	2.11 Automated Evaluation of Submission to Programming Assignments in Programming Courses
	2.11.1 Development of the Automated Evaluation of Programming Assignments
	2.11.2 New Role of Automated Evaluation in Programming Courses
	2.11.3 Evaluating Programming Assignments by Testing
	2.11.4 Automated Evaluation of Programming Style
	2.11.5 Automated Evaluation of Test Sets

	2.12 Black-Box Evaluation in Informatics Contests
	2.12.1 Concerns about Black-Box Evaluation
	2.12.2 Partial Scoring
	2.12.3 All-or-Nothing Scoring
	2.12.4 All-or-Nothing Batch Scoring
	2.12.5 Other Black-Box Scoring Possibilities

	2.13 Overview of the Experience of Semi-Automated and Manual Evaluation
	2.14 Conclusions

	3 Overview of the MCDA Process and Methods
	3.1 Concept of MCDA
	3.2 Main Concepts
	3.3 Evaluation in LitIO as an MCDA Problem
	3.4 Roles in MCDA
	3.5 Classification of MCDA Problems
	3.6 Stages of MCDA
	3.7 Problem Structuring
	3.7.1 General Overview
	3.7.2 GQM (Goal/Question/Metric) Approach

	3.8 Model Building
	3.8.1 Requirements for the Model
	3.8.2 Single Decision Maker Problem
	3.8.3 Choice of the MCDA Approach
	3.8.4 Value Measurement Theory
	3.8.5 Fuzzy Set Theory and Its Applications in MCDA
	3.8.5.1 Main Crisp and Fuzzy Set Related Concepts
	3.8.5.2 Application of Fuzzy Numbers in Quantifying Linguistic Variables
	3.8.5.3 Application of Fuzzy Logic in Solving MCDA Problems
	3.8.5.4 Group Decision Making
	3.8.5.5 Group Decision Support Algorithm

	3.9 Sensitivity Analysis
	3.9.1 The Most Critical Criterion
	3.9.2 The Most Critical Measure of Performance

	3.10 Conclusions

	4 Semi-Automated Visualisation: Aid for Tasks Involving Graphs
	4.1 Introduction
	4.2 Choice of Visualisation Approach
	4.3 Overview of Graph Implementation in Algorithm-Code Complexes Designed During the Contests
	4.4 Graphs' Visualisation in the Experimental Tool
	4.5 Conclusions

	5 Evaluation in Terms of the Existing Quality Standards
	5.1 Comparing Life Cycles of a Submission and Software
	5.2 Evaluation of Quality of an Algorithm-Code Complex in Terms of the ISO-9126-1 Quality Standard
	5.3 Evaluating Functionality and Efficiency: Analysis How Much Testing Results Conform with Expected Scores
	5.3.1 Brief Introduction to the Nescafé Algebra Task
	5.3.2 Quantitative Overview of Submissions to Nescafé Algebra Task
	5.3.3 Analysis of Algorithm-Code Complexes with Incorrect Strategies: Incomplete Algorithm-Code Complexes
	5.3.4 Analysis of Algorithm-Code Complexes with Incorrect Strategies: Random Strategies
	5.3.5 Analysis of Algorithm-Code Complexes with Incorrect Strategies: Heuristic Strategies
	5.3.6 Analysis of Algorithm-Code Complexes with Incorrect Strategies: Other Strategies
	5.3.7 Analysis of Partial Solutions
	5.3.8 Analysis of Correct Solutions: Exhaustive Search
	5.3.9 Analysis of Correct Solutions: Dynamic Programming
	5.3.10 Comparison of Black-Box Scoring Results with the Expected Scores of Submissions to Nescafé Algebra

	5.4 Evaluating Maintainability (Programming Style)
	5.4.1 Introduction
	5.4.2 The Subjectivity Factor in Evaluating Programming Style
	5.4.3 Relating Evaluation of Programming Style to Program Correctness
	5.4.4 Case Study: Analysis of Evaluating Programming Style of one LitIO’2006 Task
	5.4.5 Good Programming Style in Informatics Contests – Advantage or Necessity

	5.5 Conclusions

	6 Improvement of Evaluation Scheme Using MCDA
	6.1 Problem Structuring
	6.1.1 Introduction
	6.1.2 The Background of Evaluation in the LitIO Problem Provided to the Experts
	6.1.3 Defining the Concept of a Submission
	6.1.4 Submission Attributes
	6.1.5 The Choice of Metrics for the Attributes
	6.1.5.1 Quality of Reasoning on Design
	6.1.5.2 Performance of the Compiled Code
	6.1.5.3 Quality of the Programming Style
	6.1.5.4 Quality of a Set of Tests
	6.1.5.5 Conformance to the Task Description Requirements

	6.2 Model Building and Piloting
	6.2.1 Specification of the Components of the Evaluation Scheme for Concrete Tasks
	6.2.1.1 Scales for Linguistic Variables
	6.2.1.2 Weights of Importance of the Jury Members
	6.2.1.3 List of Required Components of Submission
	6.2.1.4 List of Attributes to be Evaluated
	6.2.1.5 Weights of the Evaluated Attributes
	6.2.1.6 Inter-Attribute Function for Relating the Programming Style to the Performance of the Compiled Code
	6.2.1.7 List of Criteria Selected for Evaluation of the Quality of Attributes
	6.2.1.8 Weights for the Evaluation Criteria
	6.2.1.9 Partial Value Functions for the Evaluation Criteria

	6.2.2 Evaluation of Submissions to the Pilot Tasks
	6.2.3 Feedback About the Piloted Evaluation Scheme
	6.2.4 Sensitivity Analysis of the Scores of the Piloted Tasks
	6.2.4.1 The Most Critical Criterion
	6.2.4.2 The Most Critical Measure of Performance

	6.3 Conclusions

	7 Conclusions
	A Appendices
	A.1 Nescafé Algebra, Sample of a Batch Task
	A.2 Material and Questionnaire Distributed to the Experts

	References

