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INTRODUCTION

Research Area

Stochastic processes can be modeled and predicted by probabilistic statistical
methods, using the data that describes the course of the process. The following various
stochastic techniques are often used to describe and research random processes: Markov
chain Monte Carlo, Gibbs sampler, Metropolis-Hastings algorithm, stochastic
approximation, etc. (Rubinstein and Kroese, 2007; Spall, 2003). Markov chain Monte
Carlo (MCMC) is a computer simulation method, which is widely used in statistics,
technology, physics, bioinformatics, etc. MCMC method is often applied to calculate
probabilities or rare events by importance sampling, in data analysis by EM (expectation
maximization) algorithm, for practical application of Bayesian method by modeling the
posterior distribution and using numerical methods in determining their parameters, etc.
As the area of probabilistic models where MCMC methods can be applied is very wide,
they are limited to the multidimensional distributions, which could be constructed in
hierarchical way from elliptical distributions. Distributions that are obtained in this way

can be applied when solving most of practical and theoretical exercises of data analysis.

Relevance of the Problem

Known MCMC algorithms usually generate some or several chains, determining
convergence by empirical method and recording large enough Monte Carlo sample size
in all chains (Bradley and Thomas, 2000). It is evident that these procedures are not very
effective from the computational viewpoint as generation of chains uses too much
computer’s time, and in case of empirical termination of chain generation, statistically
significant convergence might be not achieved yet. What is more, while applying
MCMC, the problem often occurs in deciding what Monte Carlo sample size should be
generated for separate chains.

The other relevant MCMC computational problems include selection of the
parameters for the initial chain, computations when there is singularity of stochastic

models, calculations with very large or very small intermediate values. Another relevant



problem of using MCMC is construction of skew heavy-tailed distributions and

estimation of their parameters.

Research Object

The research object of dissertation is adaptive Markov chain Monte Carlo method
study, its numerical realization and application in data analysis, regulation techniques of
assessment of accuracy of estimators, selection of number of chains, algorithm

termination, and Monte Carlo sample size for separate chains.

Aim and Objectives of the Research

The aim of the research is to examine Markov chain Monte Carlo adaptive methods
by creating computationally effective algorithms for decision-making of data analysis
with the given accuracy, and to research the effectiveness of these algorithms.

Algorithms and software for their realization were created, in order to reach this
aim. This software was designed for regulation of Monte Carlo sample size in separate
chains, assessment of accuracy of the estimators, and for the termination of Markov
chain process. The algorithms constructed are employed for statistical estimation of data
by MCMC method, using the data that was collected in practice or is known from
literature. Effectiveness of this methods and algorithms is analyzed by statistical
modeling method, constructed in this research. The numerical problems of MCMC
method, which are examined in this study, were researched by solving several exercises
of data analysis (estimation of parameters for skew t distribution, Poisson-Gaussian
model, and stable distribution). The aforementioned exercises are characterized by
properties that are common to other similar tasks, thus, the obtained results can be

successfully applied for other statistical exercises.

Scientific Novelty

The following results have been obtained in the research:
1) termination rule of Markov chain generating;
2) the termination rule for Markov chain generating;

3) the method of testing the efficiency of Markov chain Monte Carlo algorithms;



4) application of the adaptive Markov chain Monte Carlo method for solving the
exercises, the probabilistic models of which are built in a hierarchical way from
elliptical distributions (for estimation of parameters of skew t distribution,

Poisson-Gaussian model and multivariate « -stable distribution).

Practical Significance of the Results
In this study, MCMC algorithms are constructed for estimation of parameters of
multivariate skew t distribution, Poisson-Gaussian model and multivariate « -stable
distribution with the given accuracy. Furthermore, the efficiency of algorithms is verified
by computer simulation. These algorithms can be applied to solve the practical tasks
(financial sequences prediction, research on biological populations and insured events,
etc.). Importantly, the results obtained can be applied to solve various tasks of statistical
estimation by MCMC method: importance sampling method, EM algorithm, maximal
likelihood method, and other.
The following practical results were obtained in this dissertation:
1) the algorithm has been created to estimate the parameters of skew t distribution;
2) the algorithm has been created to estimate the parameters of Poisson-Gaussian
model;
3) the algorithm has been created to estimate the parameters of stable symmetric
distribution;
4) the statistical modeling approach has been created to research the effectiveness of
MCMC algorithms.

Defended Statements
1. The algorithms created and equipment for their realization is dedicated for:
a) Monte Carlo sample size regulation at Markov chains;
b) assessment of accuracy of the estimators;
c) terminating the Markov chain process.
2. The methods and algorithms created can be applied for statistical estimation of data by

adaptive MCMC method for solving practical and test exercises.



3. The algorithm created allows to solve exercises by MCMC method with the given
accuracy. It reduces the volume of calculations (approximately twice) in comparison

with the known.

Approbation and Publications of the Research

The results of the dissertation were presented at 10 international and 8 national
scientific conferences. The main results of the dissertation were published in 15
periodical scientific publications: 1 of them is included in ISI Web of Science data base
with own citation index, 1 of them is included in Web of Science data base, several of

them are published at CEEOL, Index Copernicus, and other data bases.

Structure of the Dissertation

The dissertation consists of introduction, 4 chapters, conclusions, the list of
references, and appendixes.

The introduction provides the aim of the dissertation, objectives, methods and the
list of approbation and publications of the dissertation results.

In the first chapter, the relevance of selected topic is discussed, the problems are
formulated.

In the second chapter, the Markov chain Monte Carlo method is constructed for
estimation of the parameters for multivariate skew t distribution, and the application of
algorithm for estimation of maximum likelihood by Monte Carlo method is presented.

In the third chapter, the multivariate empirical Bayesian Poisson-Gaussian model is
constructed; other aspects of the Bayesian calculation are discussed.

In the fourth chapter, Markov chain Monte Carlo algorithm for estimation of the

parameters for multivariate « -stable distribution is created.

Chapter 1. ANALYTICAL RESEARCH OF MARKOV CHAIN MONTE
CARLO ALGORITHMS

This chapter presents the analytical overview of Markov chain Monte Carlo method

and assumptions for solving the exercises by creating adaptive MCMC method.



1.1. Markov chain Monte Carlo method

In statistics, MCMC method forms a class of algorithms for imitation of probability
distributions by constructing Markov chain, which allows us to obtain the necessary
distribution as the distribution of chain balance state. Markov chain usually consists of
several sequentially generated Monte Carlo samples, the so-called chains (or iterations),
and estimators, calculated by using these samples.

If each chain generated depends only on estimators that were calculated in the
previous chain, and does not depend on samples and estimators of earlier chains, then the
chain, constructed from these iterations, is characterized by Markov feature.

A significant number of software, implementing MCMC method, have been
developed, for example, BUGS, Laplace’s Demon, JAGS, etc., and included in the list of
R package. Algorithms have also been written to develop these programs, e.g.,
Hamiltonian Monte Carlo, Metropolis within Gibbs, Griddy-Gibbs, Slice Sampler, t-
walk, Robust Adaptive Metropolis, Elliptical Slice Sampler, etc. (http://www.bayesian-
inference.com/mcmc#algorithms). When using MCMC method, the following problems
are encountered: selection of number of chains and regulation of Monte Carlo sample
size for separate chains. Some or several chains are usually generated in the known
MCMC algorithms, when fixed and large enough Monte Carlo sample size is detected in
all chains and by estimating convergence empirically (Bradley and Thomas, 2000). It is
evident that these procedures are not very effective from the computational viewpoint as
generation of chains uses too much computer’s time, and in case of empirical
termination of chain generation, statistically significant convergence might be not
achieved yet.

One way of solving the problem of selecting the Markov chain size is to terminate
the generation of chain if samples, calculated in adjacent chains, do not differ
statistically after applying statistical methods for verification of hypothesis on
differences and matches of aforementioned samples (see section 1.4; Brooks and
Gelman, 1998; Sakalauskas, 2000). Some authors attempted to introduce tests for
comparison of two adjacent chains, however, these tests are one dimensional or allow to

compare two vectors at best (Brooks and Gelman, 1998), while in practical exercises



probability distributions are often described by several vectors and several matrixes.
Methods and algorithms for statistical estimation of Markov chains differences are
proposed and analyzed in this dissertation, using standard Hoteling and Anderson’s
criteria (Anderson, 1958; Krishnaiah, 1984).

Another problem, related to reduction of calculation volume, is regulation of Monte
Carlo sample size in separate chains. In fact, there is no need to generate large Monte
Carlo samples when constructing first chains of Markov chain because smaller sample
sizes are enough for iterative modification of model parameters. Large Monte Carlo
samples should be generated only at the end of Markov chain, when statistical criterion
Is compatible with hypothesis on concurrence of the last chains of probabilistic models.
Methods of Monte Carlo sample size regulation are proposed and simulated by computer
in this dissertation by using statistical criterion about uniformity of Monte Carlo sample
distributions in two Markov chains. Sample sizes can be taken as inversely proportional
to the ratio of termination statistic and quantile of termination criterion.

From computational viewpoint, MCMC approach allows us to solve the equations,
which include complex multivariate integrals, by constructing Markov chain of Monte
Carlo samples. These equations can often be derived as necessary condition of optimality
for some stochastic criteria (Dennis and Schnabel, 1996). In this dissertation, likelihood
functions that describe these criteria are accepted as continuous and smoothly
differentiated, therefore, MCMC method can be interpreted as gradient descent method
for this likelihood function. Usually, it is possible to prove that EM algorithm, widely
used in statistics, is a separate case of stochastic gradient search (see section 2.3).
Application of MCMC method for multi-extreme tasks is not researched in this
dissertation.

The algorithms have been created to estimate parameters of skew t distribution,
Poisson-Gaussian model and of multivariate stable symmetric distribution by adaptive
MCMC method. Statistical tasks, solved by adaptive MCMC method, described in
dissertation, reveal these characteristics, allowing to solve other statistical exercises by
adaptive MCMC method. Adaptive MCMC method is characterized by rule of sample
size regulation and estimation of modeling errors by statistical method in separate chains
by regulating the Markov chains Monte Carlo sample size and generated number of

chains accordingly.
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1.2. Estimation of parameters of statistical models

MCMC method is widely used to obtain estimators of parameters of statistical
probability models. MCMC method is also often employed when constructing EM
algorithms that are used to calculate estimators by maximum likelihood or Bayesian
methods. These algorithms are applied for Monte Carlo Markov chain construction in
next chapters.

Maximum likelihood (ML) approach allows to obtain the values of parameter sets
of model, which maximize the likelihood function for fixed independent uniformly
distributed model data sample. The higher the size is the higher is probability to obtain
estimators, which will almost not differ from the actual parameter values. The realization
of ML approach by MCMC method is researched in the present dissertation.

In the theory of estimators and decisions, Bayesian method allows to research the
hypotheses, to calculate the probabilities of events. As there is very small amount of
statistical data collected about rare occurrence events, probability estimation methods for

estimating rare event probabilities are developed in this dissertation (see chapter 3).
1.3. Approximate integral calculation by Monte Carlo method

Probability theory and statistics often requires to calculate the means of various
random values and vectors that are expressed in complex multivariate integrals.
Although averaged random values are distributed widely, their means or mean-related
statistical distributions can be quite well approximated by one-dimensional or multi-
dimensional normal distribution or distributions that are related to it. It is possible to
calculate multidimensional integrals by Monte Carlo method by using law of large
number and central limit theorem. It is quite often required to calculate the estimators,

which have non-linear dependence on Monte Carlo estimators, for example:

L=-2In(R), (1)
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where P, =%Zun, u; — are independent uniformly distributed random variables,
j=1

Eu; = 1, N — Monte Carlo sample size, K — any number. Monte Carlo estimator (1) is

K . K
consistent estimator of expression L=-Y"In(z ) because EL=->"In(z; )+ O(%) In

i=1 i=1
order to estimate function (1) confidence interval, its sample dispersion must be known.

When sample consists of independent random variables and EP =z, estimator

K
dispersion can be calculated as Z (P ’u') O(%) From there and from law

of large numbers it follows that the likelihood function of Monte Carlo estimator (1)

N
dispersion is approximated as DL ~ Z[ﬂ— J where P1 = %Zuuz
=L

i=1
After making some simple rearrangements and by using asymptotical Monte Carlo

condition of normality, the 95% confidence interval of the estimator (1) can be

approximated as follows:

K

SRR e

Estimation of confidence intervals of statistical estimators is no less important task
than calculation of the estimators themselves. Frequently, statistical modeling estimators
must be obtained with certain accuracy, for example, confidence intervals must be of
required length. The length of confidence interval, which is the most important measure
of estimator accuracy, can be adjusted by choosing Monte Carlo sample size N
accordingly. When random sample is generated, it is possible to recurrently calculate
that the sums, which are included into sample mean and dispersion, and to terminate

generation as necessary accuracy of Monte Carlo estimators is reached.
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1.4. Statistical hypothesis testing

Hypothesis about match of mean vectors and covariance matrix is discussed and

tested in this section, which is further applied to identify the differences between two
Markov chains. Let X', X?, ..., X" be a random sample from a d-variate normal
distribution with mean vector & and covariance matrix . The null hypothesis to be
tested is = g, or Q=0 , where g, and Q, are known. When the null hypothesis is
rejected, then either g 24, or Q#Q, or u# , and Q= Q.

The criteria for testing the null hypothesis are known (Anderson, 1958),

—2logA=NlodQy|+ N -tr(Q')-[S +(X— 14 XX — )" |-NlogS|-N-d,  (3)

—2loga
(1_C1)2 ’

where N-S :i(xj —)‘(Xxj —>‘<)T , N-X= ixj , when the statistic x° =
= j=1

_2d*+9d +11
' 6N(d +3)

is approximated as a y> distribution with p, :%d(d +3) degrees

of freedom F >F_ _ (r) (Krishnaiah, 1984). F approximation is more accurate, when

—2logA P,

1-c - P
P,

In these approximations the null hypothesis is rejected if the computed value is too high,

ie, x*>22(y), F>F, , (7) (Krishnaiah, 1984).

the statistic F = . Where b = , 1S approximated as an F distribution.

Chapter 2. ESTIMATION OF MULTIVARIATE SKEW t DISTRIBUTION
PARAMETERS

In this chapter, application of adaptive MCMC method for estimation of skew t

distribution parameters by ML approach is analyzed.
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2.1. Definition of multivariate skew t distribution

In general, the skew t distribution is defined by hierarchical statistical model
through multivariate normal distribution, the vector of mean of which is also distributed
as a normal distribution, when both covariate matrices depend on the parameter,
distributed according to the gamma distribution (Azzalini and Genton, 2008).

Let X :(Xl,Xz,..., Xd) be a random vector that is distributed as a multivariate

1
normal vector X ~N(z,Q) with density f(x|z,t,Q)=(t/7r)%-|Q|7-e“'(X‘Z’T'Qfl"X‘Z),

where the vector of mean z=(z,z,,.,2,) in its turn is distributed as a multivariate

-
normal distribution z ~ N(y,%) in the cone W ={y-(z—)>0, 7%}, Q,© — full

rank matrices and random variable t follows from the Gamma distribution with the

%,
2

parameter « (Azzalini and Capitanio, 2003) that has the density fl(t|a):r(t—/2)-e‘.
o

Using this definition, the skew t distribution density is expressed as a multi-

dimensional integral:

p(Xu, Q,0,a,n)=2 T [ f(xz,t,Q)- f(Zut,0)- f,({a)dzdt=
0 7-(z-p)20
:]i l 2 l .t%ﬂi—l «
Snew 29 I0f3 [ofs .r@ @

-t-[(x-z)T o bx-g)s (2o -0t (2o p) 41

xe dzdt

This model can be interpreted statistically in the following way: for example, the
area W describes biological infection source, pollution source or investors’ preference
area, etc., which are related to further randomized dispersion, distributed by normal or
other elliptic distribution. For simplicity, this dissertation considers that the
aforementioned area is described only by one linear restriction, but in general case,

several linear restrictions can be involved.
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2.2. Estimators of maximum likelihood approach

Let X =(X! X2,.., X*) is the matrix of observation where X', i=1K, are

independent random vectors, distributed as multivariate skew t distribution

X ~ ST(,u, Q, 0, a, 77), the parameters of which are estimated by the ML approach (see

section 1.2). By using integral (4), log-likelihood function is described in the following

way:

2,6,9)), (5)

L(1£,Q,0,a,77)= —Z::In(p(X !

1,9,0,a,17))= —iZ::In(E(f (x

where means are calculated by random variables Z and G (see (17)) with common

density:

f(Z,t|,u,Q, 0()2{2' f(Z|,u,t,®)- fl(t|a), if 77-(2—;1)20, ©)

0, ifn-(z—u)<0,

where 7 < R° .

Estimators of distribution parameters must minimize the log-likelihood function

L(,9Q,0,a,7)— min . ML estimators /1, Q, ®, &, /7 of multivariate skew t

0,Q,0,a,n
distribution (4) are calculated by equating the respective derivatives of likelihood
function to zero and solving the system of received equations (see section 1.2).
Using the method of fixed-point iteration, parameter estimators are obtained from

following equations:

%ZK:E(L(X‘—Z}X‘,,&,f},(:),&,ﬁ)zo, @
i=1
Q:%iE(t-(X'—z) (X'—z)TXi,ﬂ,fz,(:),d,ﬁ), (8)
i=1
6= 23S Ef-(2-2) (- |X",12.6,0,3) ©)
= K d-1 1
k= 2'i+l
. g (10)




1 AA
EIZE(t A‘ xe) G),a,n), (11)
where
A=(X'=z) -0 (X' =2)+(z-a) -6 (- 2)+1,
A =(@-@) O (X -2)-6"(z-2)), r=12..d-1 A,=0.
Using the derivatives of likelihood function, gradient descent method is obtained

for likelihood function optimization:

. aL k,Qk,("Dk,ak, k
pt=u=¢, l P 1 ) (12)
k &k ok ok ok
Qk+l_Qk 2 Qk aL(,u anagc;) ,0{ 177 )-Qk, (13)
k Kk ok ok Kk
®k+1_®k_2 @k aL(/'l !Qaig Va 177 ).®k’ (14)
k Kk ok ok Kk
ak+1:ak_§a.al—(4u ,Qa,s) ,a,n )’ (15)
+ al— k’Qk’(,_Dk’ak’ “
't =n"-¢,- e o i ) (16)
where
1 at
é/#:K ik o~k ok Kk k’ga:K In(Ak) ) ’
leE(tX iy ,Q ,@ ya ,\n ) ZE( ) XI,,Uk,Qk,@k,ak,ﬂkj
= i-1

¢, =1, A= (X =2) (@) (X' =2)+ (2= ) (@) (2 - 1 )+1.
EM algorithm follows from gradient descent method. Its realization by MCMC method

is described in section 2.3.
2.3. Markov chain Monte Carlo algorithm

Since the likelihood function in this case is also expressed as multi-dimensional
integrals, MCMC algorithm was created in dissertation, in order to obtain ML estimators
by selecting Monte Carlo sample sizes in separate chains in the way as to decrease a total
number of trials and by terminating the generation of chains when the samples in two

adjacent procedure steps differ insignificantly.
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Estimators of parameters can be calculated by iteration method, using EM
algorithm (see section 1.2), when some initial values are chosen, and by calculating the
integrals, included into equations (7)—(11), by Monte Carlo method. Using a random

sample:

k

“+o.,ifn-@ >0,
G, ~ Gamma [Q—J o, ~N(0,0"), Z, ={'u Pi TP (17)
2

p =, ifn-p; <0,

where j=12,...,N*, k=0,1 2, ..., Monte Carlo estimates are calculated on k™ Markov

chain:
P! :%if(x‘\zj,ej,gk), (18)
=
N ) .
M 2%;()('—21.).6]-f(X"Zj,Gj,Qk), (19)
=
1 Nk ) ) )
Sik :szl:(xl —Zj)-(X' _Zj)T 'Gj ) f(XI‘ZJ’Gi’Qk)’ (20)
m - L8 ) ) 6,60, e
=
K 1 N* Kk i k
Qi :W d'A 'GJ * f(x ‘ZjiGjyg )i (22)
j=1
where

A= (A A, AY)

A=z -1, (@) (X -2)-@)" (2, - ), r=12...d-1
A =0, 1<i,k <K.
From (12)—(16) follow these formulas:

k+1 _ Kk 1 K_i
Ht = +K.§képik (23)
. 2&Sf
Q“:E;E (24)
i 2&ETS
O =—>» L



at = Z -
Wt &2 (26)
s
+ 1 ‘ ik
77“=T7K—EZ_1)% (27)

By using equations (5) and (18), a consistent estimator of log-likelihood function is
obtained (see (1)). The confidence intervals of received estimators are determined by
using asymptotical normal approximation of Monte Carlo estimators that was described
in the first chapter (see section 1.3). Thus, Monte Carlo chains are generated, according
to the formulas (23)—(27) until the length of confidence interval (2) becomes lower than
the chosen value ¢, £>0, and statistical hypotheses about matching of mean vectors
and covariance matrices in two adjacent iterations H, : 1/ = 4, Q' =Q", @ =0,

ot =a*, 7" =n" is not rejected (see section 1.4). Thus, statistical hypothesis is

rejected, if termination criterion (see (3)) H* >, , where ¥, is a quantile of ;(f)

distribution, p=d(d +3) degrees of freedom, & is a significance level. If this
hypothesis is not rejected, generation of Markov chain can be terminated and the
estimates, obtained in the last iteration, can be accepted.

Taking into account the fact that distribution in expressions of Monte Carlo
estimators (23)—(27) can be asymptotically approximated by multivariate normal
distribution (see section 1.3); the following law for regulation of Monte Carlo sample
size is introduced:

NS 2w I’j_ | (28)

where v is significance level. Trying to avoid too small or too large Monte Carlo sample

size, which is calculated according to (28), it is restricted by bottom value N _. and by

n

top value N, . Seeking to reduce the time, required for generation of Monte Carlo

samples, it is possible to terminate generation, when the length of confidence interval (2)

becomes lower than the initial value, while the value (28) is not reached yet.

18



2.4. Computer modeling

The algorithm created was tested with simulated data. It was observed, that
estimates obtained by a stochastic algorithm are close to the estimates obtained by
analytical approach. To check the assumption on asymptotical distribution of statistics,
obtained by adaptive MCMC method in the optimal point by the one-dimensional or
multidimensional normal law, another computational experiment was performed.
M =100 samples were generated, each consisting of K =100 skew t distribution values,
and by using the program that calculates integrals, the skew t distribution parameters for
each sample were analytically obtained.

Then, N =2000 volume independent Monte Carlo samples (17) were generated,

and termination test and others MCMC method tests were calculated for each sample.

Statistical ;(5 and Kolmogorov-Smirnov criteria did not object to assumptions about the

asymptotic termination statistic as distributed a Zﬁ law with p =10 degrees of freedom

made with 0,05 significance level. Efficiency of MCMC algorithm created, when the
sample size is regulated, and of standard algorithm, where the sample size in all
iterations is fixed, is compared in this dissertation. Efficiency of algorithms is compared
by the sample size, which is necessary to meet the conditions of exercise convergence.
The tested adaptive MCMC algorithm allowed to reduce the calculations by 2,5 times.

The algorithm, created in the dissertation, was applied for analysis of data of
Australian Sports Institute and for analysis of data of USA companies for financial years
of 2007-2011.

A simple illustration is provided by analyzing a subset of the Australian Institute of
Sport (AIS) data, examined by Cook and Weisberg (1994), which contains various
biomedical measurements of a group of Australian athletes (Smyth, GK, 2011). For each
data pair — the body mass index (BMI), the percentage of body fat (Bfat), sum of the skin
folds (ssf) and the lean body mass (LBM) — two-dimensional skew t distribution model is
estimated. Fig. 1 displays the surface plot and the contour lines of the fitted skew t
distribution density together with data dissemination for 100 women. The diagrams
presented visually illustrate the asymmetry of skew t distribution density and distribution

properties.
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LBM

Fig. 1. Surface plots of the skew t distribution and contour levels together with variables

dissemination diagram for AIS data

Further, the example is given, where skew t distribution is analyzed in the context
of economical situation, representing changes in investors’ expectation preference area
during crisis and post crisis periods.

Estimation of two-dimensional skew t distribution parameters is applied by using
rating data of enterprises. Day stock selling price (Close) and selling volume of 130 USA
enterprises are examined during the period from 2007 till 2011.

The skew t distribution density contour lines, drawn in fig. 2, show the
dissemination of data pair Close and Volume for each year. By using statistical
interpretation of skew t distribution (see section 2.1), it is possible to represent the
investors’ preference area that comes from skew t distribution density integration half-

plane, drawn in red arrows. In 2008, investors’ preference area decreased significantly —

20



this represents the real economical situation in that year: investors’ trust decreased. After

the crisis, in 2009, it increased and approached the limit of 2007 again.
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Fig. 2. Contour levels of the skew t distribution to Close and Volume data for the period

of 2007-2011

As the results in fig. 2 show, economical crisis had influence on investors’
preference area. In the rating data distribution, shown in fig. 2, investors’ preference area

reflects their expected results of the enterprises.

Chapter 3. POISSON-GAUSSIAN MODEL FOR ESTIMATION OF
MULTIVARIATE RARE EVENT PROBABILITIES

Adaptive MCMC algorithm to estimate some rare event probabilities by empirical
Bayesian approach was constructed in this dissertation. The algorithm of event
probability estimation by empirical Bayesian approach was constructed by Tsutakawa et
al. (1985), Sakalauskas (2010) postulating a prior assumption that logit transformations
are approximated as a normal distribution. Generalization of this algorithm in
multivariate case and the method for initial data selection for multivariate Poisson-

Gaussian model is further analyzed in this dissertation.
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3.1. Poisson-Gaussian model

Let’s consider a set C = (cl,cz,...,c") of K populations, where each population c'
consist of I, individuals, i=1 2,..., K. Assume that some events of M type can occur in
the populations (i.e., illness, death, insured events, and so on). The aim is to estimate the
unknown probabilities of events P", where number of events Y," is m"™ number of
appearance at the population i, i=12,...,K, m=12,...,M.

Empirical Bayesian approach assumes that Y," ~Pois(i[“), where A" =1,-B".

Poisson-Gaussian  model assumes that logit transformation of  event

m

probabilities p" :In1 Pipm in the populations is distributed, according to multivariate

normal distribution with parameters £, 2 (Bradley and Thomas, 2000; Tsutakawa et al.,

1985), when the density of p," is:

g (Pim " Q) _&Xp (_ (pim|Q|/.422§:):;(pim - ,u)) , (29)

i=12,...,K,m=12...,M.
In the case observed, the unknown parameters ¢, O are estimated by ML approach

after minimizing the log-likelihood function:

L(,u,Q):—ZK:In(p<PimY)):—iz::lnﬁoﬁf(Yi‘“, ! jg(pim,,u,Q)jpimj, (30)

Zoom=1 1+ e_pim

ﬂ?ﬂ’ ZD'ZO,:LZ""'

where me(w,;t?‘)z P(Yim =@, /1[")=e
' w:

When respective first derivatives of likelihood function are equated to zero and the

system is solved, the estimators are obtained:
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(31)

j alor, 1, Hor
k’Qk) ’
e e

1+e

(
T(pim — 1 Nor - i) f(
7

where B(,u, ) T]M[f(Ym I‘ jg(p, ,yQ)dp,

om

EM algorithm is useful to solve equations (31) and (32), in order to get ML
estimates (see section 1.2). As the probabilities of rare events (Pimzo) and
logitP™ ~ N(x,Q2) are analyzed, it might be assumed that probabilities are
approximately distributed by a log-normal law. Using this assumption, the following

heuristic initial point (,uo, QO) in the equations (31) and (32) can be taken:

1’ = In(P)—%QO, (33)

Q° =In| = +1|, (34)

where P=|11 i i3 | w=DiagP), Y, = (Y} Y2...Y"), i=12 .. K.
SIS, >,
i—1 -1 i—1

3.2. Markov chain Monte Carlo algorithm

Let’s say that k number of Markov chains is generated and estimates z“, Q* in

each chain with initial values (33) and (34) are calculated. To avoid the computational

problems that can occur due to very small values of intermediate results an auxiliary
function is introduced. Statistical criterion H* (see (3)) to test hypothesis

Hy:pu=p", Q" =0Q" is introduced for algorithm termination. This criterion,
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calculated in the optimal point of likelihood function, is approximated by an F, if the
sample size is large enough (see section 1.4; Krishnaiah, 1984).
The algorithm is terminated, if statistical criterion does not oppose to hypothesis

H* <F,, and the length of confidence interval (2) of likelihood function is lower than

N DX : N :
the chosen initial value ¢, £>0: 2.7 - N <¢, and covariance matrix estimate is

not singular, where F; ~and r are a quantiles of F and normal distributions,

respectively, o, ¥ — significance level.

Moreover, seeking to avoid the singularity of models, Monte Carlo chains are
terminated, when the ratio between maximum and minimum eigenvalues estimates of the
covariance matrix exceeds the selected critical value, which usually is 10-30 (Lin and
Zhu, 2004). This value, chosen in this dissertation, is equal to 10.

New Monte Carlo sample is generated, if at least one of the termination conditions

Is not met. Sample size is regulated, following the rule that is analogical to (28):

Nk+12 ’F

v,p!

(35)

N“.v
k

where F, = — quantile of an F distribution, v — significance level. Application of this

rule allows to choose the Monte Carlo sample size in Markov chain rationally, also
ensures the convergence of this exercise into optimal value of likelihood function
(Sakalauskas, 2000).

3.3. Computer modeling

In order to test the behaviour of created algorithm, the experiments were made with
selected simulated data and real data — the data of suicides (suic) and homicides (hom) in
Lithuania in 2003. M =2 events in populations set, made of K =60 municipalities, are

analyzed. Initial parameters are calculated by formulas (33) and (34). 100 Markov Monte

Carlo chains are generated and the probabilities P." of events suic and hom are estimated
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by using the described MCMC algorithm applied to Poisson-Gaussian model,
i=12,..,60and m=1, 2.

Table 1 presents the probability estimates of men suic (P ~105) and hom

(Phom-105) in the largest cities of Lithuania, which were obtained in this dissertation.

What is more, the estimates P, ,-10° and P, ,-10°, which were obtained by

suic_l' om_l'
Sakalauskas (2010) without taking into consideration the correlation between these
events, are included in the table for comparison. Upon introducing correlation, lower
value of likelihood function is obtained. As different estimates are obtained, it might be

concluded that introduction of the correlation is obligatory.

Table 1. Suicide and homicide stats in the largest cities of Lithuania in 2003

City Quarzgi;y of Quasr:ii(t:y of Quahng:Tt]y of P 1 o0 Prom -1 o | P, 1l 0 Prom 1 105
Vilnius 246412 110 22 72,63 15,68 47,50 12,03
Kaunas 167308 85 27 72,40 15,02 54,08 15,19
Klaipéda 88308 45 16 70,48 15,40 56,58 15,49
Siauliai 60221 43 14 66,89 14,39 74,21 16,26
Panevézys 53913 26 9 69,39 14,92 57,25 14,98

The dependences on number of generated chains, obtained from analysis of men

data, when the length of confidence interval does not exceed ¢ = 0,1, are depicted in fig.

3-7. As it might be observed in fig. 3, the minimum value of log-likelihood function has

k
already been achieved in the first iterations. The termination criterion H (see test in

s.p
fig. 4) is decreasing until the critical value 1 of termination is achieved, where F, isan

F distribution with p=5 degrees of freedom at 0,95-quantile. Fig. 5 shows the
dependence on sample size (marked as N predictable) that is calculated by rule (35). The
real sample size (marked as N real), depicted in this figure, is obtained by terminating
the sample generation when the length of confidence interval does not exceed the chosen
critical value ¢ . Fig. 6 shows the dependence of length of confidence interval on the
number of chains. The presented dependences show that the confidence interval is large

at the beginning of the chain, then it decreases down to the required value of 0,1.
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The research to compare the effectiveness of MCMC algorithm, created when the
sample size is regulated, with effectiveness of standard algorithm, where sample size is
fixed in all iterations, is also included in this dissertation. Effectiveness of algorithms is
compared by sample size, necessary to meet the conditions of convergence. In the case
researched, adaptive MCMC method, allows us to calculate Bayesian estimates of rare
event probabilities with the required accuracy and by reducing the calculations almost

twice.

Chapter 4. ESTIMATION OF STABLE SYMMETRIC VECTOR
DISTRIBUTION PARAMETERS

The statistical adaptive stable symmetric vector MCMC algorithm, which allows to
estimate the parameters of these vector distributions, by using ML approach, is
constructed in this dissertation.

Zoloterev’s expression of stable distribution density is used in this dissertation

(3omorapes, 1983). In one-dimension case, it is known that s=s, -s,, where:
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S, — random stable variable with skewness parameter S =1 and shape parameter
a, <1,
s, — another random stable variable with skewness parameter S =0 and shape

parameter «,;
S — random stable variable with skewness parameter f =0 and shape parameter
a=qa, -, (Rachev and Mittnik, 1993; Ravishanker and Qiou, 1999).

While applying this method, it is usually selected that s, would be a random

variable, which is normally distributed, i.e., 051=% and o, =2. In this way, the

multivariate stable symmetric vector can be expressed through normally distributed

random vector, and « -stable variables (Rachev and Mittnik, 1993; Ravishanker and

Qiou, 1999) as X = u+,/s, -s,, where S, — subordinator with parameter ¢, random

vector s, ~ N(0,Q2) and  is a random vector of mean.
4.1. Estimators of maximum likelihood approach

Let’s consider that the sample X =(X1,X2,...,X K) consists of independent d -

variate stable vectors. The log-likelihood function of this sample is

i=1

L(X,ﬂ,a,a>=§m|a|—imﬁ B<xayi,zi,y,sz,a)-exp{—zi}dyidzij, (36)

O e

where
2-a
sin(ﬂ' 'y)-sin[ﬁ'(z_a yja ra
Z ta(yi)
ta(y): 2 1 [ S
) 2 T\ '
(sinz-y)a -(cosj
4
2-a 2-a d
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Estimators of parameters are calculated from these equations by fixed-point

method:
K Xi
27
fr=———, (37)
£
i=1 1
s 1 & -gfx -4 g,
Q=12 f ! (38)
where
2—-a
A 2l a N
g(X,,[z,Q,a):” -B(X,y,z,[z,Q,a)-exp{—z}dydz, (39)
2ot (Y)
o 1
f(X,[z,fz,a):”B(X,y,z,[z,fz,a)-exp{— z}dydz, (40)
00

EM algorithm can be used to solve the equations (37), (38) after integrals (39) and
(40) are calculated by Monte Carlo method (see section 1.2). When x4 and Q are fixed,

the shape parameter estimate can be obtained by solving the exercise of one variable

minimization.
4.2. Markov chain Monte Carlo algorithm

Let’s say the initial values #°, Q°, a’are selected, then k number of Markov
chains is generated, and estimates u*, Q“, @“in each chain are calculated. Let’s say
Y, ~U(0,1) and Z, ~-In(Y,), where j=1, 2,...,N*, N* —is Monte Carlo sample size

of the k™ chain. Then the sums are calculated:

1 ¥

P! :WZB(Xi,YJ,ZJ,u",Qk,ak), (41)
=1
PP :%g(s(x‘,vj,zj,yk,gk,ak))z, (42)
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1 Nz .
V== ST B(X' Y ,Z 40 a%) (43)
i ngm ( e M “)
2-a 2
LN A .
VVK = L B(X")Y.,Z ,u",Q a")| 44
i Nk; tak(Yj) ( j j H 05) ( )

that are necessary to receive estimators in the next iteration, according to (37) and (38)

and EM algorithm:

K iVik
L2
+1 1= i
yzi :W, (45)
&P
+! 1 < i i Vik
Q“=E§(X ~u X - o (46)

Then the consistent Monte Carlo estimator of log-likelihood function is obtained

(see (1)). The 95% confidence interval for likelihood function is (see (2)):

o2 [ EPRC 2 [ S PR
{L N\/N g(Rk)z K, L +N\/N g(ek)z K] (47)

Monte Carlo chains are generated, according to formulas (45)—(46) the length of
confidence interval (47) becomes lower than chosen value ¢, £>0, and statistical

hypothesis about matching of mean vectors and covariance matrices in two adjacent

iterations H, : p** = 4, Q' =Q" is not rejected (see section 1.4). To test this

hypothesis, the Anderson criterion is used (see (3)): H* >V, where Vs, —is ;55

distribution quantile with p degrees of freedom, & — significance level (see section 1.4).
To regulate Monte Carlo sample size, the rule, analogical to rule, which is applied
in stochastic programming, is introduced. Application of this rule allows to choose the

Monte Carlo sample size in Markov chain rationally, also ensures the convergence of
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sets (45) and (46) into optimal value of likelihood function with probability 1
(Sakalauskas, 2000).

4.3. Computer modeling

The algorithm created was tested with chosen simulated data and share data of 3
telecommunication enterprises: AT&T, BellSouth and CenturyLink, from 20-01-2012 to
01-04-2012.

By using MCMC algorithm, described in the dissertation, k =50 Markov chains
were generated. The sample size limit N* >500 was applied to avoid too small or too
large values. In this case, termination conditions of the algorithm were satisfied after
k =28 iterations.

Fig. 8-12 depict dependences when the length of confidence interval does not
exceed £=0,2. As it might be observed in fig. 8, the log-likelihood function is
decreasing until the zone of possible solution is achieved. The presented dependences in
fig. 9 show that the confidence interval decreases down to the required value of 0,2. In
fig. 10, N real is obtained by terminating sample generation when the length of
confidence interval does not exceed the critical value £=0,2. N predictable is Monte

Carlo sample size, calculated according to rule (28). Termination test is depicted in fig.

11, where critical value is the value of 0,999-quantile of ;(f) distribution with p=9

degrees of freedom (equal to 27,88).
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Analogical research of share prices was carried out with the following 5
enterprises: AT&T, Bellsouth, CenturyLink, CBS, and Sprint. In table 2, the fixed and

regulated by rule (28) Monte Carlo sample size is presented, required to meet the

conditions for algorithm termination.

Table 2. Comparison of standard and adaptive MCMC algorithms of stable symmetric

vector distribution

Dimednsion £ Sample size k N k in the last Total N
Iteration

regulated 28 6478 88 004

o fixed 30 7000 210 000

’ regulated 28 1646 32 346

02 fixed 29 2000 58 000

regulated 23 11724 156 567

o fixed 19 12 000 228 000

° regulated 12 2519 16 904

02 fixed 19 3000 57 000

Comparison of created algorithm with a standard MCMC algorithm with fixed

sample size has revealed that it allows to obtain the estimators symmetric stable vector

law with the necessary accuracy in lower number of chains, and, thus, reducing the

volume of calculations by almost two times.
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RESULTS AND CONCLUSIONS

1. Markov chain Monte Carlo adaptive methods were created and tested.

2. Rules for Monte Carlo sample size regulation in Markov chains, for assessment of the
accuracy of the estimators, and for termination of Monte Carlo chain process were
proposed.

3. Algorithm for estimation of skew t distribution parameters by adaptive MCMC
method was created. It was shown that this method realizes log-likelihood function
stochastic gradient search, implementing it with EM algorithm. Tests made with
Australian sportsmen data and financial data of enterprises, belonging to health-care
industry, confirmed that numerical properties of the method correspond to the
theoretical model. Algorithm can be used to test the systems of stochastic type and to
solve other statistical tasks by MCMC method.

4. Adaptive MCMC algorithm was constructed to estimate some rare event
probabilities by empirical Bayesian approach. Initial data selection method for
multivariate Poisson-Gaussian model was proposed. To avoid too small or too large
values, the modified likelihood function was introduced. Model for social data
analysis was created.

5. The statistical adaptive MCMC algorithm for researching the parameters of stable
symmetric vector distributions was constructed. This algorithm was applied for
creation of model of share data of telecommunication. This model can be used for
data analysis of stock market.

6. Computational problems, typical for most exercises that use MCMC method, were
analyzed, including MCMC method for skew t distribution, Poisson-Gaussian model
and estimations of parameters of stable symmetric vector law. The results, obtained in
this way, can be successfully applied for other statistical exercises.

7. Efficiency of MCMC algorithms was tested by statistical modeling. Tests of algorithms
behaviour have shown that adaptive MCMC algorithm allows to obtain estimators of
examined distribution parameters in lower number of chains, and reducing the

volume of calculations approximately two times.
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MARKOVO GRANDINES MONTE-KARLO METODO TYRIMAS IR
TAIKYMAS

Tyrimuy sritis

Atsitiktiniai procesai gali biti modeliuojami bei prognozuojami tikimybiniais
statistiniais metodais, pasinaudojus duomenimis apie proceso eiga. Atsitiktiniams
procesams apraSyti ir tirti daZnai taikomi jvairls stochastiniai: Markovo grandinés
Monte-Karlo metodas, Gibso imties iSrinkimo ir Metropolio-Hastingso algoritmai,
stochastiné aproksimacija bei kt. (Rubinstein ir Kroese, 2007; Spall, 2003). Markovo
grandinés Monte-Karlo (angl. Markov Chain Monte Carlo — MCMC) metodas yra
kompiuterinio imitavimo biidas, pladiai taikomas statistikoje, technikoje, fizikoje,
bioinformatikoje ir t. t. MCMC metodas daznai taikomas retuy jvykiy tikimybéms
apskaiCiuoti imties iSrinkimo metodu (angl. importance sampling), duomeny analizéje
EM (angl. expectation maximization) algoritmu, Bajeso metodo praktiniam pritaikymui,
modeliuojant aposteriorinius skirstinius bei skaitiniais metodais nustatant jy parametrus,
ir pan. Kadangi tikimybiniy modeliy sritis, kuriems gali biiti pritaikyti MCMC metodai,
yra labai plati, disertacijoje apsiribojama daugiamaciais skirstiniais, kurie gali buti
sukonstruoti hierarchiniu budu i§ elipsiniy skirstiniy. Tokiu biidu gauti skirstiniai gali

biti pritaikyti sprendziant daugelj praktiniy ir teoriniy duomeny analizés uzdaviniy.

Problemos aktualumas

Zinomuose MCMC algoritmuose paprastai sugeneruojamos kelios arba keliolika
grandZziy, empiriSkai nustatant konvergavima ir uzfiksavus visose grandyse pakankamai
dideli Monte-Karlo im¢iy ttirj (Bradley ir Thomas, 2000). Aisku, kad skai¢iuojamuoju
poziiiriu tokios procediiros yra nelabai efektyvios, nes tenka sunaudoti daug kompiuterio
laiko grandziy generavimui, o nutraukus grandinés generavima empiriskai, statistiSkai
reik§mingas konvergavimas dar gali buti nepasiektas. Taip pat taikant MCMC daznai
kyla problema, kokio dydzio imtys turéty buti generuojamos atskirose grandyse.

Tokiu biidu, aktualios MCMC skaitmeninimo problemos yra grandinés grandziy
skaiCiaus nustatymas ir Monte-Karlo im¢iy tario atskirose grandyse reguliavimas. Prie

kity aktualiy MCMC skaitmeninimo problemy galima priskirti pradinés grandies
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parametry parinkima, skai¢iavimus esant tikimybiniy modeliy singuliarumui,
skai¢iavimus su labai didelémis arba labai mazomis tarpinémis reik§mémis. Gana aktuali
MCMC panaudojimo problema yra asimetriniy skirstiniy su didelémis atsitiktinémis

reikSmémis konstravimas ir parametry vertinimas.

Tyrimy objektas

Disertacijos tyrimy objektas yra adaptuotos Markovo grandinés Monte-Karlo
metodo tyrimas, skaitinis realizavimas ir taikymas duomeny analizéje, tikslumo
vertinimo, grandziy skai¢iaus parinkimo, algoritmo stabdymo ir Monte-Karlo im¢iy tiirio

reguliavimo biidai.

Tyrimy tikslas ir uzdaviniai

Darbo tikslas — istirti Markovo grandinés Monte-Karlo adaptavimo metodus,
sudarant efektyvius skaitinius algoritmus, leidZian¢ius priimti duomeny analizés
sprendimus su 1§ anksto nustatytu patikimumu, bei i8tirti Siy algoritmy efektyvuma.

Siekiant Sio tikslo disertacijoje sudaryti algoritmai bei juos realizuojanti
programiné jranga, skirta Monte-Karlo imc¢iy tirio adaptavimui atskirose grandyse,
ivertiniy tikslumo vertinimui bei Markovo grandinés proceso stabdymui. Sukurti
metodai ir algoritmai yra pritaikyti duomeny statistiniam vertinimui MCMC metodu,
pasinaudojant praktiskai surinktais arba Zinomais literatiiroje duomenimis. Siy metody
bei algoritmy efektyvumas tiriamas pasinaudojant disertacijoje sudarytu statistinio
modeliavimo metodu. MCMC skaitmeninimo problemos, nagrinéjamos disertacijoje, yra
iStirtos sprendziant kelis duomeny analizés uzdavinius (asimetrinio t skirstinio, Puasono-
Gauso modelio ir stabiliojo désnio parametry vertinimo), pasizymincius ypatybémis,
kurios yra buidingos daugeliui kity uzdaviniy, ir tokiu biidu gauti rezultatai gali buti

sé¢kmingai pritaikomi ir kitiems panasiems uzdaviniams spresti.

Mokslinis naujumas
Disertacijoje gauti Sie rezultatai:
1) Markovo grandinés Monte-Karlo im¢iy tiirio adaptavimo taisyklé;

2) Markovo grandinés generavimo stabdymo taisyklé;
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3) Markovo grandinés Monte-Karlo algoritmy efektyvumo tyrimo metodas;

4) adaptuotos Markovo grandinés Monte-Karlo metodo pritaikymas uzdaviniams,
kuriy tikimybiniai modeliai konstruojami hierarchiniu btidu i§ elipsiniy skirstiniy,
spresti (asimetrinio t skirstinio, Puasono-Gauso modelio ir daugiamacio « -

stabiliojo désnio parametrams vertinti).

Praktiné darbo reik§mé
Disertacijoje sudaryti MCMC algoritmai daugiamacio asimetrinio t skirstinio,
Puasono-Gauso modelio ir daugiamacio « -stabiliojo désnio parametrams vertinti duotu
tikslumu bei kompiuterinio modeliavimo biidu iStirtas Siy algoritmy efektyvumas.
Sudaryti algoritmai gali buti pritaikyti praktikoje iSkylantiems uzdaviniams spresti
(finansiniy seky prognozavimui, biologiniy populiacijy ir draudiminiy (vykiy
populiacijose tyrimams ir pan.). Gauti rezultatai gali buti pritaikyti sprendziant {vairius
statistinio vertinimo uzdavinius MCMC metodu: imties iSrinkimo metodas, EM
algoritmas, didziausio tikétinumo metodas ir pan.
Disertacijoje gauti Sie praktiniai rezultatai:
1) sudarytas algoritmas asimetrinio t skirstinio parametrams vertinti;
2) sudarytas algoritmas Puasono-Gauso modelio parametrams vertinti;
3) sudarytas algoritmas stabiliojo simetrinio skirstinio parametrams vertinti;

4) sudarytas statistinio modeliavimo metodas MCMC algoritmy efektyvumui tirti.

Ginamieji teiginiai
1. Sudaryti algoritmai bei juos realizuojanti programing iranga, skirta:
a) Monte-Karlo im¢iy tirio reguliavimui Markovo grandyse;
b) ivertiniy tikslumo vertinimui;
c) Markovo proceso grandinés stabdymui.
2. Sudaryti algoritmai gali buti pritaikyti duomeny statistiniam vertinimui adaptuotu
MCMC metodu sprendziant praktinius ir testinius uzdavinius.
3. Sudaryti algoritmai leidzia sprgsti statistinio vertinimo uzdavinius MCMC metodu
duotu tikslumu sumazinant (mazdaug dvigubai) skaiiavimo apimtj palyginus su

Zinomais algoritmais.
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Darbo rezultaty aprobavimas

Tyrimy rezultatai buvo pristatyti 8 respublikinése ir 10 tarptautiniy konferenciju.
Paskelbta 15 straipsniy disertacijos tema recenzuojamuose mokslo zurnaluose: 1 i§ jy yra
ISI Web of Science duomeny bazéje ir turi citavimo indeksa, 1 yra Web of Science

duomeny bazéje, Kiti straipsniai — CEEOL ir Index Copernicus ir kitose duomeny bazése.

Disertacijos struktiira

Darba sudaro {vadas, keturi skyriai, iSvados, literatiiros apzvalga ir priedai.

Ivade pateikiamas disertacijos tikslas, uzdaviniai, metodai, darbo rezultaty
aprobavimo ir publikavimo sarasas.

Pirmame skyriuje aptariamas pasirinktos temos aktualumas ir bendra jos
problematika.

Antrame skyriuje sudaromas Markovo grandinés Monte-Karlo algoritmas
daugiamacio asimetrinio t skirstinio parametrams vertinti, pateikiamas algoritmo
pritaikymas Monte-Karlo didziausio tikétinumo jvertinimui.

Tre¢iame skyriuje sudaromas daugiamatis empirinio Bajeso Puasono-Gauso
modelis, aptariami kiti Bajeso skai¢iavimo aspektai.

Ketvirtame skyriuje apraSomas Markovo grandinés Monte-Karlo algoritmas

daugiamacio « -stabiliojo skirstinio parametrams vertinti.

Bendrosios iSvados

1. Sudaryti ir istirti Markovo grandinés Monte-Karlo adaptavimo metodai.

2. Pasitilytos taisyklés Monte-Karlo iméiy tiirio reguliavimui Markovo grandyse,
ivertiniy tikslumo vertinimui, Markovo proceso grandinés stabdymui.

3. Sukonstruoti trijy hierarchiniy modeliy adaptuoti MCMC algoritmai.

4. ISnagrinétos antisimetrinio t skirstinio, Puasono-Gauso modelio, stabiliojo désnio
parametry vertinimo MCMC metodu skaitmeninimo problemos.

5. Sudaryti algoritmai pritaikyti realiy duomeny tyrimy modeliams sudaryti:

a) Australijos sporto instituto duomeny analizei;

b) finansiniy 2007-2011 mety JAV imoniy duomeny analizei;
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€) 2003 m. Lietuvos savizudybiy ir nuzudymy skai¢iaus duomeny analizei;
d) telekomunikaciniy bendroviuy akciju duomeny analizei nuo 2012-01-20 iki
2012-04-01.

6. Statistinio modeliavimo buidu iStirtas MCMC algoritmy efektyvumas.
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