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1. Introduction

1.1. Research Area
The state of equilibrium and related issues are relevant in many areas of

economics, business and financial management. Usually the equilibrium is an outcome
of some dynamic process. It is important to identify in what conditions the equilibrium
exists and, if it exists, if it is the only one, how it is obtained, what is the degree of
stability of the equilibrium. The search for the equilibrium is of major importance in
economic analysis applications: forecasting the outcome and evaluating proper values of
parameters of the model, comparing results of the experiment with forecasts of the
model, testing the designed mechanism. In applications the Nash equilibrium is often
analysed, in which none of the competing individuals (players), who behave non-
cooperatively, has an intention (it is useless for him) to change his strategy one-sidedly
when other individuals follow the equilibrium strategy. If players make decisions
hierarchically, we have Stackelberg equilibrium. There are many areas of economics and
finances where one or another type of uncertainty is encountered; e.g., the demand
depends on certain random values or some values cannot be accurately identified or
measured. Then we have to analyse the stochastic equilibrium.

In practical problems, when we have many different players, we must explore
the dynamics of their behaviour, identify marginal cases of this dynamics and find values

of parameters, in the presence of which this dynamics leads to the equilibrium.

1.2. Relevance of the Problem
If the decision is made by several players whose interests do not coincide and

they cannot cooperate, the game is non-cooperative, when the player, choosing from
strategies available for him, seeks to maximize (minimize) the objective function, the
value of which also depends on other players’ strategies. In 1950, J. Nash proposed to
apply the conception of the equilibrium for non-cooperative games. According to Nash,
in the equilibrium none of players intends to change his strategy (in such case he would
only get the same or less), if all other players follow equilibrium strategies.

A big share of equilibrium situations is modelled employing bilevel decision-
making models, in which the order of decision-making is important. These models,

referred to as Stackelberg games, in which the feasible set is determined by the set of



optimal solutions of the second, parametric optimization problem. Models of this type
are applied in various areas, where at the top level the leader maximizes (minimizes) his
objective function, which depends both on his strategy and on the follower’s strategy,
chooses the strategy, and the follower reacting to it makes a decision at the bottom level
so as to maximize (minimize) his objective function.

Very often we have to evaluate both payoff and loss, which depend on random
values and risk. Risk evaluation issues are very important in financial markets. Then it is
necessary to include some risk measure into the model: this can be value at risk (VaR) or

conditional value at risk (CVaR).

1.3. Object of Research
The research object of the dissertation is investigation of the model of

heterogeneous agents and its application for modelling stochastic Nash and Stackelberg

equilibriums by Monte Carlo method.

1.4. The Aim and Objectives of the Research
The research aim is to identify the impact of heterogeneous agents on the

formation of the economic bubble, to create and examine algorithms for special bilevel

stochastic programming problems and for search of the stochastic Nash equilibrium

applying Monte Carlo method. To implement this aim, the following objectives are

solved:

1. To design the mathematical model of the economic bubble and its crash and,
employing it, to examine the Lithuanian real estate bubble.

2. To create the Monte Carlo algorithm to optimize conditional value risk in case if
constraints contain conditional value at risk.

3. To investigate the method of importance sampling and apply it to solve a two stage
stochastic linear programming problem.

4. To investigate the stochastic Nash equilibrium and create the algorithm for search of

this equilibrium, to evaluate the behaviour of this algorithm.

1.5. Scientific Novelty
New results have been obtained in the research:
1. The mathematical model of the economic bubble and its crash, which includes

agents of two different types, has been proposed.



2. The Monte Carlo algorithm for the solution of the stochastic programming problem
the objective function and constraints of which contain the conditional value at risk
has been created and investigated.

3. The algorithm of importance sampling, which is applied to solve the two stage
stochastic linear programming problem, has been created and investigated.

4. The Monte Carlo algorithm for search of the stochastic Nash equilibrium has been

created and investigated, applying statistic criteria for its stopping..

1.6. Practical Significance of the Results
The following practical results have been obtained in the research:

1. The mathematical model of unsustainable status (of the bubble and its crash) has
been proposed and it has been employed for investigation of the real estate bubble of
Lithuania.

2. The Monte Carlo algorithm has been created to optimize the conditional value at risk
when conditional value at risk is in constraints; this algorithm has been investigated,
solving generated test problems.

3. The importance sampling algorithm for two stage stochastic linear programming has
been created and investigated solving the test problem.

4. The algorithm for search of stochastic Nash equilibrium was created and applied to

solve the problem of electricity supply with initial contracts.

1.7. Defended Statements
1. Having included agents of two different kinds into the mathematical model of the

economic bubble, we obtain a more accurate estimation of the beginning of the
bubble and its crash.

2. Monte Carlo algorithms for sequential search for stochastic Nash or Stackelberg
equilibrium are characterized by good convergence and enable to find the
equilibrium strategy at proper accuracy, terminating the algorithms according to a

statistical criterion.

1.8. Approbation and Publications of the Research
The results of the dissertation were presented at international (3 papers) and

national (4 papers) scientific conferences. Research results were announced in scientific

publications and in reviewed recognised international data bases (the list approved by the



Research Council of Lithuania): 2 articles and 1 article accepted for printing in scientific
journals which are included in CEEOL and Index Copernicus, 1 article in MatSciNet
(Mathematical Reviews), 1 publication in International conference proceedings, included
in the list of the Institute of Scientific Information, 1 publication in reviewed Lithuanian

international conference proceedings.

1.9. Structure of the Dissertation
The dissertation consists of five chapters, the list of references and the appendix.

Chapter 1 is introduction. Chapter 2 presents formulation of problems for search of
the equilibrium: the model of heterogeneous agents, the stochastic bilevel
programming problem, the model of the Nash equilibrium, and their analytical
investigation. Chapter 3 presents the investigation of financial bubbles of the market
and their crashes: using a Ponzi scheme, the proposed mathematical model for
financial bubbles and their crashes, and the model of heterogeneous agents. Chapter
4 presents the investigation of stochastic bilevel programming problems (the problem
where the objective function and constraints contain a conditional value at risk,
solving of a two stage stochastic linear programming problem, employing the method
of importance sampling).Chapter 5 contains the investigation of the algorithm for
search of the stochastic Nash equilibrium and its application.

At the end of the dissertation conclusions, the list of references and the appendix are

presented.



2. The Problems of Equilibrium Search
2.1. Introduction

Phenomena of stochastic equilibrium arise in many fields of economy and
finance usually analyzed as stochastic Nash and/or Stackelberg equilibrium. Multiple
decision-making is often related with competition of several decision makers/players
seeking one’s own interests. Very often these players are non-cooperative and their
decisions intervene with each other, what calls forth the problem of finding Nash
equilibrium.

The manager of the distribution network, the supplier in the communication
market, the supplier in a supply chain acts as a leader and makes a decision first. Then
followers—the users of these networks, retailers choose their strategy according to the
decision which is made by the leader. In the game theory and in the multilevel
programming the hierarchical decision-making problems are analyzed and it is aimed to
find Stackelberg (equilibrium) solutions for these problems.

M. Patriksson and L. Wynter (1997) maintain, uncertainty occurs almost in all
applications of hierarchical problems and ignoring or simplifying it leads to an expensive
mistake. Different authors in the different ways include the uncertainty in their models.
For example, L. Cheng et al. analyse the model of the bilevel formation of the prices and
orders between producer and retailer where demand is uniformly distributed (2009). In

this model they include CVaR as retailer’s objective function.

2.2. Monte Carlo Method
Many numerical problems in engineering, economics and other applied sciences

are solved by generating some statistical samples by the computer. If in such way the
problem is solved we say that we solve the problem by Monte Carlo method. Monte
Carlo method is used when we want:

e to observe the behaviour of the objects and processes (we generate random

objects and processes);
¢ to estimate numerical values (we repeatedly generate samples);
e to solve complex optimization problem (we use randomized algorithms).
Assume we need to estimate a numerical value, for example, expectation

| = E(f(2)).Assume we have simulation data



SN A 1)
which is independent and distributed according to the same law with the density function

p. Assume that |l <. Then the estimate of the sample {z'} expectation is
~ 1w i
f _ngf(z ). (2)

Let variance of f(z)is finite and equal to o*. Then for sufficiently large N a

random variable f is distributed approximately by N(l,&%/N) law (it follows from the

central limit theorem). If variance o isn’t known, then it may be estimated by sample

variance

5% =1 S(f(2)- Ty, 3)

N —1i=
which by law of large numbers tends to o® as N —oo. The estimate of confidence

interval of | with significance 1-« is
= D - D
(f =m0 W, f+m ., W)’ 4)
here n, is y—quantile of the distribution N(0,1). Instead of the estimate of the confidence

interval we may consider the estimate of the error D/+/N or a relative error D/ f+/N.
The estimation of numerical values can be done more effectively by using the
information of the simulation model. We may use various variance reduction techniques,
for example, importance sampling.

The idea behind importance sampling is that certain values of the input random
variables in a simulation have more impact on the parameter being estimated than others.
If these “important” values are emphasized by sampling more frequently, then the
variance of the estimate can be reduced.

Assume we seek to estimate the value of | = E_ H(z) =[H(z) p(z)dz. Here H is

the real function and p (named as nominal density) is the density function of a random
vector z. The index p to the expectation operator denotes that it is computed with

respect to p. Assume, ¢ is another density function such that Hp is dominated by ¢.
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i.e. (z)=0=H(z)p(z)=0. Then using density function ¢ we may | express as

I_jH(z)%(p(z)dz E,H(2) pE ; If z*,...,z" ~ ¢, then the estimate of Iis

p(z")
| = H(z 5
SiHe Rhveat (5)
The ratio of densities W(z) = f (z)/¢(z) is the likelihood ratio. The confidence interval

of I with significance 1-« is

~

- D D
(=70 WJ T ar2 W) (6)
The main difficulty using importance sampling is to choose the densityq. If

density ¢ is poorly chosen, then it will impact the accuracy of the confidence interval of

the estimate. Theoretically, optimal ¢~ minimizes the variance of | and so is the

solution of the problem min 5¢,[H (z)%], here [~)¢ denotes variance with respect to ¢ .
? o\Z

2.3. Methods for Stochastic Problems
In the dissertation the research is restricted to problems for which the objective

function and the constraints function is of one extremum, and smoothly differentiable
which are expressed by expectation of random functions satisfying Lipschitz’s condition.
In the case of the problems, in which absolutely continuous probability measure is
present, in practice it is impossible to solve them by deterministic optimization methods.
However, functions which are expressed by expectation where probability measure is
absolutely continuous may be approximated by statistical modelling (Monte Carlo
method). In addition, we may use stochastic methods of differentiation and estimate the
gradients or the derivatives of such functions also by statistic modelling.

In the dissertation the problems of stochastic equilibrium are investigated; in
these problems random players’ objective functions or constraints functions satisfy
Lipschitz’s condition only, but the scenarios of the environment in which players make
decisions are distributed according to the absolutely continuous measure. To solve such
problems stochastic approximation, interior point, sample average approximation (SAA)

and sequential search methods are used.
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The method of stochastic approximation was perhaps the first for stochastic
problems, but this method isn’t very applicable in practice because this method involves
the regulation (which isn’t always obvious in practice) of the step of optimization and
sure ways how to terminate the algorithms aren’t known. The interior point methods
involve complex matrix computations and aren’t enough developed. SAA method
successfully is applied to solve multistage stochastic linear problems, but the solving of a
nonlinear stochastic problem by this method is related with the application of complex
numerical algorithms. So, for stochastic equilibrium search problems these methods
aren’t widely applied. In literature the problems of stochastic equilibrium are analyzed
more theoretically and there are many open questions in practical applications. The
dissertation analyses Monte Carlo algorithms of sequential search which ensure
convergence, allow finding solution with proper accuracy by using reasonable computer

resources.

2.4. The Bilevel Programming - BP
The bilevel programming problems or Stackelberg games are often considered

as hierarchical models where one player (leader) has priority to play in the first order and
he announces his decision to other player (follower) or other players (followers). In BP

problems the decision variable is separated into two vectors x and y. In the upper level
the leader controls the vector x e R™ and in the lower level the follower controls the
vector yeR". If we replace the lower level problem with its KKT (Karush—-Kuhn—

Tucker) optimality conditions, then we have one level problem. Often this

transformation of BP problems is used. Stochastic bilevel problem:

(upper level) m)!n E(F(x,y,w)), @)
xeX,y
here y is a solution of such
subject to G(x,y,@) <0,
problem
(lower level) minE, (f(x,y,)), (8)
subject to 9(x,y,®) <0, here xe R™,y e R",

hereweQ is an elementary event in the probability space (Q,%,P,), functions are such
FIR"xQ >R, fR"XQ>NR, GR"XR"xQ->R", g:R"xR"xQ->R and

satisfy some properties of differentiability, integrability and convexity, measure P, is

12



absolutely continuous and may depend on x, i.e. it is defined by density p:R"xQ —-R_,
E, denotes expectation with respect to a random variable ». Of course, here may be

special cases of this problem, for example, random variable @ may not be present in the
constraints of upper level. Functions F,G, f,g may be of the special type, for example,

linear.

2.5. Non-Cooperative Games
2.5.1. The Model of the Non-Cooperative Game

The normal form of n person non-cooperative game is triplet (N, X,u), where
N is a finite set of players indexed by i, X =X;x..xX,, here X, is a set of i player’s
possible actions, each vector x=(x,,....x,)e X is a profile of the actions, u=(u,,...,u,),
here u, : X >R i is player’s real utility (or payoff) function.

Let (N,X,u) is a normal form game and let 11(B) denotes all probability
distributions on the set B. Then the set of mixed strategies of the player i is S, =T1(X,).
The set of profiles of mixed strategies is S, x...xS, . s,(x;) denotes the probability that we

will choose the action x, in a mixed strategy s, .

2.5.2. The Concept of Nash Equilibrium in Non-Cooperative Game

In 1951 J. Nash proposed to unify the theory of cooperative and non-cooperative
games, the so called Nash program, i.e. the cooperative game to consider as some certain
non-cooperative game. Assume we have the cooperative game which is defined by a
characteristic function f and the set of players is N. According to Nash program, it is
possible to find such non-cooperative game I'" in which some Nash equilibrium may be a
solution for the cooperative game f .

For the given cooperative game we may define the reduced game, i.e. a game in
which one part of players play this game and the remaining part don’t play. B. Peleg
(1986) established how to define the solutions for a given game via reduced game
properties. V. Dumskis (2004) proposed another variant of the reduced game and
analysed its properties.

We present the vector of the strategies x=(x,X,,....x,) for easy use, as

x=(x;,X;), here x is the part of the strategies vector which is controlled by other

13



players, except i player having strategy x . In the game (N,X,u) the vector x e X is
Nash equilibrium, if vi,ieN,

u (X5 ) =0 (%, X)), vx e X, (%,%x)eX. 9

2.5.3. The Stochastic Nash Equilibrium

In the practical decentralized decision-making system uncertainty often appears.
Thus, it is naturally to analyse Nash equilibrium in the circumstance of the uncertainty.
Assume that uncertain parameters of the system are independent stochastic variables,
then the stochastic decentralized decision-making system is described as such:

i=12,...,n—players making decisions, y,-part of the vector which is controlled by a
decision-making player i, u.(y,, V..., Y,,<& ) —the objective function of the player i, here
& i1s random vector which describes some parameters, g.(y,,Y,,.- Y,,& ) —constraints

function for the player i.
In general, the players seek to optimize the expectation of their objective
functions where the constraints contain the expectations of other functions. Thus, we

have such model:
max E[U; (Y, Yoo ¥or &), Where B[ (¥, Y0 Vi 610 (10)
For this case Nash equilibrium is defined by (11). Feasible solution (y;,ys,....,y,) is Nash
equilibrium if it satisfies:
ELU; (Y7, Yoo Yias Vi Yo Yo SOTS ELU (Y1 Voo Via Vi s Vi Yon €)1 V0 (11)

for each feasible (., V5oV 1 Vi Vogsens Vo).

14



3. Analysis of the Models of Financial Crises

In 2007 Watanabe K. et al. proposed the method how to predict the start of the
bubble. In this work we use this last method to investigate the real estate market in
Lithuania during the bubble and crash in period 2000-2009.

3.1. The Mathematical Definition of the Bubbles and Crashes
Watanabe K. et al. (2007) analysed the following model. Suppose the price at
time tis P(t), (M and w(T .)are uniquely determined parameters from the past T, data
points for which root-mean-square of error F(t) achieves minimum (12).
P{t) - Pt -1) = (W) -D(P{t-1) - R(T,)) + F(t) (12)
The prices behave in three manners due to the value of w(T,):
1. If w(T;)>1, then the price is exponentially increasing or decreasing and P, (T;) is the

base line of exponential divergence;

2. If w(T,)=1, then the price follows random walk;
3. If w(T;) <1, then the price converges to p,(T;) (base line).

Equation (12) was applied to real estate market data in Lithuania from 1 May
2000 until 31 December 2009. The data in this period illustrates the bubble and the
crash. We find the optimal period of observation, i.e. fix T;. For this we will investigate

an ordinary autoregressive model and will estimate parameters a; and error term f(t):

P =Y.a,P(t— )+ 1) 13)

The optimal interval of observation is the minimum of time scale in which we

cannot observe w(T;)>1 in (12) for this time series (13) with N =5. For our data the

value of T, is 12 months.

Pirend 0= W(Ti )Ptrend t-D+@1- W(Ti ))PO (Ti ) (14)

3.2 The Mathematical Definition of the Bubbles and Crashes in Case when Two
Kinds of Agents Exist

An approach proposed in Watanabe K. et al. (2007) and certified above with real

data may be useful when we have two different kinds of agents, i.e. chartists and

15



fundamentalists. Fundamentalists: There are NF fundamentalists who believe that the
price will eventually converge to the fundamental value. Chartists: There are NS
chartists who behave according to the trend of price.

Because we will explore the same data, we assume that T, is equal to 12 and

w(T;), Py(T;) have the same meanings as above. Then we modify (12) and we have (15).

N=5 as above.
NS
Pt)—-P(t-1)= Wh 1( §_ W(r NP()—-P(j—D]+ 5
NF
mz[P(t 1) PR, (T)Ia(T,) + F(t).

Here q(T;) and w(T,) are adjustment speeds for fundamentalists and chartists.

When we introduce two kinds of agents, we estimate (15) in the same manner as (12)

above. In analogous way we define the trend by (16).
Ptrend (t) = W(Ti ) Ptrend (t _1) + (1_ q(T| )) Ptrend (t _l)

Here Py(T,),q(T;),w(T;),Nsand NF are uniquely determined parameters from the

(16)

past T; data points for which root-mean-square of error F(t)achieves minimum in (15).
In Fig. 1 we plotted the exponential trend curve (14), price and base line for each
convergent and divergent intervals. In Fig. 2 we plotted the exponential trend curve (16),

price and base line for each interval. Here we obtain different pictures.

280 5 280 ,,,
240 - Y 240 - LN
200 - = \ 200 1 Ty
160 - . =y 160 - A ~
120 = 120 S

80 ~ === 80 == — __ __—
40 40

0 — T T 0 e B e o

01 2 3 456 7 8 0 1 2 3 456 7 8
Intervals Intervals
S Price Base line - = - - Trend Price Base line = = = Trend

Fig. 1 Price, base line, curve of the trend

Fig. 2 Price, curve of the trend, base line (two kinds

of agents)

As we see in Fig. 1, the convergence intervals are (3, 4, 6, 9) and the divergence
intervals are (1, 2, 5, 7, 8). We can identify the bubble and its crash by divergence

intervals. However, the interval (6), when the bubble stops growing for a while, is the

16



convergence interval in Fig. 1. We regard this fact as the lack of Watanabe’s model;
therefore we modified it by including two types of the agents and thus the interval (6)
became the divergence interval (Fig. 2). The traditional heterogeneous agents model
(HAM) as in Zwinkels R. C. et al. (2010) was used to analyze the behaviour of agents
with the same data. In the case of the HAM maodel, in the start of the bubble, the part of
the chartists rapidly begins growing. Thus, it validates the inclusion of the different kinds

of agents into the model.

4. Stochastic Bilevel Problems

4.1 Optimization of Risk Aversion by Monte Carlo Method

Let us consider optimization of the risk aversion problem:
F,(x)=0-E[f,(x,&)]+(1-6)-CVaR, [f,(x,{)]— min

F.(x)=CVaR, [f(x,{)1<g, i=12..,m, X 17)

here the conditional value at risk (CVaR) follows the definition of Rockafelar and

Uryasev:

: 1 . (18)
CVaR,(x)=min| v+ -——E[f (x,{) —V]
veR 1_a
O0<a <1,i=012,.,m ¢ecQ,(Q32,P,) is the probability space, f :R"®Q—->NR,
i=01..,m, [t]" =max{0,t}. Assume random functions f :R"®@Q—>R,i=012,...m
satisfy Lipschitz’s condition. Assume that the uncertainty is described by the absolutely
continuous measure with the density function p(x,):R™ >R, .
Thus, the problem (17) can be rewritten in a following equivalent form as the
bilevel problem (see (7), (8)):
F,(x)=0-] f,(x,2)- p(x,2)dz+
RI
1 . :
+(@1-6)-| v, +—-[(f,(x,2)=V,) - p(x.z)dz | — min
o, R XV (19)

0

F. (x) = min (vi s [(f,(x,2)=v,) - p(x, z)dzj <¢,i=12,..,m
vieR o. R

17



Let us introduce the Lagrange function Fo(x)+Zﬂ,, -F.(x). In order to compute

i1
Lagrange function we must solve the lower level problem (18). Let us introduce the
extended Lagrange function (LF)
L(x,4,v) = El(x,4,v,{) =
:6?-RII f,(x,2)- p(x,z)dz+

(20)
+ gﬂ'i ’(Vi -9 +i' I(fi(x’z)_vi )+ - p(x, Z)dz}
i=0 a, R"
and the extended constraints functions (CF)
1 +
L. (x,v) = EI(x,v,{) =V, — ¢ +Z-Rjn(fi (x,2)-Vv,)" - p(x,z)dz. (21)
LF may be treated as expectation of the stochastic Lagrange function
m f(x,&)=v)
1(x, A,v,£) =0 fO(x,§)+_zoﬂ,i-{vi _g 4 X 40? v) ] (22)
and CF as expectation of the random functions
f(x,&)-Vv.)
Ii(x’v!é/):\/i_¢i+( |(X é,) VI) (23)
.

here A=(4,4,A,), 4=0,i=12,..m, 3, =1-6, ¢, =0,v=(V,,V,,..., V).
We note, that functions 1(x,4,v,{) and I.(x,v,&),i=12,...,m, satisfy Lipshitz’s

condition with respect to x and v, so their subgradients exist and may be treated as
stochastic gradients. Because uncertainty is described by the absolutely continuous
measure, the expectations in formulas above are smoothly differentiable. If density

function p satisfies Lipshitz’s condition, then the probabilistic objective function is
twice smoothly differentiable (Bartkute and Sakalauskas, 2007). So, LF - L(x,4,v) and
CF - L,(x,v) are smoothly differentiable; we may express their gradients by
expectations. Denote the gradient of LF by G(x,4,v) = Eg(x,4,v,¢) and the gradients of
CF by G, (x,v)=Eg,(x,v,{), i=12,...,m.

Assume that x” eR" is the solution of the problem (17). According to Karush-
Kuhn—Tucker theorem and to the rules of the differentiation of CVaR (Rockafellar and

Uryasev, 2002), such £ >0, v, >0,i=01,...,m exist that
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G(x*,/f,v*)EVFO(X*)+§O,17-Gi(x*,v*)zo,
A (L(X',v)-¢)=0, _ i=12,..,m, (24)
Pr(fi(x*,g)ZVi*):ai, i=01..,m.
If random functions f.(x",¢),i=041...,m are linear, then the given problem may

be transformed to the large linear programming problem (LP) and then solved by Sample
Average Approximation (SAA) method. However, the resulting LP may be very large
and to solve it would require large computing resources (Kall and Mayer, 2011). Also

some functions f,(x,¢), i=0.1...,m may be nonlinear, then transformation of the given

problem to LP isn’t applicable. So, the simulation sequences of Monte Carlo samples
may be useful (see section 2.2).

Assume that for every x e R" it is possible to generate Monte Carlo samples (1).

Then, according to (2), we have Monte Carlo estimates IEO(x,v), IEi(x,v) and Pr, =%.

Here N, are frequencies of the events {vi f(x,2") 2vi}, i=01..,m, in the sample (1).
According to (3), we have the estimates of variances DZ(x,v), D?(x,V).

The estimate of the extended Lagrange function is
E(x,/i,v) = |EO(X,V) + i%/li . IEi(x,v).

We approximate the gradient of the objective function and the gradients of the
constraints functions by stochastic gradients (Sakalauskas, 2002). Assume that stochastic
gradients G,(x,z’) of random functions L(x,4,v) and L, (x,v) are obtained, i.e. vectors
G,(x,2'), for which EG,(x,{)=VF,(x), i=01..,m. For example, stochastic gradient
may be obtained as the subgradient of the random function: G,(x,¢)=0F(x,¢),
i=01...,m. The estimates of the gradients of the objective and constraints functions are
Jo(x,V), Gi(x,V).

The estimate of the stochastic gradient of Lagrange function is:

A AV =,00+ £ 00 = $Q04,v,2"), )

here
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Q(x,ﬂb,v,z"):G-Go(x,zj)+(l—9)-G(§‘(x,v,z")+_%ﬂbi -G/ (x,v,2").

Of course, EQ(x,4,v,&) =Eq(x,4,v) =V L(x,4,v).

The covariance matrix is:
(26)

A(X,A,V) = % %(Q(x, AV, 20)—q(x, l,v))- (Q(x, AN, 7)) — q(x,ﬂ,,v))T :
j=1
4.1.1. Stochastic Algorithm of Optimization

In order to find the solution of the problem (17) or (24) Monte Carlo estimates
F,(x,V), F(x,V), Pr,DZ(x,v), D*(x,v),L(x,4,V), ,(x,V), G (V) may be used. Here
we’ll use stochastic variable metric method (SVM), which ensures faster convergence.

Assume that the initial point x° eR" and vectors A°, v° eRT are given, also,

that at this point sample (1) of initial size N° is generated and Monte Carlo estimates are

computed. Let us define such SVM procedure:
Xt+1 — Xt _(At)—l . q(Xt’lt ,Vt),

A% =ma{ 0,2 +7,(L (X' V) + 4, - D, (X' V)], i =12,..,m,

V=V -(ﬂ—l}
Q;

here y,>0,7,>0 are normalizing multipliers, z, is g-quantile of standard normal

(27)

distribution. The covariance matrix (26) is used to change optimization metric.
Generally, the Monte Carlo estimates in (27) are random. We note that it isn’t
necessary to generate the sample (1) of large size at the beginning of the search for the
solution and it is more important to have large size samples (1) only in the moment of
the evaluation of the optimum. Therefore, the size of sample, which ensures the

convergence, is chosen according to the rule (Sakalauskas, 2002):

@)’ -(AY (@)’

here  is quantile of the distribution »* with n degrees of freedom.

N t+1 _ )(2 (0), n) (28)

The termination of the algorithm may be done in a statistical way, i.e. by testing

the hypothesis about the equality of the gradient of Lagrange function to zero and
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validity of conditions (24). Thus, the hypothesis of the optimality may be accepted at
point x with significance u, if the inequality is valid:

(N=n)-(V,L)-A*(V,L) < () (29)
here y*(u,n) is u-quantile of the distribution x> with n degrees of freedom,

V,L=V, L(x,A) is the estimate of the gradient of the function LF and A is normalizing
matrix (26) at point (x,4), N is the size of sample (1). The algorithm may be stopped if

the hypothesis of the optimality (29) isn’t rejected and the constraints conditions (30)
vanish with given probability g

F.(xV)+ 4, -D,(xV)/YN <0, i=12,.,m, (30)

the lengths of confidence intervals of the objective and constraints functions (see (4))

don’t exceed given accuracy ¢; :
2n, -D(xV)/IN <&, i=0L..,m (31)

1, is p; quantile of the standard normal distribution, parameters v are well chosen to

estimate CVaR:

Pr—a| <7, - /W, i=12,..m. (32)

If conditions (29)-(32) are valid, then optimization may be stopped with
affirmation of finding the optimum of the proper accuracy. If one of these conditions

isn’t valid, then next sample must be generated and the optimization be continued.

4.1.2. Testing of Algorithm
The sequential simulation-based approach for stochastic programming with

CVaR (27) has been tested by Monte-Carlo method simulating the piecewise-linear test
functions (33):

fi(x,g):max(aovk+Zn:aj'k-(xj+§’j)} 0<i<m, (33)

1<k<k,
where coefficients a;, were chosen randomly. For each number of variables
n=2,510,20,50, the sample from M=100 sets of normally distributed coefficients a,,

has been simulated with the following values a,, =9, a,=1+3-% a,, =23 a, =9,
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a'j,, 1<k<k,, m=01, where ¢ is standard normal. Details of the test

M ~

a., =a' 1
bk TS kT
kn

k=1

problem are given in Table 1.
It would be noted that chose class of the functions (33) is universal because
every convex function may be approximated by the functions of the type (33) by picking

enough large number k and choosing suitable coefficientsa,, .
The confidence levels of CVaR have been takene,, o, =01, the value of ¢, in

CVaR constraint is given in Table 1. Termination conditions in (29)—(32) have been
tested with probability 0.95.

Next, the Expected Value Solution (EVS) of the problem (19) has been obtained
for corresponding test functions (33), where variables ¢, were distributed
normally N(0,0.5) . The EVS of CVAR threshold variables v, and v; are given in Table 1.

The EVS obtained has been taken as an initial approximation in the method defined by

(27).
Table 1 Data of test functions and the results of optimization
Min Max Average number
n Vo 2 ¢ & k number of | number of of iterations
1 n
iterations iterations

2 3.34 3.46 4.5 0.015 5 8 16 9.4

5 4.93 6.82 7 0.1 11 8 22 12.46

10 8.33 8.63 9 0.1 21 6 14 7.7

20 12.42 9.59 11.5 0.075 31 14 53 26.6

50 20.84 14.01 15 0.1 76 44 88 59.9

Some results of optimization by this method are given in Table 1. The maximal,
the minimal and an average numbers of iterations needed for termination of the
algorithm (27) (where the test functions (33) depending on variables’ number n and
admissible length of confidence interval &) are given in this table. All test problems in
samples have been solved at the proper accuracye, i.e. terminated according to the
criteria (29)—(32) after a certain number of iterations.

The graphs of CVaR optimization results are presented in Table 2 (n=10, 20,
50). The averaged dependencies of the objective function value as well as the
probabilities of CVaR on the number of iterations are given in the first three columns of
first row for each case of the number (10, 20, 50) of the variables, illustrating the

convergence of the approach developed. The frequency of termination, the change of the
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ratio of Hotelling criterion and the corresponding quantile of 4 distribution (which

shows how this ratio tends to the critical termination value 1) depending on the number
of iterations are presented in the second row for each case of the number (10, 20, 50) of
the variables. The averaged number of the size of Monte Carlo sample is given for each
iteration in the bottom right cell, which shows the adaptation of this sample during the
optimization process. Thus, the results of Monte Carlo simulation illustrate the
convergence of this approach and ability to solve the stochastic programming problems,
where CVaR is included into both objective function and constraints, at proper accuracy
treated in a statistical manner.

It is obvious that when solving the problem at more accuracy more iterations and
greater volume of Monte Carlo sample will be needed. For example, when the number of
variables was 2 and accuracy ¢ = 0.015, no less iterations and no lesser volume of Monte
Carlo sample comparing with the case when the number of the variables was 5 and
accuracy ¢ = 0.1 were needed.

The dependence of the created algorithm on the number of the variables wasn’t
investigated. However, it may be noted, that when the number of the variables is
increasing then the time which is needed to solve the optimisation problem is increasing
too.

An investigation of depicted dependencies allows to observe the adaptation of
the created algorithm. Indeed, according to (31) it is clear that the length of the
confidence interval depends on the variance of the objective function. Because in the
case when n=50 such objective functions, whose variances in an area of an optimum was
lesser than in initial iterations, occurred, i.e. in this area they were flat; this determined
the reduction of the volume of the sample in the moment of the termination (see Table 2,
Monte Carlo sample size). This fact may be avoided by regulating the maximal value of

the volume of Monte Carlo sample.
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Table 2 The graphs of CVaR optimization results (number of the variables is 10, 20, 50)

Number of the variables (n=10)

Obijective function

Frequency Prg

Frequency Pry

8 0.2 0.2
i 0.15 +
75 0.15
0.1 - 0.1
N /,
0.05 - 0.05 -
6.5 T vY T T T T T T T T O
1 6 11 16 21 26 31 36 41 46 51 1 6 11 16 21 26 31 36 41 46 51 0 T T T T T T T T T T
1 6 11 16 21 26 31 36 41 46 51
Frequency of termination Hotelling termination criterion Monte Carlo sample size
1.2 5 1450 -
1 n
4 4 1250 -
0.8 -
1050 -
0.6 31
| 850
0.4 5
0.2 650 1
0 T T T T T T T T T T 1 ) 450 T T T T T T T T T T
1 6 11 16 21 26 31 36 41 46 51 0 1 6 11 16 21 26 31 36 41 46 51

1 6 11 16 21 26 31 36 41 46 51
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Number of the variables (n=20)

Obijective function

Frequency Prg

Frequency Pry

12 03 0.3
115 4 0.25 1 0.25 -
11 A 0.2 0.2
10.5 - 0.15 - 0.15 -
10 - 01 0.1
0.05 -
9.5 A 0.05
0 T T T T T T T
’ Y T T ‘ T ‘ T 0 ‘ ‘ w ; w w ‘ 1 11 22 31 4 51 61 71
! 1 2 8 41 o1 61 n 1 11 21 31 41 51 61 71
Frequency of termination Hotelling termination criterion Monte Carlo sample size
1.2 5 1450
N 1250
0.8 41
0.6 3 1050
0.4 2| 850
0.2
l 7 .
0 T T T T T T T 650
1 11 21 31 41 51 61 71 0 T T T T T T T 450
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Number of the variables (n=50)

Obijective function

Frequency Prg

Frequency Pry

22
21
20
19
18
17
16
15

1 11 21 31 41 51 61 71 81 91

0.3

0.25
0.2
0.15 -
0.1 PRt
0.05 -

0 T 1. T r T T+ rr+°r &7+ 7T7T+T7T1T 1T 7TT7T1T°.T7
1 11 21 31 41 51 61 71 81 91

0.3
0.25
0.2 +
0.15
0.1 1
0.05

0

1 11 21 31 41 51 61 71 81 91

Frequency of termination

Hotelling termination criterion

Monte Carlo sample size

1

0.8 A
0.6
0.4
0.2

0

1

11 21 31 41 51 61 71 81 91

0O+

1 11 21 31 41 51 61 71 81 91

7000

6000 -
5000 -
4000 -
3000 -
2000
1000 -

0

1 11 21 31 41 51 61 71 81 91
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4.2. Importance Sampling Method for the Two Stage Stochastic Linear Problem

As we see in section 2.2, application of the importance sampling method to
evaluate the numerical value leads to the problem of minimizing of the variance. If
additionally we want not only to evaluate the numerical value but to minimize that value,
we have two minimizing problems, which are interdependent. Thus, we have the
stochastic bilevel problem (see (7), (8)). We’ll apply this approach to solve the two stage

stochastic linear problem (34).
F(X)=c-x+ Eimin[a-l’|W-l’+T -X<h, re Rf‘]}—) min,
r (34)
Ax=b, xeWR’,
where matrices W, T, A and vectors ¢, a, h, b are of appropriate size, the vector h is the
multi-normal random N(z,X), 7 is the mean vector, X is the covariance matrix, p(h,7)
is the density function. Denote the density function of the normally distributed vector
according to N(y,X) by o(,,y):R™ —> R, and apply it to change the measure, changing
vector y in order to decrease the variance. Denote

f(x,h) =W_|:r+11nxgha- r. (35)
reRT

After simple manipulations we get:

F(x)=c-x+[1(x.h)-q(y.h)-o(h,y)dh (36)
where
q(y.h) = P00 e (- (- y)" 5 (4 y - 2)). 37)
o(h,y)

Correspondingly:

(fuh)-p(ho)) -
o(h,y)

It is easy to make sure that the gradient of variance (38) with respect to the parameter

DY) = (39

vector y is as follows:

HOy) =PRI = jh-y) 2 d(xy.h) - oth, y)ah =

=E(h-y)-Z7-d(x,y,h),

(39)

where
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dumm=UMMmMﬂY$%%l (40)

The gradient of the objective function (34) with respect to X is presented as an

expectation of the vector function. Indeed, according to duality of the objective function,
it may be expressed as:

F(X)=c-x+ E{max[(h—T-x)-e|e-WT +a>0, ee Rf]}.

The gradient of the objective function is:

oF(x) _

(41)
PV Eg(x,h)

where g(x,h)=c—T-€". Here € is the solution of the dual linear problem:
(h=T-x)" " =max[(h-T-x)"-e|]e-W" +a>0, eeR'].

Assume that for every feasible solution re D < R" it is possible to generate

Monte Carlo sample (1) of some size according to the density function ¢(h,y).

The estimates are computed according to (42)—(44):

~ 1 N .
Fouy) =151 (42)
~ 1 N .
Gluy) =20’ (43)
3 1w, 4 Ey
Ay =32 - y)-2 o (44)

where f'=1f(x,z"), g’ =g(x,v,2")=9g(x,2')-q(y,z’), d) =d(x,y,z'),1<j<N .
Assume certain initial approximationsx® e R", y° =7 are given, certain initial
sample size N°is chosen and random sequence {xt, vy, Nt}fio is defined according to (45):
X =x = p-G,(x',y")
Y=y e HX YY) (45)

N'Hl :i

bt

-N!

where G,(x',y') is the &-projection of the stochastic gradient to the feasible set (see

definition in Sakalauskas and Zilinskas, 2008), p>0,a>0,b" >0 are certain parameters
of the method.
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It can be proved by martingale approach that under an appropriate choice of
parameters of the method the sequence (45) converges almost sure to the solution of the
problem (34) (see Sakalauskas, 2002, 2004). Note that the choice of Monte Carlo sample
size according to (45), where sample size is chosen inversely proportional to the square
of stochastic gradient, allows us to solve the problem by simulating a reasonable volume
of random samples.

Note that the necessary optimality condition means that the gradient of the
objective function is equal to zero in the optimum. Hence, the optimization is terminated
when the gradient becomes less than a certain admissible value. Indeed, the iterative
process can be stopped by testing a statistical hypothesis on the equality of the gradients
of the objective function to zero, and, besides, when the confidence interval of the
estimate of the objective function becomes of proper length. Since the sample size
increases during optimization, the distribution of the Monte Carlo estimates is
approximated by the normal law; this enables us to construct statistical termination rules
similar to (29) and (31) (Sakalauskas, 2002; Sakalauskas and Zilinskas, 2008).

The importance sampling approach developed has been explored by computer
simulation solving the two stage stochastic linear optimisation test problem (see details
in Sakalauskas and Zilinskas, 2008). The dimensions of the task are as follows: the first
stage has 10 rows and 20 variables; the second stage has 20 rows and 30 variables. The
estimate of the optimal value of the objective function given is 182.94234 +0.066.

The test problem has been solved 50 times by the approach developed with the

following parameters: p =0.0005, « =0.1, b' was chosen by the way described in

(Sakalauskas and Zilinskas, 2008). The number of iterations has been fixed when the
termination conditions were satisfied for the first time (the statistical hypothesis of
gradient equality to zero isn’t rejected with probability 0.95 and the confidence interval
of the objective function estimate doesn’t exceed the admissible value & = 2).

The averaged dependencies of the objective function value in regard with the
number of iterations are depicted in Fig. 3, obtained by stochastic sequential
optimisation with (Import) and without (Classic) the importance sampling. One can see
in Fig. 3 the convergence of the approach considered in both cases. Dependency of

frequency of termination is depicted in the Fig. 4, which illustrates the decrease of the
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number of iterations to terminate the algorithm using the importance sampling. The total
size of Monte Carlo samples applied for optimization depicted in Fig. 5 and the Monte
Carlo sample size at each current iteration in Fig. 6, which shows that the importance
sampling enables to decrease the amount of samples required for optimisation almost
twice.

Thus, the results obtained allows to conclude that importance sampling enables
to decrease the number of iterations needed to achieve the termination conditions as well

as to decrease the Monte Carlo sample size at each iteration.

The value of objective function: 182.94234 + 0.066. 1
0.9 ’v/
185 0.8 /
oo [ o y A
183 - %' A 05 // /
I amte s Y D 04
15 9 13 17 21 25 29 33 37 41 45 49 oa / /
0:1 / /
. — 4
15 20 25 30 35 40
| mport Classic ‘ Frequency (Classic] ) — requency (Import) ‘
Fig. 3 Objective function value Fig. 4 Frequency of termination
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| Import C'355'°| |— Import Classic |
Fig. 5 Total size of Monte Carlo samples Fig. 6 Monte Carlo sample size

5. The Stochastic Nash Equilibrium Problem
5. 1. The Search for Stochastic Nash Equilibrium

We may consider the problem (46) in a general form as the non-linear Nash
equilibrium problem:

Fi (X, Xp e Xy ) = EF (X, Xp 1o, E) > min (46)

Xjechan
where £eQ is an elementary event in the probabilistic space (Q,%,P,), functions
f 1 R"xQ—> R satisfy some integrability, differentiability and convexity properties, the

]
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measure P, is absolutely continuous and may depend on X, i.e. it is described by the
density function p:R"xQ —> R, .

If the vectors in (46) are discrete, then functions of players F,(x) may be
expressed as expectations of functions f;(x,) and the problem (46) is solved as the non-

linear programming problem (often very large). To solve the problems of type (46)
where random variables are continuous, generally, an assumption is drawn that it is

possible to construct finite sequences of realizations of random variable & at every point
xeDc®R'?, here D=D,®D,®..®D, e R", and to compute corresponding values of
functions f, and their gradients. Then it isn’t difficult to estimate by Monte Carlo
method the value of the objective function and the value of its gradient of the problem
(46) (they are expressed by means of the expectations).

Assume that it is possible to construct Monte Carlo sample (1) of certain size N°,
where z* are independent random variables equally distributed according to the density
function p(x,): Q —> R, ,xeDcR". Then, the estimates of the objective functions
IEJ. (x),1< j<n and their variances Sf(x),ls j <n,are computed. Next, with the same
Monte Carlo sample without essential computations, the estimates g;(x), 1< j<n, of
gradients of objective functions may be computed. Also, with the same Monte Carlo
sample covariance matrix A(x)is computed. Assume the initial point xX°eDcR" is
given. The stochastic procedure based on gradients for search of the equilibrium is
constructed as:

X;™ =X = p; - Gj(x) (47)
here p,>0,1<j<n, are some multipliers by which the length of gradient’s step is
regulated. The length of the step may be tuned in the experimental way. In procedure

(47) the size of Monte Carlo sample is regulated by the rule (see Sakalauskas, 2000,
2002):

1 n-Fish(y,n,N' —n)
N = 'Nmin 'Nmax
m'”[maxﬂp-(@(xtf -(A(x‘))*-(@(x‘)}" j ] (48)

here Fish(y,n,N‘ —n) is Fisher distribution with (n,N'—-n) degrees of freedom, y -

quantile. In order to avoid large fluctuations of size of the sample, the minimal and
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maximal sizes of the sample are taken (Nyin~20 .. 50 and Ny~ 1000 .. 5000). Note that
the value Na may be taken according to the conditions of the estimate of the confidence
interval of the objective function. The rule (48) assures that the sequence obtained by
(47) converges (Sakalauskas, 2000, 2002).

The test of the optimality of the solution is performed at every iteration, i.e.
first, testing the hypothesis about gradient’s equality to zero and, second, is the size of
sample adequate to estimate the objective function with proper accuracy. Formally
speaking, the testing according to Hottelig’s T statistics is performed, i.e. the hypothesis
on optimality at point x' may be accepted with probability 1 — g, if

T2 =(N"=n)-(G(xX))" - (A(X))™-(3(x))/n < Fish(z,n,N* —n). (49)

Next, according to asymptotic normality we may decide that the objective

function is computed with accuracy e, if limits of the confidence interval don’t exceed

the proper accuracy limit.
nﬁ-ﬁj(xt)/\/ﬁﬁg (50)
here 7, is g - quantile of normal distribution.

While one of conditions (49) or (50) isn’t valid, the procedure (47) is repeated at
point which was computed by (47), where size of the sample (1) is adjusted by (48).

5.2. Stochastic Nash Equilibrium Model of Electricity Market with Initial
Contracts
Let us consider an electricity spot market with M generators, which compete one

with each other in dispatching electricity. Assume, the inverse demand function is
pP(Q,< (w)), where the market price is p(Q,<(w)), Q is the total electricity supply to the
market and ¢ :Q — R is a random variable which describes the uncertainty of demand

(see, more details in Xu and Zhang, 2013). Each i™ generator chooses the quantity of

electricity g, to be produced and supplied for dispatch, 1<i<M . Then the expected
profit of i generator is R.(q;,Q.,) = E[q, p(Q,&)—C, () + H, (p(Q,£))], where Q. , =Q —q;,
Q is total bids supplied to market by all competitors, C,(qg;) denotes the cost of producing
the quantity g, of electricity by i"™s generator, H,(p(Q,¢)) denotes the payments related

to contracts, which generators sign with retailers before entering the spot market,

1<i< M. The contracts are used to hedge risks arising due to uncertainty of demand in
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the market. By selling a call option at a strike price f, i generator pays w,-(p— f) to the
contract holder, if p> f, but no payment is made, if p<f, here w is the quantity
signed by generator on contract at strike price f, i.e. H,(p(Q, <)) = —w; max(p(Q, &) — f,0).

The decision-making problem of i generator is to choose an optimal quantity

g; So that its expected profit would be maximized. Hence, assuming every generator to

be maximizing its profit, the competition of generators in the electricity market is

presented as a stochastic Nash equilibrium problem:

- E(qi p(Q’é:)_Ci (qi)_Wi max( p(Q1§)_ f,O))—) min )

OSQi Sqi,max

where ¢, .., is the maximal generation capacity of i generator, 1<i<M. Let us

consider, for example, the competition of M =3 generators with the inverse demand
function p(9,{)=a-{+a,—q, a=20¢,=30, strike price is f=22, ¢ is a random
variable uniformly distributed in [0,1]. Quantities of call options and cost functions for
the three generators are w, =10, w, =8, w, =10, C,(q,) =¢/ +24,, C,(q,) =205 +2q,,
C,(g,) =205 +3q,. Here F, = Fish(z,n,N' —n).

Table 3 Computed and exact equilibriums

t O U2 03 Q E[pQ.&] | Ry R Rs N' T2/F,

1 10 10 10 30 10.274 | -17.26 | -117.26 | 127.26 2 6.4*10°
2 7.827 | 5.827 | 5.727 | 19.382 | 20.708 6591 | 25.69 | 35.81 9 70.263
3 7.784 | 5132 | 4.634 | 17550 | 22.324 | 70.64 | 30.05 | 46.60 204 2.474
4 7.983 | 5.000 | 4.250 | 17.233 | 22.547 7265 | 30.62 | 46.95 | 2283 1.004
5 8.151 | 4.961 | 4.079 [ 17.191 [ 22.959 7433 | 30.70 | 48.14 926 0.999
6 8.358 | 5.022 | 4.036 | 17.416 | 22.505 7338 | 30.02 | 46.14 [ 4085 1.002
7 8.440 | 4.992 | 3.968 | 17.401 | 22.793 7458 | 30.21 | 47.05 | 10316 0.970
8 8.532 | 5.011 | 3.963 | 17.506 | 22.540 7479 | 3058 | 46.03 | 3656 1.000
9 8.552 | 4.980 | 3.936 | 17.468 | 22.384 | 74.37 | 30.46 | 4531 | 2538 1.000
10 [ 8544 | 4944 | 3.906 | 17.394 | 22.609 7493 | 3048 | 46.08 | 39748 0.252

Analytic solution
g |8642 4980 [3.923 [17.545 | 21687 [7570 [30.70 |4650 | |

The example considered has been solved starting with the set of strategies
q=(0, 10, 10), afterwards simulating the Monte Carlo samples choosing the
strategies (qi, 4z, g3) in a sequential way according to (47) and adopting the sample size
N*' according to (48). Results of computer simulation are presented in Table 3, where
the analytically obtained solution of the problem is given for comparison. The presented
results enable to conclude that only few samples have to be simulated in order to achieve

the set of equilibrium strategies.
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General Conclusions

The problems of search of the stochastic equilibrium which often are
characterized by a hierarchic structure are encountered in various scientific fields:
engineering, economics, finances and logistics. Many of applied problems of search of
stochastic equilibrium are considered as problems of equilibrium search where payoff
functions are convex and satisfy Lipschitz’s conditions, and the random scenarios of the
environment are distributed according to the discrete or continuous probability law.

The research explored unsustainable states of market, i.e. economic bubbles and
their crashes. In the dissertation the mathematical model of the bubble is proposed,
dealing with agents of two different types: fundamentalists and chartists; and this model
was employed for exploration of Lithuanian real estate bubble.

Because often in the real situations the risk is considered, it is necessary to
incorporate the criteria of the risk in the optimization problems. This can be made by
involving criteria of the risk in the objective function and in the constraints, thus the
resulting problem is the bilevel stochastic problem. The method of sequential Monte
Carlo search (algorithm 4.1) has been created to solve this problem.

Applying the method of importance sampling for solving the two stage
stochastic linear problem transforms the given problem to the stochastic bilevel
programming problem. In this work the algorithm 4.2 has been created to solve this
problem.

The created algorithm 5.1 for the gradient search of stochastic Nash equilibrium
has been employed to solve the test problem of the electricity market with the initial
contracts.

The research carried out in the dissertation enables to draw such conclusions:

1. Having included heterogeneous agents into the mathematical model of the economic
bubble improves adequacy of it, i.e. if the growth of the bubble stops a little, the
effect of the price divergence from base line remains.

2. The solving of the test problem where the objective function and constraints contain
the conditional value at risk by the way of the algorithm 4.1 enables to find the
solution of the given accuracy, i.e. checking the condition of termination of the

algorithm with probability 0.95, calculating CVaR with significance level 0.1, where
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a number of variables of the test functions varies from 2 to 50, an average number of
iterations varies from =~ 8 to ~ 60, an average size of Monte Carlo samples varies
from = 1200 to = 6000.

The solving of the two stage stochastic linear problems by the way of the algorithm
4.2 enables to reduce approx. 15-20% of the number of the iterations which is
needed to find the solution of the given accuracy, also, the average size of the Monte
Carlo sample is almost twice less when the algorithm has been stopped comparing
with the classical algorithm.

The algorithm 5.1 for gradient search of the stochastic Nash equilibrium is effective
because the solving of the test problem by it enabled to find the solution of the given
accuracy via several (= 10) iterations when the size of Monte Carlo sample didn’t
exceed 10,000.

The created algorithms were investigated by the way of statistical modelling solving
practical test problems, and gained conclusions in such a way may be applied in
creating and investigating the algorithms for the search of the stochastic equilibrium

of other problems.
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REZIUME
Tyrimy Sritis
Pusiausvyros biisena ir su ja susij¢ klausimai aktualiis daugeliui ekonomikos,

verslo bei finansy valdymo sri¢iy. Paprastai pusiausvyra yra kurio nors dinaminio
proceso i§dava. Svarbu nustatyti, 1) kurioms sglygoms esant egzistuoja pusiausvyra ir jei
Ji egzistuoja, tai 2) ar ji yra vienintelé, kaip pasiekiama pusiausvyra, 3) kiek yra stabili
toji pusiausvyra. Pusiausvyros paieska labai svarbi ekonominés analizés taikymams:
prognozuojant baigme ir jvertinant tinkamas modelio parametry reikSmes, lyginant
eksperimento rezultatus su modelio prognozémis, testuojant suprojektuota mechanizma.
Taikymuose daznai analizuojama NeSo pusiausvyra, kurioje né vienas i
lenktyniaujanciy individy (lo$éjy), besielgian¢iy nekooperuotai, neturi intencijos (jam
nenaudinga) vienpusiSkai keisti savo strategija, kai kiti individai laikosi pusiausvyros
strategijos. Jei loS¢jai priima sprendimus hierarchiskai, tai turime Stakelbergo
pusiausvyrq. Daugelyje ekonomikos ir finansy sriciy susiduriama su vienokios ar
kitokios rasies neapibréztumu, pavyzdziui, paklausa priklauso nuo tam tikry atsitiktiniy
dydziy arba kai kuriy dydziy negalima tiksliai nustatyti ar iSmatuoti. Tada biitina
nagrinéti stochasting pusiausvyrag.

Praktiniuose uzdaviniuose, kai esama daug skirtingy individy, tenka tirti jy
elgsenos dinamikg, nustatyti pastarosios ribinius atvejus bei rasti parametry reikSmes,
prie kuriy §i dinamika veda j pusiausvyra.

Problemos aktualumas

Jei, priimant sprendima, dalyvauja keletas loséjy, kuriy interesai nesutampa ir jie
negali kooperuotis, toks loSimas vadinamas nekooperatiniu loSimu. Jame lo§¢jas,
rinkdamasis 1§ jam galimy strategijy, siekia maksimizuoti (minimizuoti) savo tikslo
funkcija, kurios reikSme priklauso ir nuo kity los¢jy strategijy. 1950 metais J. Nesas
pasiiilé nekooperatiniams loSimams pusiausvyros koncepcijg. Esant pusiausvyrai, pasak
Neso, n¢ vienas los¢jas neturi ketinimo keisti savo strategijos (jis tokiu atveju gauty ta
patj arba maziau), jei visi kiti lo§¢jai laikosi pusiausvyriniy strategijy.

Daugelis pusiausvyros situacijy modeliuojama dviejy lygiy sprendimo priémimo
modeliais, kuriuose svarbi sprendimo priémimo tvarka. Tie modeliai, vadinami

Stakelbergo losimais, kuriuose leistina aibé yra nusakoma kito, parametrinio
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optimizavimo uZdavinio optimaliais sprendiniais. Sio tipo modeliai taikomi jvairiose
srityse, kur virSutiniame lygyje lyderis maksimizuoja (minimizuoja) savo tikslo funkcija,
priklausancia tiek nuo jo, tiek ir nuo pasekéjo strategijos, be to, pasirenka strategija, 1
kurig reaguojantis pasekéjas priima sprendimg apatiniame lygyje taip, kad maksimizuoty
(minimizuoty) savo tikslo funkcija.

Labai daznai reikia jvertinti ne tik iSloS] ar praradimg, kurie priklauso nuo
atsitiktiniy dydziy, bet jvertinti ir rizikg. Rizikos jvertinimo klausimai yra labai svarbiis
finansy rinkose. Tada j modelj reikia jtraukti kurj nors rizikos mata: tai gali bati rizikos
reiksmé — VaR (angl. Value at Risk) ar sqlyginé rizikos reiksmé — CVaR (angl.
Conditional Value at Risk).

Tyrimy objektas

Disertacijos objektas — heterogeniniy agenty modelio tyrimas ir taikymas

stochastinés NeSo ir Stakelbergo pusiausvyry modeliavimui Monte Karlo metodu.
Tyrimy tikslas ir uZdaviniai

Darbo tikslas — nustatyti heterogeniniy agenty jtaka ekonominio burbulo
susiformavimui, sudaryti ir istirti dviejy lygiy stochastinio programavimo specialiy
uzdaviniy bei stochastinés Neso pusiausvyros paieskos Monte Karlo algoritmus. Siam
tikslui jgyvendinti numatyti tokie uzdaviniai:

1. Sukonstruoti ekonominio burbulo ir jo grifities matematinj modelj bei pritaikyti jj
Lietuvos nekilnojamojo turto burbului istirti.

2. Sudaryti Monte Karlo algoritmg salyginei rizikai optimizuoti, esant ribojimuose
salyginei rizikai.

3. Atlikti reikSmingy iméiy metodo tyrimg ir jj pritaikyti tiesinio dviejy etapy
stochastinio programavimo uzdaviniui spresti.

4. Atlikti stochastinés NeSo pusiausvyros tyrimg ir sudaryti algoritmg tos pusiausvyros
paieskai, jvertinti Sio algoritmo elgseng.
Mokslinis naujumas

Nauji atlikto tyrimo rezultatai:

1. Pasiiilytas ekonominio burbulo ir jo grifities matematinis modelis,  kurj jtraukti
dviejy skirtingy tipy agentai.
2. Sudarytas ir iStirtas stochastinio programavimo uzdavinio, kurio tikslo funkcijoje ir

ribojimuose yra salyginé rizikos reikSme, sprendimo Monte Karlo algoritmas.
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3. Sudarytas ir iStirtas reikSmingy imciy algoritmas, pritaikytas dviejy etapy tiesinio
stochastinio programavimo uzdaviniui spresti.
4. Sudarytas ir istirtas stochastinés NeSo pusiausvyros paieskos Monte Karlo

algoritmas, jo stabdymui pritaikant statistinius kriterijus.

Praktiné darbo reiksSmeé
Praktinial darbo rezultatai:

1. Pasiiilytas netvarios buisenos (burbulo ir jo griities) matematinis modelis, Kuris
pritaikytas Lietuvos nekilnojamojo turto burbulo tyrimui.

2. Sudarytas Monte Karlo algoritmas salyginei rizikos reikSmei optimizuoti, kai esama
ribojimy salyginei rizikos reikSmei; algoritmas iStirtas, sprendZiant sugeneruotus
testinius uzdavinius.

3. Sudarytas dviejy etapy tiesinio stochastinio programavimo reikSmingy imciy
algoritmas, kuris istirtas sprendziant testinj uzdavinj.

4. Sudarytas algoritmas stochastinés NeSo pusiausvyros paieskai, jis pritaikytas elektros
tiekimo su iSankstiniais sandoriais uZdaviniui spresti.

Ginamieji teiginiai

1. ] ekonominio burbulo matematinj model; jtraukus dviejy skirtingy tipy agentus
(Cartistus ir fundamentalistus), gaunamas tikslesnis burbulo pradzios ir jo grifities
nustatymas.

2. Stochastinés NeSo arba Stakelbergo pusiausvyros nuoseklios Monte Karlo
paieskos algoritmai pasizymi geru konvergavimu ir leidzia nustatyti pusiausvyros

strategijg norimu tikslumu, stabdant algoritma pagal statistinj kriterijy.

Darbo rezultaty aprobavimas
Tyrimy rezultatai buvo pristatyti tarptautinése mokslinése konferencijose (3

praneSimai) ir Lietuvos mokslinése konferencijose (4 praneSimai). Darbo rezultatai buvo
paskelbti mokslo leidiniuose, referuojamuose pripazintose tarptautinése duomeny bazése
(Lietuvos mokslo tarybos patvirtintas sgraSas): CEEOL ir Index Copernicus — 2
straipsniai ir 1 straipsnis priimtas spausdinimui, MatSciNet (MathematicalReviews) — 1
straipsnis. Tarptautiniy konferencijy darbuose, jtrauktuose j Mokslinés informacijos
instituto sgrasg — 1 publikacija. Recenzuojamoje Lietuvos tarptautinés konferencijos

medziagoje — 1 publikacija.
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Disertacijos struktiira
Disertacijg sudaro penki skyriai, literatiiros sgrasas ir priedai. 1-asis skyrius —

jvadas. 2-ame skyriuje formuluojami pusiausvyros paieskos uzdaviniai: heterogeniniy
agenty modelis, dviejy lygiy stochastinio programavimo uzdavinys, NeSo pusiausvyros
modelis ir atlickamas analitinis jy tyrimas. 3-iame skyriuje tiriami rinkos finansiniai
burbulai ir jy grititys: naudojant Ponzi schemg ir pasitlyta finansiniy burbuly ir jy
grii¢iy matematinj modelj bei heterogeniniy agenty modelj. 4-ame skyriuje tiriami
dviejy lygiy stochastinio programavimo uzdaviniai (uzdavinys, kurio tikslo funkcijoje ir
ribojimuose yra CVaR, dviejy etapy stochastinio tiesinio programavimo uzdavinio
sprendimas reikSmingy imc¢iy metodu). 5-ame skyriuje tiriamas stochastinés NeSo
pusiausvyros paieskos algoritmas bei jo taikymas. Darbo pabaigoje yra pateiktos
iSvados, literattra ir priedas.
Bendrosios isvados

Stochastinés pusiausvyros paieSkos uzdaviniai, daznai pasizymintys hierarchine
struktiira, budingi jvairioms mokslo sritims — inzinerijai, ekonomikai, finansams,
logistikai. Daugeli taikomyjy stochastinés pusiausvyros paieskos uzdaviniy galima
formuluoti kaip pusiausvyros paieskos uzdavinius su iSkilomis, tenkinanc¢ioms LipSico
salygas i8loSio funkcijomis ir atsitiktiniais aplinkos scenarijais, pasiskirsciusiais pagal
diskretyjj ar tolydyji tikimybinius désnius.

Darbe iStirtos rinkos netvarios biisenos, t. y. ekonominiai burbulai ir jy griitys.
Disertacijoje pasiiilytas matematinis burbulo modelis, kuriame yra dviejy tipy agentai —
fundamentalistai ir &artistai. Siuo modeliu itirtas Lietuvos nekilnojamojo turto
burbulas.

Kadangi realiose situacijose daznai tenka atsizvelgti i rizika, tai i optimizavimo
uzdavinius biitina jtraukti rizikos kriterijus. Tai galima pasiekti, jvedus rizikos kriterijus ]
tikslo funkcijg bei ribojimus, o tokiu biidu gaunamas uzdavinys yra dviejy lygiy
stochastinis programavimo uzdavinys. Sukurtas nuoseklios Monte Karlo paieskos
metodas (4.1 algoritmas) Siam uzdaviniui spresti.

ReikSmingy iméiy metodo taikymas tiesiniam dviejy etapy stochastiniam
programavimo uzdaviniui spresti transformuoja duotg uzdavinj j dviejy lygiy stochastinj

programavimo uzdavinj. Siame darbe sukurtas 4.2 algoritmas Siam uzdaviniui spresti.
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Sukurtas stochastinés NeSo pusiausvyros gradientinés paieSkos 5.1 algoritmas
buvo pritaikytas testiniam elektros rinkos su iSankstiniais sandoriais uzdaviniui spresti.
Sioje disertacijoje atlikti tyrimai leidZia padaryti tokias i$vadas:

1. Heterogeniniy agenty jtraukimas pagerina ekonominio burbulo matematinio modelio
adekvatuma, t. y. jei burbulas trumpam nustoja augti, tai kainos divergavimo nuo
bazinés linijos efektas modelyje iSlieka.

2. Sprendziant 4.1 algoritmu testinj rizikos optimizavimo uzdavinj, | kurio tikslo
funkcijg ir ribojimus jeina sglyginé rizika, leidzia surasti duoto tikslumo sprendinj, t
y., tikrinant algoritmo stabdymo salyga su tikimybe 0,95, CVaR skaiCiuojant
reikSmingumo lygmeniu 0,1, kai testiniy funkcijy kintamyjy skaicius yra 2, 5, 10, 20,
50, vidutinis iteracijy skaicius kinta nuo = 8 iki = 60, o Monte Karlo imties dydis
kinta nuo = 950 iki = 6000.

3. Sprendziant 4.2 algoritmu tiesinj dviejy etapy stochastinio programavimo uzdavinj,
reikia 15-20% maziau iteracijy duoto tikslumo sprendiniui rasti, be to, vidutinis
Monte Karlo imties dydis stabdymo momentu yra beveik dvigubai mazesnis.

4. Stochastinés NeSo pusiausvyros gradientinés paieskos 5.1 algoritmas yra efektyvus,
nes juo sprendziant testinj uzdavinj, pakako keliy (= 10) iteracijy duoto tikslumo
sprendiniui rasti, kai Monte Karlo imties dydis nevir$ijo 10 000.

5. Sukurti algoritmai buvo istirti statistinio modeliavimo biidu, sprendZiant testinius ir
praktinius stochastinés paieskos uzdavinius, o gautos tokiu biidu iSvados taikytinos

sukuriant ir tiriant kity stochastinés pusiausvyros paieskos uzdaviniy algoritmus.
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