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Introduction
Relevance of the Problem

Nowadays technologies are able to store and process a large amount of data.
However, their perception is a complicated task, especially if the data refer to a complex
object or a phenomenon, are defined by many features, and which can be not only
numerical, but also logical and textual. Such data are called multidimensional data. Often
there is a need to establish and understand the structure of multidimensional data, i. e.,
their clusters, outliers, similarity and dissimilarity. A set of values of all the features
characterize a particular object of the set analyzed. Multidimensional data can be
analyzed by various statistical methods. However, if the amount of data is huge, in order
to get more knowledge from the data analyzed, various data mining methods
(classification, clustering, visualization, etc.) are used.

The area of research is reduction of the number of the data analyzed and mapping the
data in a plane (visualization).

A group of methods that enable to discover a new knowledge in the datasets
analyzed, is vector quantization methods. The vector quantization is a process when the
n-dimensional input vectors are quantized to a limited set of n-dimensional output
vectors, the number of which is smaller than that of the input vectors. Commonly these
methods are applied in data (sound, image, etc.) compression, but also, they are suitable
for clustering and classification.

The target of visualization methods, based on the dimensionality reduction, is to
represent the input data in a lower-dimensional space so that certain properties of the
dataset were preserved as faithfully as possible. Multidimensional scaling (MDS) refers
to a group of methods that are widely used for dimensionality reduction and visualization
of multidimensional data. The computational complexity of one iteration of MDS is
0(nm?), where m is the number of data items and 7 is the number of dimensions.
Therefore it is necessary to search ways for acceleration of the computation. The dataset
should be reduced so that the new dataset reflected the characteristics of the data
analyzed as much as possible.

The results of MDS depend on the initial values of two-dimensional vectors, if the
MDS stress is minimized in an iterative way. Various ways of selection of the proper
initial values of two-dimensional vectors have been proposed, however, the solution of
this task remains a topical problem.

Two main problems are solved here: (1) reduction of the number of data items and
their dimensionality, using combinations of the vector quantization methods and
multidimensional scaling; (2) investigation of the dependence of MDS results on the
ways of selecting the initial values of two-dimensional vectors.

The Aim and Tasks

The aim of the dissertation is to map huge datasets in a lower-dimensional space
quickly and precisely, developing a combination of vector quantization and
dimensionality reduction methods and investigating the selection of initial values of
two-dimensional vectors, which influence the results of visualization.

To achieve the aim, it was necessary to solve the following tasks:

e to analyze the strategies of vector quantization for clustering the datasets;
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e to investigate the abilities of combining the vector quantization methods with
visualization methods, based on dimensionality reduction;

e to develop new consecutive and integrated combinations of the neural gas and
multidimensional scaling and to make their comparison analysis with the
combinations of self-organizing map and multidimensional scaling;

e to investigate the ways of selecting the initial values of two-dimensional vectors in
the consecutive combination and in the first training block of the integrated
combination;

e to investigate the ways of choosing the initial values of two-dimensional vectors in
all the training blocks, except the first one, of the integrated combination;

e to analyze the quality of the results of quantization and visualization.

The Objects of Research

The objects of research of the dissertation are vector quantization methods, based on
the artificial neural networks, and multidimensional data visualization methods, based on
the dimensionality reduction. The following subjects are directly connected with this
research object: the measures for evaluating the quality of the projection of
multidimensional data into a lower dimensional space; ways of selecting the initial
values of two-dimensional vectors.

Scientific Novelty

1. The consecutive and integrated combinations of neural gas and multidimensional
scaling have been developed.

2. The ways of selecting the initial values of two-dimensional vectors in the consecutive
combination and the first training block of the integrated combination have been
proposed and the ways of assigning the initial values of two-dimensional vectors in
all the training blocks, except the first one, of the integrated combination have been
developed.

3. The dependence of the quantization error on the values of training parameters, the
number of epochs, neurons and neuron-winners has been defined experimentally.

4. The fact that combination of the neural gas and multidimensional scaling is more
suitable than the combination of the self-organizing map and multidimensional
scaling for visualization of the multidimensional data has been experimentally tested
and proved.

Practical Significance

The results of investigations, carried out using various real world datasets, have
shown that the combination of vector quantization and dimension reduction methods can
be widely used to visualize multidimensional data. In the analysis of other real world
numerical data, it will be possible to refer to the conclusions, drawn in this dissertation.

Approbation and Publications of the Research

The main results of the dissertation were published in 8 scientific papers: 5 articles in
the periodical scientific publications; 3 articles in the proceedings of scientific
conferences. The main results of the work have been presented and discussed
at 6 national and international conferences.



The Scope of the Scientific Work

The dissertation is written in Lithuanian. It consists of 5 chapters and the list of
references. There are 135 pages of the text, 50 figures, 16 tables, and 81 bibliographical
sources.

1. Introduction

The relevance of the problems, the scientific novelty of the results and their practical
significance as well as the aim and tasks of the work are described in this chapter.

2. Vector Quantization and Visualization Methods

In this chapter the analytic investigation of vector quantization and visualization
methods, which are used for multidimensional data visualization, is performed. The
vector quantization methods, trained in an unsupervised (neural gas method and
self-organizing maps) and supervised (learning vector quantization algorithms) ways, are
systematized and analyzed. Vector quantization is used for data compression, missing
data correction and clustering. These methods can be combined with visualization
methods, known as the projection methods. The main projection methods
(multidimensional scaling, principal component analysis) of multidimensional data are
analyzed in the dissertation, too. The target of dimensionality reduction methods is to
represent the input data in a lower-dimensional space so that certain properties of the
dataset were preserved as faithfully as possible.

If we have a dataset X = {X;, X,, ..., X;} in an n-dimensional space, where
X; = (Xj1, Xizy eer Xin), I = 1,...,m, we desire to get a dataset Y = {V¥;, Y5,..., ¥,,} ina
d-dimensional space, where Y; = (y;1, Viz, -+» Yia)» L = 1,...,m, and d < n. If rather a
small output dimensionality d = 2 or d = 3 is chosen, two or three dimensional vectors
obtained may be presented in a scatter plot.

The goal of multidimensional scaling (MDS), as one of dimensionality reduction and
visualization methods, is to find lower-dimensional data Y;, i = 1, ..., m, such that the
distances between the data in the lower-dimensional space were as close to the original
proximities (similarity or dissimilarity) as possible. The MDS error Epps to be
minimized can be written as Eyps = X< Wij (6(XL-,X]-) - d(Yi,Yj))z, where w;; is a
weight; §(X;, X;) is the value of proximity between the n-dimensional data X; and Xj,
d(V;, Y;) is the distance (usually Euclidean) between the two-dimensional data ¥; and Y},
awy,y) = ||YL —Y}” If the proximity is the Euclidean distance, then S(XL-,XJ-) =
d(Xl-,Xj). We use the SMACOF (Scaling by MAjorization of a COmplicated Function)

algorithm for MDS error Eyps minimization, w;; = 1, V i, j. This method guarantees a
monotone convergence of the MDS error.

The computational complexity of one iteration of MDS based on SMACOF is
0(nm?). If we analyze a large dataset, MDS is time consuming. Many techniques for
reducing the computational time are proposed. Some ways are based on pre-processing:
at first, the number m of dataset items is reduced then a smaller dataset is analyzed by
MDS. The reduction of m can be done by clustering or vector quantization methods.

When vectors are mapped (visualized), it is necessary to estimate the visualization
quality. Three measures were used. The first one is introduced by Konig. Koénig’s
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topology preserving measure is based on the assessment of rank order in the
n-dimensional and d-dimensional spaces. This measure has two control parameters —
numbers of the nearest neighbours: u and v, u < v. The neighbourhood is estimated by
the Euclidean distances here.

Assume that:

e X, j =1,..,u, are the nearest neighbours of the n-dimensional vector X;, where
the distance X; and their neighbours satisfy the following inequality
||Xl- —Xl-,-1|| < ||Xi _Xijz” with j; < j,, here u is the number of the nearest
neighbours;

e YV, j=1,..,v,are the nearest neighbours of the d-dimensional vector Y;, v is the
number of the nearest neighbours;

e 71x(i,j) is a rank of the jth neighbour X;; of the vector X;, where the rank means
the order number of X;; in the dataset analyzed;

e 1y(i,)) is a rank of the jth neighbour Y;; of the vector Y;, corresponding to X;,
where the rank means the order number of Y;; in the dataset analyzed.

Ko6nig’s measure for the ith vector and the jth neighbour is calculated by the

formula:

3! ler(l!]) = rY(i!j)ﬁ

2, ifry(i,/)) =y, D, le(1,...,w), i #1,

1, ifry(i,/)) =ry(i,t), t€ (u+1,...,v), u = v,
0, otherwise.

The general Konig measure Eyy, is calculated as follows:

__1 ymu m i
Exm = 50 Zii=1 2ij=1 Exu-

The range of Eyy is between 0 and 1, where 0 indicates a poor neighbourhood
preservation, and 1 indicates a perfect one.
Spearman’s rho is calculated by the formula:

12 " _ 6
psp(r1y) =1 =5
numbers) of pairwise distances calculated for the n-dimensional and d-dimensional data,
respectively; m' = m(m — 1)/2. As usual, —1 < ps, < 1. The best value of Spearman’s

rho is equal to one.

7("2’1(732 (k) — ry(k))?, where 1y and 1y are the ranks (order

. . - _ [Bici@(XXj)—-d(y Y ))?
The third measure is MDS error Eypg = \/ S AKX )2
instead of Eyps, because the inclusion of the normalized parameter gives a clear
interpretation of the mapping quality that does not depend on the scale in an
n-dimensional space.

. This error is used

3. Combination of Vector Quantization and Visualization

The objective of vector quantization for a dataset X is to discover the optimal
codebook, containing a predetermined number N of codebook (reference, prototype)
vectors M; ER™, i=1,..,N, which guarantees the minimization of the chosen
distortion metric (usually Euclidean) for all the vectors from X. Each codebook vector
has an associated index used for referencing. Thus, the aim of quantization is to change
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the vectors X;, [ = 1, ...,m, so that the new vectors M;, i = 1, ..., N, N < m, represent
the properties of the vectors X;. Vector quantization is used for data clustering,
compression, and missing data correction. In the clustering case, the codebook vectors
are representatives of clusters.

The self-organizing map (SOM) is a class of neural networks that are trained in an
unsupervised manner using a competitive learning. The neural gas is a biologically
inspired adaptive algorithm. The algorithm was named “neural gas” because of the
dynamics of the vectors during the adaptation process which distribute themselves like a
gas within the data space. The codebook M is an array of vectors. The dimensionality of
the vectors is such as that of the analyzed vectors X;, [ =1, ...,m, i.e., equal to n. The
array M = {M,,M,,...,My} is one-dimensional in neural gas (NG), M; € R",
i=1,..,N, N is the number of codebook vectors. The rectangular SOM is a
two-dimensional array (grid) of neurons M = {M;;, i =1,...,rows,j =1, ..., cols},
where M;; € R", rows is the number of rows of the grid, cols is the number of columns
of the grid, and the total number of neurons is N = rows X cols.

At the beginning of the training algorithms, the initial values are selected: the
number N of codebook vectors; the initial values of codebook vector components; the
number of training epochs é (each analyzed vector is passed to the network é times, then
the number of training steps t,.x = € X m).

In NG, the Euclidean distances between the input vector X; and each codebook
vector (neuron) M;, i =1, ..., N, are computed. The distances are sorted in an ascending
order. A neuron set W, W,,..,W, is obtained, where W, € {M;,M,,...,My},
k=1,..,N,and ||X; — W]l <, ..., < ||X; — Wy|. The neuron W; is called a winner. The
neuron Wy, k=1,..,N, is adapted according to the learning rule:
Wi (t + 1) = W, (t) + E(t)hy(X; — W, (t)), where t is the order number of iterations,
E(t) = Eg(Eg/Eg)t/tma0) h; = e=*=D/AD )(1) = A,(A¢/Ag)H/*max). The values of the
parameters Ag, A¢, Eg, E are predetermined.

In SOM, the Euclidean distances from the input vector X; to each codebook vector
M;;,i=1,..,rows,j = 1,...,cols}, are computed as well. The vector (neuron) M, with
the minimal Euclidean distance to X; is designated as a winner, where c is a pair of
indices, i.e., ¢ = argmini_j{”Xl — Mij||}~ The neuron M;; is adapted according to the
learning rule: M;;(t + 1) = M;;(t) + hf;(©) (X, — M;;(t)), where t is the order number
of iterations, hf; is a neighbourhood function, h{;(t) — 0, as t — oo. There are a lot of
variants of hj;. We use hj; = a/(ani; + 1), a = max((€ + 1 —¢e')/&, 0.01); n{; is the
neighbourhood order in the grid between the neurons M;; and M,; é is the number of
training epochs, e’ is the order number of the current epoch (e’ € {1, ..., é}). The vector
M;; is recomputed, if 7{; < max[a max(rows, cols), 1]. For generality, the notation M;
is used instead of M;; below.

Then the networks are trained, the quantization error Eqg is computed by the formula
Eqe = iZ{Zl”Xl - Mc(l)llv where 1\775(1) is a winner for the vector X, MC(,) = W, in the
neural gas method.

After training the NG or SOM network, each input vector X;, i = 1, ..., m, from X is

related to the nearest neuron, called a neuron-winner. Some neurons may remain
9



unrelated with any vector of the set X, but there may occur neurons related with some
input vectors. So, the neuron-winners represent some input vectors, and the number r of
neuron-winners is smaller than that of input vectors (r < m). Thus, the number m of
data items is reduced. A smaller dataset can be used by MDS and the time is saved.

multidimensional vectors quantization method N neuron-winners
X1, X2, 0, X (SOM or NG) My, M,, ..., M,
scatter plot two dimensional vectors < multldlmf:nsmnal
Y1, ... Y scaling

Fig. 1. The scheme of visualization of neuron-winners (consecutive combination)

So, the reason for using a consecutive combination (Fig. 1) is a desire to decrease the
computation time without losing the quality of mapping (visualization).

Another reason is based on improving the SOM visualization. As it is known, the
SOM itself has a visual presentation, e. g., u-matrix representation. However, the SOM
table does not answer the question, how much the vectors of the neighbouring cells are
close in the n-dimensional space. It is reasonable to apply the distance-preserving
method, such as MDS, to an additional mapping of the neuron-winners in SOM.
A question arises: when the usage of MDS only is purposeful, and when its combination
with vector quantization.

o= omm SOM == « MDS after SOM eesseee SOM+MDS only MDS
3500 -
3000 - .
2500 - g
" B
& 2000 s
£ K
.S 1500 - -
1000 - 2=
3>
500 g
0 emepeermt Ot m ===
0 100 200 300 400 500 600 700

Fig. 2. The computational time of MDS only and its combination with SOM

The computing time of MDS only, when all the items of the ellipsoidal dataset
(m = 1338, n = 100) have been analyzed is presented in Fig. 2 (black solid line). The
SOM learning has been repeated for several times with various numbers N of neurons.
Various numbers r of neuron-winners have been obtained. The dependence of the SOM
learning time on the number r of neuron-winners (dashed curve), as well as of MDS on
the number r of neuron-winners, when only they are analyzed by MDS (dashed with
point curve), and the total time of the SOM and MDS combination (dotted curve) are
presented in Fig. 2. We see that if the number r of neuron-winners is smaller than 500, it

10



is worth to using the combination in order to save the computational time as compared
with MDS only. If NG is used instead of SOM, the similar results are obtained.

The visualization results of the ellipsoidal dataset when all data items (m = 1338)
are mapped by MDS and only 262 neuron-winners (r = 262) of SOM are mapped by
MDS are presented in Fig. 3. We see that reduction of the number of data items does not
aggravate the quality of visualization, while the computing time is saved essentially.

o
A

a) b)

Fig. 3. Mapping of an ellipsoidal dataset: a) all data items are mapped by MDS;

b) only 262 neuron-winners of SOM are mapped by MDS

Note that, if the MDS error Eypg is minimized in an iterative way, it is important to
select the proper initial values of d-dimensional vectors Y;,Ys,...,Y,, (in our case,
d = 2). The dependence of the MDS results on the initial values of these vectors remains
a topical problem. We have proposed and investigated the integrated combination of
SOM and MDS as a new way of initialization of two-dimensional vectors. We suggest to
use NG instead of SOM.

The idea of the integrated combination is as follows: n-dimensional vectors
X1, X5, ..., X;, are analyzed by using the MDS method, taking into account the process of
SOM or NG training. Thus, the integrated combination consists of two parts: (1) SOM or
NG training; (2) computing two-dimensional points, corresponding to the
neuron-winners of SOM or NG, by the MDS method. These two parts are performed
alternately.

At first, some notation and definitions are introduced:

e Let the training set consist of n-dimensional vectors Xi, X, ..., Xnm,
Xi = (xi1, Xi2, o, Xin), L = 1, ...,m). We need to get two-dimensional vectors, called
projections, Y3, Yy, ..., Yo, (Vi = Vi, ¥i2), i = 1, ..., m).

o The neural network (SOM or NQG) is trained using é training epochs.

o All the é epochs are divided into equal training parts — blocks. Before starting the
training of the neural network, we choose the number of blocks y into which the
training process will be divided. Each block contains v training epochs (é = vy).
Denote by g a block of the training process consisting of v epochs (q = 1, ..., y).

e Denote neuron-winners, obtained by the qth block of the training process, as

Ml(q),ng),...,Mr(g) and two-dimensional projections of these neuron-winners,

calculated by the MDS method, as Yl(q),YZ(Q),...,Yr(:) (Y@ = 2,y

i=1,..,1;). Note that the number of neuron-winners 7, will be smaller than or
equal to m.
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We suggest the following way of integrating the SOM or NG and MDS
methods (Fig. 5):

Step 1: network training begins (g = 1). After the first v training epochs, the
training is stopped temporally. The neuron-winners Ml(l),Mél), ...,Mr(ll), obtained after

the first block (g = 1) of the training process, are analyzed by MDS. The initial

coordinates of two-dimensional vectors (Yi(o) = (y-(lo), yi(zo)), i =1,..,7) must be set for

L
MBDS. There are some possible ways. The initial coordinates (yi(lo), yl.(z0

1. Atrandom in the interval (0; 1).
On a line: yi(lo) =i+ 1/3,yﬁ0) =i+2/3.

2. i
3. According to two largest principal components (PCs).
4.

According to the components whose variances are the largest ones.

)) can be set:

Y(l)

After MDS has been performed, the two-dimensional projections Yl(l), Yz(l), . &

of neuron-winners are obtained.

Steps from 2 to y: network training is continued (g =2,..,y). The
neuron-winners obtained after each gth block of the training process are analyzed by
using MDS. The initial coordinates of two-dimensional vectors Yl(q),YZ(Q), ...,Yrglq) are
selected for MDS taking into account the result of the (q-1) block. Note that 7, # 7,_,
in general. The way of selecting the initial coordinates is presented below. We must
determine the initial coordinates of each two-dimensional vector Yi(Q) correspondent to
the neuron-winner Mi(q), i = 1,..,7,;. The sequence of steps is as follows:

e Determine vectors from {X;,X,, ..., X,,} that are related with Ml.(q). Note that some
vectors from {Xq,X,, .., X} can be related with Mi(q). Denote these vectors by
Xits Xigs oo (Xins Xigy oo € {X1, X, oo, X ).

e Determine neuron-winners of the (q-1) block that were related with X;q, X;5, ...

Denote these neuron-winners by MY M@V M@V MY e
y J1 J2 J1 J2

M pay, ...,Mr(g__ll)}), and their two-dimensional projections, obtained as a

result of MDS, by Y™, v, (@70, y(0V, e (r[a7V v,y @Dy

o There are two possible ways of assignment (Fig.6):
by proportion: the initial coordinates of Yi(q) are set to be equal to the mean value of
the set of vectors {inq_l), ngq_l), ... }. In Fig. 4 (top), two points ngq_l) and Yl.iq_l) are
coincident, the point Yi(q) =1/3 (ngq_l) + inq_l) + inq_l)) is closer to the points
Y,-Eq_l) than to Yl-gq_l).
by midpoint: since the coincident vectors can be between the vectors
Y(q_l) Y-(q_l) Y(Q)
J1 ’ )2 i
the set of only the non-coincident points ngq_l),Y}iq_l), .. In Fig. 4 (bottom),
YL(Q) — 1/2 (ngq—l) + inq—l))'

, ... the initial coordinates of are set to be equal to the mean value of
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After the assignment, the two-dimensional vectors Yl(q),Yz(q), ...,Yr(;l)

(Yi(q) = (yi(lq), yl.(;)), i =1, ...,1,) of the neuron-winners are calculated using MDS.
The training of the neural network is continued until g = y. After the yth block, we
get two-dimensional projections YI(Y), Yz(y), s Yr(y}/) of the n-dimensional neuron-winners

Ml(}/),Méy), ...,MT(:) that are uniquely related with the vectors Xi,X,,..,X,,. The

two-dimensional vectors Yl(y), Yz(y), e Yg) obtained can be presented on a scatter plot.

y, @D ye D ylaD
1 12 J3

Y_(q)
i

Y(.qil),Y(.qil) Y(.‘rl)
N J2 J3

Y_(q)
i

Fig. 4. Two ways of assignment: by proportion (top), by midpoint (bottom)

Initial values
y© y©) () ¢
1 oof2 ety

vectors YI(I),YZ(I),..,,Y“)
i

[ MDS —> Two-dimensional vectors
J_) I/l(l)’}/é(l)""’Y(l)
i

multidimensional vectors SOM
X, X X —> or MDS Two-dimensional vectors
15A2505 Ay .o

(2) y(2) (2)
IR A

!

v
:| MDS Two-dimensional vectors
¥ )y y»
n.y ""’Y( .

v

scatter plot

Fig. 5. The scheme of the integrated combination of SOM or NG and multidimensional
scaling

4. Experimental Investigations

In this chapter, the results of experimental investigations of two vector quantization
methods (neural gas and self-organizing maps) and their combinations with
multidimensional scaling are presented. The iris [150; 4], hepta [212; 3], auto MPG
[392; 7], target [770; 2], chainlink [1000; 3], rand clustlO [100; 10], rand clust5
[100; 5] and rand datal500 [1500;5] datasets are used in the experimental
investigations.

The numbers of the neural gas and the self-organizing maps are investigated. It is of
interest to investigate by which method (NG or SOM) more neurons become winners.
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The ratios between the number of neuron-winners and all the neurons of NG and SOM
are presented in Fig. 6. It is shown that the ratios of NG are larger than that of SOM:
about 80 % of the NG neurons become winners. If the numbers of neurons are large,
only about 50 % of the SOM neurons become winners. The investigation shows that
SOM is more useful than the neural gas for solving clustering problems.

The quantization error Eqg is calculated to estimate the quality of quantization. The
quantization error shows the difference between the analyzed vectors X;, X5, ..., X;,, and
the quantized vectors (neuron-winners) M;,M,,...,M,, where r is the number of
neuron-winners.
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The dependence of the quantization error on the number of neuron-winners is
presented in Fig. 7. The quantization error decreases, if the number of neuron-winners is
increasing. As we see in Fig. 7, the quantization errors of NG are significantly smaller
than that of SOM when the number of neuron-winners is approximately equal. It means
that the neural gas is more suitable for vector quantization.

Koénig’s topology preservation measure Egy and Spearman’s rho pg, are calculated
to estimate the visualization quality. The number N of codebook vectors is selected so
that the number of neuron-winners were equal to 100, 200, and 300 for the chainlink and
auto MPG, to 50, 100, and 150 for the iris, to 50, 100, and 200 for the hepta, and to 50,
80, and 100 for the rand clust10 datasets.

Since the results of SOM and NG depend on the initial values of codebook vectors,
40 experiments have been carried out for each input vector set with different initial
values of codebook vectors. The values of the measures are calculated and averaged. The
confidence intervals of the averages are also calculated (a probability is equal to 0.95).
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Fig. 8. Dependence of values of Konig’s measure on parameter v

When calculating K6nig’s topology preserving measure Eyy, it is necessary to select
values of two parameters u and v. The parameter u indicates a narrow round of
neighbours, and the parameter v indicates a wide round. In the experiments, u = 4, and
v is varying from 6 to 50. The averaged values of Exy and the confidence intervals (CI)
of the averages are presented in Fig. 8. We see that Eky, is larger, if the neuron-winners
obtained by SOM are mapped in all the cases, except the chainlink dataset, where the
number of neuron-winners is equal to 100. We conclude that the topology is preserved
precisely when the vector-winners obtained by SOM are mapped by MDS. In an
exceptional case, the confidence intervals are wide, they are overlapping, and therefore
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the results obtained are unreliable. When the number of neuron-winners is increasing,
the confidence intervals are narrowing for all datasets. Naturally, for small values of the
parameter v, the values of Eyy; are lower than that for higher v, however starting from a
certain value of v, the values of Exy do not change at all or change but slightly.

The averaged values of Spearman’s rho pg, and the confidence intervals (CI) of the
averages are presented in Fig. 9. The values of Spearman’s rho are higher, if the
neuron-winners are obtained by NG for the chainlink and hepta datasets, and by SOM
for the auto MPG and iris datasets. The values of Spearman’s rho are large enough (in
many cases, pgp > 0.9), which means that the mapping results are good in the sense of
distance preserving, when passing from the n-dimensional space to a two-dimensional
one. It is difficult to draw a conclusion on the mapping quality of the rand clust10
dataset, because the values of Spearman’s rho are varying, and the confidence intervals
are wide and overlapping. The investigation shows that both the NG and SOM methods
are suitable for a combination with MDS.
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Fig. 9. Dependence of values of Spearman’s rho on the number of neuron-winners

Two-dimensional vectors may be presented in a scatter plot. The mapping images of
chainlink dataset are presented in Fig. 10. The numbers near the points indicate the order
numbers of classes to which the points belong. Fig. 10 shows how the mapping images
change when the number of neuron-winners is growing. The data structure is visible
even when the number r of neuron-winners, obtained by NG, is small enough. If the
number r of neuron-winners, obtained by SOM, is larger, the data structure is visible, as
well.

In Fig. 11, the neuron-winners of the iris dataset, obtained by NG and SOM, are
visualized by MDS. The points, corresponding to the items of the first species (Setosa),
are marked by filled rhombi, the points, corresponding to the second species
(Versicolor), are marked by filled squares and the points, corresponding to the third
species (Virginica), are marked by filled circles. The points, corresponding to the
neurons, that are the winners for both the second and third species, are marked by boxed
circles. The quantization error of SOM is much larger (Eqg = 0.3222) than that of NG
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(Eqg = 0.0379). It means that the neuron-winners (quantized vectors) do not
approximate the data by SOM precisely enough. We see that the points obtained by
SOM are clustered very much, but the points obtained by NG are dispersed. The data

structure is revealed better by NG.
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Fig. 11. Mapping images of iris data obtained by
NG (left) (Eqp = 0.0379) and SOM (right) (Eqp = 0.3222)

Some experiments have been done in order to ascertain which vector quantization
method (SOM or NG) is more suitable to use in the combination with MDS and which
initialization way of two-dimensional points is most suitable in the consecutive
combination of SOM or NG and MDS, as well as in the first block of the integrated
combination (when the points are generated at random, on a line, according to two
principal components (PCs), according to the components with the largest variances);
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which way of assignment in the integrated combination is the most suitable one (by
midpoint or by proportion).

The results of experimental investigation of some datasets are presented here: iris
(m = 150, n = 4), hepta (m = 212, n = 3), and rand data (m = 1500, n = 5) (here
each component is generated at random in the interval (0;1)). SOM and NG are trained
during 200 epochs (é = 200). The training process is divided into y = 2,4,8,10,25
blocks in the integrated combination and v = 100,50, 25,20,8, respectively. 100
iterations are performed in MDS. The values of the MDS error Eyps subject to the
initialization and assignment ways for three datasets are presented in Tables 1-3. When
choosing a random initialization, ten experiments are done for each dataset and the
averaged values are presented in Tables 1-3 and Fig. 12. The smallest values are in
italics and the most frequent values are in bold. The number N of neurons is set such that
the same or a similar number r of neuron-winners were obtained by both vector
quantization methods with a view to compare the results obtained in the sense of the
MDS error Eyps.

When comparing the results, obtained by the consecutive and integrated
combinations, smaller values of the MDS error are obtained by the integrated
combination in many cases. Thus, the integrated combination is superior to the
consecutive one. It is quite evident, if the points are initiated on a line or at random
(Fig. 12). The values of the MDS error, obtained by the consecutive combination and the
smallest values of the error, obtained by the integrated combination, are presented
in Fig. 12.

In most cases, the MDS error is slightly larger, if NG is used instead of SOM in
combinations. However, the quantization error Eqp is considerably smaller, therefore NG
is more suitable in the combinations.

Table 1. Values of the MDS error subject to the initialization and assignment ways for the iris
dataset

a) SOM (Eqg = 0.2225, r = 93)
at random on a line by PCs by variances

0.0363 0.0366 0.0276 0.0265

consecutive

v | midpoint |proportion| midpoint | proportion | midpoint | proportion | midpoint | proportion
0.0385 | 0.0386 | 0.0484 | 0.0484 | 0.0395 | 0.0436 | 0.0438 | 0.0438
50 | 0.0371 | 0.0373 | 0.0265 | 0.0271 | 0.0382 | 0.0269 | 0.0382 | 0.0382
8 25 | 0.0335 | 0.0296 | 0.0265 | 0.0265 | 0.0265 | 0.0265 | 0.0347 | 0.0265
10 | 20 | 0.0281 | 0.0265 | 0.0347 | 0.0265 | 0.0265 | 0.0265 | 0.0265 | 0.0265
25 8 0.0298 | 0.0290 | 0.0347 | 0.0265 | 0.0347 | 0.0265 | 0.0347 | 0.0265

b) NG (Eqg = 0.0988, r = 94)
at random on a line by PCs by variances
0.0489 0.0642 0.0335 0.0358

alo]=
=
3

integrated

consecutive

v v | midpoint |proportion| midpoint | proportion | midpoint | proportion | midpoint | proportion
g [ 2 | 100 | 0.0451 | 0.0452 | 0.0381 | 0.0561 | 0.0335 | 0.0335 | 0.0335 | 0.0335
?ﬁ 4 50 | 0.0399 | 0.0417 | 0.0335 | 0.0335 | 0.0335 | 0.0335 | 0.0335 | 0.0335
g 8 25 | 0.0366 | 0.0363 | 0.0335 | 0.0335 | 0.0335 | 0.0335 | 0.0335 | 0.0335
= [ 10 | 20 | 0.0392 | 0.0384 | 0.0335 | 0.0335 | 0.0335 | 0.0349 | 0.0349 | 0.0349

25 8 0.0369 | 0.0388 | 0.0506 | 0.0335 | 0.0335 | 0.0335 | 0.0335 | 0.0335
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When the number y of blocks of the integrated combination is increased, the MDS
error is rather fluctuating, however it is no larger than that obtained by the consecutive
combination.

The smallest value of the MDS error for the iris dataset is obtained, if the initial
values of two-dimensional points are set by variances, when SOM is used in the
consecutive combination, Eyps = 0.0265, and by principal components, when NG is
used Eyps = 0.0335. However, the same minimal value of the MDS error is obtained by
the integrated combination, when other initialization ways are used.

Table 2. Values of the MDS error subject to the initialization and assignment ways for the hepta
dataset

a) SOM (Eqg = 0.3115, r = 86)

consecutive at random on a line by PCs by variances
0.2182 0.2270 0.2042 0.2042
Y v | midpoint |proportion| midpoint |proportion| midpoint |proportion| midpoint |proportion
2 [ 2 | 100 | 0.2004 | 0.2066 | 0.1994 | 0.1994 | 0.1994 | 0.1994 | 0.1994 | 0.1994
s 4 50 | 0.2078 | 0.2345 | 0.1994 | 0.1994 | 0.1994 | 0.2042 | 0.2270 | 0.2487
g8 25 | 0.1994 | 02109 | 0.1994 | 0.2270 | 0.1994 | 0.1994 | 0.1994 | 0.2270
& 10 | 20 | 0.1994 | 02051 | 0.1994 | 02042 | 0.1994 | 0.1994 | 0.1994 | 0.2042
25 8 0.1994 | 0.2081 | 0.1994 | 0.1994 | 0.1994 | 0.1994 | 0.1994 | 0.1994

b) NG (Eqg = 0.1765, r = 94)

consecutive at random on a line by PCs by variances
0.2053 0.2115 0.1964 0.1964
b4 v | midpoint [proportion| midpoint |proportion| midpoint |proportion| midpoint |proportion
g | 2 | 100 | 0.1877 | 0.1877 | 0.2043 | 0.2043 | 0.1964 | 0.1964 | 0.2043 | 0.2043
= | 4 50 | 0.2084 | 0.2084 | 0.2322 | 0.2322 | 0.2043 | 0.2043 | 0.2056 | 0.2056
chn 8 25 | 02194 | 0.2194 | 0.1964 | 0.1964 | 0.1964 | 0.1964 | 0.1964 | 0.1964
- [10 [ 20 ] 02008 | 0.2052 | 0.1964 | 0.1964 | 0.1964 | 0.1964 | 0.1964 | 0.1964
25 8 0.2115 | 0.2031 | 0.2115 | 0.1964 | 0.2115 | 0.1964 | 0.2115 | 0.1964

Table 3. Values of the MDS error subject to the initialization and assignment ways for the
rand_datal 500 dataset
a) SOM (EQE = 0.2139,r = 394)
at random on a line by PCs by variances
0.3223 0.3189 0.3153 0.3140

consecutive

v | midpoint |proportion| midpoint |proportion| midpoint |proportion| midpoint [proportion
100 | 0.3244 | 0.3247 | 0.3252 | 0.3237 | 0.3241 | 0.3239 | 0.3241 | 0.3216
0.3217 | 0.3225 | 0.3217 | 0.3220 | 0.3217 | 0.3220 | 0.3218 | 0.3229
25 | 03176 | 0.3200 | 0.3178 | 0.3148 | 0.3176 | 0.3742 | 0.3177 | 0.3206
0.3157 | 0.3155 | 0.3164 | 0.3162 | 0.3164 | 0.3164 | 0.3164 | 0.3167
8 0.3159 | 0.3161 | 0.3162 | 0.3161 | 0.3160 | 0.3161 | 0.3162 | 0.3161

b) NG (Eqg = 0.1380, r = 400)
at random on a line by PCs by variances
0.3202 0.3223 0.3119 0.3103

integrated
oI =
wn
(=

=
w|o
[
=

consecutive

v | midpoint [proportion| midpoint | proportion| midpoint |proportion| midpoint |proportion

100 | 03192 | 03143 | 0.3179 | 0.3179 | 0.3125 | 0.3123 | 0.3140 | 0.3116
50 | 0.3168 | 0.3159 | 0.3160 | 0.3160 | 0.3183 | 0.3187 | 0.3115 | 0.3140
25 | 03129 | 03122 | 0.3132 | 0.3157 | 0.3115 | 0.3115 | 0.3703 | 03115
20 | 0.3124 | 0.3131 | 03116 | 0.3223 | 0.3116 | 03119 | 0.3115 | 0.3103
8 0.3115 | 0.3115 | 0.3115 | 0.3220 | 0.3115 | 0.3115 | 0.3115 | 0.3115

integrated
I

N —
w|o
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The smallest value of the MDS error Eypg = 0.1994 for the hepta dataset is
obtained by the integrated SOM and MDS combination independent of the initialization
way. When NG is used, the most frequent value Eyps = 0.1964 is obtained by the
consecutive combination, if the initial values are set by variances or principal
components. The same value is obtained by the integrated combination, if the initial
values are set on a line. If the random initialization is used, the smallest value
Eumps = 0.1877 is obtained by the integrated combination, y = 2.

0.0642 02182 0.2053 0.2270 02115
01877 01994 0.1964

at random ona line atrandom onaline

Gconsecutive (SOM) DOintegrated (SOM) Bconsecutive (SOM) Ointegrated (SOM)
Wconsecutive(NG) DOintegrated (NG) Wconsecutive(NG) Dintegrated (NG)

Fig. 12. Values of the MDS error, obtained by the consecutive and integrated combinations,
for the iris dataset (left) and the hepta dataset (right)

There is no value of the MDS error that could be minimal and repeated for the
rand datal500 dataset in contrast to the iris and hepta ones. However, the tendency of
error decline is shown in the integrated combination, when the number y of blocks is
increased.

When two ways of assignment (by midpoint and proportion) in the integrated
combination are compared, no great difference was noticed.

General Conclusions

The research results have shown new capabilities of the combination of vector
quantization methods — self-organizing maps and neural gas — and multidimensional
scaling. The results of the experimental research allow us to draw the following
conclusions:

1. Approximately 80 % of neurons become neuron-winners by the neural gas method
and approximately 50 % neurons become neuron-winners by the SOM method,
therefore SOM is more useful for data clustering. However, the quantization errors,
obtained by the neural gas method, are smaller than the errors, obtained by the SOM
method, the number of neuron-winners being approximately equal. Thus, the neural
gas method is more suitable for vector quantization as well as for the usage in the
combination of multidimensional scaling.

2. In the combination of multidimensional scaling and SOM, the neighbourhood
relations are preserved more precisely in the sense of Konig’s measure than in the
case, where the neural gas method is used. Both quantization methods are equivalent
in the sense of Spearman’s rho. The MDS error is smaller, when SOM is used instead
of the neural gas method in the combination, for data, dimension of which
n=25, 7, 10.
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3. When the proposed integrated combination of the neural gas and multidimensional
scaling is applied, the data structure is visible, if the training blocks ¢ < 1/3y, and
using SOM instead of the neural gas method in the integrated combination, the
number of training blocks must be g > 2/3y, where y is the number of all the
training blocks.

4. The proposed assignment of the initial values of two-dimensional vectors by
midpoint in the integrated combination, except the first training block, can be used as
an alternative of the assignment by proportion, because no essential difference is
observed in the results obtained.

5. The MDS error, obtained by the consecutive combination, is the smallest one, when
the initial values of two-dimensional vectors are selected by two principal
components or by the components with the largest variances. Sometimes it is possible
to reduce the error even more using the integrated combination.
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VEKTORIU KVANTAVIMO METODU JUNGIMO
SU DAUGIAMATEMIS SKALEMIS ANALIZE

Tyrimuy sritis ir problemos aktualumas

Dabartinémis technologijomis galima gauti ir saugoti didelius duomeny kiekius,
taCiau jy suvokimas gana sudétingas uzdavinys, ypa¢ kai duomenys nurodo sudétinga
objekta ar reiskinj, kuris aprasytas daugeliu parametry, ir kurie gali biiti ne tik skaitiniai,
bet ir loginiai bei tekstiniai. Tokie duomenys vadinami daugiamaciais duomenimis.
Daznai iskyla butinybé nustatyti ir giliau pazinti $iy daugiamacéiy duomeny struktira,
t. y. susidariusius klasterius, itin i$siskiriancius objektus, objekty tarpusavio panasuma ir
skirtinguma. Visy parametry reikSmiy junginys charakterizuoja vieng analizuojamos
aibés konkrety objektg. Daugiamaciai duomenys gali biiti analizuojami jvairiais
statistikos metodais, taciau kai duomeny kiekis yra didelis, daznai jy nepakanka, todél
siekiant gauti daugiau ziniy i$ analizuojamy duomeny, yra naudojami jvairis duomeny
tyrybos (angl. data mining) metodai: klasifikavimo, klasterizavimo, vizualizavimo ir kt.

Sio darbo tyrimy sritis yra daugiamaciy duomeny skai¢iaus maZinimas ir duomeny
atvaizdavimas ploks§tumoje (vizualizavimas).

Viena grupé metody, jgalinanciy atrasti naujas zinias analizuojamose duomeny
aibése, yra vektoriy kvantavimo metodai. Vektoriy kvantavimas (angl. vector
quantization) — tai procesas, kurio metu n-maciai jéjimo vektoriai yra kvantuojami j
ribotg aibe n-maciy i8¢jimo vektoriy, kuriy skai¢ius yra mazesnis nei jéjimo vektoriy.
Dazniausiai Sie metodai taikomi garsui ir vaizdui suspausti, taciau jie tinka ir duomenims
klasterizuoti bei klasifikuoti.

Daugiamaciy duomeny vizualizavimo, dar kitaip vadinamo dimensijos mazinimo,
metodais didelés dimensijos duomenys transformuojami } maZesnés dimensijos erdve
taip, kad iSlikty esamos arba biity atrastos ,,uzsléptos analizuojamy duomeny savybés.
Jais transformavus daugiamacius duomenis | trimate erdve ar plokStuma ir juos
vizualizavus, daug papras¢iau suvokti duomeny struktiirg ir sgry$ius tarp jy. Vienas i§
daznai taikomy metody yra daugiamaciy skaliy (angl. multidimensional scaling).
Daugiamadiy skaliy metodo vienos iteracijos skai¢iavimy sudétingumas yra 0(nm?), ¢ia
m — objekty skaicius, n — dimensijy skaicius, todél bitina ieskoti biidy skai¢iavimams
pagreitinti. Vienas i§ biidy yra taikyti vektoriy kvantavimo metoda ir juo sumazinti
duomeny objekty skaiciy prie§ juos vizualizuojant. Duomenis sumazinti biitina taip, kad
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nauja duomeny aibé kaip galima labiau atspindéty analizuojamos duomeny aibés
savybes.

Daugiamaciy skaliy rezultatas labai priklauso nuo dvimaciy vektoriy pradiniy
koordinaciy parinkimo btido, kai daugiamaciy skaliy paklaida minimizuojama iteraciniu
badu. Sitlomi jvairGis pradiniy koordinaciy parinkimo biuidai, tac¢iau Sio uzdavinio
sprendimas islieka aktuali problema.

Sioje disertacijoje sprendziamos dvi pagrindinés problemos:

1. Duomeny aibés vektoriy ir jy dimensijy skai¢iaus sumazinimas vektoriy kvantavimo
ir daugiamaciy skaliy metody junginiais, iSlaikant duomeny struktiirg;

2. Gauty rezultaty priklausomybés nuo dvimaciy vektoriy, gauty daugiamaciy skaliy
metodu, pradiniy koordinaéiy parinkimas.

Darbo tikslas ir uzdaviniai

Pagrindinis Sio darbo tikslas — greitai ir tiksliai atvaizduoti didelés apimties duomeny
aibes plokstumoje, tam sukuriant vektoriy kvantavimo ir duomeny dimensijy mazinimo
metody junginj ir pasiailant tinkamus dvimaciy vektoriy pradiniy koordinaciy parinkimo
biidus.

Siekiant tikslo buvo sprendziami Sie uzdaviniai:

e iSnagrinéti vektoriy kvantavimo strategijas duomenims klasterizuoti,

e istirti vektoriy kvantavimo metody jungimo galimybes su vizualizavimo metodais,
pagristais duomeny dimensijy skai¢iaus mazinimu;

e istirti dvimaciy vektoriy pradiniy koordinaciy reik§miy parinkimo nuosekliajame
junginyje ir integruoto junginio pirmajame mokymo bloke bidus;

e istirti dvimaciy vektoriy pradiniy koordinaciy priskyrimo integruoto junginio visuose
mokymo blokuose, i§skyrus pirmajj, budus;

o sukurti naujus nuoseklaus ir integruoto neuroniniy dujy ir daugiamaciy skaliy metody
junginius, leidzian¢ius gauti tikslesn¢ daugiamaciy vektoriy projekcija plokstumoje ir
atlikti iSsamig jy lyginamajg analize su saviorganizuojancio neuroninio tinklo ir
daugiamaciy skaliy junginiais;

o atlikti gauty kvantavimo ir vizualizavimo rezultaty kokybés analize.

Tyrimo objektas ir metodai

Analizuojant daugiamacius duomenis, norint geriau atskleisti jy struktiira, vien tik
klasikiniy vizualizavimo metody daznai nepakanka. Disertacijos tyrimo objektai —
dirbtiniais neuroniniais tinklais grindziami vektoriy kvantavimo metodai ir daugiamaciy
duomeny vizualizavimo metodai, pagrjsti dimensijy skai¢iaus mazinimu. Su tyrimo
objektu betarpiskai yra susij¢ Sie dalykai: daugiamaciy duomeny projekcijos | mazesnés
dimensijos erdve kokybés jvertinimo matai, dvimaciy vektoriy koordinaciy parinkimo
biudai ir jy atvaizdavimas ploks§tumoje.

Analizuojant mokslinius ir eksperimentinius pasiekimus daugiamacdiy duomeny
vizualizavimo srityje, buvo naudoti informacijos paieskos, sisteminimo, analizés,
lyginamosios analizés ir apibendrinimo metodai.

Remiantis eksperimentinio tyrimo metodu, atlikta statistiné duomeny ir tyrimy
rezultaty analiz¢, kurios rezultatams jvertinti naudotas apibendrinimo metodas.
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Darbo mokslinis naujumas

1. Sukurtas nuoseklus neuroniniy dujy ir daugiamaciy skaliy junginys ir integruotas,
atsizvelgiantis | neuroniniy dujy metodo mokymosi eigg ir leidziantis gauti tikslesng
daugiamaciy vektoriy projekcija plokStumoje.

2. Pasitlyti dvimadiy vektoriy pradiniy koordinadiy parinkimo buidai integruoto
junginio pirmame mokymo bloke ir koordinadiy reik§miy priskyrimo biidai
integruoto junginio kituose mokymo blokuose.

3. Eksperimentiskai nustatyta kvantavimo paklaidos priklausomybé nuo neuroniniy
dujy tinklo mokymo parametry reik§miy, atlieckamy mokymo epochy, neurony ir
neurony nugalétojy skaiciaus.

4. Eksperimentiskai istirta ir parodyta, kad daugiamaciy duomeny vizualizavimui
neuroniniy dujy ir daugiamaciy skaliy junginys yra tinkamesnis negu
saviorganizuojancio neuroninio tinklo ir daugiamaciy skaliy junginys.

Darbo rezultaty praktiné reiksmé

Tyrimy, atlikty naudojant jvairios prigimties realaus pobtidzio duomenis, rezultatai
atskleidé, kad vektoriy kvantavimo ir projekcijos mazinimo metodo junginiai gali biti
placiai taikomi daugiamaciams duomenims vizualizuoti. Analizuojant kitus realaus
pobudzio skaitinius duomenis, bus galima remtis i§vadomis, gautomis $ioje disertacijoje.

Darbo rezultaty aprobavimas

Tyrimy rezultatai publikuoti 8 moksliniuvose leidiniuose: 5 periodiniuose
recenzuojamuose mokslo Zurnaluose, 3 straipsniai konferencijy pranesimy medziagoje.
Tyrimy rezultatai pristatyti SeSiose konferencijose Lietuvoje ir uZsienyje.

Darbo apimtis

Disertacija sudaro 5 skyriai ir literatliros sarasas. Disertacijos skyriai: Jvadas,
Vektoriy kvantavimo ir vizualizavimo metodai, Vektoriy kvantavimo ir projekcijos
metody jungimas, Eksperimentiniai tyrimai, Bendrosios i§vados. Disertacijos apimtis
135 puslapiai, juose pateikta 50 paveiksly ir 16 lenteliy. Remtasi 81 literatiiros Saltiniu.

Bendrosios iSvados

Atlikti tyrimai atskleidé dviejy vektoriy kvantavimo metody — saviorganizuojancio
neuroninio tinklo ir neuroniniy dujy — jungimo su daugiamatémis skalémis naujas
galimybes. Eksperimentiniy tyrimy rezultatai leido daryti Sias iSvadas:

1. Neuroniniy dujy metodu apie 80 % neurony tampa nugalétojais, o SOM tik apie
50 %, todél SOM labiau tinkamas duomenims klasterizuoti. Ta¢iau kvantavimo
paklaida esant tam paciam neurony nugalétojy skaiCiui neuroniniy dujy metodu
visiems analizuotiems duomenims visada mazesné negu taikant SOM. Neuroniniy
dujy metodas tinkamesnis daugiamaciams duomenims kvantuoti, o tuo paciu naudoti
junginyje su daugiamaciy skaliy metodu.

2. Junginyje su daugiamaciy skaliy metodu naudojant SOM tinkla yra geriau islaikomi
kaimynystés rySiai tarp taSky, pereinant i§ daugiamatés erdvés | dvimatg erdve
Konigo mato prasme negu naudojant neuroniniy dujy metoda. Spirmano koeficiento
prasme §iy abiejy kvantavimo metody naudojimas yra lygiavertis. MDS paklaida
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duomenims, kuriy dimensijy skai¢ius n =15, 7, 10 yra maZesné, kai junginyje
naudojamas SOM, nei ND metodas.

. Taikant pasitlyta integruota neuroniniy dujy ir daugiamaciy skaliy metody junginj
analizuojamy duomeny struktiira jau gerai matoma, kai mokymo bloky skaiCius
q < 1/3y, o taikant SOM ir daugiamad&iy skaliy metodo integruota junginj, mokymo
bloky skaic¢ius turi biti ¢ > 2/3y, ¢ia y — visy mokymo bloky skaicius.

. Pasitilytas pradiniy dvimaciy vektoriy koordinaciy priskyrimas pagal vidurinj taska
integruotame junginyje, iSskyrus pirmajj mokymo bloka, gali biti naudojamas kaip
alternatyva priskyrimui pagal proporcija, kadangi nepastebéta gauty rezultaty esminiy
skirtumy.

. MDS paklaida, gauta nuosekliuoju junginiu, yra maziausia, kai dvimaciy vektoriy
pradinés reik§més parenkamos pagal dvi pagrindines komponentes arba dvi
didziausias dispersijas turinfias komponentes, tadiau kartais jmanoma jg dar
sumazinti naudojant integruota junginj. Kai dvimaciy vektoriy pradinés reik§meés
generuojamos atsitiktinai arba parenkamos ant tiesés, tai geriau naudoti integruota
junginj negu nuoseklyjj, nes MDS paklaida mazesné.
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