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Introduction
Relevance of The Problem

Data comprehension is a difficult process, especially if that data refer to
complicated object or phenomenon, that is characterized by various quantitative
and qualitative parameters or features. That kind of data is called
multidimensional data and may be interpreted as points or position vectors in
multidimensional space. To analyze multidimensional data we often use one of
the main instruments of data analysis — data visualization or graphical
presentation of information. The fundamental idea of visualization is to provide
data in the form that would let the user to understand the data, to make
conclusions, and to influence directly the further process of decision making.
Visualization allows better comprehension of complicated data sets, may help
to determine their subsets that interest the researcher. Dimension reducing
methods allow discarding interdependent data parameters, and by means of
projection methods it is possible to transform multidimensional data to a line,
3D space or other form that may be comprehended by a human eye. It is much
quicker and easier to comprehend visual information than numeric or textual.
On the other hand, that kind of comprehension may suit only as a ground for
hypothesis and further research held using strict mathematical models. What
information and how it should be visualized depends on the user working in
this field, thus there arise some problems that must be solved: what
visualization methods to choose and how to select the optimal parameters. As a
result of constantly increasing data sets we have more and more
multidimensional data visualization methods, however the relevant problem
remains — approval of those methods, and researches of validity of their
application.

The Object of Research

The object of the research done in this dissertation is multidimensional
data, the presentation of that data by nonlinear multidimensional scaling and
self-organizing maps, and evaluation of projection quality.

The Objective and Tasks of the Thesis

The objective of this work is to improve the functionality of nonlinear
multidimensional data projection methods by examining their characteristics.



Aiming for that objection the following tasks were accomplished:

1. To examine data initialization methods for multidimensional scaling
algorithm.

2. To compare multidimensional scaling SMACOF algorithm, Sammon’s
mapping algorithm, and relative multidimensional scaling algorithm by
criterions that evaluate topology preserving.

3. To examine the effectiveness of diagonal majorization algorithm by
comparing it with multidimensional scaling SMACOF realization, and
with relative multidimensional scaling algorithm.

4. To examine theoretically the numerical dependence of neurons-winners on

the training epoch in the self-organizing map (SOM).

To research new possibilities to represent the SOM.

6. To modify relational perspective map algorithm with the view to improve
its convergence.

o

Scientific Novelty

Research made in this work revealed new possibilities to develop
multidimensional data visualization methods and instruments.

There was proved that the initial selection of projection data on the line in
Sammon’s mapping algorithm is inexpedient. Regarding this, it is advisable to
use principal component analysis (PCA) or the largest dispersion method to
select initial points.

There was shown that the effectiveness of diagonal majorization algorithm
resigns to the multidimensional scaling SMACOF realization, and the relative
multidimensional scaling.

There was theoretically examined the dependence of number of the
neurons, recalculated in one epoch in the SOM of rectangular form, on the
training epoch.

The work introduced a new way to represent neural SOM net: the color of
cells in neural net table is selected as a tone of grey that relates to the length of
codebook vector corresponding to neuron in the cell.

There was offered a new way to select initial data for the multidimensional
scaling algorithms upon the largest dispersions.

Relational perspective map algorithm was examined, and the author
offered to use two new functions of distance, reassuring RPM algorithm
convergence.



Methodology of the Research

To analyze scientific and experimental achievements in the field of data
visualization there were used search of information, systematization, analysis,
comparative analysis, and generalization methods.

Software engineering method was used to create software. To prove
theorems and to examine convergence of algorithms, theoretical examination
methods were used. To prove statements, mathematic induction principal was
applied.

Referring to experimental examination method, the statistical analysis of
data and examination results was made. To evaluate its results, there was
generalization method applied.

Practical Significance of Achieved Results

Research results were applied on projects supported by the Lithuanian

State Science and Studies Foundation and the Research Council of Lithuania:

e “Information technologies for human health — support for clinical decisions
(eHealth), IT health (No. C-03013)”. Start date: 09-2003; finish date:
10-2006.

e High technologies development program project “Atherosclerosis
pathogenesis peculiarities determined by human genome variety
peculiarities (AHTHEROGEN) (No. U-04002)”. Start date: 04-2004;
finish date: 12-2006.

e “Information technology tools of clinical decision support and citizens
wellness for e.Health (No. B-07019)”. Start date: 09-2007; finish date:
12-2009.

e Underlying Lithuanian scientific research and experimental development
direction project “Genetic and genomic lip and (or) palate non-union basis
research (GENOLOG) (No. C-07022)”. Start date: 04-2007; finish date:
12-2009.

e Integrated work program of Lithuania and France in the field of bilateral
cooperation scientific research and experimental development “Ziliberas”
(No. V-09059). Start date: 04-2008; finish date: 12-2010.

The Defended Statements

1. Initiation of projection data on the line in Sammon’s mapping algorithm is
inexpedient, because the convergence of error in iteration process is slow.



2. Diagonal majorization algorithm (DMA), in relation to error, yields to the
multidimensional scaling SMACOF realization and the relative
multidimensional scaling algorithm. DMA is faster than SMACOF,
however DMA error is bigger than that of SMACOF or relative
multidimensional scaling algorithm.

3. In the SOM of rectangular form with the largest edge of k' neurons, the
number of retrained neurons is of a staircase form and decreases while the
training epoch order number is increasing — it decreases by one after
e = [% - [(n ;,De] (n' =1,...,k' — 2) epochs.

4. It is possible to apply new functions of distance, which greatly improves
the performance of the relational perspective map algorithm.

5. The choosing of initial points according to the biggest dispersions in the
multidimensional scaling algorithms is one of the most precise and
effective ways to select them.

The Scope of the Scientific Work

The volume of work is 105 pages; are used 57 numbered formulas, 29
figures, and 13 tables in the text. The thesis lists 107 references. The
dissertation consists of introduction, 3 chapters, conclusions, and the list of
references.

1. Nonlinear Multidimensional Data Projection Methods

The chapter is devoted to review multidimensional scaling methods, such
as Sammon’s mapping, SOM, DMA, relative multidimensional scaling and
RPM. All methods have been investigated in the thesis. Some theoretical
results, obtained in the investigation, are presented in the chapter.
Multidimensional scaling (MDS) is a group of methods that project
multidimensional data to a low (usually two) dimensional space and preserve
the interpoint distances among data as much as possible. Let us have vectors
X; = {Xj1, Xiz, ., Xin}, i = 1,5 (X; € R™). The pending problem is to get the
projection of these n-dimensional vectors X;, i = 1, s onto the plane R%. Two-
dimensional vectors Y;,Y5, ..., Y, € R? correspond to them. Here Y; = {y;1, yi»},
i = 1,s. Denote the distance between the vectors X; and X; by &;;, and the
distance between the corresponding vectors on the projected space (Y; and Y})
by d;;. In our case, the initial dimensionality is n, and the resulting one is 2.
There exists a multitude of variants of MDS with slightly different so-called
stress functions. In our experiments, the raw stress is minimized:




Ey(Y) =X j=1,i<j Wij (6U(X) — dij(Y))Z, where w;; are weights. The
Guttman majorization algorithm based on iterative majorization (SMACOF) is
one of the best minimization of the stress function algorithms for this type of
minimization problem. This method is simple and powerful, because it
guarantees a monotone convergence of the stress function.

Formula Y(m' +1) =V*B(Y(m'))Y(m'), is called the Guttman
transform. Where matrix B(Y(m')) and matrix of weights V have the entries:

Wi'si' . . Zwlj
(—;—”], when i # j and d;; # 0; —wy; \
b;j = i 0, wheni # jand d;; = 0; andv = ) )
. . —Wij -
—Xe1j=ibij, wheni = j. T wy;

V't denotes the Moore-Penrose pseudoinverse of V. m’ is an iteration
number.

Diagonal majorization algorithm uses simpler majorization function:
Y(m'+1) =Y(m") + %diag(V)‘l[B(Y(m’) - MIy(m).

DMA attains slightly worse projection error than SMACOF, but
computing by the iteration equation is faster and there is no need of computing
the pseudoinverse V* matrix. In addition, DMA differs from SMACOF that a
large number of entries b;; in matrix V have zero values. This means that
iterative computations of two-dimensional coordinates, Y;,i = 1,s are based
not on all distances &;; between multidimensional points X; and X;. This allows
to speed up the visualization process and to save the computer memory
essentially.

This algorithm, however, remains of O(s?) complexity if we use the
standard V matrix. With a view to diminish the complexity of this algorithm, is
used only a part weights of matrix V. The weights are defined by setting
w;; =1 for k “cycles” of §;, 9., i @ ix1,..,i o tk, etc. and w;; =0,
otherwise. The parameter k defines neighbourhood order for point X; in the list
of analysed data set vectors.

Knowing the dimension s and parameter k of quadratic matrix, we find
that complexity of DMA algorithm is 0(s? — (s — 2k — 1)), when
s = 2k + 1. When all weights are used, the complexity of DMA algorithm is
0(s?). Hence DMA calculation time, dependently on the k selected, shortens
proportionally as, s?/(s? — (s — 2k — 1)?), here s = 2k + 1. When s are large
enough and k = s/10 calculation time shortens to 2.77 times. When
k = s/100, calculation time shortens to 25.25 times.



Willing to determine how much the projection result depends on the
parameter k, and what is optimal value for this parameter, the research was
made. This research is presented in the Experimental Research chapter.

This chapter examines RPM algorithm. It visualizes multidimensional data
onto the closed plane (torus surface) so that the distances between data in the
lower-dimensional space would be as close as possible to the original distances.
But what is more important, the RPM method also gives the ability to visualize
data in a non-overlapping manner so that it reveals small distances better than
other known visualization methods.

From the physical point of view, the torus is a force directed multiparticle
system: the image points are considered as particles that can move freely on the
surface of the torus, but cannot escape the surface. The particles exert repulsive
forces on one another so that, guided by the forces, the particles rearrange
themselves to a configuration that visualizes the relational distances &;; . While
mapping data points on a torus, the RPM algorithm minimizes the potential
energy: E, = Y;<;(8;/pd}), when p=-1,p>0. When p=0 than
Ey = — X< 6;; In(d;;). Here the parameter p is called the rigidity.

Distances on torus T = [0, w] x [0, h]  R? are calculated using formula:

dr(yi;yj) = (min{lyi; — }’j1|' w— |y — }’j1|}r + min{|y;, — Yiz|,h — iz — J/j2|}r)rv here
w and h is width and height of surface of torus, parameter r is usually 2.

E, is minimized applying iterative Newton-Rapson method, but using
function d, of distances, function E, of error is not differentiated, when
Ep|yi — yj1| = 5 or iy = y;1 (the same with another coordinates).

RPM algorithm. The other problem is that RPM algorithm not converges
at all, when selected values of w and h are very different. It may be explained
by the fact that, even if coordinates y;; and y;, of point Y; are calculated
individually, they influence the value of one another. Calculating the distance
d;; both coordinates are evaluated. If influence of one of them is much stronger
(this happens when w > h or w < h), then disproportionate influence of
vector coordinates y;; and y;, on the value of one another is inevitable. This
problem in the work is partially solved using distance d,,, which is obtained by
|}’i1—}’j1| 1—
E—

normalizing distance d, and is equal to dn(Yi,Yj):min{

@} + min {'yiz:lyﬂ',l - |yi2;y12|}. The problem is solved only partially,
because applying normalized distance d,,, RPM algorithm doesn’t depend on
torus parameters w and h, and without additional stopping parameters we get
projection, however this projection isn’t stable. Points, situated near the surface
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of torus, leap from one side of the torus to another, thus moving all other
projection  points.  Applying continuous  function for  distance:
dn(Yi,Y}) = min {|J’i1‘:/Yj1|’ 1— |J’i1V—VYj1|} + min {|J’i2;Yj2|' 1— |3’i2’—13’j2|}l Ep
becomes differentiable on all points of torus surface. However it doesn’t
change convergence of function E,,.

Function of distance d, was deduced with reference to partial derivatives
of distance d,. Since partial derivates can be approximated by sinusoid, the
new distance d, may be derived with reference to full differential of function.
Using this function of distance, in points where E,, wasn’t differentiated with
other functions of distance, it is equal to zero. Thus locations of points near the
surface of torus vary marginally and gradually.

If we want stable convergence of E, to the point of minimum, we need to
consider E,, as function of two variables f(y;;,y;;), not one.

The self-organizing map. The SOM is a class of neural networks that are
trained in an unsupervised manner, using competitive learning. It is a well-
known method for mapping a high-dimensional space onto a low-dimensional
one. We consider here a mapping onto a two-dimensional grid of neurons.
Usually, the neurons are connected to each other via a rectangular or hexagonal
topology. The rectangular SOM is a two-dimensional array of neurons
M={my, i=1.,k,j=1,...k}

Here k, is the number of rows, and k,, is the number of columns. Each
component of the input vector is connected to every individual neuron. Any
neuron is entirely defined by its location on the grid (the number of row i and
column j) and by the codebook vector, i.e., we can consider a neuron as an n-
dimensional vector m;; = {m{;, mZ, ..., m};} € R™.

The learning starts from the vectors m;; initialized randomly. At each
learning step, an input vector X; is passed to the neural network. The Euclidean
distance from this input vector to each vector m;; is calculated and the vector
(neuron) m;; with the minimal Euclidean distance to X, is designated as a
winner. The components of the vector m;; are adapted according to the rule:

222,0,01); hf; is

a
my; < my; + hicj(Xi - mij)y where hf; = preretii max(
ij

the neighbourhood order between the neurons m;; and mg; (all neurons
adjacent to the given neuron can be defined as its neighbours of a first order,
then the neurons adjacent to a first-order neighbour, excluding those already
considered, as neighbours of a second order, etc.); e is the number of training

epochs; é is the order number of a current epoch é € [1, e]. We recalculate the

)
e
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vector my; if nf; < max[a max(kx, ky) , 1]. Let us introduce a term “training
epoch”. An epoch consists of s steps: the input (analysed) vectors from X; to X;
are passed to the neural network in a consecutive or random order.

A theorem about the SOM training has been formulated and proved.
Denote k' = max(ky, k,). It follows from the rule of SOM training that
ni; =k, as é=1. n’ is the integer number that indicates how much the
neighbourhood order has been decreased as compared with the maximal one
(k"). Then the following theorem is valid.

Theorem 1. If we have rectangular SOM net, the edge of which is
k' = max(ky,k,) <100, and training epoch answer inequality

1<é<e+1—e/k', after the epoch, whose number is é = [(" _1)e] +2,
n"=1,. — 1), the maximal neighbourhood order n{; of any neuron mg; is
lower than that after the (é — 1)-stepoch by one,if1<é<e+1—e/k'. The
maximal neighbourhood order does not decrease and remain equal to one
mij=1fore+1-e/k'<é<e.

If follows from this theorem that dependence of the number of retrained
neurons in SOM net on the order number is of a staircase form and decreases

after each e’ = [" e] [(" _1)e] (n' =1, ..., k" — 2), numbers of epochs.

In the case of the rectangular topology (kx rows and k, columns), we can
draw a table with cells corresponding to the neurons. However, the table and its
properties do not answer the question, how much the vectors of the
neighbouring cells are close in the n-dimensional space. The answer may be
found, by using additional visualization of SOM, for example, graphic display,
called the U-matrix (Unified distance matrix), component planes, a histogram.
The U-matrix that illustrates the clustering of codebook vectors in the SOM has
been developed by Ultsch, Siemon and Kraaijveld. They have proposed a
method in which average distances between the neighbouring codebook vectors
are represented by shades in a grey scale (or, eventually, pseudo-color scales
might be used). If the average distance of neighbouring neurons is short, a light
shade is used; dark shades represent long distances: high values of the U-matrix
indicate a cluster border; uniform areas of low values indicate the clusters
themselves (Fig. 1, left-hand side). In Fig. 1 left-hand side, the U-matrix is
presented. Iris data are analysed. It is known that the first iris kind (1 — Iris
Setosa) forms a separate cluster; the second kind (2 — Iris Versicolor) and the
third one (3 — Iris Virginica) are mixed a little bit (Fig. 1).

12
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Fig. 1. Examples of the SOM visualization: U-matrix and
neuron-vector length-based visualization

In this section, a new way of the result visualization is suggested — a
neuron-vector length-based visualization (Fig. 1, right-hand side). Directions of
neuron-vectors in the neighbouring cells are similar in the trained SOM. We
notice that the lengths of neuron-vectors have some specific distribution: the
similarity of the neuron-vectors may be estimated not only in accordance with
their directions, but also with their lengths. The cells of the SOM are painted,
using the different grey shading. Intensity of the cell color is proportional to the
length of vectors. A darker color means shorter vectors. Another way is to put
the number of the analysed input vectors, related with the corresponding
vectors-winners into the cells that correspond to the vectors-winners. It would
allow drawing conclusions on the nearness of the analysed vectors X;, i = 1,5,
their clusters and densities of the distribution of the vectors. When comparing
both sides of Fig. 1, both of them allow us to draw similar conclusions on the
clusters of the analysed vectors. However, the results by the neuron-vector
length-based visualization seem clearer.

2. Research Methodology

As computer software is rapidly developing, algorithm computation time
is shortening; also the schemes of the algorithms themselves are changing.
Thus it is possible to examine algorithms in larger and larger data sets, also
such algorithms, that require to do more operations in computer processors.
This led to the selection of different size data sets: from “Fisher Iris” (150x4) to
“Satimage” (6435x36).
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This chapter analyzes the problems of initialization of data, used in the
research, before rendering it to visualization algorithms. It also gives theoretical
results, solving Sammon algorithm initial vectors initialization problem.

The initial values of projection vectors Y;eR? influence a final result in
nonlinear projection methods. Optimization methods, used in visualization
algorithms, often find a local, but not the global, optimum of a function that
characterizes the quality of projection. For this reason, location of the initial
vectors is very important, i.e., different local optima are often obtained for
different sets of initial vectors.

The projection vectors Y; € R%, d = 1,2,3 may be initialized in various
ways. One of the simplest ways is a generation of initial vectors at random in
some area. The shape of that area usually is a square or a cube, but some other
forms like a line, a plane, a sphere, etc., are also possible. In this case, a
projection algorithm is repeated a lot of times with different sets of initial
vectors Y;, and the most faithful mapping, corresponding to the best found value
of the mapping criterion (e.g. minimal projection error), is selected as the final
one. In SOM_PAK software, this way is also applied with a slight
modification: the first coordinate lies on a line, and the second one is selected at
random. This is an empirical, theoretically ungrounded result.

However, such an initialization way is unreasonable, it requires more
computing time. Therefore other initialization ways could be used.

Let’s analyze theoretically, how, in the case of d = 2, the projection of
points is changing, if initial vectors Y; = {y;;,y;,} are initiated on the line
Yi1 = a- Y, + b, here a and b are some real number constants. For initiation
on the line Sammon’s mapping was examined.

Sammon’s mapping is a nonlinear projection method, which is closely
related to the metric MDS version described above. It also tries to optimize the
cost function (Sammon stress) that describes how well the pair wise distances
in a data set are preserved. The cost function of Sammon’s mapping is the

2

following distortion of projection: Es = ﬁZf‘FLiq(&i’;jﬁ”). In

i,j=1,i<j "l ij

Sammon’s mapping, the dissimilarity of vectors X;, X; and Y;, Y; to d;; and §;;

accordingly are evaluated as distances between the coordinates both in

projection and input space R™. These distances can be calculated using any

metrics, but Sammon suggest using Euclidian metric. Sammon stress function
value is more sensitive to small distances than to large ones.

Iterative gradient pseudo—Newton method, based on diagonal

approximation of Hessian matrix, is used to minimise error in Sammon’s

mapping. The coordinates y;, i = 1,s, k = 1,2 of projection vectors Y; € R?

14



are computed by iteration formula: y;(m'+1)=yy(m)—a 355((’;))/
ik

Zzyb;i((:n"” here m’ denotes the iteration order number; « is a parameter, which
influences the optimization step. J. W. Sammon called it a “magic factor”.

Theorem 2. If the initial points Y; = {y;1,¥i2}, i = 1,5 for Sammon’s
mapping are located on the line y;; =a-y;; +b (a=11,b €R), then the
projection of points, calculated by Sammon stress, will be located on the same
line.

Conclusion. It follows from the theorem 2 that the points will always stay
on the line. However, it has been proved experimentally that the coordinates of
two-dimensional points marginally vary on the line in the first iterations; but
after several iterations, the points deviate from the line, disperse onto the plane.
The reason for that is inevitable computation errors.

Therefore, this way of initialization (on a line) is possible, but the initial
iteration process is very slow. It is necessary to look for the ways of
accelerating this process.

A more complicated way of initialization is the use of PCA. At first,
multidimensional data are projected on the plane using PCA, two-dimensional
points are obtained; then, namely these points are set as the initial two-
dimensional points. However, search for the principal components is a
complicated time-consuming problem.

We suggest a simpler way: to calculate the variances of each j-th
component of X; = {x;q, X;3, ..., X;n }, USiNg s values and select the coordinates
of the initial two-dimensional vectors to be equal to the values of two
parameters the dispersion of which are largest. Let us call it a by dispersion
method.

Quantative criteria of mapping. The problem of objective comparison of
the mapping results arises when the multidimensional data are visualized using
various methods that optimize different criteria of the mapping quality. It is
necessary to select a set of universal criteria that describe the projection quality
and may be general for different methods. Minimal wiring (MW) coefficient
and Spearmen coefficient (rho) were used for this purpose in the dissertation.

Computer hardware, used for the research, and specification of software
created are introduced in this chapter. The need to create such software
emerged when it was necessary to consolidate various multidimensional scaling
algorithms realizations to one system. Furthermore, the software must have:
defined structure, hierarchies of classes and data types, that software available
may be easy supplemented by new functions and visualization algorithms. The
other problem is to make sure that the software will work in various operating
systems like Unix, Linux or Windows. It is required that software code would

15



be as universal as possible in regard to its compilation by various compilers. To
meet those requirements it was chosen to apply C programming language, and
it is advised to move graphical user interface to internet server, created using
HTML, JavaScript, PHP technologies. Working example of such software,
intended to make experiments in computers cluster, is accessible through
http://cluster.mii.lt/visualization.

3. Experimental Research

This chapter gives substantiation by experiment of means to select
parameters of particular multidimensional data visualization methods, analyzed
in the dissertation.

Investigation of the Sammon and SMACOF algorithms. This chapter
analyzes optimization of multidimensional data representation. Sammon
projection, multidimensional scaling SMACOF realization and consequent
combinations of them with the SOM net, using distances, computed by
Euclidian metrics, are examined. In this research, the characteristics of
algorithms and their combinations are analyzed. The methods to select initial
vectors are examined; their comparative analysis is made; they are assessed by
different quantitative criterions. Quantitative criterions allow to evaluate the
results of projection, and to choose the best. The research was made using data
sets of six different origins. It has been proved experimentally that the
examined realization by the SMACOF uses approximately 2.3 times less
computing time than the realization of Sammon’s mapping for the same
number of iterations, for a sufficiently large number of iterations. Here, one
iteration contains calculations, where both components of all the two-
dimensional points are recalculated. The reason is that Sammon’s mapping
requires more complex calculations as compared with the SMACOF.

The combinations SOM_Sammon or SOM_MDS are examined using
various data sets. The results of the SOM training quality depend on the initial
values of the neurons-vectors m;; = {m};, m%,...,m}}. Therefore, it is
advisable to train the SOM several times, using different sets of the initial
neurons-vectors, and to choose such a trained map that the SOM error
Esom = 1/5 ¥5-4||Xc —m{;|| were the least. The experiments have been
repeated for 100 times and a set of vectors-winners that corresponds to the least
SOM error Egqp, Was chosen. Then the vectors-winners were visualized using
Sammon’s or MDS algorithms. In the experiments, the number of iterations of
Sammon’s and MDS algorithms has been chosen so that the computing time of
both methods be approximately equal.
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Their projections have been obtained using SOM_Sammon or SOM_MDS
combinations. The values of mapping quality criteria have been calculated
(Table 1).

Table 1. Values of various criteria, obtained using SOM_Sammon or
SOM_MDS combinations

L SOM_Sammon
Criteria Type
“Iris” “HBK” | “Wood” | “Wine” | “Cancer” | “Cluster”
MW decrease | 21.94382 | 4.23492 | 1.35353 | 88.19783 | 164.0650 | 44.15650
fgg;:gggt increase | 0.99664 |0.98705 |0.95675 | 0.98805 | 0.98310 | 0.83153
Criteria SOM_SMACOF
MW decrease | 20.92690 | 3.95750 | 1.27246 | 86.29917 | 181.1525 | 35.78920
fg’gﬁfzgzﬂt increase | 0.99864 |0.99026 | 0.96069 | 0.98919 | 0.98318 | 0.81109

In Table 1, the “type” shows how the measure changes with an increase in
the mapping quality, so that for the type “decrease” small numbers mean better
maps. Here numbers in bold indicates a better result.

Table 1 shows that the quality of maps, obtained by SOM_MDS
algorithm, is better as compared with the maps, obtained by SOM_Sammon, in
many cases. However, the difference between the values of criteria is
insignificant, therefore projection mappings are similar. Therefore both
combinations can be used in the visualization of multidimensional data with a
sufficiently good quality.

Investigation of DMA algorithm. In DMA algorithm, parameter k defines
neighbourhood order for point X; in the list of analysed data set vectors.

Selection of the parameter k in the DMA algorithm has a great influence

2

on the projection error E =\/Zf‘j=1,i<jwij (5ij—dzj(Y)) /X3 jericj WiiOF;
and obtained map. It has been investigated how the projection error is varying
by increasing the parameter k, the computing time and number of iterations
being fixed. The vectors of the initial analysed data set were mixed at random
in each experiment so that there were less similar points in the list of analysed
data points. Having done 50 experiments for each k, when k varied from 100
to 1000, by step 100, the averages of errors were computed. The initial two-
dimensional vectors were initiated in SMACOF and DMA algorithms by the
method of PCA.
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The experiment has shown (see Fig. 2 and Fig. 3) that, for and under the
fixed computing time, already after 300 iterations one can get quite an accurate
result. Projection error increases less than 1 % comparing with SMACOF
algorithm. With an increase in the number of iterations, the error changes but
slightly. By increasing k considerably, the computing time also increases, while
the result approaches that obtained by SMACOF algorithm (E = 0.043497 for
“Abalone” data set and E = 0.210109 for “Ellipsoidal” data set).
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Fig. 2. Dependence of the projection error on the neighbourhood
order parameter k (for “Abalone” data set)

0,222 -
022 1 @ —e— 100 iter. A— 300 iter. —o— 500 iter.
50,218 | 3\ —+—700 iter. ®— 900 iter.
o
©0,216
20,214
S o
20212 o
& 0,21 ‘ r—fA—n—e —o—¢
0 200 400 600 800 1000

k

Fig. 3. Dependence of the projection error on the neighbourhood
order parameter k (for “Ellipsoidal” data set)

This experiment has also illustrated that for too small k increasing number
of iterations, in many cases the error does not decrease but, vice verse,
increases (see Fig. 2 and Fig. 3, k = 50).

Carrying out the experiments with different data sets, it has been established
that the projection error is influenced a great deal by formation of set of
multidimensional points, i.e., numbering of vectors in analysed data set. To
corroborate this fact, the following investigation was performed. The initial set
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of multi-dimensional data was made up using three different strategies of points

numbering of the set:

Strategy I. At the beginning of algorithm operation, the points of analysed
multidimensional data set are mixed up at random (one random
numbering).

Strategy Il.  The points of multidimensional data set and two-dimensional
vectors, corresponding to these multidimensional points, and whose
coordinates have been calculated in the previous iterations, are randomly
mixed up in the operation of the algorithm at the beginning of the each
iteration (random numbering before each iteration).

Strategy I1l. Using the method of the PCA, multidimensional vectors are
projected onto a straight line, thus establishing the similarity of this point,
and multi-dimensional data are numbered in this order (closer points
should have similar order numbers).

Using Strategies | and Il for multidimensional vector numbering, 50
experiments have been done with each k, varying it from 50 to 1000, the data
have been visualized, the averages of projection error and standard deviation as
well as computing time has been recorded. Since the previous experiments have
shown that the error changes insignificantly after more than 300 iterations, the
algorithms have been iterated 300 times each in this experiment (Strategy | is
used, Fig. 2 and Fig. 3).

Using Strategy 11, even after 100 iterations rather good results have been
obtained and by increasing the number of iterations they almost do not change.
Using this strategy, the least error is obtained, when these three strategies were
compared. The projection error varies insignificantly by increasing k (Fig. 4,
Fig. 5 and Fig. 6). Increasing parameter k from 300 to 1000, the projection
error decreases by the rule E = —0.0002In(k) + C, here C is a constant. It
means that in this case, the projection error will be decreased till 0.08 %
approximately.

The experiments done have illustrated that numbering of multidimensional
data (Strategy Ill) worsens the visualizations results (Fig. 4, Fig. 5). If we
employ the DMA algorithm, we need close and distant points side by side,
because taking them into consideration the coordinates of two-dimensional
vectors are computed. Mixing of multidimensional vectors at each iteration
implies that when calculating the coordinates of a two-dimensional point, more
and various neighbours are regarded, which results in a more accurate
projection (Strategy Il) and it suffices less iterations (100 is enough) (Fig. 5).
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Fig. 4. Dependence of the projection error on the neighbourhood order
parameter k (for “Abalone” data set), using different numbering strategies

0,222 -
_ 0221 @  —e—100 iter. 24— 300 iter. —o—500 iter.
© 0,218 - —+—700 iter. ®— 900 iter.
@
2 0,216
20,214 | &
i o
20,212 1 ey
£ 021 : —A—f——e—o+—
0 200 400 K 600 800 1000
Fig. 5. Dependence of the projection error on the parameter k (for
“Ellipsoidal” data set), using different numbering strategies
0,22 -
_ 0,218 A \ —&— Strategy | (100 iterations) —=— Strategy | (300 iterations)
o 0.216 - —¥— Strategy | (500 iterations) —+— Strategy | (700 iterations)
[T ©O— Strategy | (900 iterations) —O— Strategy Il (100 iterations)
c ]
5 0,214
80,212
c
a 021 1

50 100 150 200 250 300k400 500 600 700 800 900 1000

Fig. 6. Dependence of the projection error on the parameter k
(“Ellipsoidal” data set), using different numbering strategies
(Strategies | and I1) and different number of iterations

Also the SMACOF and DMA algorithms have been compared with
respect to time and projection error. After the experiments with four different
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data sets, it has been established that the projection error, obtained by
SMACOF, is slightly smaller, while using DMA, the computing time is
considerably shorter. The larger the set, the more distinct the computing time
difference is. By comparing visualization results obtained by SMACOF and
DMA, we notice no great difference between the obtained projections, since the
difference between errors is very small (< 1 % for “Abalone”, “Gaussian” and
“Ellipsoidal” data sets, and < 4 % for “Paraboloid” data set).

However, the difference between computing times is distinct, the
projection has been obtained by DMA 7 times quicker. This difference of
computing time decreases by increasing the amount of vectors in the analysed
data set and decreasing parameter k, because data preprocessing for iteration
process, using Strategy I, requires more calculations.

Investigation of Relative MDS algorithm. RPM algorithm depends on
various factors like strategies to select basic vectors, manner to initiate vectors
in two-dimensional plane, the number of basic vectors. In this dissertation is
presented and analyzed two new ways to select coordinates of vectors in two-
dimensional plane of projection: the closest coordinates of basic vector or two
input vector coordinates with the largest dispersion are selected.

Increasing the number of basic vectors is not always result in decreasing
error. There are possibilities that error increase while number of basic vectors
increase, and the selection of appropriate number of basic vectors guaranties
less error in projection with relative MDS algorithm than best error, derived
from SMACOF algorithm. The research was made with a view to determine
more accurate way to select the number of vectors. It was found that in
selection of number of basic vectors there is a limit, exceeding which error in
most cases start to increase, if the number of basic vectors is increasing.

Problem of initialization of vectors. The errors of projection of various
data sets are presented in (Table 2 and Table 3).

Table 2. Projection errors of Sammon’s mapping

The ways of initialization
Dataset - -
Random Line PCA By variance

“HBK” 0.006483 0.01140 0.00464 0.00555
“Wood” 0.025269 0.02536 0.02432 0.02537
“Iris” 0.004997 0.00491 0.00397 0.00406
“Wine” 0.000140 0.00012 0.00003 0.00003
“Cluster” 0.071625 0.07103 0.07115 0.06667
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They are obtained using different initialization ways for Sammon’s
mapping (Table 2) and for the MDS SMACOF (Table 3). The experiments
show that the smallest projection errors are obtained by using PCA, or by
variance methods, but the PCA method is much more computing expensive.
Therefore, we chose the variance method for the further experiments.

Table 3. Mean projection error (E,,o-») and computing time (t) obtained

by MDS SMACOF algorithm
. Ways O.f Mean BITOr, 1 «Abalone” | “Paraboloid” | “Gaussian” “Spheres”
initialization mean time
Random VEnorm 0.013019 0.209435 0.284020 0.219793
t,s 233.81 78.46 90.80 25.20
Line VEnorm 0.020931 0.209510 0.277183 0.219941
t,s 233.53 78.50 90.64 25.20
By variance v Enorm 0.013019 0.208405 0.273857 0.218949
t,s 233.81 78.52 90.87 25.12
PCA v Enorm 0.012513 0.208306 0.272727 0.217274
t,s 234.48 79.17 91.80 25.50375

A dependence of the error on the way of initialization and the number of
iterations are presented in Fig. 7. The results show that PCA and largest
variances initialization ways are much better in the sense of the error than on
the line, and slight better than random initialization of the vectors.
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Fig. 7. Dependence of projection error on the way of initialization:
“HBK” data set; “Iris” data set
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In order to verify the obtained results, the analogical experiments have
been carried out using larger data sets. Some additional multidimensional
scaling algorithms (relative MDS and DMA\) are also performed (Table 4). The
obtained results show that the best ways of the initialization of the vectors are
the largest variances and PCA.

Comparative analysis of some MDS algorithms. Three MDS algorithms
(SMACOF, DMA and relative MDS) have been investigated and compared in
order to answer a question which algorithm is suitable for visualization of large
data sets. The algorithms have been examined using quantitative criteria of

mapping.

Table 4. Quantitative criteria of mapping using multidimensional scaling
algorithms

Criteria SMACOF
“Spheres*“[‘Gaussian‘{“Paraboloid“‘[ ‘Elipsoidal‘{“Abalone‘| “Satimage*
MW 4229.69 | 14844.34 | 115.6487 | 184.6303 |109.3453| 67255.92

Spearmen coef.| 0.861522 | 0.812781 | 0.893843 | 0.928474 |0.999592| 0.980790
Error 0.217515 0.273772 | 0.208293 | 0.207143 |0.012816 | 0.1165890

Time 73.46 268.87 | 232.7953 360.58 693.79 | 2717.75
Criteria Relative MDS with vectors initialization by variance
MW 4237.45 | 14554.89 | 116.91 179.42 108.01 | 68713.81

Spearmen coef.| 0.859215| 0.810587 | 0.885582 | 0.928548 |0.999592| 0.981856
Error 0.219058 | 0.274714 | 0.213209 | 0.207212 |0.012779| 0.109482

Time 35.78 38.29 37.33 39.85 42.43 120.77
Criteria Relative MDS with vectors initialization by PCA
MW 4698.30 | 16594.15 | 121.04 188.57 108.53 | 63134.47

Spearmen coef.| 0.811134 | 0.753909 | 0.878545 | 0.930524 |0.999597| 0.985516
Error 0.272489 | 0.301998 | 0.251414 | 0.205049 |0.012656| 0.0952139

Time 36.14 39.04 37.76 40.22 42.74 95.59
Criteria DMA
MW 4728.84 | 15310.89 229.78 248.8662 [112.1474 (266496.6285)

Spearmen coef.| 0.858383| 0.811120 | 0.888252 | 0.927513 |0.999583| 0.915439
Error 0.219763 | 0.274438 | 0.212582 | 0.208014 (0.012949| 0.204888
Time 52.75 116.16 104.76 131.98 189.76 302.61
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Often the algorithm is optimized according one criterion and it yield by
other criteria. Sometimes all criteria are not equally important therefore weights
of criteria are introduced in order to find the best solution of the pending
problem. When large data sets are visualized, the first important criterion is the
computing time, and the second one is the projection error. The relative MDS
algorithm with initialization by variances is the best in five from six cases
analyzed according the computing time. The relative MDS algorithm with
initialization by PCA takes the second place, because the computing time is
worse, but the projection error is smaller.

General Conclusions

Research, done in this work, revealed new possibilities of visualization
methods grounded on multidimensional scaling.
Theoretical and experimental research led to the following conclusions:

1. There was proved theoretically that selection of initial points on the line in
Sammon’s mapping algorithm, when its slope coefficient is a = +1, is not
applicable. In theory, when this kind of initiation of points is applied, these
points should stay on the same line. Because of computation and rounding
errors, these points deviate from the line, and after several iterations
disperse all around two-dimensional projection plane. Thus, it is advisable
to use the following initiation ways: analysis of the main components or
the largest dispersions method. Analysis of the main components and the
largest dispersions method are much better in the sense of error that that of
initiation on the line.

2. Comparison of the results, worked out using different multidimensional
scaling-type algorithms, showed that the largest dispersion method is the
best way to select the initial vectors in two-dimensional plane. This method
makes the convergence of error quicker, and after several iterations the
error is already sufficiently close to minimal projection error.

3. Visualizing large data sets and saving calculation time, it is effective to
apply diagonal majorization algorithm (DMA). However, attention should
be paid to the choice of strategy to order multidimensional vectors of set
analyzed, and selection of parameter k of neighbourhood order. Examining
the dependence of DMA algorithm results on multidimensional vectors
order strategy showed smaller projection error regarding smaller number of
neighbours k. All that allows reducing time of calculation up to three
times, when k = s/10.

4. Diagonal majorization algorithm error is larger than SMACOF algorithm
projection error, but when neighbourhood order parameter is set to
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k =400 or k= s/10 (for the analyzed data sets) and two different
strategies to select neighbours are applied, the difference of those errors is
less than 5 %. Selection of neighbours is performed here by changing the
order numbers of vectors from the analysed data set at the beginning of
DMA or after each iteration.

The number of retrained neurons in the SOM decreases and has a staircase
form while the training epoch order number is increasing, and decrease by

one after e’ = [%] — |« ;)e] (n' =1,...,k' — 2) epoch.

If the vectors from the analysed data set are not rationed according to the
length, then it is possible to use coloring of the SOM cells in tones of grey
that correspond to the length of neuron in the cell. In this representation,
the position of neuron in the SOM net indicates the similarity of this
neuron to other neurons in the sense of orientation of the codebook vector,
and the color shows similarity in the sense of codebook vector length.
Combined algorithms SOM_Sammon and SOM_SMACOF assures similar
quality of multidimensional data projection. This allows to apply not only
often used combination of SOM and Sammon, but also combination of
SOM and SMACOF algorithms, that is similar to the former and allows to
save the computing time.

In relational perspective map algorithm, it is possible to use function of
distance that allows the convergence of error minimization algorithm
without using any additional parameters to stimulate the convergence.
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NETIESINES DAUGIAMACIU DUOMENU PROJEKCIJOS
METODU SAVYBIU TYRIMAS IR FUNKCIONALUMO
GERINIMAS

Mokslo problemos aktualumas

Duomeny suvokimas yra sudétingas procesas, ypa¢ kai duomenys nurodo
sudétingg objekty, reiSkinj, kuris apibiidinamas daugeliu kiekybiniy ir
kokybiniy parametry ar savybiy. Tokie duomenys vadinami daugiamaciais
duomenimis ir gali bati interpretuojami kaip taskai arba vietos vektoriai
daugiamatéje erdvéje. Analizuojant daugiamacius duomenis, daznai j pagalba
pasitelkiame vieng svarbiausiy duomeny analizés jrankiy — duomeny
Vizualizavimg arba grafinj informacijos pateikimg. Pagrindiné vizualizavimo
idéja — duomenis pateikti tokia forma, kuri leisty naudotojui lengviau suprasti
duomenis, daryti iSvadas ir tiesiogiai jtakoti tolesnj sprendimy priémimo
procesa. Vizualizavimas leidzia geriau suvokti sudétingas duomeny aibes, gali
padéti nustatyti tyréja dominancius jy poaibius. Dimensijos mazinimo metodai
leidzia atsisakyti tarpusavyje priklausomy duomeny komponenéiy, o
projekcijos metodais galima transformuoti daugiamacdius duomenis | tiese,
plok$tuma, trimat¢ erdve ar j kitg Zmogui vizualiai suvokiamg formg. Vizualig
informacija Zzmogus pajégus suvokti daug greiciau ir paprasciau negu skaiting
arba teksting. IS kitos pusés toks suvokimas gali buti tik kaip dirva hipotezéms
ir tolimesniems tyrimams, pagrjstiems grieztais matematiniais modeliais. Kokia
informacija ir kaip ji turi bati vizualiai pateikiama, priklauso nuo naudotojo,
dirbancio Sioje srityje, todél Cia iskyla problemos, reikalaujanéios atsakymy:
kokius vizualizavimo metodus pasirinkti ir kaip optimaliai parinkti jy
parametrus. Dél nuolat didéjanciy duomeny aibiy, atsiranda vis nauji duomeny
vizualizavimo metodai, taciau iSlicka aktuali problema — S$iy metody
aprobavimas ir taikymo pagristumo tyrimai.

Tyrimo objektas
Disertacijos tyrimo objektas yra daugiamaciai duomenys, jy atvaizdavimas

netiesiniais daugiamaciy skaliy algoritmais ir saviorganizuojanciais
neuroniniais tinklais, projekcijos kokybés vertinimas.
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Darbo tikslas ir uZdaviniai

Darbo tikslas — netiesinés daugiamaciy duomeny projekcijos metody
funkcionalumo gerinimas, tiriant jy savybes.

Siekiant $io tikslo sprendziami $ie uzdaviniai:

Istirti daugiamaciy skaliy algoritmy duomeny pradinio parinkimo biidus.

2. Palyginti daugiamaciy skaliy SMACOF algoritmg, Sammono algoritmg ir
santykiniy daugiamaciy skaliy algoritma topologijos iSsaugojima
ivertinanciais kriterijais.

3. Istirti diagonalinio maZoravimo algoritmo efektyvuma, lyginant ji su
daugiamaciy skaliy SMACOF realizacija ir santykiniy daugiamaciy skaliy
algoritmais.

4. Teoriskai iStirti saviorganizuojan¢io neuroninio tinklo (SOM) neurony

nugalétojy skaiting priklausomybg nuo mokymo epochos.

Istirti naujas galimybes SOM tinklui vaizduoti.

Modifikuoti santykinés perspektyvos metodo algoritma, siekiant pagerinti

jo konvergavima.

7. Istirti santykiniy daugiamaciy skaliy algoritmo parametrus, siekiant
apskaiciuoti vienareikSmiska ir tikslig projekcija.

=

o o

Tyrimy metodika

Analizuojant mokslinius ir eksperimentinius pasiekimus duomeny
vizualizavimo srityje, naudoti informacijos paieskos, sisteminimo, analizés,
lyginamosios analizés ir apibendrinimo metodai.

Kuriant programing jranga naudotas programinio modeliavimo metodas.
Teoriniai tyrimo metodai naudoti jrodant teoremas ir tiriant algoritmy
konvergavimg. Taikytas matematinés indukcijos principas jrodant teiginius.

Remiantis eksperimentinio tyrimo metodu, atlikta statistiné duomeny ir
tyrimy rezultaty analizé. Kurios rezultatams jvertinti naudotas apibendrinimo
metodas.

Mokslinis naujumas
Darbe atlikti tyrimai atskleidé naujas galimybes vystyti daugiamaciy
duomeny vizualizavimo metodus ir priemones.

Jrodyta, kad Sammono algoritme projekcijos duomeny pradinis
parinkimas ant tiesés yra netinkamas. Remiantis tuo yra tikslinga naudotis
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principiniy komponenéiy analize ar didZiausiy dispersijy metodu parenkant
projekcijos pradinius taskus.

Parodyta, kad diagonalinio mazoravimo algoritmo efektyvumas
nusileidzia daugiamaciy skaliy SMACOF realizacijai ir santykinéms
daugiamatéms skaléms.

TeoriSkai istirta vienos epochos metu perskai¢iuojamy sta¢iakampés
formos SOM tinklo neurony skaifiaus priklausomybé nuo mokymo epochos
numerio.

Pasitlytas naujas btidas neuroninio tinklo SOM vaizdavimui. Jame
neuroninio tinklo lentelés Igsteliy spalva parenkama kaip pilkos spalvos
atspalvis, priklausantis nuo lgstelése esantj neurong atitinkan¢io vektoriaus
ilgio.

Pasitlytas naujas pradiniy duomeny parinkimo biidas pagal didziausias
dispersijas, tinkamas visiems daugiamaciy skaliy klasés algoritmams.

Istirtas santykinés perspektyvos metodo konvergavimas, ir pasitilyta
naudoti dvi naujas atstumy funkcijas, taip uZztikrinat RPM metodo
konvergavima.

Praktiné verté

Tyrimy rezultatai taikyti tiriamuosiuose Lietuvos valstybinio mokslo ir studijy

fondo ir Lietuvos mokslo tarybos projektuose:

e  Prioritetiniy Lietuvos moksliniy tyrimy ir eksperimentinés plétros
programoje ,Informacinés technologijos zmogaus sveikatai — klinikiniy
sprendimy  palaikymas (e-sveikata), IT sveikata“; registracijos
Nr.: C-03013; vykdymo laikas: 2003 m. 09 mén. — 2006 m. 10 mén.

e Aukstyjy technologijy plétros programos projekte ,,Zmogaus genomo
jvairovés ypatumy nulemti aterosklerozés patogenezés ypatumai
(AHTHEROGEN)®; registracijos Nr.: U-04002; vykdymo laikas:
2004 m. 04 mén. — 2006 m. 12 mén.

e  Aukstyjy technologijy plétros programos projekte ,,Informacinés klinikiniy
sprendimy palaikymo ir gyventojy sveikatinimo priemonés e. Sveikatos
sistemai (Info Sveikata)*; registracijos Nr.: B-07019; vykdymo laikas:
2007 m. 09 mén. — 2009 m. 12 mén.

e  Prioritetiniy Lietuvos moksliniy tyrimy ir eksperimentinés plétros krypciy
projekte ,,Genetiniy ir genominiy lapos ir (arba) gomurio nesuaugimo
pagrindy tyrimai (GENOLOG)®; registracijos Nr.: C-07022; vykdymo
laikas: 2007 m. 04 mén. — 2009 m. 12 mén.

e Dvisalio bendradarbiavimo mokslo tyrimy ir eksperimentinés plétros
srityje Lietuvos — Pranciizijos integruotos veiklos programoje ,,Ziliberas*;
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registracijos Nr.: V-09059; vykdymo laikas: 2008 m. 04 mén. — 2010 m.
12 mén.

Ginamieji teiginiai

1.

Sammono algoritme projekcijos duomeny iniciacija ant tiesés yra

netinkama, kadangi paklaidos konvergavimas iteracinio proceso pradzioje

yra létas.

Diagonalinis mazoravimo algoritmas paklaidos prasme nusileidzia

daugiamaciy skaliy SMACOF algoritmui ir santykinéms daugiamatéms

skaléms. DMA paklaida gaunama didesné uz SMACOF ir santykiniy

daugiamacdiy skaliy algoritmo paklaidas, tatiau DMA yra greitesnis uz

SMACOF algoritma.

Staciakampés formos SOM tinklo, kurio didesnigja briaung sudaranciy

neurony yra k', permokomy neurony skaicius laiptikai mazé&ja didéjant

mokymo epochos eilés numeriui ir sumazéja vienetu po
! !

e = [%] — [(n ,:,1)“’] (n' =1, .., k' — 2) epochos.

Galimos naujos atstumy funkcijos, kurios Zymiai pagerina RPM algoritmo

veikima.

Pradiniy tasky parinkimo pagal didziausias dispersijas biidas, daugiamaciy

skaliy algoritmuose yra vienas tiksliausiy ir efektyviausiy.

Darbo apimtis

Disertacijg sudaro jvadas, trys skyriai ir rezultaty apibendrinimas. Darbo

apimtis yra 105 puslapiai, neskaitant priedy, tekste panaudotos 57 numeruotos
formulés, 29 paveikslai ir 13 lenteliy. RaSant disertacija buvo panaudotas 107
literattiros Saltinis.

Bendrosios iSvados

1.

Teoriskai jrodyta, kad Sammono projekcijos algoritme pradiniy tasky
parinkimas ant tiesés, kai jos krypties koeficientas lygus a = +1, yra
netaikytinas. TeoriSkai, naudojant tokig tasky iniciacijg, Sie taSkai turéty
i8likti ant tos pacios tiesés. Dél skai¢iavimo ir skai¢iy apvalinimo paklaidy
taskai palieka tiese ir po keleto iteracijy iSsibarsto po visg dvimate
projekcijos plok§tumg. Tikslinga naudoti tokius iniciacijos budus, kaip
pagrindiniy komponen¢iy analizé ar didziausiy dispersijy metodas.
Pagrindiniy komponenciy analizés ir didziausiy dispersijy iniciacijos
metodai yra Zymiai geresni paklaidos prasme uz iniciacijg ant tiesés.
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Palyginus rezultatus, gautus naudojant skirtingus daugiamaciy skaliy tipo
algoritmus, nustatyta, kad optimalu pradinius vektorius dvimatéje
plok§tumoje parinkti naudojant didZiausiy dispersijy metoda. Sis
iniciacijos metodas pagreitina paklaidos konvergavimg ir jau po pirmyjy
iteracijy gaunama pakankamai artima minimaliai projekcijos paklaida.
Tyrimai parodé, kad vizualizuojant dideles duomeny aibes ir taupant
skai¢iavimo laika, efektyvu naudoti diagonalinj mazoravimo algoritma.
Taciau reikia atkreipti démesj j analizuojamos aibés daugiamaciy vektoriy
rikiavimo strategijos ir kaimyni§kumo eilés parametro k parinkimg. I$tyrus
DMA algoritmo rezultaty priklausomybe nuo daugiamaciy vektoriy
rikiavimo strategijos, gautos mazesnés projekcijos paklaidos atsizvelgiant i
mazesnj kaimyny skaiciy k. Visa tai leidzia iki trijy karty sutaupyti
skai¢iavimo laika, kai k = s/10.
Diagonalinio mazoravimo algoritmo projekcijos paklaida yra didesné uz
SMACOF algoritmo projekcijos paklaida, taciau, parenkant kaimyniskumo
eilés parametrg k > 400 arba k = s/10 (tirtoms aibéms) ir naudojant
kaimyny perrikiavimo strategijas, kai kaimynai perrikiuojami algoritmo
pradzioje arba po kiekvienos iteracijos, Siy paklaidy skirtumas yra
mazesnis uz 5.
SOM tinklo permokomy neurony skaiCius laiptisSkai mazéja did¢jant
mokymo epochos eilés numeriui ir sumazéja vienetu po
[ ] [(n _1)e] (n' =1, .., k' — 2) epochos.
Jelgu analizuojamos duomenq albés vektoriai néra sunormuoti pagal
vektoriaus ilgj, tuomet galima naudoti SOM tinklo lasteliy spalvinima
pilkos spalvos atspalviais, priklausanéiais nuo lastelés neurono ilgio. Siame
vaizdavime neurono padétis SOM tinkle nurodo jo panaSumg j kitus tinklo
neuronus pagal krypti, o spalva — pagal neurono ilg;.
SOM_Sammono ir SOM_SMACOF junginiai yra uZtikrina panaSia
daugiamaciy duomeny projekcijos kokybe. Tai leidzia taikyti ne tik dazai
naudojamg SOM ir Sammono junginj, bet ir jam panasy SOM ir SMACOF
algoritmy junginj, taip sutaupant skai¢iavimas reikalingo laiko.
RPM algoritme galima naudoti atstumy funkcija, leidZiancig paklaidos
minimizavimo  algoritmui  konverguoti  nenaudojant  papildomy
konvergavima skatinanciy parametry.
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