
VILNIUS UNIVERSITY

Gintaras Vaira

GENETIC ALGORITHM FOR VEHICLE ROUTING PROBLEM

Doctoral Dissertation

Technological Sciences, Informatics Engineering (07 T)

Vilnius, 2014

The dissertation has been prepared during the period 2009 – 2013 at

Vilnius University.

Scientific supervisor:

assoc. prof. dr. Olga Kurasova (Vilnius University, Technological

Sciences, Informatics Engineering – 07 T).

VILNIAUS UNIVERSITETAS

Gintaras Vaira

GENETINIS ALGORITMAS TRANSPORTO MARŠRUTŲ SUDARYMO

UŽDAVINIAMS SPRĘSTI

Daktaro disertacija

Technologijos mokslai, informatikos inžinerija (07 T)

Vilnius, 2014

Disertacija rengta 2009 – 2013 metais Vilniaus universitete.

Mokslinė vadovė:

doc. dr. Olga Kurasova (Vilniaus universitetas, technologijos mokslai,

informatikos inžinerija – 07 T).

Acknowledgments
First of all, I would like to express my thanks to my scientific supervisor

Assoc. Prof. Dr. Olga Kurasova for the continuous support and guidance

throughout the process of this dissertation research, for her patience,

motivation and valuable scientific advice. I want to thank Prof. Dr. Habil.

Gintautas Dzemyda for encouraging me to do my doctoral studies.

I greatly appreciate the time and effort of the reviewers Prof. Dr. Habil.

Artūras Kaklauskas and Prof. Dr. Julius Žilinskas who carefully read the initial

version of this thesis and provided with valuable comments and advice that

helped me to improve the quality of the work.

Special thanks to Vita Jurevičiūtė, Kristina Pociuvienė and Janina

Kazlauskaitė who helped me with the proofread of my papers and this thesis.

I would like to thank the Lithuanian State Studies Foundation for the

financial support for the doctoral studies.

Also, I wish to thank my parents, brothers, all relatives and friends for

all their support during the preparation of this thesis. Most of all I wish to

thank my wife Lina for the patience, love and support during this challenging

period of my life.

Finally, I would like to express my thanks to all the people who have

been in one way or another involved in the preparation of this thesis.

v

Abstract
In recent years, a vehicle routing problem (VRP) attracts much attention due to

the increased interest in various geographical solutions and technologies as

well as their usage in logistics and transportation. Many researches on different

heuristic approaches can be found for the solution of the vehicle routing

problem, where specific situations and constraints are analyzed. In this

research we investigate genetic algorithm approaches for solving vehicle

routing problem with different constraints. Due to stochastic characteristics,

genetic algorithms generate solutions in the whole search space including the

infeasible space. For a constrained problem, the feasible search space is smaller

than the whole search space. Having constraints in the problem definition, the

aim is to find the solution that does not violate any constraint. Such solution is

called a feasible solution or feasible individual. The common genetic algorithm

approaches involve additional repair and improvement methods that are

designed for a specific constraint to keep the generated solutions in the feasible

search space. The usage of the repair and improvement methods designed for

specific constraints or genetic operators specially designed for a specific

problem can produce an inadequate result when they are applied to different

problems. In this thesis we propose a genetic algorithm based on a random

insertion heuristics for the vehicle routing problem with constraints. The

random insertion heuristic is used to construct initial solutions and to

reconstruct the existing ones. The process of random insertion preserves

stochastic characteristics of the genetic algorithm and preserves feasibility of

generated individuals. The defined crossover and mutation operators

incorporate random insertion heuristics, analyze individuals and select which

parts should be preserved and which should be reconstructed. The second

population increases the probability that the solution, obtained in the mutation

process, will survive in the first population, thus increasing a diversity in the

population and the probability to find the global optimum. The proposed

vi

operators are not designed to a certain specific problem and can be applied to

different problems. The proposed algorithm can be applied for the rich vehicle

routing problem. No additional repair or improvement methods are used that

could be a problem for extending scheme with a new constraint handling.

vii

Contents
 Introduction...1

 Research context and motivation...1

 Problem statement...2

 Tasks and objectives of the research...3

 Practical significance of the results...4

 Research methods..5

 Defensive propositions..5

 Proposed solutions and contributions of the scientific novelty......................6

 Approbation of the research..7

 List of Publications...8

 Outline of the dissertation...8

Chapter 1 Vehicle routing problem: a review..10

1.1. Vehicle routing problem..10

1.2. Heuristics for VRP..16

1.3. Genetic algorithm..23

1.4. Genetic algorithms and VRP...30

1.5. Insertion heuristics in genetic algorithm operators................................37

1.6. Shortest path search...44

1.6.1. Shortest-path computation speed-up techniques.............................46

1.6.2. Dijkstra's algorithm...51

1.6.3. Bidirectional algorithm...52

1.7. Summary...56

Chapter 2 A new algorithm for vehicle routing problem.................................58

2.1. Genetic algorithm for vehicle routing problem......................................58

2.1.1. Incorporating insertion heuristics..59

2.1.2. New genetic algorithm..67

2.1.3. Crossover operators..71

viii

2.1.4. Mutation operators..79

2.2. Genetic operators for rich vehicle routing problem...............................81

2.2.1. Rich vehicle routing problem..81

2.2.2. Crossover and mutation operators for RVRP..................................85

2.3. Parallel bi-directional shortest path algorithm.......................................90

2.4. Summary...94

Chapter 3 Experimental researches..97

3.1. Data sets used for experimental evaluation...97

3.1.1. Solomon problem instances..97

3.1.2. Li and Lim problem instances...98

3.2. Evaluation of crossover operators...99

3.3. Results of the proposed genetic algorithm...106

3.4. Results of the parallel bi-directional shortest path algorithm...............119

3.5. Summary...123

 Conclusions...126

 References...128

ix

List of Figures
Fig. 1. Pick-up and delivery problem...13

Fig. 2. Steps of a genetic algorithm..24

Fig. 3. Uniform order crossover (UOX)...27

Fig. 4. The bidirectional algorithm chooses the shortest path ACB by applying

the first stopping criterion..55

Fig. 5. The bidirectional algorithm chooses the path ABECD by applying the

second stopping criterion...55

Fig. 6. Node insertion process: a) current solution constructed; b) arcs, where

the feasible insertion of a node is possible; c) search for the minimal insertion

cost; d) solution with the inserted node..63

Fig. 7. Arrival at a customer with time window constraint: a) arrival too early;

b) arrival in the time window...65

Fig. 8. The behavior of mutation operator applied in typical way....................69

Fig. 9. The behavior of mutation operator when the second population in

mutation operator is created and computed..69

Fig. 10. Behavior of crossover operators: a) b) two parents; c) partial offspring

obtained by the CNX; d) partial offspring obtained by the CAX.....................75

Fig. 11. The longest common increasing sequence between two routes..........76

Fig. 12. Identification of the longest common sequence in all routes: a) and b)

two parent solutions; c) the selected route from the first individual for

evaluation; d) the routes in the second individual are identified that include the

same nodes as in the c) selected route; e) the route with the largest number of

common nodes is selected from the routes in d); f) the longest common

sequence between the routes from c) and e) is identified.................................78

Fig. 13. The longest common sequence crossover: a) and b) two parent

solutions; c) the intermediate solution found by the crossover.........................78

x

Fig. 14. Mutation operators: a) initial solution; other cases show the nodes

extracted in b) the first, c) the second, d) the third, e) the fourth, and f) the fifth

mutation operators...81

Fig. 15. Solution of different expressions: a) solution of nodes; b) solution of

tasks...87

Fig. 16. Structure of data file of Solomon problem instance............................98

Fig. 17. Structure of data file of VRPPD problem instance.............................99

Fig. 18. Average difference of total path length found by the described

crossover operators..104

Fig. 19. The average difference of route number found by the described

crossover operators..104

Fig. 20. Average floating point operations 1.e9...115

Fig. 21. Average difference of routes numbers comparing to the route number

of the best know results..116

Fig. 22. The shortest path calculation: a) using the standard Dijkstra's

algorithm; b) using the modified bidirectional Dijkstra's algorithm; c), d) using

the proposed parallel scheme...120

Fig. 23. The execution time of the calculation of the shortest path between

nodes A B C D E..121

Fig. 24. The number of processed nodes in the calculation of the shortest path

between nodes A B C D E...122

Fig. 25. The execution time of the calculation of all the shortest paths between

random k nodes..122

Fig. 26. The number of processed nodes in the calculation of all the shortest

paths between random k nodes..122

xi

List of Tables
Table 1. The difference between the best results, found by using crossover

operators without applying mutation, and the best known solutions..............101

Table 2. The difference between the averaged results, found by using crossover

operators without applying mutation, and the best known solutions..............101

Table 3. The difference between the best results, found by using crossover

operators and mutation also being applied, and the best known solutions.....102

Table 4. The difference between the averaged results, found by using crossover

operators and mutation also being applied, and the best known solution.......103

Table 5. Results of problem set R1..108

Table 6. Results of problem set R2..109

Table 7. Results of problem set C1..110

Table 8. Results of problem set C2..111

Table 9. Results of problem set RC1..111

Table 10. Results of problem set RC2..112

Table 11. Travel distance and the number of vehicles, averaged over categories

...114

Table 12. Results of problem set LR1..116

Table 13. Results of problem set LR2..117

Table 14. Results of problem set LC1..117

Table 15. Results of problem set LC2..118

Table 16. Results of problem set LRC1...118

Table 17. Results of problem set LRC2...119

Table 18. The execution time and the number of processed nodes in the

calculation of all the shortest paths between random k nodes........................123

Table 19. Average execution time and average numbers of processed nodes 123

xii

Glossary

Chromosome – the literal string encoded form of solutions that the classical
genetic algorithm paradigm deals with.

Crossover operator – recombination operator in genetic algorithm, where new
solution in new generation is created by taking into account more than
one solution from previous generation.

Dijkstra's algorithm – breadth first search algorithm for search of the shortest
path in the graph proposed by Dijkstra (1959).

Decoding – transformation of the chromosome to the solution.

Encoding – the representation of the solution as a chromosome.

Feasible search space – set of all possible feasible solutions.

Feasible solution – a solution that satisfies all the constraints defined in the
problem.

Generation – the population in certain iteration of the genetic algorithm.

Genetic algorithm – search heuristic that is based on ideas of evolution theory
(Holland, 1975). A genetic algorithm works with the population and
usually has following components: representation, fitness function
evaluation, initialization, selection, recombination (crossover and
mutation), termination.

Genetic operator – one of the recombination operators (crossover or mutation)
used in the genetic algorithm.

Individual – the single solution in genetic algorithms, where
encoding/decoding is bypassed.

Insertion heuristic – construction heuristic where solution is created by
inserting elements one by one by evaluating certain functions to select
the element and the place in the solution for insertion.

Mutation operator – recombination operator in genetic algorithm, where new
solution is created from the single solution by changing some
characteristics within it.

Population – the set of the solutions in the genetic algorithm.

xiii

Rich vehicle routing problems – the family of the extended vehicle routing
problems that includes several or all aspect of real-life vehicle routing
(Hartl et al., 2006).

Vehicle routing problem – general name given for a class of problems, in
which a set of vehicles service a set of customers.

xiv

Abbreviations and Acronyms

BCRC Best cost route crossover operator proposed in (Ombuki et
al., 2006).

CAX Common arcs crossover operator proposed in this research.

CNX Common nodes crossover operator proposed in this
research.

CVRP Capacitated vehicle routing problem.

GA Genetic algorithm.

LCIS Longest common increasing subsequence.

LCSX Longest common sequence crossover operator proposed in
this research.

LNS Large neighborhood search.

LRX The crossover operator used in (Alvarenga et al., 2005), in
this thesis it is called largest route crossover.

PDPTW Pick-up and deliver vehicle routing problem with time
windows.

RBX The crossover operator proposed in (Potvin and Bengio,
1996) that is called a route-based crossover.

RVRP Rich vehicle routing problem.

TSP Traveling Salesman Problem.

VRP Vehicle Routing Problem.

VRPPD Vehicle routing problem with pick-up and deliveries.

VRPTW Vehicle routing problem with time windows.

xv

Symbols
Ar Set of arcs in the solution xr.

ari  Ar Single arc in the set Ar.

C Set of constraints.

Cc  C Set of capacity constraints.

Cpd  C Set of pick-up and delivery constraints.

Ctw  C Set of time window constraints.

f(x) Objective function.

fc(x) Function that evaluates single constraint violation.

fd(x) Objective function to minimize total travel distance.

fv(x) Objective function to minimize number of vehicles
(routes).

ff(y) Objective function for feasible solution.

fu(x) Objective function for infeasible solution.

Fc(x) Function that evaluates violation of all constraints.

f(ai,tm) Evaluation function of task tm insertion in arc ai.

G=(N, E) Graph that defines visiting nodes and arcs of the VRP.

Gr
T=(Tr, Ar) Graph that defines routing solution xr.

Gr=(Nr, Er) Graph of the road network.

hc(n, a) Evaluation function of node n insertion in arc a.

k Number of customers in the problem or number of the tasks
in the problem.

l(ni, nj) Distance between node ni and nj.

ls(nv
r) Distance to the starting node in shortest-path calculation.

M Set of request in VRP.

xvi

N Set of the nodes in VRP.

n  N Single node in VRP.

n0 Depot node.

Nh(x) Neighborhood of the solution x.

Nr Node list of the road network.

ni
r Nr Single node in the road graph.

P(nv
r) Shortest-path from starting node to the node nv

r.

P|(nu
r) Shortest-path from node nu

r to the end node.

Q The priority queue Q of labeled nodes in shortest-path
calculation.

r=(n1, n2,...) Defines the route of nodes.

S Full search space.

SF Feasible search space.

SU Infeasible search space.

si=(ti1, ti2,...) Single sequence of tasks in the VRP solution x.

T={t1, t2,…} Set of tasks in the VRP.

ti  T Single task in the VRP.

ta(nj) Time of the arrival at the node nj.

Ui Set of nodes that left unserviced in solution xi.

V Set of the vehicles in VRP.

xi Single solution of VRP.

xvii

Introduction

Research context and motivation
The vehicle routing problem (VRP) is a well known combinatorial

problem that attracts researchers to investigate it by applying the existing and

newly created optimization algorithms. Traditionally, the VRP is defined as a

routing problem with a single depot, a set of customers, multiple vehicles and

the objective to minimize the total cost while servicing every customer. A set

of constraints can be defined for the VRP. In literature we can find different

kinds of vehicle routing problems (VRPs) that are grouped according to the

specific constraints. The well known constrained VRPs are as follows: VRP

with capacity limitations (CVRP), where vehicles are limited by the carrying

capacity; VRP with time windows (VRPTW), where a customer can be

serviced within a defined time frame or time frames; VRP with multiple depots

(MDVRP), where goods can be delivered to a customer from a set of depots;

VRP with pick-up and delivery (VRPPD), where rules are defined to visit pick-

up places and later to deliver goods to the drop-off location. Many researches

on different heuristic approaches can be found for the solution of the above

mentioned problems.

In recent years, VRP attracts much attention due to the increased

interest in various geographical solutions and technologies as well as their

usage in logistics and transportation. More and more logistic companies are

trying to organize deliveries of goods better by enabling various today’s

proposed technologies. They can be various logistic systems coupled with

widely used positioning systems, etc. The important part in reduction of

transportation costs is a better organization of routes by solving a vehicle

routing problem. For example, a better organization of fleet routes in various

distribution areas – delivery of post, supply delivery to markets, fuel delivery

1

to gasoline stations, etc. – can save fuel, money and/or time that can be used

for servicing new customers. Also, a better organization of routes in business

deliveries can affect ecological aspects by reducing pollution that is important

problem of these days.

Problem statement
In literature we can find algorithms that are designed for one or another

VRP, where the algorithms are designed to deal with a specific subject or

specific constraints. Although mentioned VRP variants mimic some real world

situations, these situations do not reflect the whole problem. The mentioned

VRPs are criticized for being too focused on specific models that involve non-

realistic assumptions. Real-world VRP with various constraints generalizes

traditional VRP and is usually called a rich vehicle routing problem (RVRP).

Solving RVRP has been a challenging today's task.

A number of different exact and heuristic methods have been studied to

solve the VRP that is known to be NP-hard. Although the exact methods give

the optimal solution, their computation time considerably increases with the

increasing size of the problem. Various heuristic methods exist for solving

problems that are known to be NP-hard. Local searches and heuristic

approaches may be sensitive to the given data sets (i.e., constraints) or require

additional training data during the learning process. Also hybrid combinations

of various algorithms are designed while seeking for higher efficiency in the

computation.

Metaheuristic is another approach for solving a complex problem that

may be too difficult or time-consuming for other techniques. One of the

metaheuristics that are investigated for solving VRP is a genetic algorithm

(GA). Genetic algorithms are based on ideas of evolution theory. The main

principle here is that only the fittest entities survive. Genetic algorithms work

2

with individuals, sometimes also called chromosomes, each representing a

possible solution to a given problem. GA typically works with the initial

population of solutions; together with each new generation GA creates a new

potential offsprings, based on the selected individuals from the previous

generation using a set of stochastic transition operators (crossover and

mutation). The iterative process of generations and evaluation of individuals

continues until a sufficient stopping criterion is met.

The standard genetic algorithm has limitations in the constrained

environment. Due to a stochastic characteristic, genetic algorithms can

continue very long until the acceptable solution has been found for a

constrained problem. For a constrained problem, the feasible search space is

smaller than the whole search space and genetic algorithm operators generate

solutions in the whole search space including the infeasible space. The

common approaches for constraint handling in genetic algorithms involve

additional repair and improvement methods that are designed for a specific

constraint to keep the generated solutions in the feasible search space. The

repair of one constraint can involve the violation of another constraint. Such

approaches can produce an inadequate result when they are applied to different

problems and are hardly extendable with new constraints. Specialized

algorithms usually are hardly applicable to RVRP.

Tasks and objectives of the research
The objective of the thesis is to design a new genetic algorithm for

vehicle routing problem that handles constraints in genetic operators and that

can be efficiently applied for solving rich vehicle routing problem.

In order to achieve the objective, the following tasks are stated:

 To study existing genetic algorithms for solving vehicle routing

problems.

3

 To analyze approaches in genetic algorithms for dealing with constraints

in vehicle routing problems and investigate search intensification

approaches in genetic algorithm operators.

 To analyze the existing formulations of rich vehicle routing problem

and detail them.

 To propose a new genetic algorithm for rich vehicle routing problem,

where genetic operators handle constraints in solutions in each iteration.

 To investigate Dijkstra's shortest path algorithm speed up techniques in

order to efficiently apply the proposed genetic algorithm to the real

vehicle routing problems taking into account the road network.

 To evaluate the proposed genetic algorithm by applying it on public

available benchmark instances and compare it with other known genetic

algorithms.

Practical significance of the results
The practical significance of the thesis is as follows:

 The proposed genetic algorithm can be applied to real-world vehicle

routing problem more flexibly and in such way reduce costs for various

companies that deal with delivery by reducing overall traveling path

and/or traveling time. The algorithm also can be applied to dynamic re-

computation of the VRP depending on new data (new requests came

from customers; some accident happened for one of the vehicles during

the delivery; etc.).

 The proposed algorithm can be applied to any problem that can be

defined as a graph and which solution depends on the sequence of the

elements.

 A part of the research was used in the project “Algorithm for optimizing

the route between N points and algorithm for fixing deviations and

4

mathematical averaging of fuel level data from transport means (fuel

filling pouring off)” based on the agreement between “Institute of

Mathematics and Informatics”, JSC “AKTKC – Apsaugos centras” and

“Agency for Science, Innovation and Technology” for achievement of

innovation voucher (agreement No 31V-79, 2010-07-28).

Research methods
Both the exploratory research and systematic review have been used to

collect and summarize the results of other researches. Experimental research

and generalization method have been used to evaluate the proposed methods

and algorithms in comparison with the obtained results in other researches.

Defensive propositions
1. Insertion heuristic in genetic algorithms is suitable not only to produce

initial solutions, but also can be incorporated in genetic operators for

constraint handling, i.e. for generation of feasible partial solution in

each iteration by evaluating constraints. By repeatedly applying destroy

method and random insertion heuristic, diversification is enabled in the

population and, by dealing only with feasible solutions, infeasible

search space is not examined, thus avoiding unnecessary computation

and increasing overall computation speed.

2. The crossover operators that preserve common sequence from two

parent solutions can intensify the search towards the optimal solution. In

contrast to traditional crossover approaches, where offspring solutions

are constructed from the parts of parent solutions, new crossovers define

the degree of the destruction by preserving the parts that are common in

both parent solutions, thus preserving the parts that have a higher

probability to be optimally constructed than the other ones.

5

3. A genetic algorithm, based on the feasible reinsertion approach in

genetic operators, on crossovers preserving common parts, and on

second population in mutation operator, produces similar or better

solutions than other genetic algorithms in short computation time. The

usage of the second population in the mutation operator increases

diversification in the population and overall efficiency of the genetic

algorithm. Overall genetic algorithm is applicable to the rich vehicle

routing problem.

Proposed solutions and contributions of the scientific
novelty

 Operators of the genetic algorithm, that involves the destroy and

reconstruct approach of large neighborhood search (LNS) usage in

crossover and mutation operators, are proposed, where random insertion

heuristic in genetic operators is used as a reconstruction method.

Insertion heuristic is adjusted with evaluation of constraints to avoid

generation in infeasible search space, thus speeding-up the computation.

Random insertion heuristic preserves stochastic characteristics of the

genetic algorithm thus involving the diversification in the population.

 New crossover operators that are based on the search of common parts

in the parent solutions for generation of the offspring are proposed. In

contrast to traditional crossover approaches, where offspring solutions

are constructed from parts taken from the parents, the proposed

crossovers identify and preserve parts of the solution that are common

in both parents, thus intensifying a search towards the optimal solution.

The usage of the longest common increasing sequence (LCIS) search in

crossover operator preserves the sequence of elements from parent

solutions, where the sequence is important characteristic of vehicle

routing problem solutions.
6

 The genetic algorithm is proposed that involves insertion heuristic,

feasibility preservation, a search of common parts in the crossover

operators and the second population used in the mutation operator.

Solutions obtained in the second population remain competitive in the

main population: they have a higher probability to be selected for

reproduction and involve the diversification in the population. The

proposed algorithm produces solution in short time and solutions are

better or equal to results obtained by other genetic algorithms. The

advantage of a new developed genetic algorithm is that it can be applied

to rich vehicle routing problem and the formulation of the rich vehicle

routing problem is also defined in this research.

Approbation of the research
The main results of the thesis were presented at the following

international conferences:

 9th Conference on Databases and Information Systems, DB&IS 2010,

July 5 - 7, 2010 – Riga, Latvia;

 1st International Conference of EURO Working Group on Vehicle

Routing and Logistic Optimization (VeRoLog 2012), June 18 - 20, 2012

– Bologna, Italy;

 25th European Conference on Operation Research (EURO-2012), July

8 - 11, 2012 – Vilnius, Lithuania;

 26th European Conference on Operation Research (EURO-2013), July

1 - 4, 2013 – Rome, Italy;

 2nd International Conference of EURO Working Group on Vehicle

Routing and Logistic Optimization (VeRoLog 2013), July 7 - 10, 2013

– Southampton, United Kingdom.

7

List of Publications
Articles in the reviewed scientific periodical publications:

G. Vaira, O. Kurasova. Parallel Bidirectional Dijkstra's Shortest Path

Algorithm. Databases and Information Systems VI, Volume 224 of

Frontiers in Artificial Intelligence and Applications, p. 422–435, IOS

Press, 2011, ISSN 0922-6389 (print), ISSN 1879-8314 (online).

G. Vaira, O. Kurasova. Genetic algorithms and VRP: the behaviour of a

crossover operator. Baltic Journal of Modern Computing, 1(3–4), p.

161–185, 2013, ISSN 2255-8942 (print), ISSN 2255-8950 (online).

G. Vaira, O. Kurasova. Genetic Algorithm for VRP with Constraints based on

Feasible Insertion. Informatica, 25(1), p. 155–184, 2014, ISSN 0868-

4952.

Articles in other editions:

G. Vaira, O. Kurasova. Modified bidirectional shortest path Dijkstra's

algorithm based on the parallel computation. In Proceedings of the 9th

International Baltic Conference on Databases and Information Systems

(Baltic DB&IS 2010) (J. Barzdins, M. Kirikova (eds.)), p. 205-217 Riga:

University of Latvia Press, 2010, ISBN 978-9984-45-199-2.

G. Vaira, O. Kurasova. Feasible Insertion Genetic Algorithm for VRP with

Constraints. In Proceedings of 2nd International conference of EURO

Working Group on Vehicle Routing and Logistic Optimization

(VeRoLog 2013), p. 96, 2013a, Southampton, United Kingdom.

Outline of the dissertation
The text of the thesis consists of introduction, 3 main chapters,

conclusions and references. Each chapter is provided with the summary
8

(except introduction and conclusions). The total scope of this thesis is 140

pages, 26 figures and 19 tables.

Introduction describes research context and motivation, presents the statement

of the problem, discusses tasks and objectives of the research, methodology of

research, presents practical significance of results, scientific novelty, defending

propositions and approbation of obtained results.

Chapter 1 provides overview of vehicle routing problems and solutions,

reviews genetic algorithms for solving vehicle routing problems in details.

Chapter 2 describes the proposed genetic algorithm for vehicle routing

problem.

Chapter 3 provides experimental evaluation of the proposed algorithms.

Conclusions present the main conclusions of the thesis.

9

Chapter 1
Vehicle routing problem: a review

The chapter is organized as follows. Section 1.1 describes a vehicle routing
problem and constraints. Section 1.2 reviews heuristic approaches for
solving VRP. Main genetic algorithms principles are discussed in Section
1.3. Section 1.4 analyzes genetic algorithm application for VRP and the
common feasibility handling approaches. Section 1.5 investigates usage of
insertion heuristics in GA and crossover operators that deal with feasible
solutions. Section 1.6 reviews shortest path problem and Dijkstra's
algorithm speed-up techniques. Section 1.7 summarizes this chapter.

1.1. Vehicle routing problem
Vehicle routing problem (VRP) is a general name given for a class of

problems, in which a set of vehicles service a set of customers. This statement

was first defined by Dantzig and Ramser (1959). VRP is a generalization of a

traveling salesman problem (TSP), where only one traveler is taken into

account. The TSP is defined as a set of cities, where a single traveler needs to

visit all of them and return to the starting city. The objective of the TSP is to

find the shortest route.

The vehicle routing problem typically is described as a graph G = (N, E)

and a set of homogeneous vehicles V = {v1, …, vt}, where t is the number of

vehicles. The graph G consists of the nodes N = {n0, n1, ..., nk}, where n0 is a

depot and N\{n0} are k customers that need to be serviced, and edges E = {eij},

where ij, 0  i  k, 0  j  k, eij = (ni, nj). Each vehicle that services customers

starts the travel from the depot and finishes it in the depot as well. The

objective of the typical VRP is to find the solution, at first, minimizing the total

vehicle number required, and secondly, minimizing the length of the total

10

traveled path (Dantzig and Ramser, 1959; Jih et al., 1996; Potvin and Bengio,

1996; Tan et al., 2001; Jung and Moon, 2002; Ombuki et al., 2002; Jih and

Hsu, 2004; Alvarenga et al., 2005; Ombuki et al., 2006; Yeun et al., 2008). For

the set E, the cost matrix D is defined, where dij is the cost of the edge eij=(ni,

nj), and dii = 0. Usually the VRP is treated as symmetric, where dij = dji. In the

real world problem, the cost matrix is asymmetric and needs to be calculated

from geographic data by using the shortest path algorithms. Moreover, if a

vehicle set is not homogeneous, some roads can be forbidden for certain

vehicles and allowed for others. The different shortest path can exist for a

different vehicle type, so a different matrix needs to be calculated for all the

different vehicle types. A review of various speed-up techniques for the

shortest path problem can be found in Section 1.6.

Various constraints can be added to the VRP. The defined constraints

usually refer to real life situations. Let us define a single constraint c  C,

where C is a set of all constraints that should not be violated in the final

solution.

The most known constraints for the VRP are capacity constraints and

time window constraints. The capacity constraints Cc C are carriage

limitations applied to each vehicle. A capacitated vehicle routing problem

(CVRP) is usually defined with equal capacities for all vehicles. However, in

real life vehicle fleet with different capacities can be used to solve the delivery

problem.

Time window constraints Ctw C define time frames when a customer

can be serviced. The problem dealing with time windows constraints is called

vehicle routing problem with time windows (VRPTW). Single-sided and

double-sided windows are specified in terms of time frames that are widely

considered in literature. However, real life situations can give a multiple time

11

frame representation, where a customer can be serviced in one of the defined

time frames:

 [t1, ) defines a time frame constraint when a vehicle has to arrive no

earlier than the time t1. If a vehicle comes too early, it has to wait until

time t1.

 [0, t2] defines a time frame constraint when a vehicle has to arrive to a

customer no later than the time t2.

 [t1, t2] defines a double sided time frame constraint, where t1  t2. The

constraint includes the limitation from both previously defined

constraints.

 [0, t1] [t2, t3] [t4, ) defines multiple time frames, where ti–1  ti. The

multiple time frame constraints can include any of previously defined

time window constraint. However, the single constraint from the group

needs to be satisfied.

The time window constraint can be added to the depot node to define

the overall traveling time limit for a single vehicle. The maximum number of

vehicles can be treated as an additional constraint cv  C, where cv defines the

limit of vehicles in the solution.

Real situations can give another type of constraints where goods need

not only to be brought from a depot to a customer, but also to be picked up

from a number of customers and brought back to depot or to any other

customer. This problem is known as a vehicle routing problem with pick-up

and deliveries (VRPPD). The set Cpd C defines pick-up and delivery

constraints within the problem, where each c Cpd is a constraint that defines

the delivery of a certain amount of goods from the starting node ns to the target

node nt. In Figure 1, the filled circle represents a depot, the empty circles

represent customers, the dotted lines represent possible pick-up and delivery

constraints, and the solid lines represent a possible routing solution for two

12

vehicles. Combination of VRPPD and VRPTW is called pick-up and delivery

problem with time windows (PDPTW) (Li and Lim, 2003; Ropke and Pisinger,

2006).

Fig. 1. Pick-up and delivery problem

Particular mathematical formulations can be found for each various

VRP extensions, where in each formulation the constraints evaluation is

included in the objective function (Yeun et al., 2008). In this thesis we define it

in general way. Let us define the function Fc(x) that evaluates violation of

constraints in the solution x and fc(x) that evaluates violation of the single

constraint c C:

The objective of the traditional VRP is to find a solution x that satisfies

the equation Fc(x) = 0 and minimizes the functions fv(x) and fd(x) in the defined

order, where fv(x) evaluates the vehicle number in the solution and fd(x)

identifies the total travel path:

13

Beside VRP with mentioned constraints, other VRP extensions are

analyzed in the literature:

 Multiple depot VRP (MDVRP). In this problem multiple depots exist

from where vehicles could start traveling and where they could end up

(Cordeau et al., 2001). In open VRP (OVRP) vehicles do not require to

return to the depot (Brandão, 2004).

 Split delivery VRP (SDVRP). Customer can be serviced by more than

one vehicle, if it reduces overall cost (Archetti et al., 2006; Archetti and

Speranza, 2012). Such situations are also investigated in multiple

commodities VRP where different types of vehicle need to be used for

delivering different types of goods to the customer (Archetti and

Speranza, 2012).

 VRP with satellite facilities (VRPSF). Additional satellite facilities exist

in the graph where vehicles can be replenished with goods instead of

coming to the depot (Bard et al., 1998). In two-echelon VRP (2E-VRP)

two routing levels are defined, where the first level addresses depot-to-

satellite delivery and satellite-to-customer delivery is addressed in the

second level (Crainic et al., 2010).

14

 Periodic VRP (PVRP). In periodic VRP the horizon of defined number

of days is given and visiting frequency within defined time range is

defined for each customer. Solution of such problem is a set of routes

for each day that satisfy all the frequency and delivery constraints

within all days (Cordeau et al., 2001; Baptista et al., 2002)

 VRP with backhauls (VRPB). In this problem some customers require

deliveries (linehauls) and some of them can return commodities back to

the depot (backhauls). Backhauls typically go after linehauls. Such

problem is treated as a special case of VRPPD problem (Ropke and

Pisinger, 2006).

 VRP with time deadlines (VRPTD). Such problem is similar to VRPTW

except that there is not lower bound for time, thus not requiring to pay

attention to wait times (Thangiah et al., 1993). In VRP with soft time

windows (VRPSTW) service is allowed after time window but with

additional penalty cost (Toth and Vigo, 2002). Another VRP that deals

with time is called time-dependent VRP (TDVRP), where the time of

day and specific events related to the real-world situations (i.e. rush

hours) are included in the problem (Ichoua et al., 2003).

 Heterogeneous fleet VRP (HVRP). This problem includes non-

homogeneous fleet where different vehicles include different

characteristics (Gendreau et al., 1999).

 Green VRP (G-VRP). In this problem vehicles that are used in the

delivery are powered with alternative fuel. Typically that are electrical

vehicles. Such vehicles require often refuel due to fuel capacity

limitations. Limitations arise in the problem because of time required

for refueling and availability of the refueling stations (Erdogan and

Miller-Hooks, 2012). In paper (Schneider et al., 2012) the problem is

called electric VRP (EVRP).

15

 In a dial-a-ride problem (DARP) a transportation of users is considered,

where desired departure or arrival time and maximum transportation

duration is defined for users (Cordeau and Laporte, 2003).

There are a number of other VRP extensions that differ depending on

included data, constraints and objectives. Various combinations of mentioned

VRP exist to specific real-world problems (i.e. delivery of goods, waste

collection, blood collection and delivery, post delivery, etc.). There is also

research that combines VRP with freight loading problem, i.e. in paper (Iori et

al., 2007) two-dimensional rectangular loading surface is considered, where

constraint is defined for sequential loading and unloading (2L-CVRP).

The generalized VRP (GVRP) defines an extension of VRP, where a set

of customers is partitioned into clusters and the limitation is to visit single

cluster only once (Bektas et al., 2011). There are attempts to describe rich

vehicle routing problem (RVRP) that include most of the mentioned

constraints and situations and also other real-world constraints and situations

(Toth and Vigo, 2002; Hartl et al., 2006; Hasle and Kloster, 2007; Rizzoli et

al., 2007; Pisinger and Ropke, 2009). Typically it is descriptive formulations or

summarized real-world constraints (Drexl, 2012).

1.2. Heuristics for VRP
The vehicle routing problem has got much attention in recent years. Due

to usefulness in real life and innovation in the transportation sector as well as

logistics, VRP continues to draw researchers’ attention. A number of different

exact and heuristic methods have been studied to solve the VRP that is known

to be NP-hard. Although exact methods give the optimal solution, their

computation time considerably increases with the increasing size of the

problem.

Branch and bound (B&B). Branch and bound is an optimization

technique which search of all possible solutions while discarding (pruning) a

16

large number of non-promising solutions by estimating upper and lower

bounds of the quantity to be optimized. Depth first strategy is used to search

the tree, where nodes whose objective value are lower/higher than the current

best are not explored. Algorithm requires branching operator for splitting

solutions set into the smaller ones and bounding operator for computing lower/

higher bound for the objective function to be be optimized. Branch and cut

(B&C) is a B&B technique, where search space is reduced by adding new

constraints (cuts). Branch and bound algorithm is suitable to solve VRP of

small instances with only few nodes (Toth and Vigo, 2001; Toth and Vigo,

2002; Lysgaard et al., 2004; Yeun et al., 2008; Bektas et al., 2011; Vidal et al.,

2013).

Constructive heuristics are methods that start from the empty solution

and iteratively extend it until the full solution is constructed. Construction

heuristics that are typically used for solving VRP are as follows:

• Savings algorithm;

• Route-first cluster-second;

• Cluster-first route-second;

• Insertion heuristics;

Savings algorithm. One of the constructive heuristics is savings

algorithm proposed by Clark and Wright (1964) (Laporte et al., 1999; Cordeau

et al., 2005; Vidal et al., 2013). Algorithm starts with the initial solution where

all nodes are visited by separate route from depot. The algorithms search and

merge two routes by maximizing the saving cost, where cost typically is a

distance. Merge is possible, if merged route remains feasible.

Route-first cluster-second. The construction starts from the initial route

that visits all the nodes. The route is then split into several routes starting from

the depot (Laporte et al., 1999; Vidal et al., 2013).

17

Cluster-first route-second. In contrast to “route-first cluster-second”

approach, the nodes are firstly added to clusters and then routes are optimized

in each cluster. The clusters are created by solving generalized assignment

problem (GAP). Sweep algorithm is proposed by Gillet and Miller (1974)

(Laporte et al., 1999; Vidal et al., 2013). Algorithm inserts new nodes to route

by going circularly around the depot in each step increasing the angle. Nodes

are inserted at the end of the route, if insertion is feasible and if no insertion

found, new route is started. Afterwards each route is optimized.

Insertion heuristics. Insertion heuristics are popular methods for solving

a variety of vehicle routing and scheduling problems. Insertion heuristics were

first introduced for a traveling salesman problem (TSP) and belong to a group

of route construction algorithms (Rosenkrantz et al., 1977; Campbell and

Savelsbergh, 2004). The main principle of insertion heuristics is to start from a

single node that is usually called a seed node and that forms the initial route

from the depot. Other nodes are inserted one by one evaluating certain

functions to select a node and the place in the route for insertion. The well-

known insertion heuristic approaches used in TSP are categorized by the

methods used for the node selection to be inserted: random insertion, the

nearest insertion, the farthest insertion and the cheapest insertion. For the

farthest and the nearest insertion each next node is selected for insertion

according to the distance to the already constructed route where the functions

for maximization and minimization are defined respectively. The node is

inserted by evaluating the cost function c(ni, nk, nj) = l(ni, nk) + l(nk, nj) –

l(ni, nj), where ni, nj are the nodes in the current constructed route, nk is the

node to be inserted, and l(ni, nj) is the distance function. In the random

insertion heuristic a node is randomly selected from a set of nodes that are still

not included in any route. The place in the route where a randomly selected

node has to be inserted is determined by minimizing the same cost function

18

c(ni, nk, nj). In contrast to the random insertion heuristic, the cheapest insertion

heuristic selects the node for insertion by minimizing the defined function for

all nodes and all places in the route (Solomon, 1987).

Solomon (1987) has proposed three types of insertion heuristics. The

most successful of them is called I1. The first route is initialized with the seed

node which is the farthest one from the depot. Nodes are inserted into the first

route until reaching the limit of capacity constraints. If still there are unrouted

nodes, a new route is created and the insertion process is repeated until all the

nodes are inserted. Two subsequently defined criteria C1(ni, nu, nj) and

C2(ni, nu, nj) are used to select the node nu for insertion between the nodes ni

and nj. The first function determines detour and delay values. The second

function generalizes a regret measure over all routes to estimate what could be

lost later if the node is not immediately inserted in its best place. The criterion

function C1 depends on the coefficients (and the overall insertion

method efficiency depends on them (Potvin and Dubé, 1994). In (Potvin and

Rousseau, 1993), the authors have proposed a parallel version of insertion

heuristic I1.

Local-improvement heuristics. The main principle of the local search

(LS) improvement heuristics is as follows. For solution x S (where S is a

search space), a neighborhood in the search space can be defined as Nh(x)  S,

where Nh(x) is a function that maps the solution x to a set of solutions by

applying the defined moves (perturbations). Local search is an iterative process

that takes the initial solution x and, in each iteration, searches for the improved

solution x' in the neighborhood of x. The search stops at solution x'' when the

improved solution is not found in neighborhood Nh(x''). Such a search

approach finds a local optimum and is called Hill Climbing (HC). It is a

popular method used in other algorithms for improvement of solutions. An

19

example of neighborhood Nh(x) can be one of the following local-

improvement approaches (Laporte et al., 1999; Vidal et al., 2013):

• 2-opt, where the 2-opt neighborhood is a set of solutions that can be

obtained by removing two edges in solution x and adding new ones to

reconnect the route. 3-opt generalizes 2-opt neighborhood and here 3

edges are replaced by new ones. In -opt, where  edges are replaced

by new ones, two previous improvements are generalized.

• Lin-Kernighan. In the algorithm proposed by Lin and Kernighan

(1973),  value is changed during search (Laporte et al., 1999;

Helsgaun, 2000; Vidal et al., 2013).

• Shift (also called re-locate). In shift neighborhood, one node is moved

from one route to another. In swap (also called exchange)

neighborhood two nodes are exchanged between routes.

In addition to the mentioned local-improvement methods other local

search methods exist: Or-opt, cross, etc. (Laporte et al., 1999; Cordeau et al.,

2005; Vidal et al., 2013).

 Local searches and heuristic approaches often produce a near optimal

solution within a reasonable computation time. These methods may be

sensitive to data sets given or require additional training data during the

learning process.

Metaheuristic is another approach for solving a complex problem that

may be too difficult or time-consuming by traditional techniques. Some of the

metaheuristics that are applied to the VRP are following:

• Simulated annealing (SA). Simulated annealing approach mimics the

annealing process in metallurgy. In order to escape the local optimum,

the probability of accepting deteriorated move for the solution depends

on the so called “temperature”. The higher temperature, the higher

probability to accept degraded solution. Temperature parameter is

20

evolved during the search, thus imitating the cooling process in

metallurgy (Černý, 1985; Misevičius, 2003; Cordeau et al., 2005; Vidal

et al., 2013).

• Tabu search (TS). The idea of the tabu search is to prevent a move in

the search that was already performed during specified amount of last

iterations. In such approach restrictions are stored in memory so called

tabu list. Application of tabu search prevents cycling in search and

allows moving the search to unexplored search space. (Cordeau et al.,

2001; Brandão, 2004; Archetti et al., 2006; Yeun et al., 2008; Vidal et

al., 2013).

• Ant colony optimization (ACO). This approach is inspired by the

behavior of the ants. In the nature initially each ant wanders randomly

and when the food is found, the ant returns to the colony by laying

down pheromone trails. When other ants find the path with pheromone

trails they choose to go by that path with higher probability comparing

to go randomly. By the time pheromone trails evaporate, so longer paths

will evaporate more than shorter ones because of time needed to travel

down the path and back again. Evaporation technique of the pheromone

trails lead to optimization of the path length (Rizzoli et al., 2007; Yeun

et al., 2008; Jančauskas et al., 2012; Vidal et al., 2013).

• Large neighborhood search. The large neighborhood search (LNS)

heuristic belongs to the class of heuristics known as a very large scale

neighborhood search (VLSN) (Pisinger and Ropke, 2009; Vidal et al.,

2013). In the large neighborhood search, the neighborhood is defined as

Nh(x) = r(d(x)), where neighborhood solutions can be found by

applying, at first, the destroy function d(.) and then the reconstruction

function r(.). The large neighborhood search maintains two solutions:

the best solution found xb and the current solution x is used that takes

21

part in the exploration of the neighborhood. If x is found such that

fa(x) < fa(xb), where fa(x) is the acceptance criteria function, xb is replaced

with a new solution: xb = x. In adaptive large neighborhood search

(ALNS) the neighborhoods are applied depending on their performance

in previous iterations (Pisinger and Ropke, 2009).

• Genetic algorithm. It is a population based algorithm that follows the

idea of biological evolution and natural selection where the fittest

individuals survive. The genetic algorithm is described in details in

Section 1.3.

There are also other approaches beside mentioned ones that are

designed to solve one or another specific VRP. In (Drexl, 2012) the author

explains the gap between models analyzed in theory and the practical

applications of the algorithms. In literature we can find researches on

algorithms for RVPR, i.e. in (Pisinger and Ropke, 2009) ALNS is proposed for

solving general vehicle routing problem. Hasle and Kloster (2007) have

proposed the approach for solving RVRP is based on regret insertion and

variable neighborhood descent (VND) approach. VND belongs to VLSN

algorithm group and is similar to already mentioned ALNS approach.

Difference is that VND switches to another neighborhood only when search of

the current neighborhood is trapped in the local optimum (Pisinger and Ropke,

2009). In (Rizzoli et al., 2007) ant colony optimization algorithm is proposed

for solving real-world vehicle routing problem.

In literature various hybrids of previously mentioned algorithms can be

found. There are also approaches to design parallel algorithms for solving

vehicle routing problems. A survey of different approaches for solving various

VRP can be found in (Yeun et al., 2008; Vidal et al., 2013). In (Dzemyda and

Sakalauskas, 2011) we can find a survey of heuristic methods for solving

problems that are known to be NP-hard.

22

Various global optimization algorithms are also investigated by

researchers from Lithuania: J. Mockus, A. Žilinskas, J. Žilinskas, G. Dzemyda,

L. Sakalauskas, A. Misevičius. It is worth to mention the researches that

involve investigations of the genetic algorithms: Misevičius and Kilda (2005);

Žilinskas and Žilinskas (2007); Misevičius (2009), Žilinskas (2008), Redondo

et al. (2012), Lančinskas et al. (2013). There are also doctoral dissertations

prepared: Felinskas (2007) investigated different heuristic methods, including

genetic algorithms, for optimization of resource-constrained project schedules;

Šešok (2008) investigated the usage of genetic algorithm for optimization of

topology of truss structures, where additional improvement step in genetic

algorithm is proposed to use to find better solutions; Lančinskas (2013)

investigated parallelization of random search global optimization algorithms,

where strategies are proposed for modification and parallelization of non-

dominated sorting genetic algorithm (NSGA); GA with distribution strategy

has been suggested and investigated by Mačiūnas (2013) for the optimization

of mechanical properties of grillages;

In this research the focus is given only to genetic algorithm approaches

for solving general vehicle routing problem. Genetic algorithms have been

successfully applied to solve many combinatorial problems as well as to the

VRP. The standard genetic algorithm has limitations in the constrained

environment. However, it is able to incorporate other techniques within its

framework to produce a hybrid that provides better efficiency (Yeun et al.,

2008).

1.3. Genetic algorithm
Genetic algorithms are based on ideas of evolution theory (Holland,

1975). The main principle here is that only the fittest entities survive (Reid,

2000; Jung and Moon, 2002; Lukasiewycz et al., 2008a). A genetic algorithm

can be divided into several sub-parts that are used in this algorithm:

23

representation, fitness function evaluation, initialization, selection,

recombination (crossover and mutation), termination. The whole process of

genetic algorithm is described in Figure 2.

1. The initial population is created, where each individual is expressed

via defined representation;

2. The fitness function is evaluated for the initial population;

3. The subset of the population (so-called parents) is selected that will

be used in recombination operators to generate offspring;

4. The crossover operator is applied to parents to create new offspring;

5. The mutation operator is applied with a certain probability;

6. The fitness function is evaluated and the individuals with the worst

fitness value are removed;

7. If the stopping criterion is not met, go to Step 3.

Fig. 2. Steps of a genetic algorithm

Representation. The classical genetic algorithm paradigm deals with the

solutions encoded as a literal string, called chromosomes. A chromosome is the

representation of a single solution of the problem and requires additional

encoding/decoding steps to be defined in the algorithm. Genetic algorithm

approaches can be divided into two sets: algorithms that are applied to the VRP

represented as a chromosome, and algorithms that skip the encoding/decoding

step. In genetic algorithms, where encoding/decoding is bypassed, a single

solution is usually called individual. The TSP problem has a single constraint –

all cities should be visited. The solutions of the TSP problem are vectors of the

nodes, where each solution starts always from the same node and the direction

is not important:

24

A single solution within a problem can be defined as xtsp  Stsp, where Stsp is the

whole search space of the TSP and |Stsp| = (k – 1)!/2. Each TSP solution can be

easily encoded as a queue of indexes (chromosome):

Such encoding can be useful for any problem that can be expressed as TSP, for

example in computer wiring, scheduling of jobs on a single machine, etc.

(Deep and Adane, 2011). However, it is worth mentioning that such a

representation does not hold any additional information.

Population and initialization. In initialization, the initial set of

chromosomes, also called as the initial population, is created. The size of initial

population is important for the overall genetic algorithm. A small size of the

initial population can lead to finding of a local optimum only, while a larger

initial population gives a higher probability that the global optimum will be

found, however, the computation time increases (Reid, 2000). While the TSP is

defined as a complete graph, usually the initialization is done by randomly

selecting a node and assigning it to the route.

Evaluation and selection for reproduction. The selection operator is

used to identify chromosomes which will be used in reproduction and will

survive in the next generation. Different techniques can be used in selection

operators, however, usually a natural selection process is simulated, where the

“strongest” individuals are used in reproduction. One of the method for

selection is called roulette wheel. The name explains the method: a wheel is

divided into parts according to the fitness of the individuals in the population,

where better individuals get a larger part of the wheel and the worst individuals

get a small part of the wheel. So, the probability to be selected is directly

proportional to the fitness value. When the wheel is spinning, a pin on the

wheel will most probably point to a better individual. The individuals with a

25

higher fitness value have a higher probability to be selected for reproduction,

and vice versa (Golberg and Deb, 1991; Zhong et al., 2005).

The second method for selection is called ranking. In the ranking

method, all individuals in population are sorted according to the fitness value

f(x) to assign ranks, where the individual with a better fitness value gets a

higher rank. In TSP, usually f(x) defines the length of the total path traveled,

however, this function can include additional characteristics and measurements

in order to keep individuals in the population. If in the roulette wheel method

the fitness value is used when assigning a probability to be selected, in the

ranking method individuals are selected proportionally to the rank (Golberg

and Deb, 1991; Zhong et al., 2005)

Another method for selection is called tournament selection. This

method uses characteristics from the ranking method, but, in contrast to it,

tournament selection ranks only a subgroup of individuals. At first, two

subgroups from a population are selected. Each subgroup must contain at least

two individuals. The individuals are ranked within a group like in the ranking

selection operator. The best individual from each group is selected for

reproduction, and the worst individuals are chosen to leave the population. To

generate l new offsprings in each iteration, assuming that two new offsprings

will be generated from two selected parents, l subgroups have to be selected

from the population (Golberg and Deb, 1991; Alvarenga et al., 2005; Zhong et

al., 2005).

Recombination. An important part of the genetic algorithm is

recombination operators. The crossover operator simulates the reproduction

between two individuals, where the created offsprings inherit some

characteristics from parent individuals. Many crossover and mutation operators

exist that operate with a chromosome encoded as a literal line of symbols or

numbers. The list of common crossovers used for solving TSP as well as for

26

solving VRP is as follows (Blanton and Wainwright, 1993; Jih et al., 1996;

Ombuki et al., 2002; Tan et al., 2006; Kumar et al., 2012):

 Partially matched crossover (PMX),

 Cycle crossover (CX),

 Ordered Crossover (OX),

 Uniform Crossover (UX),

 Uniform Order Crossover (UOX),

 Edge Assembly Crossover (EAX),

 Merge crossovers (MX1, MX2), etc.

Crossovers listed above produce an encoded chromosome or

chromosomes as a result that need to be decoded for evaluation.

Binary string: 0 1 1 0 1 1 0 0

1st parent: 1 2 3 4 5 6 7 8

2nd parent: 3 5 1 8 4 7 2 6

Intermediate offsprings

1st offspring: – 5 1 – 4 7 – –

2nd offspring: 1 – – 4 – – 7 8

Generated offsprings:

1st offspring 2 5 1 3 4 7 6 8

2nd offspring 1 3 5 4 2 6 7 8

Fig. 3. Uniform order crossover (UOX)

In (Jih et al., 1996) we can find a review, where the Uniform Order Crossover

is mentioned as a good approach for solving VRP. It is an analogue of the

Uniform Crossover translated into an order-based form:

1) a binary string of the same length as parent chromosomes is generated;

2) the first intermediate offspring preserves nodes from the second parent,

where the generated string contains “1”;
27

3) permute nodes from the second parent where a binary string contains

“0” in the same order as they appear in the first parent;

4) fill these permuted elements in the gaps of the first intermediate

offspring;

5) switch the parents and perform the steps 2 – 4 to create the second

offspring (Jih et al., 1996).

Figure 3 provides an example of a uniform order crossover.

A mutation operator is used with intention to prevent getting stuck in

the local optimum and increase a probability to find the global optimum (Hong

et al., 2002). In the mutation operator, a new offspring is created from the

single solution by changing some characteristics within it. In the genetic

algorithm, crossover and mutation operators are applied by a predefined

probability. We can find the values for these probabilities proposed in (Srinivas

and Patnaik, 1994; Hong et al., 2002). In the adaptive probability approach, the

probabilities are adjusted during computation depending on the current

population characteristics, flow of the computation and other parameters. In

(Zhang et al., 2004, 2007), a fuzzy logic is considered for adjusting the

probabilities. The simplest mutation operator extracts a single gene (an element

of the chromosome) and places it back to the chromosome by randomly

choosing a new location (Potvin and Bengio, 1996). Initially the evolutionary

algorithms had only selection and mutation, while the genetic algorithms also

utilize the crossover operator (Reid, 2000). Both operators play an important

role in genetic algorithms due to the success of recombination of the existing

solutions into a new one.

Diversity maintenance and selective pressure. Two important factors of

the genetic algorithm are a population diversity and a selective pressure. These

two factors are related: if the selective pressure is increasing, the population

diversity decreases and vice versa. The selective pressure is a task of the

28

selection operator. Too-weak selective pressure can lead to ineffective search.

The selection operator as well as other operators influences overall diversity of

the population. A good performance is achieved, while maintaining the

diversity of the population as long as possible. The mutation is important in the

variation of individuals, when the population becomes homogeneous (Srinivas

and Patnaik, 1994). The population diversity can also be maintained by

increasing the size of the population or by having greater mutation rates,

however, the performance factor should be taken into account. Other

techniques are also used. A common approach is to avoid duplicates in the

population. It means that the generated offspring is not allowed in the

population, if it is the clone of the existing individual.

Termination. The genetic algorithms are stochastic methods that could

run forever, if a termination criterion is not applied. Simple stopping criteria

are the maximum computation time, the maximum iteration number or

iterations that are counted from the last successful improvement of the best

individual (Reid, 2000; Hong, 2002; Jung and Moon, 2002; Berger and

Barkaoui, 2004; Yeniay, 2005). The probability to improve the best individual

decreases proportionally to the computation time. So, the number of iterations

without improvement is directly proportional to the probability of

improvement. A large value would increase the computation time and possibly

a better solution will be found, while a low value will involve an early stop

with a poor solution found.

Many derived GA approaches can be found in the literature, some of

which include multiple populations, dynamically chosen genetic operators or

any hybrids with other known heuristic approaches (Yeun et al., 2008).

However, the main principles of the genetic algorithm remains the same. In the

rest of the thesis, we will investigate a genetic algorithm implementation for

29

VRP. The main research presented here is based on recombination operators

used for solving VRP and their influence on the whole genetic algorithm.

1.4. Genetic algorithms and VRP
As already mentioned, VRP is a generalization of the TSP problem.

VRP includes additional components, i.e. fleet of vehicles, and additional

constraints. An additional component of the problem can affect computation

and even require to design the problem specific genetic operators. Genetic

algorithm approaches to solve the VRP can be categorized according to the

following features:

 Representation. Solution in GA can be encoded as a chromosome

(expressed as a literal string), or unencoded, where encoding of the

solution within chromosome is not addressed.

 Feasibility handling. Genetic algorithm operators can be designed to

preserve the feasibility of individuals within a population or allow the

generation of infeasible individuals.

An example of VRP solution, where 3 routes are used to service

customers expressed as a chromosome is as follows (Berger et al., 1998),

where "ne belongs to one route, "nf belongs to the second route and "ng

belongs to the third route:

| ne1 ne2 … | nf1 nf2 … | ng1 ng2 …|

The standard genetic operators can be applied to such a chromosome,

however, such a representation does not hold any problem specific information

and, depending on the encoding approach, the selected genetic algorithm can

be ineffective. Different approaches for encoding the VRP solution can be

found in the literature, i.e. in (Thangiah et al., 1991), a chromosome

representation based on the angles of vectors starting from a depot node is

proposed, where the VRP is treated as a planar graph problem (Thangiah et al.,

1991; Jung and Moon, 2002). Researches can be found that compare crossover
30

operators designed to work with the chromosome representation (Jih et al.,

1996; Misevičius and Kilda, 2005; Kumar et al., 2012).

When dealing with constraints, a stochastic approach to find optimal

solutions can compute very long, until an acceptable solution has been found

(Reid, 2000). For a constrained problem, there exist feasible and infeasible

search spaces SF (x SF does not violate any of the defined constraints) and

SU (x SU does violate at least one defined constraint). Let us define the

whole search space S, then SF S, SU S, SU SF = S, SU SF = . The

solution x belongs to the feasible search space SF, if Fc(x) = 0. Highly

constrained problems are those, where the feasible search space is very small.

Thus the probability to generate solutions in such a space for crossover and

mutation operators can be adequately small (Reid, 2000). Approaches, where a

solution is represented as a chromosome or where solutions are allowed to be

generated in the infeasible search space SU, require additional approaches for

constraint handling. The following approaches are used to deal with the

infeasibility in genetic algorithms:

 Applying penalty function.

 Treating problem as multi-objective.

 Repairing solution.

 Preserving feasibility in the genetic operators.

Penalty. The penalty function p(x) transforms a constrained problem

into an unconstrained one (Reid, 2000; Yeniay, 2005; Lukasiewycz et al.,

2008; Lukasiewycz et al., 2008a). A penalty method is widely used in genetic

algorithms for constrained problems. The main target is to add a significant

value to the fitness value for the generated offsprings that violate constraints.

In (Michalewicz, 1995) the author discusses the advantages and disadvantages

of having feasible and infeasible solutions in genetic algorithms and how they

influence the results. The discussion is carried out on the issue how the feasible

31

and infeasible solutions can be compared. In general, two evaluation functions

ff(x), where x SF, and fu(x), where x  SU, are considered. Different evaluation

functions ff(x) and fu(x) are defined because of the ability to compare the

solutions in two distinct search spaces. However, the relation between these

two functions can be designed via the extended function q(x), where q(x) can

be either the penalty function or the cost for repairing the solution

(Michalewicz, 1995; Yeniay, 2005). There are two main ways of penalty

function application (Yeniay, 2005):

 additive: fu(x) = ff(x) + q(x), where q(x) = 0, if none of the constraints is

violated, and q(x)>0, otherwise.

 multiplicative: fu(x) = ff(x)q(x), where q(x) = 1, if none of the constraints

is violated, and q(x)>1, otherwise.

The penalty method is directly applied to the fitness value, where the

highest benefit of the penalty function is to adjust the ranking mechanism in

the population and increase the selective pressure on the feasible individuals.

Good results are reported, when the penalty function is designed so that

feasible results are always treated better than infeasible results (Michalewicz,

1995). Various penalty functions are considered on the basis of their

application characteristics (Yeniay, 2005). Some of them can dramatically

change the fitness value or completely remove from a population list. The

death penalty has the penalty function q(x) = + for each x SU. Although the

death penalty will help to avoid having infeasible solutions, it is expected to

work well when the feasible search space is a reasonable part of the whole

search space (Michalewicz, 1995). However, for highly constrained problems

the algorithm can suffer a degradation when trying to search for feasible

solutions and if the feasible solution is found, the search may prevent to find a

better one (Yeniay, 2005). Adaptive penalties update the parameters for each

generation according to information gathered from the population. Although

32

penalty functions help to identify infeasible solutions and keep individuals with

the best characteristics in the population, they affect the generation of feasible

solutions only indirectly and still allow the generation of infeasible solutions. It

is the waste of computation time when infeasible solutions are generated and

later eliminated (Reid, 2000).

Multi-objective. In a multi-objective approach, the constrained problem

is transformed into a multi-objective problem. In (Berger and Barkaoui, 2004;

Ombuki et al., 2006; Tan et al., 2006; Garcia-Najera and Bullinaria, 2011), the

Pareto ranking method is used to solve the VRPTW expressed as multi-

objective, where Pareto ranking, similarly to the penalty approach, is used to

adjust the ranking mechanism of the genetic algorithm and assign the relative

strength of individuals in the population. The ranking mechanism assigns the

smallest rank to non-dominated individuals and the dominated individuals are

ranked according to the individuals in the population and the defined criteria.

Pareto ranking attempts to assign a single fitness score to the solution of a

multi-objective problem. In literature there can be found Pareto ranking in the

genetic algorithm treated as equivalent to the penalty approach (Michalewicz,

1995a).

Repair. The second approach for feasibility handling is a repair method.

The repair method defines the transition function y = r(x), where y is the

repaired version of x, such as y SF, and x  SU. The repair can be designed in

two different ways:

 An individual is repaired for evaluation only, where fu(x) = ff(y), and y is

a repaired (i.e. feasible) version of x. It is the so-called Lamarckian

approach (Michalewicz, 1995; Zhu, 2003; El-Mihoub et al., 2006). The

weakness of such an approach is that it depends on the problem and a

specific repair algorithm has to be designed (El-Mihoub et al., 2006).

33

 An individual is repaired and the previous individual is replaced by its

repaired version. It is called a Baldwinian approach (Michalewicz,

1995; Zhu, 2003; El-Mihoub et al., 2006). This method has the same

limitation as the previous one. The question of replacement is also

widely considered. In some researches the fixed percent of the repaired

individuals replace the previous one or this can be dependent on the

problem or even on the evolution process.

In (Jung and Moon, 2002) the authors have proposed to use 2D

chromosomes for VRP encoding to handle additionally the position of nodes in

the 2D Euclidean space. The described crossover operator uses a 2D

partitioning to interchange routes between two chromosomes, where each route

represents the traveling path of a single vehicle. However, the repair algorithm

is considered to connect separate fragments of the route by taking into account

additional decision variables. Repair algorithms are very helpful for solving a

single-constrained problems. However, identification of the parts for solution

improvement can be quite complex because of constraints. A problem can arise

when the improvement of one objective can lead to a degradation of others.

Preserving feasibility. The author in (Reid, 2000) discusses the

possibility of having feasible solutions generated in crossover and mutation

operations, where feasibility handling in a two-point crossover where a set of

crossovers with different boundary indices is considered. Probability function

is defined to find a feasible crossover for a linearly constrained optimization

problem. However, for a highly constrained problem where a feasible space is

very small as compared to the full search space, only a half-feasible crossover

with a single boundary point is discussed. In order to handle feasibility in the

mutation process, the proposed mutation operator is based on the crossover

operator, where the selected individual is crossed with a randomly generated

individual (Reid, 2000).

34

In (Tan et al., 2006) the authors use individuals that are composed of a

set of routes, where each route contains a list of customers. A crossover is

defined to exchange the routes between individuals. If the newly added route

contains the customer that has already been visited in another route, the

customer is removed from the previous one and left in a newly added route

(Tan et al., 2006). If individuals selected for crossover are feasible, the

offspring, generated from parent individuals, will remain feasible. However, a

set of transitions is proposed for feasibility handling in the mutation operator,

where constraint violation is evaluated after each transition. If mutation

transitions generate an infeasible solution, the original routes are restored (Tan

et al., 2006). Such approach does not help to generate feasible solutions, but it

helps to avoid infeasibility.

In (Alvarenga et al., 2005) the authors have proposed a crossover where

feasible routes from the parent individuals are inserted in the offspring. At first

the routes with the maximum number of customers are inserted. After all

feasible routes have been inserted in the offspring, the insertion of the

remaining customers is tested in the existing routes. If some customers are still

not included to any route, a new route is created and a stochastic push-forward

insertion heuristic is used to insert customers (Alvarenga et al., 2005).

Other approaches. In literature we can find approaches of using genetic

algorithms in a two-phase approach, where in the first phase genetic algorithms

are used to solve a single objective and in the second phase different

algorithms are used to continue the optimization process (Berger and Barkaoui,

2004; Alvarenga et al., 2005; Ombuki et al., 2006). The fluctuating population

size is also considered to keep infeasible solutions in the solution set. It is

proposed because some parts of infeasible solutions can sill remain significant

for crossover and mutation operators (Reid, 2000). In (Alvarenga et al., 2005)

35

the authors have proposed to use 10 hierarchical criteria to rank individuals in

the population.

The authors in (Berger and Barkaoui, 2004) have proposed parallel two-

population co-evolution genetic algorithms, Pop1 and Pop2, for VRPTW. The

first population, Pop1, has the objective to minimize the travel distance to the

fixed number of vehicles. On the other hand, Pop2 works to minimize the

violated time window in order to find at least one feasible individual. In Pop2

the vehicle number is limited to the number obtained by Pop1 minus one. Each

time a feasible individual is found, the population Pop1 is substituted by Pop2

and the fixed number of vehicles considered in both populations is decreased

by one.

Different mutation and crossover operators can produce different

offsprings and thus affect the performance of the genetic algorithm. Dynamic

genetic algorithms are considered in (Hong et al., 2002). Since the efficiency

of different genetic operators can depend on different problems and also on

different stages of the genetic algorithm, the proposed dynamic genetic

algorithm is designed to choose different operators as well as to dynamically

adjust their application probabilities.

Local route improvement algorithms are considered for a chromosome

improvement as an additional step of the genetic algorithm. Multiple

improvement algorithms are also considered in computation to better exploit

their characteristics. The local route improvement is used to add additional

intensification to the genetic algorithm with a view to increase the convergence

speed (Potvin and Bengio, 1996; Jung and Moon, 2002; Berger and Barkaoui,

2004; Nagata and Bräysy, 2009). In (Jung and Moon, 2002), usage of Or-opt,

crossover and relocation methods together are investigated for the

improvement of routes. Another known improvement algorithms, commonly

36

used in VRP implementations are 2-opt, and also its generalization 3-opt and

-opt.

Most of the feasibility handling approaches deal with the population

control to preserve feasible individuals. The common approaches like penalty

methods or repair algorithms can help to rank individuals for the next

generation by identifying the infeasible ones. However, the crossover and

mutation operators are still organized to generate solutions in the whole search

space. It is still time consuming to get an acceptable solution. In literature we

can find approaches to define the feasibility preserving operators. Limitations

still exist where the constraint violation is evaluated after each step and the

original solution is restored in an unsuccessful case. Repair algorithms usually

take into account a specific problem or specific constraints.

1.5. Insertion heuristics in genetic algorithm operators
Genetic algorithm approaches that deal with infeasible individuals

require additional approaches to intensify a search to a feasible search space.

Usually these approaches require a specific improvement or repair methods to

avoid situations where repair of a single constraint can have a negative impact

on other constraints. Another approach is to avoid infeasibility in the created

solutions.

Depending on the problem definition and constraints, a feasible

solution, where all the nodes are visited without violating constrains, could not

be possible to be created. Solutions are possible, where either some of the

constraints are not satisfied or not all nodes are included in the solution.

In (Reid, 2000), probability functions are defined to find a feasibility-

preserving two-point crossover for a linear constraint problem. However, for a

highly constrained problem, where a feasible search space is reasonably small

compared to an infeasible search space, only a half-feasible crossover with a

single boundary point is discussed.
37

Usually, in order to create feasible solutions, various approaches of

construction heuristics are taken into consideration. Construction heuristics can

include the minimization function and work as the stand-alone algorithms.

Insertion heuristics are one group of construction heuristics, where the routes

are constructed by inserting all the nodes one by one into the routes.

Insertion heuristics are popular because they are easy to implement and

they show good characteristics in creating feasible solutions (Campbell and

Savelsbergh, 2004). However, they still depend on the methods of selecting the

nodes and the place in the route for insertion. In this thesis the usage of the

insertion heuristic together with the genetic algorithm approach, seeking for

better efficiency, is considered. As already mentioned, the insertion heuristic is

usually used in the initialization of solutions in the genetic algorithm. In

(Potvin and Bengio, 1996; Jung and Moon, 2002) the authors have proposed

the usage of Solomon insertion heuristic to create the initial population that is

used in the genetic algorithm. Because of existence of adjustable weights in

criteria functions of Solomon insertion heuristic I1 the initial set of different

solutions can be generated. A similarity of insertion heuristics can be found in

or-opt and relocation algorithms used in the mutation operation, proposed in

the paper (Jung and Moon, 2002), where the constraint violation is evaluated

for the nodes before inserting them in different parts of the solution. In the

literature a random node insertion is also considered for creating the initial

population for genetic algorithm (Tan et al., 2006).

In (Potvin and Dubé, 1994) the approach of the genetic algorithm is

defined to find the best values of coefficients (for Solomon insertion

heuristic I1The coefficient values in the range [0,1] are mapped to values [0,

127] and encoded in 7 symbol substrings as a binary expression and a single

point crossover operator is used. The authors argue that the results of insertion

heuristic can be greatly improved by a careful search for coefficients.

38

In (Alvarenga et al., 2005; Ombuki et al., 2006) a push-forward

insertion heuristic (PFIH) is used to create an initial solution and also as part of

the crossover operator. PFIH originally was defined for the VRPTW by

Solomon (1987). PFIH starts by selecting the first node and forming the initial

route from a depot. The algorithm inserts all the other nodes into the

constructed route by minimizing the insertion cost function for each node. The

concept “push-forward” originally means checking pushed-forward values of

all the subsequent node in the route (Tan et al., 2001). In PFIH, the first node

of the new route is identified deterministically, where the node to be inserted is

the one that is distant from the depot, not too far from the last inserted node in

the previous route, and that has an early time window. Other nodes are inserted

by minimizing the insertion cost by evaluating insertion of all the free nodes in

all the existing insertion positions in the route. An important characteristic of

PFIH is that insertion of the node is possible, only if no constraint is violated.

From the overview of insertion heuristic usage in genetic algorithms for

the VRP we can see that usually the insertion heuristic is used in the

initialization step of GA to create the initial set of solutions. There are some

approaches to use insertion heuristics in genetic algorithm operators, but the

insertion heuristics used are still treated as the methods to support the main

algorithm. The authors in (Campbell and Savelsbergh, 2004) describe the

benefits of insertion heuristics in handling constraints and in generating

feasible solutions. In contrast to insertion heuristics, genetic algorithms are

designed to intensify the search towards an optimal solution. However, genetic

algorithms require additional approaches to handle the constraints discussed in

Section 1.4.

When the insertion heuristic is used as a part of the crossover operator,

it plays an important role in the general genetic algorithm approach: a random

insertion can increase the diversity of the population, whereas the usage of the

39

minimization function in the insertion can give better results initially, but

reduce the diversity. For further crossover operators, we define the following

questions:

 what information is taken from parents to create partial (or full)

offspring?

 which insertion approach is used to insert unassigned nodes back?

Best cost route crossover (BCRC), proposed in (Ombuki et al., 2006),

creates two offsprings from two parents. For a better explanation, let us denote

the parent solutions as xp1 and xp2, denote the offspring solutions as xo1 and xo2

and intermediate offspring solutions as x'o1 and x'o2. The defined crossover

creates an offspring solution in the following steps:

1) Ntemp = select a random route rr  xp2;

2) create a partial solution x'o1 = xp1\{n  Ntemp};

3) create xo1 by inserting the node n  Ntemp into x'o1, by randomly selecting

a node from Ntemp and inserting it with the minimal insertion cost: nodes

are inserted into the existing routes; if it is not possible to do insertion

due to constraint violation, a new route is created;

4) create xo2 by swapping the parent solution and repeating steps 1-3.

The defined crossover operator takes a single parent, forms an offspring

from it, partly destroys it and reconstructs it back (reconstruction is not the

same as repair, where repair is used to create a feasible version of an

infeasible solution). For the stage of destruction, Ombuki et al. (2006) have

proposed to use the second parent as a reference, where a single randomly

chosen route provides information which node should be removed from the

offspring solution. A couple of cases can be noticed in such an approach: a) if a

solution has a lot of small routes, a single route could include a small set of

nodes, where removal of a small number of nodes from the solution could not

40

give the expected intensification result; b) if the problem is defined only for a

single vehicle (i.e. TSP), the resulting solution will have only one route and, in

the destruction stage, the whole route will be destroyed. The first case can be

solved by increasing the number of routes selected as references. However, the

question, what useful information is shared between the parents, and why this

approach is better than random node remove, is not explained in (Ombuki et

al., 2006). The design of BCRC leads to a minimization of routes, because the

nodes to be removed can form the route in the second parent solution, and

there exist a probability that the whole route will be removed in the offspring

solution.

SBX. In (Potvin and Bengio, 1996) two crossover operators are

proposed that repair the generated offspring by removing correlating nodes

from it and reinserts them by minimizing the additional detour. The first

crossover, called a sequence-based crossover (SBX), selects two routes from

the parent solutions and merges them by selecting a split place (break-point) in

each route:

1) x'o1 = xp1;

2) select a random route rr1 from xp1 and a random route rr2 from xp2;

3) create a new route rnew by adding nodes from rr1 starting from the

beginning till a randomly selected place;

4) append nodes to rnew from rr2 starting from a randomly selected place till

the end;

5) remove duplicates from rnew if such exist;

6) x'o1 = x'o1\ {n  rnew} – remove the nodes from x'o1 that belong to the new

route rnew;

7) remove rr1 from x'o1, add n  rr1 to Ntemp;

8) add rnew to x'o1;

41

9) create xo1 by inserting the nodes n  Ntemp to x'o1 by evaluating the

insertion cost function;

10)create xo2 by swapping the parent solution and repeating steps 1-9.

RBX. The second crossover proposed in (Potvin and Bengio, 1996) is

called a route-based crossover (RBX). In this crossover, a route from one

parent replaces one route from the second parent:

1) x'o1 = xp1;

2) select a random route rr2 from xp2;

3) x'o1 = x'o1\ {n  rr2} – remove the nodes from x'o1 that belong to the route

rr2;

4) remove a random route rr1 from x'o1, add n  rr to Ntemp;

5) add the route rr2 to x'o1;

6) create xo1 by inserting the nodes n  Ntemp to x'o1 by evaluating the

insertion cost function;

7) create xo2 by swapping the parent solution and repeating steps 1-6.

Both crossovers, SBX and RBX, add some parts from both parents to

the final solution. The first crossover merges two routes from the opposite

parents, so it can be applied in the cases where parent solutions have only one

route. If solutions have more than one route, the probability to select parent

routes for a crossover, such that the created offspring were competitive in the

population, decreases, when the number of routes increases. The operation of

removing duplicates in the route might be insufficient. A merge of two routes

at random positions can involve a violation of constraints in the offspring

solution. For example, let us have a VRPTW, where time window constraints

are defined for all nodes. Let us have a break-point selected in the first route rr1

after the node nr1,i, and a break-point selected in the second route rr2 before the

node nr2,j. The new constructed route will connect two routes to the following

42

route (nr1,1, …, nr1,i, nr2,j, …). The node nr2,j could have an early time window

constraint, then, since it was at the beginning of the route rr2, the time window

constraint will probably be violated when the node nr2,j is added to the “late”

position in the new route. An additional constraint check should be applied to

avoid a constraint violation in the offspring.

The RBX preserves a feasibility in the offspring. If the parent routes are

feasible, then the routes in the offspring remain feasible. Randomly selected

routes in both individuals may have no common node, so the removal of

duplicate nodes and removal of a randomly selected route can reduce the

number of routes in the intermediate solution. So, this crossover has a

possibility to minimize the number of routes. However, after the reconstruction

the number of routes can still be increased. If parent solutions have a larger

number of routes, then the approach can be adjusted to take a larger number of

routes from the second parent. However, there exist a limitation, if there is only

one route in the parent solution.

LRX. The crossover used in (Alvarenga et al., 2005) is similar to that of

RBX described above, because it combines the routes from the parent

individual by evaluating the number of nodes in the routes (let us call it largest

route crossover (LRX)). Originally, the genetic algorithm approach was

defined to handle infeasibility as well. In the original crossover, infeasible

routes are skipped in the offspring and added to the list of unassigned nodes.

This crossover can also be applied to feasible solutions:

1) Lr =  is a list of routes;

2) add  r  xp1 to Lr;

3) add  r  xp2 to Lr;

4) xo1 =  is the initial empty solution;

5) rs = select a route from Lr with the largest number of nodes;

43

6) for  r  Lr, r = r \{n  rs} - remove the nodes belonging to rs from all

the other routes;

7) add rs to xo1;

8) repeat the steps 5-7, while Lr has routes with at least one node.

The LRX produces only one offspring. Stochastic PFIH was used as a

reconstruction method to insert unassigned nodes in the LRX. If in the

deterministic PFIH, the first node (the initial route) is chosen deterministically,

in the stochastic PFIH, each new route is started by choosing an unassigned

node randomly. By inserting routes with a larger number of tasks, the

described crossover intensifies the first objective of the VRPTW problem. So,

this crossover is designed for a special problem (or a special objective) and is

not effective in the cases, where parent solutions have only one route.

Reconstruction. All the described crossovers use an insertion heuristic

for reconstruction of solutions. However, insertion approaches slightly differ in

each crossover. In all of them, at first, nodes are inserted into the existing

routes, if the constraints are not violated, and a new route created, otherwise.

Such a method intensifies the route minimization objective of the VRPTW.

Usually, in GA, intensification is a task of the selection operator and depends

on a selective pressure. The usage of intensification in the crossover operator

needs to be adequate to the intensification in the selection operator, otherwise,

the crossover will, most probably, generate an offspring that will not survive in

the population.

1.6. Shortest path search
At first sight, the shortest path problem seems to be very simple and

global positioning system (GPS) devices and many other systems find the

shortest path between two locations rather quickly. When the solution is given

within a few seconds, it does not seem very slow and the result is acceptable.
44

However, modern systems deal with much broader route planning tasks –

vehicle routing problems. The objective of the VRP is to find the optimal path,

when a number of customers are serviced. The real-world VRP depends on the

road network and a task to reach separate nodes in the road graph from the

starting node which is the shortest path problem. In order to solve the logistic

task made up of k+1 nodes, the (k+1)k shortest paths need to be calculated. In

the simplest case, the distance between these nodes can be calculated according

to the coordinates of nodes. However, the difference between the real shortest

path and the straight line can be significant for small distances. For example, if

the river exists between two nodes, then the shortest path will increase

depending on the nearest bridge, or the shortest path is searched in the city

with many one-way roads, and then the search of the shortest path may

increase several times. For VRP the (k+1)k shortest paths need to be

calculated and the standard Dijkstra's algorithm can be used to find the shortest

path between all pick-up and delivery places. This task becomes more

complicated, if we take into account the additional detailed information, for

example, a permissible maximum weight of a bridge, and the parameters of the

vehicle, or even dynamic information, such as traffic jams that could influence

the value of the shortest path. While searching for the VRP solution by the

genetic algorithm, different solutions are created that include different travel

paths in road network. Each initially calculated shortest path needs to be

verified by taking into account the additional information at runtime. If the

additional data involves changes in the path (i.e. because of traffic jams the

travel time significantly increases) the path needs to be recalculated. If all the

paths are calculated by taking into account the additional data initially, it

would require a lot of time and all the shortest paths would not be necessary

used in VRP optimization. However the search of shortest path at runtime of

VRP optimization will affect a calculation time. The usage of the different

45

shortest path search speed-up techniques could reduce this time. So, the

shortest path search is of a great importance in vehicle routing problems that

involve real-world road network.

When searching for the shortest path in the road network, a graph with

non-negative weights is commonly used. An edge in the graph can be

described by any numerical value: distance, time, speed, etc. And a commonly

used approach for finding the shortest path in the graph is Dijkstra's algorithm.

1.6.1. Shortest-path computation speed-up techniques

Route planning and shortest path problems have gained more and more

attention in recent researches. There are some attempts to develop new

algorithms and accelerate the already known ones, by adding a new ingredient

or processing additional information. Some of them pay attention to dynamic

information, such as road congestion or weather conditions. The others refer to

the fact that the path between two points is static, i.e., a graph does not change

during the calculation of the shortest path between two nodes, and no

additional calculations, based on the traffic condition changes, are made. Such

algorithms are simply called static route planning algorithms.

As mentioned before, one of the most popular static algorithms is

Dijkstra's algorithm (Dijkstra, 1959). It is known as the most efficient

algorithm for the shortest path problem in a directed weighted graph. Here we

focus on the published results on speed-up techniques of Dijkstra's algorithm.

Dijkstra's algorithm is a weighted breadth-first search algorithm. Although this

algorithm was designed to calculate the “shortest distance” from one node to

other nodes in the graph, it can be easily used for calculating the distance from

one node to the destination node. One of the speed-up modification algorithms

is a bidirectional Dijkstra's algorithm (Goldberg et al., 2006; Koehler et al.,

2006; Berrettini et al., 2009). This method calculates a path starting a search

operation from both sides at the same time. The calculation “meets” and stops

46

somewhere in the middle of the road and gives the answer in quest. We will

review the mentioned modification more in detail in Section 1.6.3.

Another attempt to speed-up Dijkstra's algorithm is index usage for the

priority queue of labeled nodes. A Fibonacci heap (von Lossow, 2007) or a

binary heap (Madduri et al., 2007) is proposed for indexing a set of nodes.

Usage of such an index in a queue of nodes speeds up the algorithm just by one

step, extracting nodes with the minimum distance from all the available labeled

nodes. Using this technique, the calculation accelerates only in a very large

graph, where the count of labeled nodes significantly increases during

calculation. However, one-step acceleration does not yield a significant result.

Also, attempts are made to implement Dijkstra's algorithm in

reconfigurable hardware. The paper (Tommiska and Skytta, 2001) provides an

overview of applications of reconfigurable computing in network routing,

where a FPGA-based (FPGA – field-programmable gate array) version of

Dijkstra's shortest path algorithm is also presented and differences of the

performance between the FPGA-based and microprocessor-based versions of

the same algorithm are compared. Another interesting hardware used for

Dijkstra's algorithm implementation is DAPDNA-2 – dynamically

reconfigurable processor developed by IPFlex (Ishikawa et al., 2007). The

modified algorithm finds the shortest paths in parallel, using the processing

elements (PE) matrix. Although the use of the array of 376 PE compared to the

microprocessor gives better results, the implemented schema is designed only

for DAPDNA-2 and is not suitable for the other hardware.

Since Dijkstra's algorithm is static and calculations are made with a

static graph, various preprocessing techniques are used for speeding up the

process. One of the easiest methods is to count the shortest paths between all k

nodes (Romeijn and Smith, 1999). The obtained kk matrix then can be easily

used in the next level route planning system. However, the use of such an

47

approach together with road data of the real world would be very inefficient.

Great speed-up factors can be achieved using highway hierarchies (Koehler et

al., 2006; Knopp et al., 2007). The highway hierarchy method is based on the

idea that only a highway network needs to be searched outside a fixed size

neighborhood around the source and target. A highway approach is faster in

preprocessing as compared to the Arc-flags approach, but calculates the

shortest path more slowly (Koehler et al., 2006). The main “arc-flag” method

idea is a graph partition into regions. Then, all the edges are reviewed by

marking with property flags, which indicate whether the edge is on the shortest

route to the regions or not. During the route search, only those edges are

selected the properties of which are appropriate, and the rest are rejected.

In (Koehler et al., 2006), the graph partitioning techniques are reviewed:

rectangular partition (grid), quadtree, kd-tree, multi-way arc separator. The

splitting technique can be used to form a second-level graph, i.e., the graph is

split into parts, which together make a new graph of macronodes and the

macronodes are comprised of smaller graphs (Romeijn and Smith, 1999).

Thus, Dijkstra's algorithm would be first used in the macronode graph, and

then, according to the obtained results, it would be used in other smaller

graphs. All of these preprocessing technologies give good results, but they also

have disadvantages: each preprocessing technique requires additional data

storage for the edge or node, such as in the arc-flag method, where each node

keeps property flags about all regions. Thus, for a very huge graph (for

example, OpenStreetMap data is made up of ~600M nodes), we should have to

deal with memory problems, or will reduce the algorithm efficiency using a

hard disk and reading it constantly. Another drawback is a difficult

implementation using dynamic data, such as roads closed for repair, or

congestion, etc. Then all the partitions will have to be preprocessed once more,

which may last very long for a very large graph. Important aspect is that the

48

preprocessing of the data is performed through the calculation of distances: the

division is made by taking into account geographical features of the road.

Since Dijkstra's algorithm may calculate the route using the edge cost, which

may include not only the distance, but also the time or other values,

preprocessing methods lose their value.

Another useful technology to speed up Dijkstra's algorithm is parallel

computing. The approach has already been mentioned in adapting Dijkstra's

algorithm to reconfigurable hardware. To speed up the preprocessing part, the

kk road calculation is proposed using the parallel computing. To calculate all

roads, the usage of total k processors is proposed (Romeijn and Smith, 1999;

Lu and Chen, 2006). However, this method is still very limited, even with a

modern technology. It is suitable to use more in local computer network, which

usually covers a smaller physical area, like home, office, or a small group of

buildings, than in street routes. Dijkstra's algorithm is iterative and, in each

iteration, it uses the data obtained in the previous iteration. Due to these

properties, the algorithm cannot be easily adapted to parallel computing, but it

is still widely considered. Usually, due to the large amount of data, it is

difficult to adapt Dijkstra's algorithm to the distributed memory parallel

computing. However, today's multi-core technology allows us to easily

implement parallel calculations based on a shared memory technique, called

transactional memory (TM), thus avoiding synchronization of large amounts of

data. TM is a technology in multi-core platforms that allows several different

processes to access the same memory location. The developer has a possibility

to mark certain parts of the code, indicating that during the program execution

at this point, some memory allocations can be accessed by several different

processes. TM monitors process the transactions, and, if several processes are

trying to access the conflicting memory, TM decides how to handle

(Anastopoulos et al., 2009; 2009a). In general, all the processes are blocked,

49

only one process can access the memory allocation and, when the operation is

completed, the blocked process is again continued. If the transactions are not

conflicting, processes are carried out without any interruption. Because of their

properties TM is very useful for parallel computations, based on the shared

memory. There are some attempts to implement Dijkstra's algorithm in parallel

computing using the transactional memory together with helper threads (Lu

and Chen, 2006; Anastopoulos et al., 2009, 2009a). Such a parallel computing

technology is proposed to use in the inner loop of Dijkstra's algorithm, where

nodes are processed for labeling. The helper thread reads the tentative distance

of the vertex in the queue and attempts to relax its outgoing edges based on this

value (Anastopoulos et al., 2009). When the processes are finished, the main

process continues its work up to the next inner loop. It is also proposed not to

wait to the end of the helper processes, and the main process continues to work

without paying attention to the adjacent processes (Anastopoulos et al., 2009,

2009a). Such an approach cannot work properly without TM technology.

However, such helper thread computing can last shorter than its starting and

termination. The periodic creation and destruction of such processes could

adversely affect the operation of the algorithm.

The paper (Edmonds et al., 2006) gives a similar parallel computing

method, but introduces an additional heuristic, for example, choosing which

edges need to be dismissed. Also, attempts are made to adapt parallel

computing to algorithms that are based on preprocessing. In a modified arc-

flag algorithm, a linear preprocessing method was left, but only the shortest

path searches are performed in parallel (Berrettini et al., 2009). The parallel

computing is possible without TM technology, and then each new process will

have to keep in memory a separate copy of the road data (Lu and Chen, 2006).

However, bearing in mind the size of the modern road networks, problems can

arise due to technological limitations, while having multiple copies of the same

50

graph in memory. Although this method can be easily implemented in parallel

with a separate memory, this method requires an additional synchronization in

order to update data everywhere.

Acceleration and parallelization of Dijkstra's algorithm still remains a

complex problem and completely unsolved. In order to speed-up this

algorithm, several methods together are often used, for example, Fibonacci

heap and highway hierarchies. However, in order to speed up Dijkstra's

algorithm, the main idea of this algorithm is often distorted: if it is the

“shortest” path search algorithm. And many of speed-up methods lead to

nearly the shortest path calculation, such as heuristic introduction or highway

hierarchies.

1.6.2. Dijkstra's algorithm

Dijkstra's algorithm finds the shortest distance from one node to all the

others in the graph with non-negative weights. Let us consider a road graph

Gr = (Nr, Er), which consists of the nodes of nr  Nr and edges er Er. Let us

denote by ls(nr) the distance from the node nr to the starting node ns
r  Nr, and

by l(nv
r, nu

r) the distance from node nv
r to node nu

r. All the labeled nodes are

organized by the algorithm in the priority queue Q and all the visited nodes are

stored in array NS
r. During each iteration the algorithm extracts node nk

r from

queue Q with the lowest value of ls(nk
r). Then all the outgoing edges of node nk

r

are relaxed, which could reduce the keys of the corresponding neighbors.

Relaxing an edge (nk
r, nv

r) means testing whether we can improve the shortest

path to nv
r found so far by going through node nk

r. If ls(nk
r) + l(nk

r, nv
r) is less

than ls(nv
r) found so far, ls(nv

r) is replaced by a new value. If the adjacent nodes

have not yet been labeled, they are inserted in queue Q. This operation is

performed in the decreaseKey operation (Goldberg et al., 2006; Ishikawa et al.,

2007; Anastopoulos et al., 2009a). The following pseudo-code illustrates

51

Dijkstra's algorithm. The algorithm terminates when the destination node is

found.

procedure Dijkstra(Gr = (Nr, Er), ns
r,nd

r)
ls(ns

r) = 0
NS

r =  // visited nodes
Q =  // labeled nodes
Q.insert(ns

r,0)
while Q is not empty // outer loop
 nu

r = Q.extractMin()
S.addNode(nu

r)
if nu

r = nd
r // stopping criterion

break // route found
end if
for each nv

r adjacent to nu
r // inner loop

sum = ls(nu
r) + l(nu

r, nv
r)

 if ls(nv
r) > sum

Q.decreaseKey(nv
r, sum)

ls(nv
r) = sum

pr(nv
r) = nu

r // set predecessor
end if

 end for
end while

end

Dijkstra's algorithm is a labeling algorithm. When the distance from the

current node to the start node is known, then adjacent nodes are labeled. So by

starting labeling of the nodes adjacent to the start node, the algorithm iterates

until the set of labeled nodes is empty. Dijkstra's algorithm is a greedy

algorithm because at each step, the best alternative is chosen. The algorithm

produces a correct shortest-paths tree whose top is the start node, and to every

other node in the graph Gr there is only one possible path. So, while executing

the search from the start node ns
r to the target node nd

r, the algorithm must visit

all the nodes nv
r  Nr, with the distance ls(nv

r) < ls(nd
r).

1.6.3. Bidirectional algorithm

In search of the path between two specific nodes of the graph, a

modified Dijkstra's algorithm – bidirectional method – can be used. This

52

method performs the searches starting from the start and end nodes (Goldberg

et al., 2006; Berrettini et al., 2009). The algorithm is simply run by executing

one step on each side in a single period. At first, the processing step with the

extracted node is performed from the start node, and then the same calculation

is made from the end node. During such a step a single node is extracted from

the priority queue, marked as visible and all the corresponding edges are

relaxed (inner loop). Such process will not necessarily be symmetrical. It will

depend on the number of edges of all the visited nodes.

To execute such algorithm, separate data containers must be used, so

each search must have its own sets for labeled and visited nodes. In the

following pseudo-code, a forward search is using the priority queue QS and the

set of visited nodes NS
r and a backward search is using the priority queue QD

and the set of visited nodes ND
r.

procedure bidirectionalDijkstra(Gr = (Nr, Er), ns
r, nd

r)
QS =  // labeled nodes in search from start
QD =  // labeled nodes in search from end
NS

r =  // visited nodes in search from start
ND

r =  // visited nodes in search from end
…
while QS is not empty and QD is not empty // outer loop

// calc from start
nu

r = QS.extractMin()
NS

r.addNode(nu
r)

…
if stoppingCriterion() is true // stopping criterion

break
end if
for each nv

r adjacent to nu
r // inner loop

…
end for
// calc from end
nu

r = QD.extractMin()
ND

r.addNode(nu
r)

…
if stoppingCriterion() is true // stopping criterion

break
end if

53

for each nv
r adjacent to nu

r // inner loop
…
end for

end while
end

The bidirectional algorithm stops when the stopping criterion

(stoppingCriterion()) is met. This occurs somewhere in the middle between the

start and end nodes. Since the bidirectional Dijkstra's algorithm is two-sided

and the search is carried out from the start node and from the end node at the

same time, it is necessary to establish a clear stopping criteria. An algorithm

without such criteria will be run as long as the search from the start node will

find the end node or the search from end node will find the start node. In this

case, there will be a lot of nodes that will be visited twice by contrariwise

computations. So, there will be such a set NH
r = NS

r  ND
r, and the set NH

r will

consist of all the twice visited nodes. To increase the efficiency of the

bidirectional Dijkstra's algorithm, the set NH
r needs to be minimized. The

papers (Goldberg et al., 2006; Berrettini et al., 2009) present two possible

stopping criteria: when the current labeled node has already been labeled by

the other search and when the current visited node has already been visited by

the other search. With the first stopping criterion the algorithm stops when

such node nw
r is found, where nw

r  QS and nw
r  QD. This stopping criterion

can be defined as the intersection of two sets: QS  QD = {nw
r}. If we denote

the shortest path from the node nv
r to the start node by P(nv

r), nv
r  Nr, and the

shortest path from the node nu
r to the end node by P|(nu

r), nu
r  Nr, we get the

shortest path P(nw
r)  P|(nw

r) with the first stopping criterion. Application of

this stopping criterion to the search in the example graph is illustrated in Figure

4. The shortest path is ACB.

54

Fig. 4. The bidirectional algorithm chooses the shortest path ACB by applying the first
stopping criterion

The algorithm stops by applying the second stopping criterion, when the

node nz
r is found, where nz

r  NS
r and nz

r  ND
r. This stopping criterion can be

defined as the intersection of two sets: NS
r  ND

r = {nz
r}. Then the shortest path

from the node ns
r to the node nd

r is P(nz
r)  P|(nz

r). Figure 5 illustrates the

example graph, in which we get the wrong result by applying the second

stopping criterion. It happens because NS
r  NS

r = {E}, and the nodes B and C

remain just labeled by different searches.

Fig. 5. The bidirectional algorithm chooses the path ABECD by applying the second stopping
criterion

By applying the second stopping criterion to the first example, we also

get the “wrong shortest” path, however, in the second example, the difference

between the correct and wrong shortest paths is more obvious. By applying the

second stopping criterion to the second example, we get the shortest path

ABECD instead of ABCD. It happens because there exists such node E, where

l(B, E) < l(B, C) and l(C, E) < l(B, C). In the worst case, the path BEC can be

55

almost twice longer than the path BC. Such situation can lead to a really

significant inaccuracy.

1.7. Summary
Various vehicle routing problems are analyzed in the literature.

Different variants of the VRP includes specific constraints that describe some

specific situation of the real-world vehicle routing problem. A set of

algorithms, their modified variants and various hybrids are analyzed for

solving the mentioned problems. Only a small number of researches focus on

creating algorithm that could be applicable to a larger group of VRP.

The genetic algorithm is one of the metaheuristic approaches that is also

used for solving VRP. The genetic algorithm is a stochastic approach that is

based on ideas of evolution theory. The search in the genetic algorithm

depends on two factors: selective pressure and population diversity. These

factors play an important role in the genetic algorithm, where the selective

pressure describes the intensification of search for the optimal solution by

choosing better individuals for reproduction in each next generation, and the

diversity maintenance is responsible for having a non-homogeneous

population. New solutions are obtained by applying recombination operators

on selected individuals from the previous generation. When dealing with a

constrained problem, genetic operators can generate solution in the whole

search space, thus requiring additional approaches to find feasible solutions.

Penalty methods are common approaches to deal with constraints in GA.

However, a penalty approach does not prevent generation of solution in

infeasible search space. Repair and improve methods are other approaches for

dealing with constraints in genetic algorithm, however usually they are hardly

adjustable to new constraints. Existing approaches for solving VRP are usually

designed for special problem and are hardly applicable to the different problem

with different constraints or objective, so there still is a need for the algorithm

56

that could be extended with additional parameters and applicable for a larger

group of VRPs.

The shortest path calculation is an important part for solving a real-

world VRP. The different shortest paths can exist depending on the additional

search data (i.e. permissible maximum weight of a bridge and the parameters

of the vehicle, or even dynamic information, such as traffic jams). This chapter

reviews Dijkstra's shortest path algorithm speed-up techniques for calculation

of the shortest path while searching for real world vehicle routing problem

solution that involves real road data. One of the modification of Dijkstra's

algorithm, a bidirectional Dijkstra's algorithm lacks of stopping criterion

definition and in some cases this leads to the significant error of the

calculation.

The review presented in the chapter has been also published in (Vaira

and Kurasova, 2010; Vaira and Kurasova, 2011; Vaira and Kurasova, 2013;

Vaira and Kurasova, 2013a; Vaira and Kurasova, 2014).

57

Chapter 2
A new algorithm for vehicle routing
problem

This chapter presents the main theoretical results of the doctoral research.
Section 2.1 proposes the genetic algorithm for vehicle routing problem.
Proposed algorithm involves usage of insertion heuristic in genetic
operators, proposed expression of the individuals in population, second
population usage in mutation operator, and genetic algorithm operators
based on repeated reinsertion approach. Section 2.2 describes a general
vehicle routing problem definition and genetic algorithm operators
designed for intensifying search. Section 2.3 describes a parallel version of
Dijkstra's algorithm for the shortest path search. Section 2.4 summarizes
this chapter.

2.1. Genetic algorithm for vehicle routing problem
A genetic algorithm based on insertion heuristics without considering

any additional local search methods for the improvement is proposed in this

section. The definition “genetic algorithm” can describe either a general

approach or a set of the specific genetic operators. In this thesis the proposed

version of genetic algorithm for VRP with constraints will be called “new

genetic algorithm” further on to distinguish it from other approaches.

Genetic algorithms and insertion heuristics combine together their best

characteristics to search for the optimal solution. It is generally accepted that

any genetic algorithm for solving a problem should have basic components,

such as a genetic representation of solutions, the way to create the initial

solution, the evaluation function for ranking solutions, genetic operators,

values of the parameters (i.e. population size, probabilities for applying genetic

58

operators, etc.). In Sections 2.1.1, 2.1.2, 2.1.3, 2.1.4 there are described all

components of the new genetic algorithm in more detail.

2.1.1. Incorporating insertion heuristics

As already mentioned in Section 1.5, in some variants of the genetic

algorithm for VRP the insertion heuristic is used in the initialization step,

where Solomon I1 method has been used with random coefficients for the

criterion function. Although such a random insertion is possible, randomization

is limited by the defined criterion function.

Let us assume that we have a set of nodes N={n0, ..., nk}, where N\{n0}

are the nodes that should be visited by a single vehicle and n0 is the depot. The

constructed partial solution is x0=({n0}, r0=, Nr0=N\{n0}), where r0 is the

empty set of arcs, Nr0 is a set of unvisited nodes. So the solution contains only

the depot n0.

In the first iteration the randomly selected node nr1 from Nr0 is inserted

into a partial solution x0. The new constructed partial solution is x1=({n0, nr1},

r1={(n0, nr1), (nr1, n0)}, Nr1=Nr0\{nr1}=N\{n0, nr1}). Two new arcs (n0, nr1),

(nr1, n0) have been created in the solution. Assume that the route is feasible and

it can be agreed that it would be the shortest route for a single customer

problem {n0, nr1}.

In the second iteration a random node nr2 is selected from Nr1. For the

newly selected node there exist two possible places for insertion in the solution

x1: either in the arc (n0, nr1) or in the arc (nr1, n0). Assume that both insertions

are feasible and the arc (nr1, n0) has a lower insertion cost than the arc (n0, nr1).

So the newly constructed partial solution is x2=({n0, nr1, nr2}, r2={(n0, nr1),

(nr1, nr2), (nr2, n0)}, Nr2=N\{n0, nr1, nr2}). The newly constructed partial solution

is feasible and optimal.

In the third iteration another random node nr3 is selected from Nr2 and a

new optimal solution x3 is created.
59

In each next iteration k a random node nrk is selected from Nr(k–1). If there

exists such an arc in rk–1, where the inserted node does not violate any

constraints and produces a new feasible partial solution xk, the added node nrk

removes the existing arc (ni, nj) and adds two new arcs (ni, nrk) and (nrk, nj). If

we find the optimal partial solution in the iteration k–1, the solution created in

iteration k is not necessarily optimal, because two new arcs (ni, nrk) and (nrk, nj)

are created and there can exist a shorter path to some nodes in the route rk.

The random insertion heuristic with only one minimization objective,

i.e. traveling salesman problem (TSP) with the total traveling path

minimization, has a complexity O(k2) to construct a single solution, where the

complexity of search for the best arc to insert a single node is O(k). When

adding additional constraints, the computation time is affected. Solving

VRPTW by the insertion heuristic has the complexity O(k3). The handling time

window constraint involves additional check for any violations occurring in a

partial route after inserting a new node. So, for each node to be inserted the

best arc search has the complexity O(k2), where the insertion complexity for all

nodes is O(k3).

As already mentioned, when solving the problem with constraints by the

genetic algorithm, the constraint violation is checked per solution, usually in

the form of penalty or repair cost. In the proposed algorithm the constraint

violation is evaluated in the insertion. For each randomly selected node a

feasible insertion needs to be determined, where feasible insertion means

finding such an arc of a partial solution, where the inserted node as well as all

the previously added nodes do not violate any constraints. The partial solution

with a new inserted node should remain feasible. Let us define the function

hc(n, a) that evaluates the violation for the certain constraint c with the newly

inserted node n in arc a. The function hc is similar to the function fc, where fc

evaluates the whole solution for constraint violation, but hc is applied to a

60

single node insertion only. The function hc is defined here as follows:

hc(n, a) = 0, if the constraint c C is satisfied, and hc(n, a) > 0, otherwise.

Insertion of the node n into the arc a is feasible, if Hc(n, a) = 0, where

Subject to the insertion order and the constraint set, a partial route can

be constructed in such a way that no additional nodes can be inserted without

violating constraints. So, usage of random insertion heuristics does not always

guarantee the creation of a feasible solution, but the feasibility can be

preserved in a partial solution. An infeasible insertion would require an

additional definition of constraint hierarchy or any decision variables for

ranking constraints or different penalty approaches for the evaluation of the

constraint violation.

In order to avoid any additional complexities, we define the solution x

of the genetic algorithm as follows:

where each route ri R represents a vehicle traveling path and U is a set of

unassigned nodes left due to constraint violation. The single route ri is

represented as a graph, where each arc ai is the shortest path between two

nodes. Set U is part of the solution x, where Nv U = N and Nv  U = . If set

U is empty, then the solution x is feasible or infeasible, otherwise.

In the proposed algorithm the insertion is carried out as follows. An

initial solution has an empty route list (R = ) and an empty unassigned node

list (U = ). The node nr is randomly selected from the set N. All arcs are

61

checked for feasible insertion of the selected node. All the arcs that pass the

constraint violation check are then evaluated by the insertion cost function

c(ns, nr, nt), where the path length is the cost. The arc with the smallest value

c(ns, nr, nr) is chosen for the insertion of the node nr. If no arcs pass the

violation check, a new route is started. If the maximum number of routes is

reached, the node nr is added to an unassigned node list U. The following

pseudo-code describes the insertion process:

Nu =N
R = 
U = 
while Nu  

nr = select a random node from Nu

A = get all arcs from R
for each constraint c C

remove arcs from A where insertion of nr violates constraint c
end for
if A = and |R|<cv

ri = new route({n0, nr})
add ri to R

else if (A  )
find a A, a = (ns, nt) by minimizing the function c(ns, nr, nt)
insert nr to a

else
add nr to U

end if
end while

Figure 6 shows the insertion steps where a filled circle represents the

depot node n0, the arrows and empty circles represent the route ri, a dotted

circle represents the node nr selected for insertion and the dotted arrows show

possible insertion arcs. The maximum vehicle number constraint cv  C check

is integrated in the insertion process.

62

Fig. 6. Node insertion process: a) current solution constructed; b) arcs, where the feasible
insertion of a node is possible; c) search for the minimal insertion cost; d) solution with the

inserted node

Capacity constraints Cc C define the maximal allowed amount of

goods that can be assigned to a vehicle. The load increases by assigning a new

node to the route. Let us define the function dc(nj) that evaluates the load of the

single node nj. The condition ci
c  dc(nj), nj ri and ci

c
 Cc, should not be

violated in the VRPTW. The check of this constraint has the complexity O(1)

for a single node insertion. In the VRPPD the load varies during traveling and

the function dc(nj) represents loading or unloading at a specified node nj, where

dc(nj) > 0, if goods are loaded, and dc(nj) < 0, if goods are unloaded. Node

insertion to one place can involve capacity violation in other places. The

function gc(ai) calculates the current capacity load in the arc ai. For node to be

inserted into the arc ai all subsequent arcs in a current partial solution need to

be evaluated for possible constraint violation and this can take a long

63

computation time. To avoid this, we initially compute an available load space

in each arc and then determine all arcs, where insertion does not violate

capacity. The function gfc(ai) is used to determine the maximal capacity

available for the node insertion in the arc ai without involving the constraint

violation in the subsequent parts of the route. The function hcapacitiy(ai, nr)

defines constraint check function that checks the violation of capacity

constraints, while inserting the node nr into the arc ai. The check for capacity

constraint has the complexity O(k) for a single node insertion. The insertion

does not violate capacity constraints, if hcapacitiy(ai, nr) = 0:

Time window constraints Ctw C have characteristics similar to

capacity constraints in the VRPPD: adding a new node in one place can

involve a constraint violation in other places of the current route. The defined

function ta(nj), nj ri, identifies the arrival time to node nj in route ri. For node

to be inserted into a ri all subsequent parts in current partial solution need

to be evaluated for possible time violation: for each subsequent node nj  ri

equation ta(nj)  cj
tw should be satisfied after insertion. Evaluation of the

equation can take long computation time. To speed-up insertion, we initially

compute available time space in each arc and then determine all arcs, where the

insertion does not violate time windows constraint. Figure 7 represents two

possible situations of arrivals at customers. If a vehicle arrives at a customer in

the defined time window, the available time is equal to the time left to the end

64

of window (Figure 7 b). If a vehicle arrives too early, the waiting time is added

to the available time (Figure 7 a).

Fig. 7. Arrival at a customer with time window constraint: a) arrival too early; b) arrival in
the time window

The function gft(ai) is used to determine the maximal amount of time

available for the node insertion in the arc ai without involving a constraint

violation in subsequent parts of the route. Let us define the function htw1(ai, nr)

that evaluates time window constraint violation in a subsequent part of route

and the function htw2(ai, nr) that evaluates time window constraint violation for

newly inserted node nr. The insertion does not violate time window constraints

if htw1(ai, nr) + htw2(ai, nr) = 0. The time window constraint evaluation does not

increase the complexity of a single node insertion and it still remains O(k).

65

The pick-up and delivery constraints Cpd C connect pick-up and

delivery nodes with a logical relation. In order to determine the arcs for a

feasible insertion of node nr, the opposite node nop (pick-up or delivery node)

has to be examined. If nop is not yet assigned to the route, all arcs in the partial

solution remain competitive for the insertion of the node nr. If nop has already

been assigned to the route, the following rules are applied:

 if nr is a delivery node, arcs, where the insertion of node nr is possible,

are in the same route as the node nop and after the node nop;

 if nr is a pick-up node, arcs, where the insertion of node nr is possible,

are in the same route as the node nop and before the node nop.

In the initialization of the genetic algorithm an initial population with

the above described random insertion process is created, where the creation of

single solution has complexity O(k2). The infeasible solutions can still be

generated by the defined insertion method, where infeasible solutions have not

empty set of unassigned nodes U. In the proposed algorithm a feasible solution

is always treated better than the infeasible solution (infeasible solution is the

one, that has some nodes not assigned to routes). The following pseudo-code

shows how a better solution xmin is identified from the two solutions xi and xj:

66

if fu(xi) fu(xj), where fu(xi) = |Ui|, Ui  xi

if fu(xi)< fu(xj),
 xmin = xi

else
 xmin = xj

else if fv(xi) fv(xj)
if fv(xi)< fv(xj)

 xmin = xi

else
 xmin = xj

else
if fd(xi)< fd(xj)

 xmin = xi

else
 xmin = xj

Described random insertion approach is suitable to increase

diversification in genetic algorithm population by creating initial solutions. By

removing some nodes and reinserting them back different solutions can be

created, however, they can be either better ones or worse ones. Genetic

operators that involve a described random insertion approach are proposed in

Sections 2.1.3 and 2.1.4. Section 2.1.2 presents the proposed genetic algorithm.

2.1.2. New genetic algorithm

In the proposed genetic algorithm crossover and mutation operators are

defined in the “remove and reinsert” approach. The approach is similar to a

single point relocation method, where the node is extracted and inserted into a

different place. However, reinsertion of a single node in a different place can

be unsuccessful, because the constructed routes have reached constraint limits

and cannot be extended by an additional node. If a single node has been chosen

for reinsertion, there is a large probability that the node will be inserted in the

same place from which it has been removed. In order to enable the node

reinsertion, multiple nodes have to be extracted. The crossover and mutation

67

operators that follow the idea of node reinsertion are defined in Sections 2.1.3

and 2.1.4.

In the proposed algorithm the mutation operator is applied with

probability MP = 0.1 and the crossover operator is applied to all individuals

selected for mating. In the crossover operation new offsprings are generated

from two parent solutions that are selected from population by using the

ranking method. The new offsprings are added to the population and the worst

individuals are removed from the population to keep the same population size

in each iteration. The defined mutation operators are based on a random

insertion and can produce individuals that will not survive. In order to increase

the probability of the mutation operator to generate individuals that will

survive, a second population is created. The success of the mutation operator

depends on the generated solution in comparison to the solutions in the

population. If the fitness value of generated solution is better than the average

fitness value in the population, such solution will have a higher probability to

be selected for reproduction. If the fitness value of generated solutions is

similar to the worst fitness value in the population, there is higher probability

that the solution will be removed from the population in next generations.

There is no benefit if the solution generated in the mutation operator does not

participate further in the reproduction. Figure 8 presents the behavior of

mutation operators that are applied in typical way as it is presented in Section

1.3 (applied mutation operators are presented in Section 2.1.4) and Figure 9

presents the behavior of mutation operator, where the new population is

created and computed. The solid line in Figure 8 and Figure 9 presents the best

fitness value in the population, the dashed line presents the average fitness

value of the population and the dots present the average fitness value obtained

in the mutation operator in each iteration. The fitness value obtained in the

mutation operator is not presented as a line because the mutation is applied

68

with certain probability and in some iterations it is not applied at all and in

some iterations it can be applied couple times where the averaged value is

presented in this case. When the second population is created in mutation

operation (Fig. 9), the generated solutions have better than average fitness

value, so these solutions have higher probability to “survive” and to be selected

for crossover operator. This can increase the diversification in the genetic

algorithm.

Fig. 8. The behavior of mutation operator applied in typical way

Fig. 9. The behavior of mutation operator when the second population in mutation operator is
created and computed

69

The following pseudo-code represents the proposed genetic algorithm:

Pop1 – initial population of size PS1 //create a set of solutions using the feasible
insertion method
while number of iterations without improvement < IL1 and time < TL1

sort(Pop1) // sort individuals with a defined comparison function
remove (|Pop1| – PS1) worst individuals from Pop1

for i=1...PL1

xp11, xp12 – select parents from Pop1 by using the ranking method
xc11 = crossover(xp11, xp12) // generate offspring
xc12 = crossover(xp12, xp11) // generate offspring
add xc11 and xc12 to Pop1

if random(0,1) < MP // apply the mutation with probability MP
(x'm1, N'm1) – create partial solution x'm1 and node list N'm1 by

mutating xc11

Pop2 – create population of size PS2 by inserting N'm1 to x'm1

PROCESS Pop2

xm1 = select the best individual from Pop2

add xm1 to Pop1

end if
end for

end while
best solution is Pop1[1] // the best individual in the first population

PROCESS Pop2

while number of iterations without improvement < IL2

sort(Pop2) // sort individuals with a defined comparison function
remove (|Pop2| – PS2) worst individuals from Pop2

for j=1...PL2

xp21, xp22 – select parent solutions from Pop2

xc21 = crossover(xp21, xp22)
xc22 = crossover(xp22, xp21)
add xc21 and xc22 to Pop2

 if random(0,1) < MP
xm2 – generate offspring by mutating xc21

add xm2 to Pop2

end if
end for

end while

Crossover and mutation operators are randomly selected from operators

defined in the Sections 2.1.3 and 2.1.4. In the mutation operation the new

population is created in two steps. Firstly, the mutation operator is applied to

70

the solution xc11 to create a partial solution x'm1 with some routes left as well as

the set of nodes N'm1 that need to be reinserted back. Then Pop2 is created by

copying the partial solution x'm1 and inserting N'm1 using a random insertion and

computation of second population is invoked.

Computation of Pop2 stops when the best solution is not improved in

iterations IL2. The stopping criterion in Pop2 intentionally does not include the

maximal time limit. The value IL2 is chosen to be small to avoid redundant

computation in Pop2. The values used in the experimental evaluation (Section

3.3) are as follows: PS1 = 100, PL1 = 10, IL1 = 50, TL1 = 5min, MP = 0.1,

PS2 `= 20, IL2 = 5, PL2 = 2.

2.1.3. Crossover operators

In the genetic algorithm new crossover operators that are based on

insertion heuristics are proposed. However, apart from the insertion heuristics,

the proposed crossover operators handle most of the negative aspects of the

reviewed crossover operators in Section 1.5 and include another intensification

approach.

The crossover operators, proposed here, are based on the idea of a large

neighborhood search (LNS) heuristic presented in Section 1.2. The

effectiveness of LNS depends on the degree of destruction, where, if only a

small part is destroyed, LNS can have troubles in exploring the search space,

or can be involved in the repeated re-optimization, if a very large space is

destroyed (Pisinger and Ropke, 2009). It should be such destruction method

which would explore the search space, where the global optimum is expected

to be found.

The BCRC crossover, mentioned in Section 1.5, involves the

destruction of the parent individuals to build an offspring, but the exploration

depends on the route from the second parent individual. The nodes in the route

from the second individual could be assigned depending on their time window

71

constraint. Thus, it means that the removed nodes can have a low probability to

change their positions in the solution. Other crossovers (SBX, RBX, LRX)

convey the union of the solutions, where some parts from both individuals are

combined with the intention to find a better solution. Such crossovers explore

only a small neighborhood and only in the cases, where additional unassigned

nodes are left during the recombination of parents.

Differently than the union crossover operators, the proposed crossovers

are designed to preserve common parts of the two selected individuals. The

common parts could be the nodes assigned to the same route, the nodes

assigned to the route starting from the same depot, or the nodes that are related

to the same type of cargo, etc. By removing the nodes that do not belong to the

common parts of solutions, the common neighborhood of two solutions is

identified. A size of the neighborhood is inversely proportional to the size of

the common parts. If the initial individuals in a genetic algorithm are created in

a stochastic way, by preserving the nodes that have common characteristic in

both parents, the nodes will be preserved that more probably are optimally

constructed than the other parts of the solution. Most probably, the nodes will

be removed that prolong the overall path, where long paths can lead to a larger

number of routes.

The target of the proposed crossover operators is to identify the

common parts in the parent individuals, preserve it in the intermediate solution

and reconstruct it in the offspring individual. Three different crossovers

(common nodes crossover, common arcs crossover and longest common

sequence crossover) are defined to increase the probability of convergence to

the global optimum where each crossover produces an offspring by focusing

on a different information obtained from parents. Crossover operators generate

new solutions from the chosen parent solutions xi and xj. Each of them produces

a single offspring partial solution x'o and the set of extracted nodes Ntemp from

72

the parent solutions xi and xj. The offspring solution xo is created by inserting

all unassigned nodes Ntemp to x'o using the defined random insertion method.

The common nodes crossover (CNX) intersects the routes Ri  xi and

Rj  xj according to the visited node sets Ni and Nj:

Ntemp= Uj

x'o – offspring solution
for each route rs  Rj

Rtemp =  // temporary set of routes
for each node n  rs, n  n0

rt= find route in Ri, where n rt

if rt not found
add n to Ntemp

else if rt(tmp)  Rtemp

assign node n to rt(tmp)

else
rt(tmp) = new route({n0,n})
add rt(tmp) to Rtemp

end if
rbest = select a route with the maximal number of nodes visited from Rtemp

assign all nodes n  Rtemp\ rbest to Ntemp.
add rbest to x'o

end for
create xo by inserting n Ntemp into x'o using the defined random insertion

The first crossover examines all nodes in each route and groups them

into partial routes according to the attendance in the routes from the opposite

solution. The partial route with the maximum number of nodes is selected to

preserve the path. All other partial routes are discarded by adding nodes to the

unassigned node list Ntemp. In the worst case the crossover operators have a

complexity of O(k2). This crossover still has one negative aspect: it can not be

applied to the case when each of the parent solutions xi and xj have only one

route. In this case a created offspring will always be equal to the parent

solution.

VRP solution is the sequence of the nodes that need to be visited.

Solutions varies depending on the order of nodes, i.e. by having a different

73

sequence of nodes there are different travel path lengths in the solutions. So,

the sequence of nodes is important characteristic that needs to be preserved in

the offspring solutions. The next two crossovers (common arcs crossover and

longest common sequence crossover) are defined to handle the same sequence

of the nodes in both parents.

 The common arcs crossover (CAX) preserves arcs in the first parent

solution, if the corresponding arcs exist in the second parent solution, where

the corresponding arc has the same start and the same end. The common arcs

crossover preserves the sequence between two nodes in the graph. The CAX

operator intersects two sets of arcs Ai  xi and Aj  xj. The complexity of this

crossover is O(k), where k is the total number of nodes in the problem. The

algorithm to find the common arcs in two parent solutions for new problem

definition is as follows:

Ntemp = Ui

x'o – offspring solution
for each arc ai  Ai

if ai exist in Aj

 add ai to x'o
else

add node ns  ai to Ntemp, where ns is the starting node of arc ai

end if
end for
create xo by inserting n Ntemp into x'o using the defined random insertion

Figure 10 represents the behavior of CNX and CAX crossover

operators, where a) and b) are parent solutions, c) is the intermediate solution

obtained by CNX, where the common nodes from both parents are displayed as

gray circles, d) is the intermediate solution obtained by CAX, where the

common arcs from both parents are displayed with solid arrows. Dotted circles

show unassigned nodes Ntemp that will be inserted back. Dotted lines in c) and

d) are new arcs that connect the nodes according to their position in the first

parent solution to form the route.

74

Fig. 10. Behavior of crossover operators: a) b) two parents; c) partial offspring obtained by
the CNX; d) partial offspring obtained by the CAX

The Longest common sequence crossover (LCSX) is the third crossover

operator, proposed in this thesis. It examines the two parent solutions by

searching for the longest common sequences in all the routes. An example of

the longest common sequence between two routes is displayed in Figure 11,

where a) displays the first route with the indexed nodes in the route (literal

string displays the indexed sequence); b) for all the nodes in the second route

indexes are assigned according to the route in a); c) displays the longest

common sequence solution example, where the solution is found by solving the

longest common increasing subsequence (LCIS) (Schensted, 1961; Yang et al.,

2005; Chan et al., 2007; Kutz et al., 2011) for the index line, identified in b).

75

Fig. 11. The longest common increasing sequence between two routes

The longest common increasing sequence presented in c) is not the only

one, there exist different longest common sequences that have the same length

as in c). All the possible longest common sequences are as follows:

1 2 4 5 8 9 10 12
1 2 4 5 8 9 10 13
1 2 4 5 8 9 11 12
1 2 4 5 8 9 11 13
1 2 4 6 8 9 10 12
1 2 4 6 8 9 10 13
1 2 4 6 8 9 11 12
1 2 4 6 8 9 11 13
1 2 4 7 8 9 10 12
1 2 4 7 8 9 10 13
1 2 4 7 8 9 11 12
1 2 4 7 8 9 11 13

For LCSX, all the longest common sequences are identified and a single

sequence is chosen randomly as the longest common sequence for the

offspring. In LNS the parts of solution are destroyed by evaluating a single

solution. In the LCSX crossover, some parts of solution are destroyed by

evaluating the selected solution and another solution taken from the

population.
76

In Figure 12, an example of finding common sequences among more

than one route in a solution is presented. For each route ri in the first

individual, the routes in the second individual are identified that contain at

least one node belonging to ri (Figure 12, d)). Then the route with the largest

number of common nodes is selected (Figure 12, e)) and the longest common

sequence between routes in c) and e) is found. In e), the removed routes could

also be evaluated for the longest common sequence, however, search for the

longest common sequence in all of the routes increases the complexity of the

crossover. To avoid extra complexity, the longest increasing sequence is

identified for the routes with the largest number of common nodes. The same

method is applied to all the routes in the first individual to get the intermediate

solution x'o (Figure 13):

Ntemp= Ui

x'o – offspring solution
for each route ri  Ri

rint = find the intersecting route rint xj that has the largest number of
common nodes

SEQ = find the longest common sequence between the routes ri and rint

rnew = 
for each node n  ri

 if n exist in the sequence SEQ
 add the node n into rnew

else
add n to Ntemp

end if
end for
if |rnew| > 1

add rnew to x'o
else

n  rnew add to Ntemp

end if
end for
create xo by inserting n Ntemp into x'o using the defined random insertion

The CAX crossover preserves the sequence only for each the two

subsequent nodes in the route, where the LCSX crossover preserves the longest

common sequence between two solutions. In all three crossover operators, if
77

the route has one node, it is removed and the node is added to the list of

unassigned nodes. The complexity of LCSX is O(k2) in the worst case

including computation of the longest common sequence.

Fig. 12. Identification of the longest common sequence in all routes: a) and b) two parent
solutions; c) the selected route from the first individual for evaluation; d) the routes in the

second individual are identified that include the same nodes as in the c) selected route; e) the
route with the largest number of common nodes is selected from the routes in d); f) the

longest common sequence between the routes from c) and e) is identified

Fig. 13. The longest common sequence crossover: a) and b) two parent solutions; c) the
intermediate solution found by the crossover

78

The proposed crossover operators preserve common parts in all routes.

In most cases, the crossovers will create an intermediate offspring that has the

same number of routes as in the parent solution. To minimize the number of

routes, as it is defined in the objective, the number of routes should be reduced

in the intermediate offspring by removing a randomly selected route. The last

step of each proposed crossover is processed as follows:

1) while fv(x'o) > fv(xi) – , remove the randomly selected route rr from x'o

and insert n rr to Ntemp;

2) create xo by inserting n Ntemp into x'o using the defined random

insertion.

In step 1), the value  can have values from 0 to fv(xi)–1, where xi is a

parent solution participating in the crossover operation. If  = 0, the crossover

will not try to minimize the number of routes. For the proposed crossover

operators  is a random value from the set {0,1}, if fv(xi) > 1, and  = 0

otherwise.

In Section 3.2, the new crossover operators are compared to other

crossover operators, described in Section 1.5.

2.1.4. Mutation operators

The behavior of the proposed mutation operators are similar to the

defined crossover operators, however, mutation operators deal only with a

single solution xi. The designed mutation operators extract a subset of nodes

from the solution in the defined ways and reinsert them back by applying a

random insertion. By extracting a set of nodes we aim to preserve one part of

the solution and reorganize the other one. A set of mutation operators that are

applied by selecting one of them randomly is defined.

79

The first mutation operator selects a node set for extraction randomly

with the limit of 0.5z|N|, where z is a random number in the range (0, 1). The

complexity of random extraction is O(k).

The second mutation operator picks up a random node nr from xi and

extracts the set of nodes closest to nr by minimizing the distance function

l(nr, ni), where ni  Ri:

x'o = xi

Ntemp= U'o
U'o = 
nr = select a random node from x'o
extract nr from x'o
add nr to Ntemp

while limit reached is not reached
nri = find the nearest node to nr in x'o
extract nri from x'o
add nri to Ntemp

end while
create xo by inserting n Ntemp into x'o using the defined random insertion

The number of extracted nodes is limited to 0.5z|N|, where z is a random

number in the range (0, 1). The complexity of the second mutation operator is

O(k2).

The third mutation operator extracts random routes with the limit of

0.5z|Ri| routes, where Ri  xi. The complexity of the described method is O(k).

The fourth mutation operator extracts nodes with the longest detour. The

search selects nodes with maximal values of the function lr(nr) = l(nr–1, nr) +

l(nr, nr+1) – l(nr–1, nr+1). The number of extracted nodes is limited to 0.5z|N|,

where z is a random number in the range (0, 1). In the worst case the

complexity of the fourth mutation operator is O(k2). The fourth mutation

operator is combined with other mutation operators, where initially the first

mutation operator is applied and then the fourth mutation operator is applied

with probability 0.1.

80

The fifth mutation operator searches for nodes visited around the same

time. This mutation operator is similar to the second mutation operator. At

first, a random node nr is selected, afterwards other nodes are selected by

minimizing the function tr(ni)= |ta(nr) – ta(ni)|, where ni  Ri, Ri  xi. The fifth

mutation operator is applied when time constraints are defined in the problem.

The complexity of the fifth mutation operator is O(k2).

In Figure 14, the behavior of mutation operators is presented, where a

filled circle shows a depot, empty circles show visited nodes and dotted circles

show the extracted nodes.

Fig. 14. Mutation operators: a) initial solution; other cases show the nodes extracted in b) the
first, c) the second, d) the third, e) the fourth, and f) the fifth mutation operators

2.2. Genetic operators for rich vehicle routing problem

2.2.1. Rich vehicle routing problem

The typical VRP can be extended by adding additional constraints and

other parameters to the problem. The MDVRP includes additional depot nodes

and CVRP includes load capacity limitation for a vehicle. VRP with time

windows (VRPTW) is an extension, where time window constraints are added.

81

The time window constraint defines a time frame in which a customer can be

serviced, i.e. loading or unloading of a vehicle. A vehicle may arrive earlier,

but it must wait until the start of the service is possible. The VRP can be

extended with some additional constraints, like driver working hours, time,

required for a driver to take a rest, etc. Similarly, depending on additional

parameters, other variants of VRP are defined. In (Yeun et al., 2008) particular

mathematical formulations can be found for each VRP, VRPTW, VRPPD,

CVRP problem, where each formulation is based on a customer set,

represented as nodes in a graph. Jih and Hsu (2004) have proposed the problem

definition for PDPTW, based on transportation requests as tasks to be

completed.

Although in academic literature specific problems are investigated, there

are attempts to generalize vehicle routing problem. The aim of this research is

to create the algorithm for the general VRP: rich vehicle routing problem. The

first attempt to define rich vehicle routing problem can be found in (Toth and

Vigo, 2002). The paper (Hasle and Kloster, 2007) refers to this problem as

industrial vehicle problem. In (Goel and Gruhn, 2008) it is called the general

vehicle routing problem. Usually rich vehicle routing problem is a description

of different information and constraints reflecting real world situation. A

summary of real-world constraints is described in (Drexl, 2012) where the

fundamental activity to be planned is treated as request. To generalize a VRP,

it can be divided into the following components:

 data, used in the problem;

 tasks, defined to be accomplished;

 constraints that should be satisfied;

 objective of the problem.

Data definition includes the graph G = (N, E), which consists of the

nodes N and edges E. The data definition also includes a set of vehicles

82

V = {v1, …, vt}. The set of nodes can be divided into subsets of a) Nd – depots,

b) Nc – customers, c) No – other nodes that can be divided into rest areas,

gasoline stations, etc. For data definition, a start position is assigned to each

vehicle vi, where the initial node can be marked as ni
init. Additional data, like

drivers and their properties, vehicle parameters or types of the goods, can be

defined within the problem.

Tasks, similarly as in (Jih and Hsu, 2004; Hasle and Kloster, 2007),

define a set of targets to be achieved. Let us define a set M = {m1, …, mq} as a

set of q requests and T = {t1, …, tk} as a set of k tasks to complete requests.

Each request mi can be expressed via a set of tasks mi = {ti1, ti2,...}, where

tij  T, |mi| > 0, mi  M, m1  …  mq =  and m1  …  mq = T. The

main difference between the request and task is that the task can be processed

one at a time by a single vehicle and the requests may be processed in parallel.

The task can have other smaller subtasks, in such a way granularity increases,

however, for VRP, the task does not require to be split to smaller tasks, if it

means “to be processed one at a time by the vehicle”. In the VRP, each task ti

is defined as ti = (ni
start, ni

end), where the node ni
start  N is a start node of the task

ti and ni
end  N is the end node. To complete the task ti, at first, a vehicle needs

to arrive to the node ni
start to start service, and then to complete service at the

node ni
end.

For VRP that deal with a delivery of cargo, the request can be defined as

mi = {ti
+, ti

–}, where mi is a request to deliver cargo from one place to another

and to complete it tasks ti
+ (to load cargo at a specific place) and ti

– (to unload

cargo at a specific place) have to be performed. The properties of cargo are

defined for each request. Let us define a function w(mi) that evaluates the cargo

capacity value wi = w(mi). Tasks in the delivery problem can be defined as

ti = (ni
start, ni

end, wi) for loading/unloading of wi at the node ni
start = ni

end. Usually

VRP defines the return to the depot tasks Tend ={t1
end, …, tt

end}  M, tvi  T.

83

An example of the task that starts and ends at different places could be found

in the taxi problem, where a service of each customer starts at pick-up place

and ends at the destination place.

The VRP target is to complete tasks by using vehicles. Let us define a

single solution of the VRP as x = {s1, …, st}, where sj = (tj1, tj2, …), tji T,

s1  …  st =  and s1  …  st = T. sj defines a sequence of tasks assigned

to the vehicle vj  V and |x|  |V|. Let us define a function Fm(x) that evaluates

the solution x for incompleteness of requests and fm(x) that evaluates a single

request for task incompleteness.

All the requests are completed, if Fm(x) = 0.

Constraints define restrictions to the problem that usually reflect real

life situations. Let us define a set of constraints C, where c  C defines a single

constraint. The constraints can be defined for a task (i.e. time window), for a

vehicle (i.e. not exceed capacity), for a cargo, etc. One of the constraint of the

delivery problem (VRPPD) is that ti
+ needs to be completed before ti

– or return

to the depot task should be completed after all the other tasks. So, the

constraint can define the order of tasks. There can be also constraints defined

for a driver, i.e. time required for a driver to take a rest, or constraint not to

empty the fuel tank. Let us define a function Fc(x) that evaluates violation of

constraints in the solution x, and fc(x) that evaluates violation of the single

constraint c  C:

84

 The solution x does not violate any constraint, if Fc(x) = 0.

Objective. The objective of the typical VRP is to minimize the number

of the used vehicles and then to minimize the length of the total travel path. So,

the objective is, at first, to minimize the function fv(x), then fd(x), in addition,

the equalities Fc(x) = 0 and Fm(x) = 0 need to be satisfied:

Different objectives could include different minimization/maximization

functions, i.e. a real life problem could be defined, where the feasible solution

that completes all the tasks is not possible. The objective of such a problem

could be to find a solution, where the maximum number of requests is

completed.

2.2.2. Crossover and mutation operators for RVRP

In Section 2.2.1 we have defined the solution of the problem as a set of

sequences constructed from the tasks. Such a definition differs from a widely

used definition for VRP, where the solution is defined as a sequence of nodes

85

visited by separate vehicles, where each sequence is called a route. Tasks are

accomplished “traveling by the vehicle in the graph”. The sequence of nodes

can be expressed via a sequence of tasks, where the solution does not have

duplicated tasks. The sequence of tasks can be expressed via the sequence of

nodes, however, the same node can be visited a couple of times per solution, if

a couple of different tasks include it. Further on the methods and algorithms

will be expressed by a sequence of tasks instead of the original expression –

route of nodes. For a better explanation, sequence of tasks will be called a

route of tasks.

Solutions within a proposed genetic algorithm are treated to be feasible,

if all the constraints are satisfied. However, the solution can be incomplete –

not all the tasks are completed in the constructed solution. It requires to extend

the objective to handle this approach: to find the solution that accomplishes a

higher number of tasks. The solution x for the RVRP is defined as follows:

Let us express the route of tasks rr  x as a graph Gr
T = (Tr, Ar), where

the set Tr = {tr
init, tr1, …, tr

end} defines the set of tasks assigned to the route, and

tr
init represents the start of the route at the node nr

init. Set Tu defines the set of

unhandled tasks in the solution x, where {T1, …, Tt}  Tu = T and

{T1, …, Tt}  Tu = . Expression of route via tasks eliminates the possibility

of duplicate entries, where the expression of a route via nodes could give the

same node, visited a couple of times, if the same node is a part of a couple of

different tasks. In Figure 15 the solution of nodes and related solution of tasks

are presented. The arcs from the set Ar connect the tasks: ari  Ar,

ari = (tri, tr(i+1)), where tri is the start of the arc and tr(i+1) is the end. Insertion of

the new task tm into the arc ari, means to:

1) remove the arc ari from the set Ar;

2) add the task tm to Tr;

86

3) add two new arcs (tri, tm) and (tm, tr(i+1)) to the set Ar.

An empty route (vehicle without tasks assigned) is still a graph with

Tr = {tr
init, tr

end} and Ar = {(tr
init, tr

end)} (Figure 15). The insertion process can be

split into the following parts and intensification can be applied in both of them:

 select a task for insertion;

 select a place for insertion.

The following approaches can be used for implementing the insertion heuristic:

 Choose a random task and then search for the best arc to insert in. A

random task selection is a stochastic approach that can be used to

choose a task for insertion. This method does not affect overall

intensification and corresponds to the general idea of the genetic

algorithm being a stochastic approach. The usage of the minimization

function then can be applied to arc selection.

 Choose a random arc and then search for the unassigned task for

insertion. The usage of the minimization function can be applied to node

selection.

 Search for a task and arc at the same time by evaluating the

minimization function. The minimization function could also include

evaluation of the vehicle and additional information that could help to

identify the best task and the best place for the next insertion.

Fig. 15. Solution of different expressions: a) solution of nodes; b) solution of tasks

87

To select a place for the task insertion means to select an arc from the

set of Aall (all the arcs in all the routes in the partial solution x'). For a feasible

insertion, we have to evaluate the violation of all the constraints. Let us have a

function Fc(ai, tm) that checks the violation of all constraints, while inserting the

task tm into the arc ai  x', x'i,m is the solution x' with the task tm inserted into the

arc ai:

The function fc(ai, tm) checks the violation of single constraint, while

inserting the task tm into the arc ai. The insertion of a task does not increase the

constraint violation, if Fc(ai, tm) = 0. To follow the objective of the problem, the

arc needs to be selected by minimizing the functions fv(ai, tm) and fd(ai, tm) that

evaluate the difference of objective functions, while inserting the task tm into

the arc ai. For the VRP, there exist two functions for task insertion. At first, the

difference of the route number is evaluated and, in the second function, the

difference of the route length is evaluated:

The overall insertion process with the feasibility check is similar to node

insertion process defined in Section 2.1.1 and presented in Figure 6.

Crossovers defined in Section 2.1.3 can be applied to the problem

defined via tasks. Overall idea of the crossover is not changed. The defined

crossovers search for common parts in two parent solutions. Instead of

searching for the nodes, the crossovers will search for the common parts in the

solution expressed via tasks: CNX will search for the common set of tasks

handled in the routes of parent solutions; CAX will search for common arcs

that connect the same tasks; LCSX will search for the longest common

88

sequence of tasks in parent solutions. Identified parts are preserved in the

intermediate offspring solution and all unhandled tasks are inserted in to the

solution by using the defined construction heuristic in a reconstruction phase.

A random insertion heuristic is chosen for a reconstruction to preserve the

stochastic approach of the genetic algorithm. A task is chosen randomly from

the list of unassigned tasks and inserted into the route by evaluating the

feasibility and minimizing the insertion cost functions fv(ai, tm) and fd(ai, tm). If

the crossover operators search for the common parts in the solutions to

intensify the search, the random task insertion involves a diversification in a

population.

Mutation operators proposed in Section 2.1.4 can also be applied for

problem expressed via tasks. By applying defined mutation operators tasks will

be removed from solution and reinserted back to create a new one. If crossover

operators involve intensification by preserving common parts between two

solutions, the mutation operator creates the new solution by recombining single

one and may destroy the part that is probably correct one. The second

population usage in mutation operators proposed in Section 2.1.2 increases

probability that in mutation operator generated solutions will be competitive in

the population.

The defined crossover and mutation operators and insertion method can

be applied to any problem that can be described in the form as defined in

Section 2.2.1. Depending on the defined constraints, random insertion method

needs to be adjusted to preserve feasible solutions, i.e. for periodic vehicle

routing problem multiple tasks will be added for each visit to the customer,

constraints that the tasks will be completed per defined period need to be

preserved. For problems, where refueling is important, additional travel time

check for refueling needs to be taken into account. Each refueling will take

time to travel detour and it is important to refuel not too often. Refueling will

89

add additional weight to arc and it needs to be recalculated after each insertion,

however this can be optimized with precomputing described in Section 2.1.1.

Problems, where the target is the visit of the arc (i.e., road cleaning), can also

be defined in the new form. The start and the end of the task in such problem

will coincide with the start and end of the target arc. The problem expressed in

the new form can be further solved by the genetic algorithm with proposed

new genetic operators.

2.3. Parallel bi-directional shortest path algorithm
As we have already mentioned, Dijkstra's algorithm was developed to

calculate the shortest path. As we have seen, the bidirectional algorithm and

many other Dijkstra's algorithm modifications reviewed in Section 1.6

produces nearly the shortest path. However, sometimes the error of calculation

can be significant. To achieve accurate results by means of the bidirectional

algorithm, we combine both stopping criteria. The algorithm is extended with a

set Z of possible answers and with a finish phase. If the visited node of

contrariwise computation is found for the first time (found node nz
r, where

nz
r  NS

r and nz
r  ND

r), then the algorithm enters the finish phase. In this

phase, the process continues without appending the priority queue with new

labeled nodes, i.e., without the inner loop. After completing these additional

steps, we get alternative nodes nz
r  NZ

r, where Nz
r = (NS

r  QS)  (NS
r  QD).

During such process other alternative routes are found and added to the set Z.

Thus, after finishing such process, the set Z = {P(nz
r)  P|(nz

r), nz
r  NZ

r}. The

calculation ends, when the priority queues QS and QD are empty. Then the

shortest path can be extracted from the set Z of possible answers. The

following pseudo-code implements the proposed algorithm.

90

procedure biDijkstra(Gr
 = (Nr, Er), ns

r,nd
r)

boolean finish = false
Z =  // possible answers list
…
while QS is not empty and QD is not empty // outer loop

// PERFORM FORWARD SEARCH
nu

r = QS.extractMin()
NS

r.addNode(nu
r)

if nu
r  NS

r and nu
r  ND

r // stopping criterion
finish = true // set finish phase
Z.addAnswer()

end if
if finish = false

for each nv
r adjacent to nu

r // inner loop
…

 end for
end if
// PERFORM BACKWARD SEARCH
…

end while
Z.findShortest() // get shortest path from list

end

We get (NS
r  QS)  (ND

r  QD) = {E, B, C} according to this

termination condition, where the example, presented in Figure 5, is analyzed.

We get the set Z = {P(E)  P|(E), P(B)  P|(B), P(C)  P|(C)} and the

obtained results |P(E)  P|(E)| = 100, |P(B)  P|(B)| = 70 and | P(C)  P|(C) |

= 70. By selecting the smallest of these values we get the shortest path ABCD.

In the first example, when solving the shortest path problem in the same way,

we get the shortest path ADB. The modified bidirectional Dijkstra's algorithm

finds the same path as the standard Dijkstra's algorithm. The bidirectional

Dijkstra's algorithm is 2 times faster than the standard one (Goldberg et al.,

2006; Berrettini et al., 2009). The modified bidirectional algorithm lasts

slightly longer because of the finish phase. However, the algorithm is still

faster than the standard Dijkstra's algorithm.

Parallel algorithm. The scheme of the parallel algorithm, proposed in

this research, is essentially based on the modern multi-core technology. The

91

modified bidirectional Dijkstra's algorithm is transformed into a parallel form,

based on a shared memory technology. For this method, an ordinary two-core

processor is required. Thus, the two processes may look for the shortest path

from the start and end nodes at the same time. Like in the modified

bidirectional Dijkstra's algorithm, each process must access data of the

contrariwise computation to check for stopping criteria. If the stopping

criterion is reached, then the process proceeds to the finish phase and “tells”

the opposite process to do the same. Both processes fill out the set Z of

possible answers with the shortest paths found. The processes are stopped,

when the priority queues QS and QD become empty. Then the main process

selects the shortest path from set Z.

procedure parallelDijkstra(Gr = (Nr, Er), ns
r,nd

r)
Z =  // possible answers list
NS

r = ,ND
r =  – empty sets of visited nodes

…
// call backward process
start second thread → calcBackwardsDijkstra(Gr, nd

r, NS
r,ND

r, Z)
boolean finish = false
QS =  // labeled nodes
QS.insert(ns

r,0)
while QS is not empty // outer loop

nu
r = QS.extractMin()

NS
r.addNode(nu

r)
if nu

r  NS
r and nu

r  ND
r // stopping criterion

finish = true // set finish phase
Z.addAnswer()

end
if finish = false

for each nv
r adjacent to nu

r // inner loop
…

end
end

end
waitSecondThread() //wait for second thread to finish
Z.findShortest()

end

92

procedure calcBackwardsDijkstra(Gr, nd
r, NS

r,ND
r, Z)

boolean finish = false
QD =  // labeled nodes
QD.insert(nd

r,0)
while QD is not empty // outer loop

nu
r = QD.extractMin()

ND
r.addNode(nu

r)
if nu

r  NS
r and nu

r  ND
r // stopping criterion

finish = true // set finish phase
Z.addAnswer()

end
if finish = false

for each nv
r adjacent to nu

r // inner loop
…

end
end

end
end

Since this algorithm is based on parallel shared memory computing, it

allows avoiding the additional data transfer, which is necessary in the

distributed memory parallel technology. However, the problem of sharing data

in memory needs to be solved, because the access to shared data cannot be

achieved in an uncontrolled fashion. In this thesis, we have already mentioned

about the transactional memory technology by which this problem can be

solved. However, this problem can be solved also by means of other

technologies, for example, mutual exclusion (mutex) directives. Such directives

in the program can ensure that only one process is executing an operation

protected by the mutex object. In this research we do not explicitly deal with

the efficiency of the mentioned technologies or other similar technologies.

However, no matter which technology is chosen, we need to identify certain

parts of the algorithm, which cannot be carried out simultaneously by two

separate processes. By identifying those areas of the algorithm we can

guarantee that the two processes at the same time will not operate the data at

the same memory location. In the proposed algorithm, such areas are the sets

93

NS
r, ND

r and Z. The parts of the algorithm in which these two sets used are

either read or modified are as follows:

NS
r.addNode(nu

r).
…
ND

r.addNode(nu
r)

…
if nu

r  NS
r and nu

r  ND
r // stopping criterion

…
Z.addAnswer()

Those identified parts of the algorithm need to be synchronized so that

only one process at a time could perform the operation, and one process at a

time would be blocked until another process ends the transaction. However, the

other part of the code will run in parallel.

The main disadvantage of this algorithm is that it cannot be adapted to a

larger number of processes, when a single path is calculated. However, an

additional process will be started and destroyed only once and will take the

most time during the calculation. This allows us to avoid a number of

additional delays that occur in the start-up and destruction of an additional

process. The mentioned approach can be adapted to calculate the shortest-path

between more than two places in the graph at the same time or even forward

and backward at the same time.

In Section 3.4, parallel bidirectional Dijkstra's algorithm is

experimentally evaluated.

2.4. Summary
In order to keep solutions in the feasible search space, we propose a

genetic algorithm that is based on a random insertion heuristics. The random

insertion heuristic is considered to preserve a stochastic characteristic of the

genetic algorithm, and to generate solutions in the feasible space by checking

compliance to the defined constraints in the insertion process. Precomputation

94

scheme is proposed for speed-up evaluation of constraints in insertion

heuristic. Infeasibility is still allowed in the proposed algorithm because the

random insertion approach can create infeasible initial solutions in a highly

constrained problem. The defined GA individual includes feasible partial

routes and a set of customers that were not serviced due to constraint violation.

The novelty of the proposed approach is the usage of random insertion

heuristics in combination with the proposed crossover and mutation operators.

Differently from other genetic algorithms, the proposed crossover operators do

not construct the offspring directly, but by evaluating information from

previous generation, identify those parts of solutions that should be preserved

for the next generation and weak parts that should be reconstructed. The

crossover and mutation operators are defined to identify those weak parts of

the solution. The second population is used in the mutation process, where the

second population increases the probability that the solution, obtained in the

mutation process, will survive in the first population, and increase the

probability to find the global optimum. In contrast to other approaches, the

proposed algorithm does not involve additional local search methods to

improve the solution; therefore it does not depend on the local search

limitations and can be easily extended with additional constraints.

The rich vehicle routing problem definition consisting of the tasks to be

completed. Node and arc routing problems can be transformed to the proposed

general formulation of task problem. The proposed operators are applicable to

the defined RVRP, where the crossover operators intensify the search by

identifying the common sequence of tasks in parent solutions.

A parallel version of Dijkstra's algorithm is proposed for searching for

the shortest paths in a road graph. The algorithm can be used for recalculation

of the shortest paths between two places in road network while executing the

genetic algorithm to optimize routes. The recalculation may be necessary if the

95

additional data involves changes in the path (i.e. because of traffic jams the

travel time significantly increases). The stopping criterion is defined for

bidirectional Dijkstra's algorithm that prevents of inaccuracies in the shortest

path search. The parallel version of bidirectional Dijkstra's algorithm is

proposed for speed-up the search. The proposed algorithm is based on a

transactional memory to avoid large data synchronization issues.

The results of this chapter have been published in (Vaira and Kurasova,

2010; Vaira and Kurasova, 2011; Vaira and Kurasova, 2013; Vaira and

Kurasova, 2013a; Vaira and Kurasova, 2014).

96

Chapter 3
Experimental researches

This chapter presents the results of experimental evaluation. Section 3.1
describes VRP data sets used for evaluation of the genetic algorithm.
Section 3.2 provides experimental evaluation of the proposed crossover
operators. Two different cases were evaluated: with mutation operator
applied and without it. Section 3.3 provides results of experimental
evaluation of the genetic algorithm scheme. In Section 3.4 parallel
bidirectional Dijkstra's algorithm for the shortest path calculation is
evaluated. Section 3.5 summarizes experimental researches.

3.1. Data sets used for experimental evaluation

3.1.1. Solomon problem instances

The first data set includes the well-known Solomon instances of the

VRPTW, where all instances have 100 customers, distributed over the

geographical area (Solomon, 1987). The Solomon problem consists of 6

different problem sets R1, R2, C1, C2, RC1, RC2, where all 56 VRPTW

instances are categorized as:

 set C (C1, C2) – nodes (customers) are located in geographical clusters;

 set R (R1, R2) – nodes (customers) are randomly distributed over the

geographical area;

 set RC (RC1, RC2) – some customers are randomly distributed and

some customers are located in clusters.

Problem instances are also split into Class 1 (R1, C1, RC1) and Class 2

(R2, C2, RC2), where problem instances in Class 1 have a small vehicle

capacity and narrow time windows and problem instances in Class 2 have a

large vehicle capacity and large time windows. Each Solomon problem

97

instance defines the central depot, the maximum vehicle number, limits of

vehicle capacity, demands for each node and also the maximum travel time for

a single vehicle (Figure 16).

VEHICLE

NUMBER CAPACITY

25 200

CUSTOMER

CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME

0 40 50 0 0 1236 0

1 45 68 10 912 967 90

…..

100 55 85 20 647 726 90

Fig. 16. Structure of data file of Solomon problem instance

For the problem instances the Euclidean distance between two nodes is

treated as the shortest path value. For computation the shortest path distance

value is also treated as travel time value.

3.1.2. Li and Lim problem instances

The second data set is defined for the VRPPD (Li and Lim, 2003).

VRPPD instances LC1, LC2, LR1, LR2, LRC1, LRC2 are generated from

Solomon problem sets C1, C2, R1, R2, RC1, RC2 respectively, described in

Section 3.1.1. Problem instances have 100 customers. VRPPD instances

include the central depot, time window constraints, pick-up and delivery nodes

and the maximal travel time for a single vehicle (Figure 17).

Similarly as for VRPTW instances, for the VRPPD problem the

Euclidean distance between two nodes is treated as the shortest path value and

the same value is also treated as travel time value.

98

NUMBER OF VEHICLES CAPACITY

25 200

CUST

NO.

X Y DEMAND EARLIEST

PICKUP/

DELIVERY

TIME

LATEST

PICKUP/

DELIVERY

TIME

SERVICE

TIME

PICKUP

(index to

sibling)

DELIVERY

(index to

sibling)

0 35 35 0 0 230 0

1 41 49 -20 133 198 10 65 0

2 35 17 7 22 87 10 0 55

….

Fig. 17. Structure of data file of VRPPD problem instance

3.2. Evaluation of crossover operators
The crossover operators proposed in Section 2.1.3 are implemented with

the Java programming language in order to compare it with other crossover

operators. The other crossover operators (BCRC, RBX, LRX) described in

Section 1.5, are also implemented for comparison. For these crossover

operators that use insertion heuristics, the construction of solutions is the same

as in the algorithm definition. For comparison of crossovers, other parts of the

genetic algorithm are common:

 The initialization of the population is performed by randomly selecting

nodes for insertion and inserting them by evaluating the feasibility and

minimizing the cost. The same population is used for a single

experiment with all the crossover operators. The population size is equal

to 100.

 For evolution strategy, the k-tournament selection of the size k = 2 is

chosen. In each iteration, 10 new offsprings are created.

 Mutation. To identify the features of a crossover better two groups of

experiments are carried out. The first group of experiments does not

involve the mutation operator. In the second group of experiments, the

mutation operator is applied. The mutation operator used extracts 0.5z
99

nodes from the solution and reconstructs the solution by the same

reconstruction method that is used in the crossover, z is the random

value within the range (0,1). Mutation is applied with the probability

0.15.

 Computation is stopped, when the best solutions are not improved for

300 iterations or when the maximum computation time (5 minutes) is

reached.

The experiments are carried out using the Solomon problem instances

described in Section 3.1.1. For the evaluation of crossovers, we choose two

problem instances from each set of problems. For each instance, the genetic

algorithms with different crossovers run 10 times, and each time, a new initial

population is created. Computations are performed on a personal computer

with Intel Core 2 Duo 2.2 GHz CPU and 4GB RAM. Tables 1 and 2

summarize the results, where computations are performed without applying the

mutation operator, and Tables 3 and 4 summarize the results, where

computations involve the mutation operator. In Tables 1 and 3, the best results

identified are presented, and, in Tables 2 and 4, the averaged results for each

crossover operator are presented. The results in the tables show the difference

from the best known solutions, reported in the papers (Solomon, 1987; Potvin

and Bengio, 1996; Tan et al., 2001; Jung and Moon, 2002; Ombuki et al.,

2002; Berger and Barkaoui, 2004; Alvarenga et al., 2005; Ombuki et al., 2006;

Tan et al., 2006; Garcia-Najera and Bullinaria, 2011). The results are displayed

in the form “difference of the total path length / difference of the vehicle

number”. Problem instances used in the experiments and the best known

solutions are as follows:

 C104 – vehicles 10, total path length 824.78;

 C106 – vehicles 10, total path length 828.94;

 C204 – vehicles 3, total path length 590.6;

100

 C207 – vehicles 3, total path length 588.29;

 R101 – vehicles 19, total path length 1645.79;

 R105 – vehicles 14, total path length 1377.11;

 R205 – vehicles 3, total path length 994.42;

 R209 – vehicles 3, total path length 909.16;

 RC101 – vehicles 14, total path length 1696.94;

 RC107 – vehicles 11, total path length 1230.48;

 RC201 – vehicles 4, total path length 1406.91;

 RC208 – vehicles 3, total path length 828.14;

Table 1. The difference between the best results, found by using crossover operators without
applying mutation, and the best known solutions

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C104 22.27/0 22.98/0 907.52/0 0/0 0/0 0/0

C106 0/0 0/0 886.69/2 0/0 0/0 0/0

C204 0/0 10.61/0 708.94/1 0/0 0/0 0/0

C207 0/0 8.49/0 696.19/1 0/0 0/0 0/0

R101 46.0/0 46.3/0 186.5/0 9.0/0 17.32/0 7.74/0

R105 30.35/1 58.77/1 286.72/1 26.7/0 10.38/0 0/0

R205 46.04/0 82.61/0 698.16/1 68.0/0 73.010/0 27.32/0

R209 34.35/0 61.04/3 485.63/1 35.57/0 41.92/0 19.43/0

RC101 -8.5/1 30.55/1 125.31/2 -45.09/1 -52.68/1 -53.07/1

RC107 62.43/0 54.62/1 438.83/2 8.05/0 268.73/1 3.81/0

RC201 22.61/0 34.94/0 724.57/1 28.1/0 10.86/0 6.61/0

RC208 39.38/0 70.4/0 922.42/1 19.7/0 18.1/0 4.22/0

Table 2. The difference between the averaged results, found by using crossover operators
without applying mutation, and the best known solutions

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C104 61.88/0 61.03/0 1292.83/0 8.98/0 20.16/0 2.86/0

C106 47.53/0 91.65/0.1 1043.65/2.2 0/0 0/0 0/0

101

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C204 1.69/0 27.96/0 860.58/3 3.24/0 0/0 0/0

C207 0/0 23.48/0 1078.35/1 0/0 0/0 0/0

R101 83.64/0.3 83.56/0.5 194.31/0.5 23.32/0 37.58/0.3 15.93/0

R105 73.68/1 134.69/1.1 322.18/1.9 120.5/0.5 77.18/0.3 16.32/0.2

R205 80.76/0 122.82/0 722.36/1 99.11/0 119.46/0 65.15/0

R209 58.99/0 110.87/0 646.42/1 66.40/0 75.48/0 44.18/0

RC101 33.07/1.7 98.23/1.5 186.03/2.1 -28.1/1.2 4.4/1.1 -38.89/1.3

RC107 71.15/0.8 1253.52/1 488.63/2.9 85.04/0.5 303.1/1.1 25.9/0.5

RC201 76.01/0 128.65/0 894.62/1.1 74.55/0 93.9/0 30.99/0

RC208 59.51/0 98.21/0 982.84/1 81.85/0 63.43/0 17.69/0

Averaged

CPU time

32.82 94.84 7.37 89.131 82.99 35.75

Table 3. The difference between the best results, found by using crossover operators and
mutation also being applied, and the best known solutions

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C104 0/0 15.17/10 94.75/0 0/0 0/0 0/0

C106 0/0 0/0 0/0 0/0 0/0 0/0

C204 0/0 0/0 0.57/0 0/0 0/0 0/0

C207 0/0 0/0 0/0 0/0 0/0 0/0

R101 8.51/0 8.97/0 36.58/0 6.38/0 6.78/0 5.22/0

R105 0.66/1 106.17/0 56.61/0 0.61/0 10.38/0 0/0

R205 45.69/0 38.91/0 99.77/0 39.63/0 28.97/0 38.83/0

R209 25.19/0 44.51/0 62.35/0 37.72/0 13.01/0 6.0/0

RC101 –40.5/1 –24.87/1 -14.91/1 -50.11/1 -40.62/1 -53.95/1

RC107 28.92/0 32.35/1 109.31/0 5.59/0 5.53/0 3.53/0

RC201 22.83/0 56.88/0 99.72/0 17.46/0 6.61/0 8.09/0

RC208 32.49/0 45.69/0 128.38/0 34.72/0 17.47/0 0.87.01/0

102

Table 4. The difference between the averaged results, found by using crossover operators and
mutation also being applied, and the best known solution

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C104 31.95/0 61.83/0 313.5/0 1.76/0 0.19/0 0/0

C106 29.71/0 34.78/0 3.81/0 0/0 0/0 0/0

C204 0.74/0 5.69/0 38.79/0.3 0/0 0/0 0/0

C207 0/0 0/0 56.23/0.3 0/0 0/0 0/0

R101 33.29/0.1 33.06/0.3 76.54/0.3 15.8/0 14.47/0 14.34/0

R105 41.33/1 62.68/0.9 83.43/0.5 96.57/0.4 23.59/0.1 5.18/0

R205 82.19/0 78.21/0 189.15/0.6 69.14/0 56.66/0 66.98/0

R209 52.97/0 79.53/0 192.97/0.7 79.56/0 49.47/0 24.33/0

RC101 -2.48/1.4 21.69/1.4 26.81/1.3 -35.46/1 -39.06/1 -41.44/1

RC107 67.39/0.7 96.1/1.1 122.5/0.8 68.07/0.4 78.58/0.3 36.39/0.3

RC201 69.73/0 82.74/0 147.17/0.7 71.18/0 33.53/0 18.95/0

RC208 50.89/0 70.6/0 167.23/0.3 75.17/0 44.25/0 23.48/0

Averaged

CPU time, s

39.78 150.79 110.44 96.62 92.74 43.29

The results are compared according to the defined objective: at first, the

vehicle number differences are compared, and afterwards differences of the

total path length is compared. The best values are bold in Tables 1-4 and the

second best values are displayed in italics.

In Figure 18 a comparison of the average difference of path lengths

found by the described crossover operators are presented. In Figure 19 a

comparison of the average difference of vehicle number found by the described

crossover operators are presented. We can see that the results found by LCSX

crossover are smaller than the results of other crossover operators when

comparing results obtained with mutation applied and without mutation

applied. We can also see that LCSX crossover found better results without

mutation applied in comparison with results of other crossover operators when

mutation was applied.

103

Fig. 18. Average difference of total path length found by the described crossover operators

Fig. 19. The average difference of route number found by the described crossover operators

 The results show that the LCSX crossover, proposed in this research,

has found better average solutions than the other crossover operators in 22

cases out of 24 (in ~92% cases). In 2 cases out of 24, the better solutions has

104

been found by CAX. Comparing the best results, LCSX has found better

solutions in 23 cases out of 24 (in 96% cases), and in the experiments, where

mutation was not applied, LCSX has found better solutions in all the cases. For

the RC101 problem instance, the identified path length difference is negative,

however, the difference of vehicle number is positive. It means that a better

path length is identified for the RC101 problem, but the number of routes was

not minimized to the best known number. The best CPU time in the cases,

where the mutation was not applied, belongs to crossover LRX, however, the

solutions found by this crossover are worst. The computation with the LRX

crossover stopped early without finding better solutions, so it leads to a short

CPU time and not so good solutions found. The LRX crossover showed better

characteristics, when the mutation was applied, but the results are still worst

comparing to other crossovers.

The best computation time in the cases, where mutation is applied,

belongs to BCRC. The computation time of LCSX is the second best one and

is quite similar to the computation time of BCRC. However, the solutions

found by LCSX are more accurate than that found by BCRC. The genetic

algorithm with CAX has found the second best solutions in most cases, where

mutation was applied, and in some cases, where mutation was not applied. The

CPU time of CAX is longer than LCSX, because preservation of the common

arcs at the beginning produces more unrouted nodes and requires more

insertion trials while searching for a solution that could be competitive in the

population. The CPU time of CNX is similar to the time of CAX, because

more iterations requires to improve the best solution comparing to LCSX: the

CNX preserves common nodes and produces small amount of unrouted nodes,

so CNX requires to cross more solutions to find better one. However, in all

cases the proposed genetic operators found the best and the second best results.

105

Although the CPU time of BCRC is shorter than LCSX and CAX, BCRC

cannot be applied to the problems, where the solutions is one route.

It is worth mentioning, that crossovers, defined by other authors

(BCRC, RBX, LRX), can be dependent on other parts in the genetic algorithm,

i.e. on the created initial population or the selection operator, etc. LCSX has

showed better results when computing without mutation or with mutation that

randomly removes and reinserts nodes.

3.3. Results of the proposed genetic algorithm
The algorithm proposed in Section 2.1 is tested using two problem sets

described in Sections 3.1.1 and 3.1.2. The proposed genetic algorithm is

implemented using the Java programming language. All computations are

performed by a personal computer (Intel Core 2 Duo 2.2 GHz CPU, 4GB

RAM). In the experimental evaluation, parameter values in the genetic

algorithm are defined as follows:

• PS1 = 100 – size of the first population;

• PL1 = 10 – recombination operations in a single iteration;

• IL1 = 50 – maximum iteration number without improvement in the first

population;

• TL1 = 5min – maximum execution time of the algorithm;

• MP = 0.1 – mutation rate;

• PS2 `= 20 – size of the second population;

• IL2 = 5 – maximum iteration number without improvement in the

second population;

• PL2 = 2 – recombination operations in a single iteration performed in the

second population.

All the obtained results are compared with the best results obtained by

other algorithms in the following papers:

[1] (Solomon, 1987);

106

[2] (Berger et al., 1998);

[3] (Ho et al., 2001);

[4] (Tan et al., 2001);

[5] (Tan et al., 2001a);

[6] (Jung and Moon, 2002);

[7] (Bent and Hentenryck, 2003);

[8] (Li and Lim, 2003);

[9] (Zhu, 2003);

[10] (Berger and Barkaoui, 2004);

[11] (Alvarenga et al., 2005);

[12] (Ombuki et al., 2006);

[13] (Tan et al., 2006);

[14] (Hasle and Kloster, 2007);

[15] (Garcia-Najera and Bullinaria, 2011).

The above mentioned papers describe different algorithms for solving

VRPTW and VRPPD. The different genetic algorithms designed to solve

VRPTW include different crossover operators reviewed in Sections 1.3 and

1.5. Different algorithms also include different approaches for a diversification

where various mutations are applied that involve the generation of feasible and

infeasible solutions, a simultaneous evolution of two populations is also

involved to increase the diversification. To intensify the search different repair

and improvement methods based on the local search heuristics, as well as

hybrid approaches that involve the ant colony optimization, the tabu search, the

column generation heuristic, the parallelization and multi-objective

optimization, are used. The dynamic adaptation of the crossover probability

and the mutation rate that depends on the changing population dynamics is also

used. The algorithms used for comparison of VRPPD results involve hybrid

107

approaches of large neighborhood search, tabu search, simulated annealing

where different algorithms are applied in different stages of the computation.

In Tables 5-10, the results of VRPTW instances are summarized. The

first column defines the problem instance name; three next columns present the

best known solutions, the best known solutions obtained by other genetic

algorithms and the best solution obtained by the proposed algorithm. In the last

three columns, there are presented the published best average results obtained

by other genetic algorithms, average results obtained by the proposed

algorithm and the average CPU time used in calculation.

The average results are obtained by executing the proposed algorithm

10 times for each problem instance when each time a new initial population is

created. The results in Tables are displayed in the form “total path length

/vehicle number”.

Table 5. Results of problem set R1

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

R101 1645.79
/19

1650.8
/19 [15]

1650.8
/19

1693.23
/19.6 [12]

1650.8
/19

42.5

R102* 1486.12
/17

1487.31
/17 [15]

1486.12
/17

1525.46
/18.2 [12]

1487.04
/17

27.27

R103 1292.68
/13

1299.18
/13 [15]

1296.29
/13

1281.32
/13.8 [12]

1234.48
/13.8

31.48

R104 1007.24
/9

999.82
/10 [15]

982.02
/10

1035.10
/10 [12]

989.96
/10

48.09

R105* 1377.11
/14

1377.11
/14 [15]

1377.11
/14

1430.86
/14.9 [12]

1385.56
/14

52.85

R106 1251.98
/12

1263.21
/12 [15]

1252.03
/12

1298.27
/12.8 [12]

1259.28
/12

59.64

R107 1104.66
/10

1164.14
/11 [6]

1117
/10

1115.87
/11 [12]

1127.04
/10

70.20

108

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

R108 960.99
/9

960.99
/9 [10]

968.97
/9

990.39
/10 [12]

970.18
/9

51.8

R109 1194.73
/11

1156.05
/12 [15]

1245.32
/11

1244.87
/12.5 [12]

1175.5
/11.8

21.12

R110 1118.59
/10

1119
/10 [10]

1119
/10

1146.11
/11.9 [12]

1091.95
/10.9

43.66

R111 1096.72
/10

1084.76
/11 [12]

1096.74
/10

1132.51
/11 [12]

1107.13
/10

75.04

R112 982.14
/9

953.63
/10 [6]

962.03
/10

1022.51
/10.3 [12]

977.05
/10

52.71

Table 6. Results of problem set R2

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution of
the

proposed
algorithm

R201 1252.37
/4

1253.32
/4 [15]

1253.23
/4

1313.23
/4 [12]

1262.83
/4

17.32

R202 1191.7
/3

1081.6
/4 [15]

1195.3
/3

1114.77
/4 [12]

1196.60
/3

27.76

R203 939.50
/3

959.75
/3 [15]

947.09
/3

974.51
/3 [12]

966.71
/3

14.92

R204 825.52
/2

760.82
/3 [12]

846.42
/2

777.37
/3 [12]

849.17
/2

60.68

R205 994.42
/3

1030.92
/3 [15]

1029.1
/3

1070.66
/3 [12]

1052.89
/3

31.00

R206 906.14
/3

919.73
/3 [12]

918.75
/3

949.25
/3 [12]

932.26
/3

26.07

R207* 890.61
/2

821.32
/3 [12]

890.61
/2

848.30
/3 [12]

911.02
/2

88.19

R208* 726.82
/2

736.47
/2 [15]

726.82
/2

747.98
/3 [12]

734.53
/2

37.43

109

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution of
the

proposed
algorithm

R209 909.16
/3

921.37
/3 [15]

913.14
/3

955.46
/4 [12]

931.54
/3

40.72

R210 939.34
/3

954.12
/3 [10]

954.12
/3

999.02
/3 [12]

969.81
/3

29.89

R211 885.71
/2

906.19
/2 [10]

900.88
/2

823.34
/3 [12]

929.60
/2

80.99

Table 7. Results of problem set C1

.
Problem

Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution of
the

proposed
algorithm

C101* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

12.2

C102* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

13.1

C103* 828.06
/10

828.06
/10 [6]

828.06
/10

828.06
/10 [6]

828.06
/10

15.25

C104* 824.78
/10

824.78
/10 [6]

824.78
/10

824.78
/10 [6]

824.78
/10

16.4

C105* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

12.55

C106* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

12.86

C107* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

12.85

C108* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

13.24

C109* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

14.67

110

Table 8. Results of problem set C2

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution of
the

proposed
algorithm

C201* 591.56
/3

591.56
/3 [6]

591.56
/3

591.56
/3 [6]

591.56
/3

12.34

C202* 591.56
/3

591.56
/3 [6]

591.56
/3

591.56
/3 [6]

591.56
/3

12.57

C203* 591.17
/3

591.17
/3 [6]

591.17
/3

591.17
/3 [6]

591.17
/3

13.29

C204* 590.6
/3

590.6
/3 [6]

590.6
/3

590.6
/3 [6]

590.6
/3

15.03

C205* 588.88
/3

588.88
/3 [6]

588.88
/3

588.88
/3 [6]

588.88
/3

12.68

C206* 588.49
/3

588.49
/3 [6]

588.49
/3

588.49
/3 [6]

588.49
/3

12.85

C207* 588.29
/3

588.29
/3 [6]

588.29
/3

588.29
/3 [6]

588.29
/3

12.86

C208* 588.32
/3

588.32
/3 [6]

588.32
/3

588.32
/3 [6]

588.32
/3

12.88

Table 9. Results of problem set RC1

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

RC101 1696.94
/14

1636.92
/15 [12]

1697.43
/14

1668.52
/15.4 [12]

1649.63
/14.8

76.94

RC102* 1554.75
/12

1470.26
/13 [13]

1554.75
/12

1536.04
/13.8 [12]

1547.69
/12.4

63.34

RC103 1261.67
/11

1267.86
/11 [13]

1273.81
/11

1350.15
/12 [12]

1280.27
/11

84.99

RC104 1135.48
/10

1136.81
/10 [6]

1135.83
/10

1184.29
/10.4 [12]

1141.37
/10

46.27

111

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

RC105 1629.44
/13

1629.44
/13 [10]

1540.18
/14

1618.63
/15 [12]

1556.01
/14

88.91

RC106 1424.73
/11

1424.73
/11 [10]

1376.26
/12

1450.3
/12.8 [12]

1390.15
/12

38.35

RC107 1230.48
/11

1235.37
/11 [15]

1230.95
/11

1227.81
/12.03 [6]

1232.78
/11

58.62

RC108* 1139.82
/10

1141.34
/10 [12]

1139.82
/10

1135.81
/11 [6]

1151.75
/10

88.54

Table 10. Results of problem set RC2

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best solution
of the

proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

RC201 1406.91
/4

1423.73
/4 [12]

1417.45
/4

1492.67
/4 [12]

1435.06
/4

30.06

RC202 1365.65
/3

1162.54
/4 [15]

1367.09
/3

1212.49
/4 [12]

1415.48
/3

105.47

RC203 1049.62
/3

1058.33
/3 [15]

1058.33
/3

1152.64
/3 [12]

1088.31
/3

44.42

RC204* 798.46
/3

801.90
/3 [15]

798.46
/3

826.19
/3 [12]

812.77
/3

28.03

RC205* 1302.42
/4

1304.93
/4 [15]

1302.42
/4

1378.44
/4 [12]

1330.06
/4

20.93

RC206* 1146.32
/3

1203.7
/3 [12]

1146.32
/3

1164.33
/3.3 [12]

1159.36
/3

43.09

RC207 1061.14
/3

1093.25
/3 [12]

1070.85
/3

1052.13
/3.7 [12]

1080.66
/3

77.18

RC208* 828.14
/3

834.88
/3 [15]

828.14
/3

938.24
/3 [12]

851.43
/3

28.13

112

The asterisks near the names of the problems in Tables 5-10 show

which instance solution found by the proposed algorithm is equal to the best

known solution. The results are compared in the same way as they have been

defined in the objective: firstly, the found vehicle numbers are compared and

afterwards the found traveling distances are compared. The best solutions

obtained by other genetic algorithms are compared to the best solutions found

by the proposed algorithm and the best average results are compared with the

average results found by the proposed algorithm. Better values are in bold in

Tables 5-10.

We see that the proposed algorithm shows very good results for the

problem set C, where the average results are equal to the best known values

and the computation time is very small. The results show that for other

problem sets R and RC the best values are found only in some cases. However,

the results obtained by the proposed algorithm, in comparison with other

genetic algorithm approaches, show that the same or better results are obtained

for 51 out of 56 problem instances (in ~91% cases) of for the best solutions,

and the same or better results for 56 out of 56 problem instances (in ~100%

cases) comparing with the best published average results.

Table 11 shows the best results that are averaged over categories (C, R,

RC). The columns show the results from different papers as well as the average

results obtained by the proposed algorithm.

The bold values in Table 11 show the minimal value compared at first

according to the found vehicle number and then according to the found shortest

distance. The results show that for problem sets C1 and C2 the proposed

algorithm finds solutions that are equal to the best results. The proposed

algorithm finds solutions that are better than other ones for problem sets R2

and RC2, where problems have large time windows. Better results were

obtained in [10] for problems with narrow time windows, R1 and RC1.

113

Table 11. Travel distance and the number of vehicles, averaged over categories

[4] [5] [3] [9] [12] [10] [11] [15] Solution of
the
proposed
algorithm

C1 861
/10.1

860.62
/10.1

833.32
/10

828.9
/10

828.48
/10

828.38
/10

828.38
/10

828.38
/10

828.38
/10

C2 619
/3.3

624.47
/3.3

593
/3

589.86
/3

590.6
/3

589.93
/3

590.9
/3

591.74
/3

589.86
/3

R1 1227
/13.2

1314.79
/14.4

1203.32
/12.6

1242.7
/12.8

1220.92
/12.5

1221.1
/11.92

1224
/11.92

1187.32
/13.08

1213.66
/12.08

R2 980
/5

1093.37
/5.6

951.17
/3.2

1016.4
/3

938.75
/3.1

975.43
/2.73

1012
/2.73

897.95
/4

961.44
/2.73

RC1 1427
/13.5

1512.94
/14.6

1382.06
/12.8

1412
/13

1386.35
/12.12

1389.89
/11.5

1417
/11.5

1348.22
/12.63

1370.01
/11.75

RC2 1123
/5

1282.47
/7

1132.79
/3.8

1201.2
/3.7

1132.12
/3.38

1159.37
/3.25

1195
/3.25

1036.65
/5.63

1126.75
/3.25

It is worth mentioning that the results, obtained by the proposed

algorithm, were identified on average in 38.97 seconds for VRPTW instances

by Intel Core 2 Duo 2.2 GHz (1.09 Gflops/s for single core operations). The

results obtained in [11] were found in 15 minutes by Pentium IV 2.4.GHz (0.9

Gflops/s), in [9] they were found in 592 seconds by Pentium IV 2.4 GHz (0.9

Gflops/s) and in [10] the presented results were found in 30 minutes by

Pentium 400 MHz (54 Mflops/s). In [15] the results were found in 117 seconds

by a computer cluster with dual-processor dual-core AMD Opteron 2.6 GHz

(1.23 Gflop/s for single core operations). In Figure 20 the average floating

point operations used to solve VRPTW instances are displayed, where the

proposed genetic algorithm performs ~2 times less floating point operations to

find the results comparing to the best value of other algorithms.

114

Fig. 20. Average floating point operations 1.e9

The results in Figure 20 are presented by taking into account computer

performance values obtained by public benchmarks. The theoretical

performance of computer used in the experiments is 8.8 Gflops/s (4 flops per

cycle) for single core. The theoretical performance of the computer used in

[10] is 400 Mflops/s (1 flop per cycle). In the experiments 8.8 Gflops/s  38.97

seconds = 342.94  109 average floating point operations are used to solve

VRPTW. To obtain results in [10] 400 Mflops/s  1800 seconds = 720  109

average floating point operations are used. Taking into account a theoretical

CPU performance, the proposed genetic algorithm still performs ~2 times less

floating point operations to find the results comparing to other algorithms.

In Figure 21 the average difference of routes found by the proposed

algorithm and other genetic algorithms comparing to the route numbers of the

best known results is presented. Route numbers found in [10] and [11] are

equal to route numbers of the best known results.

115

Fig. 21. Average difference of routes numbers comparing to the route number of the best
know results

In Tables 12-17, the results of VRPPD instances are presented. The first

column shows instance names, in the second column the best known results are

presented; the third column presents the best results, obtained by the proposed

algorithm, and the last two columns show the average results and average CPU

time obtained by the proposed algorithm.

Table 12. Results of problem set LR1

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LR101 1650.8/19 [8] 1650.8/19 1650.8/19 15.315

LR102 1487.57/17 [8] 1487.57/17 1487.57/17 17.115

LR103 1292.68/13 [8] 1292.68/13 1292.68/13 17.661

LR104 1013.39/9 [8] 1013.39/9 1013.39/9 44.836

LR105 1377.11/14 [8] 1377.11/14 1377.11/14 15.959

LR106 1252.62/12 [8] 1252.62/12 1252.62/12 14.673

LR107 1111.31/10 [8] 1111.31/10 1111.31/10 20.001

LR108 968.97/9 [8] 968.97/9 968.97/9 16.577

LR109 1208.96/11 [14] 1208.96/11 1208.96/11 46.617

LR110 1159.35/10 [8] 1159.35/10 1167.55/10.7 50.68

116

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LR111 1108.9/10 [8] 1108.9/10 1108.9/10 35.007

LR112 1003.77/9 [8] 1003.77/9 1003.77/9 41.956

Table 13. Results of problem set LR2

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LR201 1253.23/10 [14] 1253.23/10 1253.23/10 13.59

LR202 1197.67/3 [8] 1197.67/3 1213.39/3.3 26.806

LR203 949.40/3 [8] 949.40/3 949.40/3 15.59

LR204 849.05/2 [8] 849.05/2 849.05/2 20.18

LR205 1054.02/3 [8] 1054.02/3 1054.02/3 16.68

LR206 931.63/3 [8] 931.63/3 931.63/3 14.40

LR207 903.06/2 [8] 903.06/2 921.41/2.3 29.76

LR208 734.85/2 [8] 734.85/2 734.85/2 17.75

LR209 930.59/3 [14] 930.59/3 939.92/3.1 16.6

LR210 964.22/3[8] 964.22/3 999.74/3 22.09

LR211 911.52/2 [14] 911.52/2 911.52/2 31.3

Table 14. Results of problem set LC1

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LC101 828.94/10 [8] 828.94/10 828.94/10 12.245

LC102 828.94/10 [8] 828.94/10 828.94/10 12.458

LC103 1035.35/9 [7] 1035.35/9 1057.70/9 32.96

LC104 860.01/9 [14] 860.01/9 839.31/9.5 27.353

LC105 828.94/10 [8] 828.94/10 828.94/10 12.38

LC106 828.94/10 [8] 828.94/10 828.94/10 12.477

LC107 828.94/10 [8] 828.94/10 828.94/10 12.454

117

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LC108 826.44/10 [8] 826.44/10 826.44/10 12.609

LC109 1000.6/9[7] 1036.41/9 896.72/9.7 26.813

Table 15. Results of problem set LC2

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LC201 591.56/3 [8] 591.56/3 591.56/3 12.265

LC202 591.56/3 [8] 591.56/3 591.56/3 12.307

LC203 585.56/3 [8] 591.17/3 591.17/3 12.479

LC204 590.60/3 [14] 590.60/3 590.60/3 13.166

LC205 588.88/3 [8] 588.88/3 588.88/3 12.432

LC206 588.49/3 [8] 588.49/3 588.49/3 12.546

LC207 588.29/3 [8] 588.29/3 588.29/3 12.516

LC208 588.32/3 [8] 588.32/3 588.32/3 12.475

Table 16. Results of problem set LRC1

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LRC101 1708.80/14 [8] 1708.80/14 1708.80/14 18.2

LRC102 1558.07/12 [14] 1558.07/12 1558.07/12 20.383

LRC103 1258.74/11 [8] 1258.74/11 1258.74/11 19.47

LRC104 1128.40/10 [8] 1128.40/10 1128.40/10 16.787

LRC105 1637.62/13 [8] 1637.62/13 1637.62/13 23.077

LRC106 1424.73/11 [14] 1424.73/11 1424.73/11 36.105

LRC107 1230.15/11 [8] 1230.14/11 1230.14/11 19.488

LRC108 1147.43/10 [14] 1147.43/10 1168.4/10.7 25.531

118

Table 17. Results of problem set LRC2

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LRC201 1406.94/4 [14] 1406.94/4 1406.94/4 42.016

LRC202 1374.27/3 [8] 1374.27/3 1392.59/3.6 37.966

LRC203 1089.07/03 [8] 1089.07/03 1089.07/03 18.329

LRC204 818.66/3 [14] 818.66/3 818.66/3 15.961

LRC205 1302.20/4 [8] 1302.2/4 1302.20/4 29.366

LRC206 1159.03/3 [14] 1159.03/3 1159.03/3 21.527

LRC207 1062.05/3 [14] 1062.05/3 1062.05/3 22.121

LRC208 852.76/3 [8] 852.76/3 852.76/3 18.563

The bold numbers in Tables 8-13 for the VRPPD problem show where

the best solutions, obtained by the proposed algorithm, are equal to the best

known solutions. The results for VRPPD instances show that the solutions,

found by the proposed algorithm, are equal to the best known solutions for 54

out of 56 problem instances (in ~96% cases) and the average results found are

equal to the best known solutions for 45 out of 56 problem instances (in ~80%

cases). For VRPTW and VRPPD instances the minimal computation time is for

problem set C, where customers are located in clusters.

3.4. Results of the parallel bi-directional shortest path
algorithm

This parallel bidirectional Dijkstra's algorithm was implemented with

pthread – a POSIX standard for threads. Each process of the proposed parallel

approach is implemented as a separate thread. In order to solve conflicted

access to the same memory area, we used “mutexes” - pthread algorithms that

are used in concurrent programming to avoid the simultaneous use of the

common resource by pieces of the computer code called critical sections. The

119

algorithm was developed in the C language and tested in the latest 64-bit

Fedora Linux Operating System. The experiments were carried out using

personal computer with the Intel Core 2 Duo 2.2GHz processor and 4GB

RAM. The algorithm was tested on a real road network using the

OpenStreetMap data (Haklay and Weber, 2008). Figure 22 provides examples

that were visualized with the UMN-Mapserver open source software. The

description of UMN-Mapserver can be found in (Vatsavai et al., 2006).

a) b)

c) d)

Fig. 22. The shortest path calculation: a) using the standard Dijkstra's algorithm; b) using the
modified bidirectional Dijkstra's algorithm; c), d) using the proposed parallel scheme

The steady reading of data from the disk can cause delays, which

distorts the results. In order to avoid that, a Lithuanian road network has been

120

selected and placed in the computer memory before testing. Five random nodes

A, B, C, D and E were selected in the graph in the same city and all the

shortest paths between them were calculated. The tests were calculated by the

standard Dijkstra's algorithm (Figure 22 a), the modified bidirectional

Dijkstra's algorithm (Figure 22 b), and by the parallel algorithm proposed

(Figure 22 c). Figure 22 d) shows the shortest path calculation, where the start

of the second process is delayed because of the operating system loads. The

test results are presented in Figures 23 and 24. These results indicate that the

modified bidirectional Dijkstra's algorithm is still 2 times faster than the

standard one. However, the parallel Dijkstra's algorithm is almost 2.9 times

faster than the standard one and 1.4 times faster than the bidirectional

Dijkstra's algorithm. So the efficiency E(p) of the proposed parallel algorithm

is 0.7 (p = 2), where T1 is the execution time of the sequential algorithm, and

Tp is the execution time of the parallel algorithm with p processors:

Fig. 23. The execution time of the calculation of the shortest path between nodes A B C D E

121

Fig. 24. The number of processed nodes in the calculation of the shortest path
between nodes A B C D E

Fig. 25. The execution time of the calculation of all the shortest paths between random k
nodes

Fig. 26. The number of processed nodes in the calculation of all the shortest paths between
random k nodes

122

Table 18. The execution time and the number of processed nodes in the calculation of all the
shortest paths between random k nodes

Execution time (seconds) Processed nodes

k Standard Bidirectional Parallel Standard Bidirectional Parallel

10 47.56 33.68 21.02 5271562 4163721 4244089

20 184.19 122.50 73.34 18511173 14073612 13961447

30 477.07 309.28 200.67 46566414 36361419 36652408

40 800.10 546.23 333.48 84806593 65769961 65779506

50 1488.55 847.68 553.10 131125250 98978796 98404846

Table 19. Average execution time and average numbers of processed nodes

Execution time Processed nodes

Standard 0.536 53738.97

Bidirectional 0.350 41530.77

Parallel 0.219 41671.60

In the second experiment, the total time of the shortest path calculations

between all k randomly selected nodes was measured. The experiments were

done by using the whole road network of Lithuania. Test results are presented

in Table 18, Figure 25 and Figure 26. The results show that the calculation of

all the shortest paths between all randomly selected 50 nodes lasted ~24

minutes on the same hardware. Meanwhile, the parallel Dijkstra's algorithm

calculates the same shortest paths in ~9 minutes. The average execution time

and the average numbers of processed nodes are presented in Table 19.

3.5. Summary
The proposed new genetic algorithm is applied to two different

problems (VRPTW, VRPPD). As the results show, the proposed genetic

algorithm finds solutions that in most cases are better or equal than the ones

found by other genetic algorithms. The results are compared according to the

objectives defined for the test problem instances. Although the found solutions

are not equal to the best known solutions in all cases, they are found in a

reasonably short time. However, no additional improvement/repair algorithms

123

or local search algorithms are used here. That makes the proposed algorithm

competitive with other known algorithms.

The new crossover operators that search for common parts between

parent solutions are compared to other crossover operators that also deal with

insertion heuristics for constructing feasible solutions. The proposed crossover

operators are applied to VPRTW instances for comparison. The experimental

evaluation shows that the new crossover operators, in most cases, find better

solutions than other crossover operators. The computation time of the new

crossover operator LCSX is similar to that of other crossovers, however, the

found solutions are more accurate as compared to that found by the other

crossovers. The solutions are found in the experimental evaluation by applying

the mutation operator that randomly removes parts of the solutions and

reconstructs the solution. However, such mutation operator was chosen just for

the comparison of crossover operators. Different mutation operators could be

used to find better solutions. Also, it is worth mentioning that some solutions

are equal to the best known solutions even in the cases, where the mutation

was not applied, however, no additional improvement approaches are used.

The proposed algorithm can be applied to any problem that can be

expressed as a graph. Mutation and crossover operators of the proposed genetic

algorithm are based on a random insertion heuristic. The operators are not

designed to a certain specific problem and can be applied to different problems.

The proposed algorithm can be applied in general cases.

The proposed parallel version of the Dijkstra's algorithm is almost 2.9

times faster than the standard one and 1.4 times faster than the bidirectional

Dijkstra's algorithm. Although the evaluation was performed only between two

places in the graph, the mentioned approach can be adapted to calculate the

shortest-path between more than two places in the graph at the same time or

even forward and backward at the same time.

124

The results of this chapter have been published in (Vaira and Kurasova,

2010; Vaira and Kurasova, 2011; Vaira and Kurasova, 2013; Vaira and

Kurasova, 2013a; Vaira and Kurasova, 2014).

125

Conclusions
The research completed in this thesis has led to the following

conclusions:

1. In contrast to crossover operators, where solutions are constructed

from parts of the parent solutions, the proposed crossover operators,

that search and preserve parts of the solution that are common to

both parents, find the results that in most of the cases are more

accurate than the ones found by other crossover operators. Some

solutions are equal to the best known solutions even in the cases,

where mutation was not applied.

2. As results of VRPTW instances show, the proposed algorithm, based

on feasible reinsertion approach in genetic algorithm operators, on

crossovers preserving common parts, and on the second population

in mutation operator, finds better solutions for 4 out of 6 problem

instance groups in comparison with other genetic algorithm

approaches.

3. By repeatedly applying random insertion heuristic, the

diversification is enabled in the population and, by dealing only with

feasible solutions, infeasible search space is not examined, thus

avoiding unnecessary computation and increasing overall

computation speed. The solutions are found on average in 38.97

seconds. The proposed genetic algorithm performs ~2 times less

floating point operations to find the results comparing to the best

value of other algorithms.

4. The best solutions for VRPPD instances, obtained by the proposed

algorithm, are equal to the best known solutions in ~96% cases. The

found average solutions are equal to the best known solutions in

~80% cases.

126

5. The results of the shortest path search experiments indicate that the

modified bidirectional Dijkstra's algorithm is 2 times faster than the

standard one and the parallel Dijkstra's algorithm is almost 2.9 times

faster than the standard one and 1.4 times faster than the

bidirectional Dijkstra's algorithm.

6. Mutation and crossover operators in the proposed genetic algorithm

are based on a random insertion heuristic. The operators are not

designed to a certain specific problem and can be applied to different

problems. The proposed algorithm can be applied for the rich vehicle

routing problem. No additional repair or improvement methods are

used that could be a problem for extending scheme with a new

constraint handling. Proposed genetic operators do not break main

genetic algorithm principles, so different objective functions can be

applied to rank solutions in the population, including multi-objective

approaches.

127

References
Alvarenga, G. B., de A. Silva, R. M., Sampaio, R. M. (2005). A Hybrid

Algorithm for the Vehicle Routing Problem with Time Window,

INFOCOMP Journal of Computer Science, 4(2), 9–16.

Anastopoulos, N., Nikas, K., Goumas, G., Koziris, N. (2009). Early

Experiences on Accelerating Dijkstra's Algorithm Using Transactional

Memory. Parallel & Distributed Processing, IPDPS 2009, IEEE, 1–8.

Anastopoulos, N., Nikas, K., Goumas, G., Koziris, N. (2009a). Employing

Transactional Memory and Helper Threads to Speedup Dijkstra's

Algorithm. In Proc. of International Conference on Parallel Processing

(ICPP), Vienna, Austria, IEEE Computer Society, 388–395

Archetti, C., Speranza, M. G., Hertz, A. (2006). A Tabu Search Algorithm for

the Split Delivery Vehicle Routing Problem. Transportation Science, 40

(1), 64–73.

Archetti, C., Speranza, M.G. (2012). Vehicle routing problems with split

deliveries. International Transactions on Operations Research, 19, 3–22.

Baptista, S., Oliveira, R., Zuquete, E. (2002). A period vehicle routing case

study. European Journal of Operational Research, 139 (2), 220–229.

Bard, J.F., Huang, L., Dror, M., Jaillet, P. (1998). A branch and cut algorithm

for the VRP with satellite facilities. IIE Transactions, 30, 831–834.

Bektas, T., Erdogan, G., Ropke, S. (2011). Formulations and Branch-and-Cut

Algorithms for the Generalized Vehicle Routing Problem. Transportation

Science, 45 (3), 299–316

Bent, R., Hentenryck, P. V. (2003). A Two-Stage Hybrid Algorithm for Pickup

and Delivery Vehicle Routing Problems with Time Windows. In

Proceedings of the 9th International Conference on the Principles and

Practice of Constraint Programming (CP 2003), volume 2833 of Lecture

Notes in Computer Science, Springer, 123–137.

128

Berger, J., Barkaoui, M. (2004). A parallel hybrid genetic algorithm for the

vehicle routing problem with time windows. Computers & Operations

Research, 31, 2037–2053.

Berger, J., Salois, M., Begin, R. (1998). A Hybrid Genetic Algorithm for the

Vehicle Routing Problem with Time Windows. In Proceedings of the

12th Biannual Conference of the Canadian Society for Computational

Studies of Intelligence, volume 1418 of Lecture Notes in Computer

Science, Springer, 114–127.

Berrettini, E., D'Angelo, G., Delling, D. (2009). Arc-Flags in Dynamic Graphs.

In 9th Workshop on Algorithmic Approaches for Transportation

Modeling, Optimization, and Systems (ATMOS 2009), Volume 09002 of

Dagstuhl Seminar Proceedings, Germany.

Blanton, J. L., Wainwright, R. L. (1993). Multiple Vehicle Routing with Time

and Capacity Constraints Using Genetic Algorithms. In proceedings of

the 5th International Conference on Genetic Algorithms (ICGA), Morgan

Kaufmann, 452–459.

Brandão J, (2004). A tabu search heuristic algorithm for open vehicle routing

problem. European Journal of Operational Research, 157(3), 552–564.

Campbell, A. M., Savelsbergh, M. W. P. (2004). Efficient Insertion Heuristics

for Vehicle Routing and Scheduling Problems. Transportation Science,

38(3), 369–378.

Černý, V. (1985). A thermodynamical approach to the traveling salesman

problem: an efficient simulation algorithm. Algorithm Journal of

Optimization Theory and Applications, 45(1), 41–15.

Chan, W.., Zhang, Y., Fung, S., Ye, D., Zhu, H. (2007). Efficient algorithms

for finding a longest common increasing subsequence. J. Comb. Optim.,

13(3), 277–288.

129

Clarke, G., Wright, J. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12, 568–581.

Cordeau, J. F., Gendreau, M., Hertz, A., Laporte, G., Sormany, J. S. (2005).

New Heuristics for the Vehicle Routing Problem. Logistics Systems:

Design and Optimization (A. Langevin and D. Riopel, Eds.), Springer,

270–297.

Cordeau, J.-F., Laporte, G. (2003). A tabu search heuristic for the static multi-

vehicle dial-a-ride problem (2003). Transportation Research Part B:

Methodological, 37(6), 579–594.

Cordeau, J.F., Laporte, G., Mercier, A. (2001). A unified tabu search heuristic

for vehicle routing problems with time windows. Journal of the

Operational Research Society, 52 (8), 928–936.

Crainic, T.G., Mancini, S., Perboli, G., Tadei, R. (2010). Two-echelon vehicle

routing problem: a satellite location analysis. PROCEDIA Social and

Behavioral Sciences, 2, 5944–5955.

Dantzig, G. B., Ramser J. H. (1959). The truck dispatching problem.

Management Science 6 (1959), 80–91.

Deep, K., Adane, H. M. (2011), New Variations of Order Crossover for

Travelling Salesman Problem. IJCOPI 2(1), 2–13.

Dijkstra, E. (1959). A note on two problems in connexion with graphs.

Numerische Mathematik, 1, 269–271.

Drexl, M. (2012). Rich vehicle routing in theory and practice. Logistics

Research, 5(1-2), 47–63

Dzemyda, G., Sakalauskas, L. (2011). Large-Scale Data Analysis Using

Heuristic Methods. Informatica, 22(1), 1–10.

Edmonds, N., Breuer, A., Gregor, D., Lumsdaine, A. (2006). Single-Source

Shortest Paths with the Parallel Boost Graph Library. In 9th DIMACS

Implementation Challenge – Shortest Paths.

130

El-Mihoub, T. A., Hopgood, A. A., Nolle, L., Battersby, A. (2006). Hybrid

Genetic Algorithms: A Review. Engineering Letters, 13 (2), 124–137.

Erdogan, S., Miller-Hooks, E. (2012). A green vehicle routing problem.

Transportation Research Part E: Logistics and Transportation Review,

48(1), 100–114.

Felinskas, G. (2007). Investigation of heuristic methods and application to

optimization of resource constrained project schedules. Doctoral

dissertation, Vytautas Magnus University.

Garcia-Najera, A., Bullinaria, J. A. (2011). An improved multi-objective

evolutionary algorithm for the vehicle routing problem with time

windows. Computers & OR, 38, 287–300.

Gendreau, M., Laporte, G., Musaraganyi, C., Taillard, É. D. (1999). A tabu

search heuristic for the heterogeneous fleet vehicle routing problem.

Computers & Operations Research, 26 (12), 1153–1173.

Gillett, B., Miller, L. (1974). A heuristic algorithm for the vehicle dispatch

problem. Operations Research, 22, 340–349.

Goel, A., Gruhn, V. (2008). A General Vehicle Routing Problem. European

Journal of Operational Research, 191(3), 650–660

Golberg, D. E., Deb, K. (1991). A comparative analysis of selection schemes

used in genetic algorithms. Foundations of Genetic Algorithms, San

Mateo, CA, Morgan Kaufmann, 69–93.

Goldberg, A.V., Kaplan, H., Werneck, R.F. (2006). Reach for A*: Efficient

Point-to-Point Shortest Path Algorithms. In Workshop on Algorithm

Engineering and Experiments (ALNEX), 129–143.

Haklay, M., Weber, P. (2008). OpenStreetMap: User-Generated Street Maps.

IEEE Pervasive Computing, 7(4), 12–18.

131

Hartl, R., Hasle, G., Janssens, G. (2006). Special Issue on Rich Vehicle

Routing Problems. Central European Journal of Operations Research,

14(1), 103 – 104.

Hasle, G., Kloster, O. (2007). Industrial Vehicle Routing Problems. Chapter in

Hasle G., K-A Lie, E. Quak (eds): Geometric Modelling, Numerical

Simulation, and Optimization – Applied Mathematics at SINTEF,

Springer, 397–432.

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan

traveling salesman heuristic. European Journal of Operational Research,

126 (1), 106–130.

Ho, W.-K., Ang, J. C., Lim, A. (2001). A Hybrid Search Algorithm for the

Vehicle Routing Problem with Time Windows. International Journal on

Artificial Intelligence Tools, 10 (3), 431–449.

Holland, J. (1975). Adaptation in Natural and Artificial Systems: An

Introductory Analysis with applications to biology, Control and Artificial

Intelligence. The University of Michigan Press.

Hong, T.-P., Wang, H.-S., Lin, W.-Y., Lee, W.-Y. (2002). Evolution of

Appropriate Crossover and Mutation Operators in a Genetic Process.

Applied Intelligence, 16 (1), 7–17.

Ichoua, S., Gendreau, M., Potvin, J.-Y. (2003). Vehicle dispatching with time-

dependent travel times. European Journal of Operational Research, 144

(2), 379–396.

Iori, M., González, J. J. S., Vigo, D. (2007). An Exact Approach for the

Vehicle Routing Problem with Two-Dimensional Loading Constraints.

Transportation Science, 41 (2), 253–264.

Ishikawa, H., Shimizu, S., Arakawa, Y., Yamanaka, N., Shiba, K. (2007). New

Parallel Shortest Path Searching Algorithm based on Dynamically

Reconfigurable Processor DAPDNA-2. In Proceedings of IEEE

132

International Conference on Communications, ICC 2007, Glasgow,

Scotland, IEEE, 1997–2002.

Jančauskas, V., Kaukas, G., Žilinskas, A., Žilinskas, J. (2012). On Multi-

Objective Optimization Aided Visualization of Graphs Related to

Business Process Diagrams. In: A. Čaplinskas, G. Dzemyda, A.

Lupeikienė, O. Vasilecas (Eds.), Local Proceedings and Materials of

Doctoral Consortium of the Tenth International Baltic Conference on

Databases and Information Systems, 71-80.

Jih, W., Chen, Y., Hsu, Y. (1996). A Comparative Study of Genetic

Algorithms for Vehicle Routing with Time Constraints. Proceedings of

the 1996 International Computer Symposium, 17–24.

Jih, W., Hsu, Y. (2004). A family competition genetic algorithm for the pickup

and delivery problems with time window. Bull. Coll. Eng. N.T.U. 90,

89–98.

Jung, S., Moon, B. R. (2002). A Hybrid Genetic Algorithm For The Vehicle

Routing Problem With Time Windows. In Proceedings of Genetic and

Evolutionary Computation Conference (GECCO 2002), Morgan

Kaufmann, 1309–1316.

Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D. (2007).

Computing Many-to-Many Shortest Paths Using Highway Hierarchies.

In Proceedings of the Workshop on Algorithm Engineering and

Experiments, ALENEX 2007, New Orleans, Louisiana, USA, 36–45.

Koehler, E., Moehring, R. H., Schilling, H. (2006). Fast Point-to-Point Shortest

Path Computations with Arc-Flags. In Proc. of 9th DIMACS

Implementation Challenge – Shortest Paths.

133

Kumar, N., Karambir, Kumar, R. (2012). A Comparative Analysis of PMX,

CX and OX Crossover operators for solving Travelling Salesman

Problem. International Journal of Latest Research in Science and

Technology, 1(2), 98–101.

Kutz, M., Brodal, G. S., Kaligosi, K., Katriel, I. (2011). Faster algorithms for

computing longest common increasing subsequences. J. Discrete

Algorithms, 9(4), 314–325

Lančinskas, A. (2013). Parallelization of random search global optimization

algorithms. Doctoral dissertation, Vilnius University.

Lančinskas, A., Ortigosa, P.M., Žilinskas, J. (2013). Multi-objective single

agent stochastic search in non-dominated sorting genetic algorithm.

Nonlinear Analysis: Modelling and Control, 18(3), 293-313.

Laporte, G., Gendreau, M., Potvin, J.-Y., Semet, F. (1999). Classical and

Modern Heuristics for the Vehicle Routing Problem. Les Cahiers du

GERAD, G98-54, Group for Research in Decision Analysis, Montreal,

Canada.

Li, H., Lim, A. (2003). A Metaheuristic for the Pickup and Delivery Problem

with Time Windows. International Journal on Artificial Intelligence

Tools, 12(2), 173–186.

Lin, S., Kernighan, B. W. (1973). An Effective Heuristic Algorithm for the

Traveling-Salesman Problem. Operations Research, 21, 498–516.

Lu, C.-L., Chen, Y. (2006). Using Multi-Thread Technology Realize Most

Short-Path Parallel Algorithm. Enformatika, 15 (11), 11–13.

Lukasiewycz, M., Glass, M., Haubelt, C., Teich, J. (2008). A feasibility-

preserving local search operator for constrained discrete optimization

problems. In Proceedings of IEEE Congress on Evolutionary

Computation, 1968–1975.

134

Lukasiewycz, M., Glass, M., Teich, J. (2008a). A Feasibility-Preserving

Crossover and Mutation Operator for Constrained Combinatorial

Problems. Proceedings of the 10th International Conference on Parallel

Problem Solving from Nature (PPSN), Volume 5199 of Lecture Notes in

Computer Science, Springer, 919–928.

Lysgaard, J., Letchford, A.N., Eglese R.W. (2004). A new branch-and-cut

algorithm for the capacitated vehicle routing problem. Mathematical

Programming, 100, 423–445.

Mačiūnas, D. (2013). Multi-objective global optimization of grillages using

genetic algorithms. Doctoral dissertation, Vilnius Gediminas Technical

University.

Madduri, K., Bader, D. A., Berry, J. W., Crobak, J. R. (2007). An

Experimental Study of A Parallel Shortest Path Algorithm for Solving

Large-Scale Graph Instances. In Proceedings of the Workshop on

Algorithm Engineering and Experiments, ALENEX 2007, New Orleans,

Louisiana, USA.

Michalewicz, Z. (1995). Do Not Kill Unfeasible Individuals. In Proceedings of

the 4th Intelligent Information Systems Workshop (IIS'95), 110–123

Michalewicz, Z. (1995a). A Survey of Constraint Handling Techniques in

Evolutionary Computation Methods. Evolutionary Programming, 135–

155.

Misevičius, A. (2003). A Modified Simulated Annealing Algorithm for the

Quadratic Assignment Problem. Informatica, Lith. Acad. Sci., 14 (4),

497–514.

Misevičius, A. (2009). Testing of Hybrid Genetic Algorithms for Structured

Quadratic Assignment Problems. Informatica, Lith. Acad. Sci., 20 (2),

255-272.

135

Misevičius, A., Kilda, B. (2005). Comparison of crossover operators for the

quadratic assignment problem. Information Technology and Control,

34(2), 109–119.

Nagata, Y., Bräysy, O. (2009). Edge assembly-based memetic algorithm for

the capacitated vehicle routing problem. Networks, 54(4), 205–215.

Ombuki, B. M., Nakamura, M., Maeda, O. (2002). A hybrid search based on

genetic algorithms and tabu search for vehicle routing. In 6th IASTED

Intl. Conf. On Artificial Intelligence and Soft Computing (ASC 2002),

edited by A.B. Banff, H Leung, ACTA Press, 176–181.

Ombuki, B. M., Ross, B., Hanshar, F. (2006). Multi-Objective Genetic

Algorithms for Vehicle Routing Problem with Time Windows. Applied

Intelligence, 24(1), 17–30.

Pisinger, D., Ropke, S. (2009). Large neighborhood search. Handbook of

Metaheuristics, 2nd edition, M. Gendreau and J.-Y. Potvin(eds).

Potvin, J.-Y., Bengio, S. (1996). The Vehicle Routing Problem with Time

Windows Part II: Genetic Search. INFORMS Journal on Computing,

8(2), 165–172.

Potvin, J.-Y., Dubé, D. (1994). Improving a Vehicle Routing Heuristic

Through Genetic Search. Proceedings of the 1st IEEE Conference on

Evolutionary Computation, 194–199.

Potvin, J.-Y., Rousseau, J.M. (1993). A parallel route building algorithm for

the vehicle routing and scheduling problem with time windows.

European Journal of Operational Research, 66, 331–240.

Redondo, J. L., Ortigosa, P. M., Žilinskas, J. (2012). Multimodal Evolutionary

Algorithm for Multidimensional Scaling with City-Block Distances.

Informatica, 23 (4), 601-620.

136

Reid, D. J. (2000). Feasibility and Genetic Algorithms: the Behaviour of

Crossover and Mutation. DSTO Electronics and Surveillance Research

Laboratory.

Rizzoli, A. E., Montemanni, R., Lucibello, E., Gambardella, L. M. (2007). Ant

colony optimization for real-world vehicle routing problems. Swarm

Intelligence, 1(2), 135–151.

Romeijn, H. E., Smith, R. L. (1999). Parallel Algorithms for Solving

Aggregated Shortest Path Problems. Computers & Operations Research,

(26), 941–953.

Ropke, S., Pisinger, D. (2006). A unified heuristic for a large class of Vehicle

Routing Problems with Backhauls. European Journal of Operational

Research, 171 (3), 750–775.

Rosenkrantz, D. J., Stearns, R. E., Lewis II, P. M. (1977). An Analysis of

Several Heuristics for the Traveling Salesman Problem. SIAM J.

Comput., 6(3), 563–581.

Schensted, C. (1961), Longest increasing and decreasing subsequences. Canad.

J. Math. 13, 179–191.

Schneider, M., Stenger, A., Goeke, D. (2012). The Electric Vehicle Routing

Problem with Time Windows and Recharging Stations. In Tech. Report

02/2012, BISOR, TU Kaiserslautern.

Šešok, D. (2008). Topology optimization of truss structures using genetic

algorithms. Doctoral dissertation, Vilnius Gediminas Technical

University.

Solomon, M.M. (1987). Algorithms for the Vehicle Routing and Scheduling

Problems with Time Window Constraints. Operations Research, 35(2),

254–265.

137

Srinivas, M., Patnaik, L. M. (1994). Adaptive probabilities of crossover and

mutation in genetic algorithms. IEEE Transactions on Systems, Man, and

Cybernetics, 24(4), 656–667.

Tan, K. C., Chew, Y. H., Lee, L. H. (2006). A Hybrid Multiobjective

Evolutionary Algorithm for Solving Vehicle Routing Problem with Time

Windows. Computational Optimization and Applications, 34 (1), 115–

151.

Tan, K. C., Hay, L. L., Ke., O. (2001). A hybrid genetic algorithm for solving

vehicle routing problems with time window constraints. Asia-Pacific

Journal of Operational Research, 18(1), 121–130

Tan, K. C., Lee, L. H., Zhu, K. Q., Ou, K. (2001a). Heuristic methods for

vehicle routing problem with time windows. Artificial Intelligence in

Engineering, 15(3), 281–295.

Thangiah, S. R., Vinayagamoorty, R., Gubbi, A. V. (1993). Vehicle Routing

and Time Deadlines Using Genetic and Local Algorithms. In

proceedings of the 5th International Conference on Genetic Algorithms

(ICGA), Morgan Kaufmann, 506–515.

Thangiah, S., Nygard, K., Juell, P. (1991). GIDEON: A genetic algorithm

system for vehicle routing with time windows. In 7th Conference on

Artificial Intelligence Applications, 322–328.

Tommiska, M., Skytta, J. (2001), Dijkstra's Shortest Path Routing Algorithm in

Reconfigurable Hardware., in G. J. Brebner., R. Woods, ed., Field-

Programmable Logic and Applications, 11th International Conference,

Springer, 2147, 653–657.

Toth, P., Vigo, D. (2001). Branch-and-bound algorithms for the capacitated

VRP. Society for Industrial and Applied Mathematics, 29–51.

Toth, P., Vigo, D. (2002). The Vehicle Routing Problem, Society for Industrial

and Applied Mathematics.

138

Vatsavai, R. R., Shekhar, S., Burk, T. E. and Lime, S. (2006), UMN-

MapServer: A High-Performance, Interoperable, and Open Source Web

Mapping and Geo-spatial Analysis System., in M. Raubal; H. J. Miller;

A. U. Frank and M. F. Goodchild, ed., GIScience, Springer, 400–417.

Vidal, T., Crainic, T. G., Gendreau, M., Prins, C. (2013). Heuristics for multi-

attribute vehicle routing problems: A survey and synthesis. European

Journal of Operational Research, 231 (1), 1–21.

Von Lossow, M. (2007). A min-max version of Dijkstra's algorithm with

application to perturbed optimal control problems. In Proceedings in

Applied Mathematics and Mechanics ICIAM 2007/GAMM 2007, 7,

Zurich, Switzerland.

Yang, I, Huang, C., Chao, K. (2005). A fast algorithm for computing a longest

common increasing subsequence. Inf. Process. Lett., 93(5), 249–253.

Yeniay, O. (2005). Penalty function methods for constrained optimization with

genetic algorithms. Mathematical and Computational Applications,

10(1), 45–56.

Yeun, L. C., Ismail, W. R., Omar, K., Zirour, M. (2008). Vehicle Routing

Problem: Models and Solutions, Journal of Quality Measurement and

Analysis (JQMA), 4(1), 205–218.

Zhang, J., Chung, H. S.-H., Hu, B.J. (2004). Adaptive probabilities of

crossover and mutation in genetic algorithms based on clustering

technique Evolutionary Computation. In Proceedings of IEEE Congress

on Evolutionary Computation (CEC2004), 2, 2280–2287.

Zhang, J., Chung, H. S.-H., Lo, W.-L. (2007). Clustering-Based Adaptive

Crossover and Mutation Probabilities for Genetic Algorithms. IEEE

Transactions on Evolutionary Computation, 11(3), 326–335.

Zhong, J., Hu, X., Gu, M., Zhang, J. (2005). Comparison of Performance

between Different Selection Strategies on Simple Genetic Algorithms.

139

Proceeding of the International Conference on Computational

Intelligence for Modelling, Control and automation, and International

Conference of Intelligent Agents, Web Technologies and Internet

Commerce (CIMCA/IAWTIC), IEEE Computer Society, 1115–1121

Zhu, K. Q. (2003). A Diversity-Controlling Adaptive Genetic Algorithm for

the Vehicle Routing Problem with Time Windows. Proceedings of the

15th IEEE International Conference on Tools for Artificial Intelligence

(ICTAI 2003), 176–183.

Žilinskas, A., Žilinskas, J. (2007). Parallel genetic algorithm: assessment of

performance in multidimensional scaling. In proceedings of the 9th

annual conference on Genetic and evolutionary computation (GECCO

2007), Association for Computing Machinery (ACM), 1492-1499.

Žilinskas, J. (2008). On dimensionality of embedding space in

multidimensional scaling. Informatica, 19(3), 447-460.

140

	Chapter 1 Vehicle routing problem: a review
	1.1. Vehicle routing problem
	1.2. Heuristics for VRP
	1.3. Genetic algorithm
	1.4. Genetic algorithms and VRP
	1.5. Insertion heuristics in genetic algorithm operators
	1.6. Shortest path search
	1.6.1. Shortest-path computation speed-up techniques
	1.6.2. Dijkstra's algorithm
	1.6.3. Bidirectional algorithm

	1.7. Summary

	Chapter 2 A new algorithm for vehicle routing problem
	2.1. Genetic algorithm for vehicle routing problem
	2.1.1. Incorporating insertion heuristics
	2.1.2. New genetic algorithm
	2.1.3. Crossover operators
	2.1.4. Mutation operators

	2.2. Genetic operators for rich vehicle routing problem
	2.2.1. Rich vehicle routing problem
	2.2.2. Crossover and mutation operators for RVRP

	2.3. Parallel bi-directional shortest path algorithm
	2.4. Summary

	Chapter 3 Experimental researches
	3.1. Data sets used for experimental evaluation
	3.1.1. Solomon problem instances
	3.1.2. Li and Lim problem instances

	3.2. Evaluation of crossover operators
	3.3. Results of the proposed genetic algorithm
	3.4. Results of the parallel bi-directional shortest path algorithm
	3.5. Summary

