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Abstract
In recent years, a vehicle routing problem (VRP) attracts much attention due to

the increased interest  in  various  geographical  solutions  and technologies  as

well as their usage in logistics and transportation. Many researches on different

heuristic  approaches  can  be  found  for  the  solution  of  the  vehicle  routing

problem,  where  specific  situations  and  constraints  are  analyzed.  In  this

research  we  investigate  genetic  algorithm  approaches  for  solving  vehicle

routing problem with different constraints.  Due to stochastic characteristics,

genetic algorithms generate solutions in the whole search space including the

infeasible space. For a constrained problem, the feasible search space is smaller

than the whole search space. Having constraints in the problem definition, the

aim is to find the solution that does not violate any constraint. Such solution is

called a feasible solution or feasible individual. The common genetic algorithm

approaches  involve  additional  repair  and  improvement  methods  that  are

designed for a specific constraint to keep the generated solutions in the feasible

search space. The usage of the repair and improvement methods designed for

specific  constraints  or  genetic  operators  specially  designed  for  a  specific

problem can produce an inadequate result when they are applied to different

problems.  In this thesis we propose a genetic algorithm based on a random

insertion  heuristics  for  the  vehicle  routing  problem  with  constraints.  The

random  insertion  heuristic  is  used  to  construct  initial  solutions  and  to

reconstruct  the  existing  ones.  The  process  of  random  insertion  preserves

stochastic characteristics of the genetic algorithm and preserves feasibility of

generated  individuals.  The  defined  crossover  and  mutation  operators

incorporate random insertion heuristics, analyze individuals and select which

parts  should  be  preserved  and  which  should  be  reconstructed.  The  second

population increases the probability that the solution, obtained in the mutation

process, will survive in the first population, thus increasing a diversity in the

population  and  the  probability  to  find  the  global  optimum.  The  proposed
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operators are not designed to a certain specific problem and can be applied to

different problems. The proposed algorithm can be applied for the rich vehicle

routing problem. No additional repair or improvement methods are used that

could be a problem for extending scheme with a new constraint handling.
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Glossary

Chromosome – the literal  string encoded form of solutions that the classical
genetic algorithm paradigm deals with.

Crossover operator – recombination operator in genetic algorithm, where new
solution in new generation is created by taking into account more than
one solution from previous generation.

Dijkstra's algorithm – breadth first search algorithm for search of the shortest
path in the graph proposed by Dijkstra (1959).

Decoding – transformation of the chromosome to the solution. 

Encoding –  the representation of the solution as a chromosome.

Feasible search space – set of all possible feasible solutions.

Feasible solution – a solution that satisfies all the constraints defined in the
problem.

Generation – the population in certain iteration of the genetic algorithm.

Genetic algorithm – search heuristic that is based on ideas of evolution theory
(Holland,  1975).  A genetic algorithm works with the  population and
usually  has  following  components:  representation,  fitness  function
evaluation,  initialization,  selection,  recombination  (crossover  and
mutation), termination.

Genetic operator – one of the recombination operators (crossover or mutation)
used in the genetic algorithm.

Individual –  the  single  solution  in  genetic  algorithms,  where
encoding/decoding is bypassed.

Insertion  heuristic –  construction  heuristic  where  solution  is  created  by
inserting elements one by one by evaluating certain functions to select
the element and the place in the solution for insertion.

Mutation operator – recombination operator in genetic algorithm, where new
solution  is  created  from  the  single  solution  by  changing  some
characteristics within it.

Population – the set of the solutions in the genetic algorithm.
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Rich vehicle routing problems – the family of the extended vehicle routing
problems that includes several or all aspect of real-life vehicle routing
(Hartl et al., 2006).

Vehicle  routing problem –  general  name given for  a class  of problems,  in
which a set of vehicles service a set of customers.
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BCRC Best cost route crossover operator proposed in (Ombuki et
al., 2006).

CAX Common arcs crossover operator proposed in this research.

CNX Common  nodes  crossover  operator  proposed  in  this
research.

CVRP Capacitated vehicle routing problem.

GA Genetic algorithm.

LCIS Longest common increasing subsequence.

LCSX Longest common sequence crossover operator proposed in
this research.

LNS Large neighborhood search.

LRX The crossover operator used in (Alvarenga et al., 2005), in
this thesis it is called largest route crossover.

PDPTW Pick-up  and  deliver  vehicle  routing  problem  with  time
windows.

RBX The  crossover  operator  proposed  in  (Potvin  and  Bengio,
1996) that is called a route-based crossover.

RVRP Rich vehicle routing problem.

TSP Traveling Salesman Problem.

VRP Vehicle Routing Problem.

VRPPD Vehicle routing problem with pick-up and deliveries.

VRPTW Vehicle routing problem with time windows.
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Symbols
Ar Set of arcs in the solution xr.

ari  Ar Single arc in the set Ar.

C Set of constraints.

Cc  C Set of capacity constraints.

Cpd  C Set of pick-up and delivery constraints.

Ctw  C Set of time window constraints.

f(x) Objective function.

fc(x) Function that evaluates single constraint violation.

fd(x) Objective function to minimize total travel distance.

fv(x) Objective  function  to  minimize  number  of  vehicles
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ff(y) Objective function for feasible solution.
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Gr=(Nr, Er) Graph of the road network.

hc(n, a) Evaluation function of node n insertion in arc a.
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xi Single solution of VRP.
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Introduction

Research context and motivation 
The  vehicle  routing  problem  (VRP)  is  a  well  known  combinatorial

problem that attracts researchers to investigate it by applying the existing and

newly created optimization algorithms. Traditionally, the VRP is defined as a

routing problem with a single depot, a set of customers, multiple vehicles and

the objective to minimize the total cost while servicing every customer. A set

of constraints can be defined for the VRP. In literature we can find different

kinds of vehicle routing problems (VRPs) that are grouped according to the

specific constraints. The well known constrained VRPs are as follows: VRP

with capacity limitations (CVRP), where vehicles are limited by the carrying

capacity;  VRP  with  time  windows  (VRPTW),  where  a  customer  can  be

serviced within a defined time frame or time frames; VRP with multiple depots

(MDVRP), where goods can be delivered to a customer from a set of depots;

VRP with pick-up and delivery (VRPPD), where rules are defined to visit pick-

up places and later to deliver goods to the drop-off location. Many researches

on different heuristic approaches can be found for the solution of the above

mentioned problems. 

In  recent  years,  VRP  attracts  much  attention  due  to  the  increased

interest  in  various  geographical  solutions  and technologies  as  well  as  their

usage in logistics and transportation. More and more logistic companies are

trying  to  organize  deliveries  of  goods  better  by  enabling  various  today’s

proposed  technologies.  They  can  be  various  logistic  systems  coupled  with

widely  used  positioning systems,  etc.  The  important  part  in  reduction  of

transportation  costs  is  a  better  organization  of  routes  by  solving  a  vehicle

routing problem. For example, a better organization of fleet routes in various

distribution areas – delivery of post, supply delivery to markets, fuel delivery
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to gasoline stations, etc. – can save fuel, money and/or time that can be used

for servicing new customers. Also, a better organization of routes in business

deliveries can affect ecological aspects by reducing pollution that is important

problem of these days.

Problem statement
In literature we can find algorithms that are designed for one or another

VRP,  where  the  algorithms are  designed to  deal  with  a  specific  subject  or

specific constraints. Although mentioned VRP variants mimic some real world

situations, these situations do not reflect the whole problem. The mentioned

VRPs are criticized for being too focused on specific models that involve non-

realistic  assumptions.  Real-world  VRP  with  various  constraints  generalizes

traditional VRP and is usually called a rich vehicle routing problem (RVRP).

Solving RVRP has been a challenging today's task.

A number of different exact and heuristic methods have been studied to

solve the VRP that is known to be NP-hard. Although the exact methods give

the optimal solution, their computation time considerably increases with  the

increasing size  of  the  problem.  Various  heuristic  methods exist  for  solving

problems  that  are  known  to  be  NP-hard.  Local  searches  and  heuristic

approaches may be sensitive to the given data sets (i.e., constraints) or require

additional training data during the learning process. Also hybrid combinations

of various algorithms are designed while seeking for higher efficiency in the

computation.

Metaheuristic is another approach for solving a complex problem that

may  be  too  difficult  or  time-consuming  for  other  techniques.  One  of  the

metaheuristics  that  are  investigated for  solving VRP is  a  genetic  algorithm

(GA).  Genetic algorithms are based on ideas of evolution theory. The main

principle here is that only the fittest entities survive. Genetic algorithms work
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with  individuals,  sometimes  also  called  chromosomes,  each  representing  a

possible  solution  to  a  given  problem.  GA  typically  works  with  the  initial

population of solutions; together with each new generation GA creates a new

potential  offsprings,  based  on  the  selected  individuals  from  the  previous

generation  using  a  set  of  stochastic  transition  operators  (crossover  and

mutation). The iterative process of generations and evaluation of individuals

continues until a sufficient stopping criterion is met.

The  standard  genetic  algorithm  has  limitations  in  the  constrained

environment.  Due  to  a  stochastic  characteristic,  genetic  algorithms  can

continue  very  long  until  the  acceptable  solution  has  been  found  for  a

constrained problem. For a constrained problem, the feasible search space is

smaller than the whole search space and genetic algorithm operators generate

solutions  in  the  whole  search  space  including  the  infeasible  space.  The

common  approaches  for  constraint  handling  in  genetic  algorithms  involve

additional repair and improvement methods that  are designed for  a specific

constraint  to keep the generated solutions in the feasible search space.  The

repair of one constraint can involve the violation of another constraint. Such

approaches can produce an inadequate result when they are applied to different

problems  and  are  hardly  extendable  with  new  constraints.  Specialized

algorithms usually are hardly applicable to RVRP. 

Tasks and objectives of the research
The objective  of  the  thesis  is  to  design a new genetic  algorithm for

vehicle routing problem that handles constraints in genetic operators and that

can be efficiently applied for solving rich vehicle routing problem.

In order to achieve the objective, the following tasks are stated:

 To  study  existing  genetic  algorithms  for  solving  vehicle  routing

problems.
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 To analyze approaches in genetic algorithms for dealing with constraints

in  vehicle  routing  problems  and  investigate  search  intensification

approaches in genetic algorithm operators. 

 To analyze the existing formulations of  rich vehicle routing problem

and detail them.

 To propose a new genetic algorithm for rich vehicle routing problem,

where genetic operators handle constraints in solutions in each iteration.

 To investigate Dijkstra's shortest path algorithm speed up techniques in

order  to  efficiently  apply  the  proposed genetic  algorithm to  the  real

vehicle routing problems taking into account the road network.

 To evaluate the proposed genetic algorithm by applying it  on public

available benchmark instances and compare it with other known genetic

algorithms. 

Practical significance of the results
The practical significance of the thesis is as follows:

 The proposed genetic  algorithm can be applied to  real-world vehicle

routing problem more flexibly and in such way reduce costs for various

companies  that  deal  with delivery  by reducing overall  traveling path

and/or traveling time. The algorithm also can be applied to dynamic re-

computation of the VRP depending on new data (new requests came

from customers; some accident happened for one of the vehicles during

the delivery; etc.).

 The  proposed  algorithm can  be  applied  to  any  problem that  can  be

defined as a graph and which solution depends on the sequence of the

elements.

 A part of the research was used in the project “Algorithm for optimizing

the  route  between  N points  and  algorithm for  fixing  deviations  and
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mathematical averaging of fuel level data from transport means (fuel

filling  pouring  off)”  based  on  the  agreement  between  “Institute  of

Mathematics and Informatics”, JSC “AKTKC – Apsaugos centras” and

“Agency for Science, Innovation and Technology” for achievement of

innovation voucher  (agreement No 31V-79, 2010-07-28).

Research methods
Both the exploratory research and systematic review have been used to

collect and summarize the results of other researches. Experimental research

and generalization method have been used to evaluate the proposed methods

and algorithms in comparison with the obtained results in other researches. 

Defensive propositions
1. Insertion heuristic in genetic algorithms is suitable not only to produce

initial solutions, but also can be incorporated in genetic operators for

constraint  handling,  i.e.  for  generation  of  feasible  partial  solution  in

each iteration by evaluating constraints. By repeatedly applying destroy

method and random insertion heuristic, diversification is enabled in the

population  and,  by  dealing  only  with  feasible  solutions,  infeasible

search space is not examined, thus avoiding unnecessary computation

and increasing overall computation speed.

2. The  crossover  operators  that  preserve  common  sequence  from  two

parent solutions can intensify the search towards the optimal solution. In

contrast to traditional crossover approaches, where offspring solutions

are constructed from the parts of parent solutions, new crossovers define

the degree of the destruction by preserving the parts that are common in

both  parent  solutions,  thus  preserving  the  parts  that  have  a  higher

probability to be optimally constructed than the other ones.
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3. A  genetic  algorithm,  based  on  the  feasible  reinsertion  approach  in

genetic  operators, on  crossovers  preserving  common  parts,  and  on

second  population  in  mutation  operator,  produces  similar  or  better

solutions than other genetic algorithms in short computation time. The

usage  of  the  second  population  in  the  mutation  operator  increases

diversification in the population  and overall  efficiency of the genetic

algorithm. Overall  genetic algorithm is  applicable to the rich vehicle

routing problem.

Proposed  solutions  and  contributions  of  the  scientific
novelty

 Operators  of  the  genetic  algorithm,  that  involves  the  destroy  and

reconstruct  approach  of  large  neighborhood  search  (LNS) usage  in

crossover and mutation operators, are proposed, where random insertion

heuristic  in  genetic  operators  is  used  as  a  reconstruction  method.

Insertion heuristic  is  adjusted with evaluation of constraints  to avoid

generation in infeasible search space, thus speeding-up the computation.

Random insertion  heuristic  preserves  stochastic  characteristics  of  the

genetic algorithm thus involving the diversification in the population. 

 New crossover operators that are based on the search of common parts

in the parent solutions for generation of the offspring are proposed. In

contrast to traditional crossover approaches, where offspring solutions

are  constructed  from  parts  taken  from  the  parents,  the  proposed

crossovers identify and preserve parts of the solution that are common

in both parents, thus intensifying a search towards the optimal solution.

The usage of the longest common increasing sequence (LCIS) search in

crossover  operator  preserves  the  sequence  of  elements  from  parent

solutions,  where  the  sequence  is  important  characteristic  of  vehicle

routing problem solutions.
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 The  genetic  algorithm  is  proposed  that  involves  insertion  heuristic,

feasibility  preservation,  a  search  of  common  parts  in  the  crossover

operators  and  the  second  population  used  in  the  mutation  operator.

Solutions obtained in the second population remain competitive in the

main  population:  they  have  a  higher  probability  to  be  selected  for

reproduction  and  involve  the  diversification  in  the  population.  The

proposed algorithm produces solution in short  time and solutions are

better  or  equal  to  results  obtained  by  other  genetic  algorithms.  The

advantage of a new developed genetic algorithm is that it can be applied

to rich vehicle routing problem and the formulation of the rich vehicle

routing problem is also defined in this research.

Approbation of the research 
The  main  results  of  the  thesis  were  presented  at  the  following

international conferences:

 9th Conference on Databases and Information Systems, DB&IS 2010,

July 5 - 7, 2010 – Riga, Latvia;

 1st International  Conference  of  EURO  Working  Group  on  Vehicle

Routing and Logistic Optimization (VeRoLog 2012), June 18 - 20, 2012

– Bologna, Italy;

 25th European Conference on Operation Research (EURO-2012), July

8 - 11, 2012 – Vilnius, Lithuania;

 26th European Conference on Operation Research (EURO-2013), July

1 - 4, 2013 – Rome, Italy;

 2nd International  Conference  of  EURO  Working  Group  on  Vehicle

Routing and Logistic Optimization (VeRoLog 2013), July 7 - 10, 2013

– Southampton, United Kingdom.

7



List of Publications
Articles in the reviewed scientific periodical publications: 

G.  Vaira,  O.  Kurasova.  Parallel  Bidirectional  Dijkstra's  Shortest  Path

Algorithm.  Databases  and  Information  Systems  VI,  Volume  224  of

Frontiers  in Artificial Intelligence and Applications, p.  422–435, IOS

Press, 2011, ISSN 0922-6389 (print), ISSN 1879-8314 (online).

G.  Vaira,  O.  Kurasova.  Genetic  algorithms  and  VRP:  the  behaviour  of  a

crossover  operator.  Baltic  Journal  of  Modern  Computing,  1(3–4),  p.

161–185, 2013, ISSN 2255-8942 (print), ISSN 2255-8950 (online).

G. Vaira, O. Kurasova. Genetic Algorithm for VRP with Constraints based on

Feasible Insertion. Informatica,  25(1),  p.  155–184, 2014, ISSN 0868-

4952.

Articles in other editions:

G.  Vaira,  O.  Kurasova.  Modified  bidirectional  shortest  path  Dijkstra's

algorithm based on the parallel computation. In Proceedings of the 9th

International Baltic Conference on Databases and Information Systems

(Baltic DB&IS 2010) (J. Barzdins, M. Kirikova (eds.)), p. 205-217 Riga:

University of Latvia Press, 2010, ISBN 978-9984-45-199-2.

G. Vaira,  O.  Kurasova.  Feasible Insertion Genetic Algorithm for VRP with

Constraints.  In  Proceedings of 2nd International conference of EURO

Working  Group  on  Vehicle  Routing  and  Logistic  Optimization

(VeRoLog 2013), p. 96, 2013a, Southampton, United Kingdom.

Outline of the dissertation
The  text  of  the  thesis  consists  of  introduction,  3  main  chapters,

conclusions  and  references.  Each  chapter  is  provided  with  the  summary
8



(except introduction and conclusions).  The total  scope of  this  thesis  is  140

pages, 26 figures and 19 tables.

Introduction describes research context and motivation, presents the statement

of the problem, discusses tasks and objectives of the research, methodology of

research, presents practical significance of results, scientific novelty, defending

propositions and approbation of obtained results.

Chapter  1 provides  overview  of  vehicle  routing  problems  and  solutions,

reviews genetic algorithms for solving vehicle routing problems in details.

Chapter  2 describes  the  proposed  genetic  algorithm  for  vehicle  routing

problem.

Chapter 3 provides experimental evaluation of the proposed algorithms.

Conclusions present the main conclusions of the thesis.
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Chapter 1
Vehicle routing problem: a review

The chapter is organized as follows. Section 1.1 describes a vehicle routing
problem  and  constraints.  Section  1.2 reviews  heuristic  approaches  for
solving VRP. Main genetic algorithms principles are discussed in  Section
1.3.  Section  1.4 analyzes genetic algorithm application for VRP and the
common feasibility handling approaches. Section 1.5 investigates usage of
insertion heuristics in GA and crossover operators that deal with feasible
solutions.  Section  1.6 reviews  shortest  path  problem  and  Dijkstra's
algorithm speed-up techniques. Section 1.7 summarizes this chapter. 

1.1. Vehicle routing problem
Vehicle routing problem (VRP) is a general name given for a class of

problems, in which a set of vehicles service a set of customers. This statement

was first defined by Dantzig and Ramser (1959). VRP is a generalization of a

traveling  salesman  problem (TSP),  where  only  one  traveler  is  taken  into

account. The TSP is defined as a set of cities, where a single traveler needs to

visit all of them and return to the starting city. The objective of the TSP is to

find the shortest route.

The vehicle routing problem typically is described as a graph G = (N, E)

and a set of homogeneous vehicles  V = {v1, …, vt}, where  t is the number of

vehicles.  The graph G consists of the nodes  N = {n0, n1, ..., nk}, where  n0 is a

depot and N\{n0} are k customers that need to be serviced, and edges E = {eij},

where ij, 0  i  k, 0  j  k, eij = (ni, nj). Each vehicle that services customers

starts  the  travel  from  the  depot and  finishes  it  in  the  depot  as  well.  The

objective of the typical VRP is to find the solution, at first, minimizing the total

vehicle  number  required,  and  secondly,  minimizing  the  length  of  the  total
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traveled path (Dantzig and Ramser, 1959; Jih et al., 1996; Potvin and Bengio,

1996; Tan et al., 2001; Jung and Moon, 2002; Ombuki et al., 2002; Jih and

Hsu, 2004; Alvarenga et al., 2005; Ombuki et al., 2006; Yeun et al., 2008). For

the set E, the cost matrix D is defined, where dij is the cost of the edge eij=(ni,

nj), and dii  = 0. Usually the VRP is treated as symmetric, where dij = dji. In the

real world problem, the cost matrix is asymmetric and needs to be calculated

from geographic data by using the shortest  path algorithms.  Moreover,  if  a

vehicle  set  is  not  homogeneous,  some  roads  can  be  forbidden  for  certain

vehicles  and allowed for  others.  The different  shortest  path can exist  for  a

different vehicle type, so a different matrix needs to be calculated for all the

different  vehicle  types. A  review  of  various  speed-up  techniques  for  the

shortest path problem can be found in Section 1.6.

Various constraints can be added to the VRP. The defined constraints

usually refer to real life situations. Let us define a single constraint  c    C,

where  C is  a  set  of  all  constraints  that  should  not  be  violated  in  the  final

solution.

The most known constraints for the VRP are capacity constraints and

time  window  constraints.  The  capacity  constraints  Cc C are  carriage

limitations  applied  to  each  vehicle.  A  capacitated  vehicle  routing  problem

(CVRP) is usually defined with equal capacities for all vehicles. However, in

real life vehicle fleet with different capacities can be used to solve the delivery

problem. 

Time window constraints  Ctw C define time frames when a customer

can be serviced. The problem dealing with time windows constraints is called

vehicle  routing  problem  with  time  windows (VRPTW).  Single-sided  and

double-sided windows are specified in terms of time frames that are widely

considered in literature. However, real life situations can give a multiple time
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frame representation, where a customer can be serviced in one of the defined

time frames:

 [t1,  ) defines a time frame constraint when a vehicle has to arrive no

earlier than the time t1. If a vehicle comes too early, it has to wait until

time t1.

 [0, t2] defines a time frame constraint when a vehicle has to arrive to a

customer no later than the time t2.

 [t1,  t2]  defines a double sided time frame constraint, where  t1  t2. The

constraint  includes  the  limitation  from  both  previously  defined

constraints. 

 [0, t1] [t2, t3] [t4, ) defines multiple time frames, where ti–1  ti. The

multiple time frame constraints can include any of previously defined

time window constraint. However, the single constraint from the group

needs to be satisfied.

The time window constraint can be added to the depot node to define

the overall traveling time limit for a single vehicle. The maximum number of

vehicles can be treated as an additional constraint cv  C, where cv defines the

limit of vehicles in the solution. 

Real situations can give another type of constraints where goods need

not only to be brought from a depot to a customer, but also to be picked up

from  a  number  of  customers  and  brought  back  to  depot  or  to  any  other

customer. This problem is known as a  vehicle routing problem with pick-up

and  deliveries (VRPPD).  The  set  Cpd C defines  pick-up  and  delivery

constraints within the problem, where each c Cpd is a constraint that defines

the delivery of a certain amount of goods from the starting node ns to the target

node  nt. In  Figure  1,  the  filled  circle  represents  a  depot,  the  empty  circles

represent customers, the dotted lines represent possible pick-up and delivery

constraints, and the solid lines represent a possible routing solution for two

12



vehicles. Combination of VRPPD and VRPTW is called pick-up and delivery

problem with time windows (PDPTW) (Li and Lim, 2003; Ropke and Pisinger,

2006).

Fig. 1. Pick-up and delivery problem

Particular  mathematical  formulations  can  be  found  for  each  various

VRP  extensions,  where  in  each  formulation  the  constraints  evaluation  is

included in the objective function (Yeun et al., 2008). In this thesis we define it

in  general  way. Let us  define  the  function Fc(x) that  evaluates  violation of

constraints  in  the  solution  x and fc(x) that  evaluates  violation  of  the  single

constraint c C:

The objective of the traditional VRP is to find a solution x that satisfies

the equation Fc(x) = 0 and minimizes the functions fv(x) and fd(x) in the defined

order,  where  fv(x)  evaluates  the  vehicle  number  in  the  solution  and  fd(x)

identifies the total travel path:
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Beside  VRP  with  mentioned  constraints,  other  VRP  extensions  are

analyzed in the literature:

 Multiple depot VRP (MDVRP). In this problem multiple depots exist

from where vehicles could start traveling and where they could end up

(Cordeau et al., 2001). In open VRP (OVRP) vehicles do not require to

return to the depot (Brandão, 2004).

 Split delivery VRP (SDVRP). Customer can be serviced by more than

one vehicle, if it reduces overall cost (Archetti et al., 2006; Archetti and

Speranza,  2012).  Such  situations  are  also  investigated  in  multiple

commodities VRP where different types of vehicle need to be used for

delivering  different  types  of  goods  to  the  customer  (Archetti  and

Speranza, 2012).

 VRP with satellite facilities (VRPSF). Additional satellite facilities exist

in the graph where vehicles can be replenished with goods instead of

coming to the depot (Bard et al., 1998). In two-echelon VRP (2E-VRP)

two routing levels are defined, where the first level addresses depot-to-

satellite delivery and satellite-to-customer delivery is addressed in the

second level (Crainic et al., 2010).
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 Periodic VRP (PVRP). In periodic VRP the horizon of defined number

of  days is  given and visiting frequency within defined time range is

defined for each customer. Solution of such problem is a set of routes

for  each  day  that  satisfy  all  the  frequency  and  delivery  constraints

within all days (Cordeau et al., 2001; Baptista et al., 2002)

 VRP with backhauls  (VRPB). In this problem some customers require

deliveries (linehauls) and some of them can return commodities back to

the  depot  (backhauls).  Backhauls  typically  go  after  linehauls.  Such

problem is  treated as a special  case of VRPPD problem (Ropke and

Pisinger, 2006).

 VRP with time deadlines (VRPTD). Such problem is similar to VRPTW

except that there is not lower bound for time, thus not requiring to pay

attention to wait times (Thangiah et al., 1993). In  VRP with soft time

windows (VRPSTW)  service  is  allowed  after  time  window but  with

additional penalty cost (Toth and Vigo, 2002). Another VRP that deals

with time is called  time-dependent VRP  (TDVRP), where the time of

day and specific  events  related to  the  real-world  situations  (i.e.  rush

hours) are included in the problem (Ichoua et al., 2003).

 Heterogeneous  fleet  VRP  (HVRP).  This  problem  includes  non-

homogeneous  fleet  where  different  vehicles  include  different

characteristics (Gendreau et al., 1999).

 Green  VRP  (G-VRP). In  this  problem vehicles  that  are  used  in  the

delivery are powered with alternative fuel. Typically that are electrical

vehicles.  Such  vehicles  require  often  refuel  due  to  fuel  capacity

limitations. Limitations arise in the problem because of time required

for  refueling  and  availability  of  the  refueling  stations  (Erdogan  and

Miller-Hooks, 2012). In paper (Schneider et al., 2012) the problem is

called electric VRP (EVRP).
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 In a dial-a-ride problem (DARP) a transportation of users is considered,

where  desired  departure  or  arrival  time and maximum transportation

duration is defined for users (Cordeau and Laporte, 2003).

There are a number of other VRP extensions that differ depending on

included data, constraints and objectives. Various combinations of mentioned

VRP  exist  to  specific  real-world  problems  (i.e.  delivery  of  goods,  waste

collection,  blood collection  and delivery,  post  delivery,  etc.).  There  is  also

research that combines VRP with freight loading problem, i.e. in paper (Iori et

al.,  2007) two-dimensional rectangular  loading surface is  considered,  where

constraint is defined for sequential loading and unloading (2L-CVRP). 

The generalized VRP (GVRP) defines an extension of VRP, where a set

of  customers is  partitioned into clusters  and the limitation is  to  visit  single

cluster only once (Bektas et al.,  2011).  There are attempts to describe  rich

vehicle  routing  problem (RVRP)  that  include  most  of  the  mentioned

constraints and situations and also other real-world constraints and situations

(Toth and Vigo, 2002; Hartl et al., 2006; Hasle and Kloster, 2007; Rizzoli et

al., 2007; Pisinger and Ropke, 2009). Typically it is descriptive formulations or

summarized real-world constraints (Drexl, 2012).

1.2. Heuristics for VRP
The vehicle routing problem has got much attention in recent years. Due

to usefulness in real life and innovation in the transportation sector as well as

logistics, VRP continues to draw researchers’ attention. A number of different

exact and heuristic methods have been studied to solve the VRP that is known

to  be  NP-hard.  Although  exact  methods  give  the  optimal  solution,  their

computation  time  considerably  increases  with  the  increasing  size  of  the

problem.

Branch  and  bound  (B&B).  Branch  and  bound  is  an  optimization

technique which search of all possible solutions while discarding (pruning) a
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large  number  of  non-promising  solutions  by  estimating  upper  and  lower

bounds of the quantity to be optimized. Depth first strategy is used to search

the tree, where nodes whose objective value are lower/higher than the current

best  are  not  explored.  Algorithm  requires  branching  operator  for  splitting

solutions set into the smaller ones and bounding operator for computing lower/

higher bound for the objective function to be be optimized.  Branch and cut

(B&C) is  a  B&B technique,  where search space is  reduced by adding new

constraints  (cuts).  Branch and bound algorithm is  suitable to solve VRP of

small instances with only few nodes (Toth and Vigo, 2001; Toth and Vigo,

2002; Lysgaard et al., 2004; Yeun et al., 2008; Bektas et al., 2011; Vidal et al.,

2013).

Constructive heuristics are methods that start from the empty solution

and iteratively  extend  it  until  the  full  solution  is  constructed.  Construction

heuristics that are typically used for solving VRP are as follows:

• Savings algorithm;

• Route-first cluster-second;

• Cluster-first route-second;

• Insertion heuristics;

Savings  algorithm.  One  of  the  constructive  heuristics  is  savings

algorithm proposed by Clark and Wright (1964) (Laporte et al., 1999; Cordeau

et al., 2005; Vidal et al., 2013). Algorithm starts with the initial solution where

all nodes are visited by separate route from depot. The algorithms search and

merge two routes by maximizing the saving cost,  where cost  typically  is  a

distance. Merge is possible, if merged route remains feasible. 

Route-first cluster-second. The construction starts from the initial route

that visits all the nodes. The route is then split into several routes starting from

the depot (Laporte et al., 1999; Vidal et al., 2013).
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Cluster-first  route-second.  In  contrast  to  “route-first  cluster-second”

approach, the nodes are firstly added to clusters and then routes are optimized

in each cluster.  The clusters  are created by solving  generalized assignment

problem (GAP).  Sweep algorithm is  proposed  by  Gillet  and  Miller  (1974)

(Laporte et al., 1999; Vidal et al., 2013). Algorithm inserts new nodes to route

by going circularly around the depot in each step increasing the angle. Nodes

are inserted at the end of the route, if insertion is feasible and if no insertion

found, new route is started. Afterwards each route is optimized. 

Insertion heuristics. Insertion heuristics are popular methods for solving

a variety of vehicle routing and scheduling problems. Insertion heuristics were

first introduced for a traveling salesman problem (TSP) and belong to a group

of  route  construction  algorithms  (Rosenkrantz  et  al.,  1977;  Campbell  and

Savelsbergh, 2004). The main principle of insertion heuristics is to start from a

single node that is usually called a seed node and that forms the initial route

from  the  depot.  Other  nodes  are  inserted  one  by  one  evaluating  certain

functions to select a node and the place in the route for insertion. The well-

known  insertion  heuristic  approaches  used  in  TSP  are  categorized  by  the

methods  used  for  the  node  selection  to  be  inserted:  random  insertion,  the

nearest  insertion,  the  farthest  insertion  and  the  cheapest  insertion.  For  the

farthest  and  the  nearest  insertion  each  next  node  is  selected  for  insertion

according to the distance to the already constructed route where the functions

for  maximization  and  minimization  are  defined  respectively.  The  node  is

inserted  by  evaluating  the  cost  function  c(ni, nk, nj)  =  l(ni, nk)  +  l(nk, nj)  –

l(ni, nj), where  ni,  nj are the nodes in the current constructed route,  nk is the

node  to  be  inserted,  and  l(ni,  nj)  is  the  distance  function.  In  the  random

insertion heuristic a node is randomly selected from a set of nodes that are still

not included in any route. The place in the route where a randomly selected

node has to be inserted is determined by minimizing the same cost function
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c(ni, nk, nj). In contrast to the random insertion heuristic, the cheapest insertion

heuristic selects the node for insertion by minimizing the defined function for

all nodes and all places in the route (Solomon, 1987).

Solomon (1987) has proposed three types of insertion heuristics. The

most successful of them is called I1. The first route is initialized with the seed

node which is the farthest one from the depot. Nodes are inserted into the first

route until reaching the limit of capacity constraints. If still there are unrouted

nodes, a new route is created and the insertion process is repeated until all the

nodes  are  inserted.  Two  subsequently  defined  criteria  C1(ni, nu, nj)  and

C2(ni, nu, nj) are used to select the node  nu for insertion between the nodes  ni

and  nj.  The  first  function  determines  detour  and  delay  values.  The  second

function generalizes a regret measure over all routes to estimate what could be

lost later if the node is not immediately inserted in its best place. The criterion

function  C1 depends on  the  coefficients  (and the  overall  insertion

method efficiency depends on them (Potvin and Dubé, 1994). In (Potvin and

Rousseau,  1993),  the  authors  have  proposed  a  parallel  version  of  insertion

heuristic I1.

Local-improvement heuristics.  The main principle of the local search

(LS) improvement heuristics is as follows. For solution  x S (where  S is a

search space), a neighborhood in the search space can be defined as Nh(x)  S,

where  Nh(x)  is a function that maps the solution  x to a set of solutions by

applying the defined moves (perturbations). Local search is an iterative process

that takes the initial solution x and, in each iteration, searches for the improved

solution x' in the neighborhood of x. The search stops at solution x'' when the

improved  solution  is  not  found  in  neighborhood  Nh(x'').  Such  a  search

approach  finds  a  local  optimum and  is  called  Hill  Climbing (HC).  It  is  a

popular  method used in other  algorithms for  improvement  of solutions.  An
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example  of  neighborhood  Nh(x)  can  be  one  of  the  following  local-

improvement approaches (Laporte et al., 1999; Vidal et al., 2013):

• 2-opt, where the 2-opt neighborhood is a set of solutions that can be

obtained by removing two edges in solution x and adding new ones to

reconnect the route. 3-opt generalizes 2-opt neighborhood and here 3

edges are replaced by new ones. In -opt, where  edges are replaced

by new ones, two previous improvements are generalized. 

• Lin-Kernighan.  In  the  algorithm  proposed  by  Lin  and  Kernighan

(1973),    value  is  changed  during  search  (Laporte  et  al.,  1999;

Helsgaun, 2000; Vidal et al., 2013).

• Shift (also called re-locate). In shift neighborhood, one node is moved

from  one  route  to  another.  In  swap (also  called  exchange)

neighborhood two nodes are exchanged between routes.

In  addition  to  the  mentioned local-improvement  methods  other  local

search methods exist: Or-opt, cross, etc. (Laporte et al., 1999; Cordeau et al.,

2005; Vidal et al., 2013).

 Local searches and heuristic approaches often produce a near optimal

solution  within  a  reasonable  computation  time.  These  methods  may  be

sensitive  to  data  sets  given  or  require  additional  training  data  during  the

learning process.

Metaheuristic is another approach for solving a complex problem that

may be too difficult or time-consuming by traditional techniques. Some of the

metaheuristics that are applied to the VRP are following:

• Simulated annealing  (SA).  Simulated annealing approach mimics the

annealing process in metallurgy. In order to escape the local optimum,

the probability of accepting deteriorated move for the solution depends

on  the  so  called  “temperature”.  The  higher  temperature,  the  higher

probability  to  accept  degraded  solution.  Temperature  parameter  is
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evolved  during  the  search,  thus  imitating  the  cooling  process  in

metallurgy (Černý, 1985; Misevičius, 2003; Cordeau et al., 2005; Vidal

et al., 2013).

• Tabu search (TS). The idea of the tabu search is to prevent a move in

the search that was already performed during specified amount of last

iterations. In such approach restrictions are stored in memory so called

tabu list.  Application  of  tabu search prevents  cycling  in  search  and

allows moving the search to unexplored search space. (Cordeau et al.,

2001; Brandão, 2004; Archetti et al., 2006; Yeun et al., 2008; Vidal et

al., 2013).

• Ant  colony  optimization (ACO).  This  approach  is  inspired  by  the

behavior of the ants. In the nature initially each ant wanders randomly

and when the food is  found,  the ant returns to the colony by laying

down pheromone trails. When other ants find the path with pheromone

trails they choose to go by that path with higher probability comparing

to go randomly. By the time pheromone trails evaporate, so longer paths

will evaporate more than shorter ones because of time needed to travel

down the path and back again. Evaporation technique of the pheromone

trails lead to optimization of the path length (Rizzoli et al., 2007; Yeun

et al., 2008; Jančauskas et al., 2012; Vidal et al., 2013).

• Large  neighborhood  search.  The  large  neighborhood  search  (LNS)

heuristic belongs to the class of heuristics known as a very large scale

neighborhood search (VLSN) (Pisinger and Ropke, 2009; Vidal et al.,

2013). In the large neighborhood search, the neighborhood is defined as

Nh(x)  =  r(d(x)),  where  neighborhood  solutions  can  be  found  by

applying, at first, the destroy function  d(.) and then the reconstruction

function  r(.).  The large neighborhood search maintains two solutions:

the best solution found  xb and the current solution  x is used that takes
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part  in  the  exploration  of  the  neighborhood.  If  x is  found  such that

fa(x) < fa(xb), where fa(x) is the acceptance criteria function, xb is replaced

with  a  new solution:  xb =  x.  In  adaptive  large  neighborhood search

(ALNS) the neighborhoods are applied depending on their performance

in previous iterations (Pisinger and Ropke, 2009).

• Genetic algorithm. It is a population based  algorithm that follows the

idea  of  biological  evolution  and  natural  selection  where  the  fittest

individuals  survive. The  genetic  algorithm is  described  in  details  in

Section 1.3.

There  are  also  other  approaches  beside  mentioned  ones  that  are

designed to solve one or another specific VRP. In (Drexl, 2012) the author

explains  the  gap  between  models  analyzed  in  theory  and  the  practical

applications  of  the  algorithms.  In  literature  we  can  find  researches  on

algorithms for RVPR, i.e. in (Pisinger and Ropke, 2009) ALNS is proposed for

solving  general  vehicle  routing  problem.  Hasle  and  Kloster  (2007)  have

proposed  the  approach for  solving  RVRP is  based  on  regret  insertion  and

variable  neighborhood  descent (VND)  approach.  VND  belongs  to  VLSN

algorithm  group  and  is  similar  to  already  mentioned  ALNS  approach.

Difference is that VND switches to another neighborhood only when search of

the current neighborhood is trapped in the local optimum (Pisinger and Ropke,

2009). In (Rizzoli et al., 2007) ant colony optimization algorithm is proposed

for solving real-world vehicle routing problem.

In literature various hybrids of previously mentioned algorithms can be

found.  There  are  also  approaches  to  design  parallel  algorithms  for  solving

vehicle routing problems. A survey of different approaches for solving various

VRP can be found in (Yeun et al., 2008; Vidal et al., 2013). In (Dzemyda and

Sakalauskas,  2011)  we  can  find  a  survey  of  heuristic  methods  for  solving

problems that are known to be NP-hard.
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Various global  optimization  algorithms  are  also  investigated  by

researchers from Lithuania: J. Mockus, A. Žilinskas, J. Žilinskas, G. Dzemyda,

L.  Sakalauskas,  A.  Misevičius.  It  is  worth  to  mention  the  researches  that

involve investigations of the genetic algorithms: Misevičius and Kilda (2005);

Žilinskas and Žilinskas (2007); Misevičius (2009), Žilinskas (2008), Redondo

et al.  (2012), Lančinskas et al.  (2013).  There are also doctoral  dissertations

prepared: Felinskas (2007) investigated different heuristic methods, including

genetic algorithms, for optimization of resource-constrained project schedules;

Šešok (2008) investigated the usage of genetic algorithm for optimization of

topology  of  truss  structures,  where  additional  improvement  step  in  genetic

algorithm  is  proposed  to  use  to  find  better  solutions;  Lančinskas  (2013)

investigated parallelization of random search global optimization algorithms,

where  strategies  are  proposed  for  modification  and  parallelization  of  non-

dominated sorting genetic algorithm (NSGA); GA with distribution strategy

has been suggested and investigated by Mačiūnas (2013) for the optimization

of mechanical properties of grillages; 

In this research the focus is given only to genetic algorithm approaches

for  solving  general  vehicle  routing  problem.  Genetic  algorithms have  been

successfully applied to solve many combinatorial problems as well as to the

VRP.  The  standard  genetic  algorithm  has  limitations  in  the  constrained

environment.  However,  it  is  able  to  incorporate  other  techniques  within its

framework to produce a hybrid that provides better efficiency  (Yeun et  al.,

2008). 

1.3. Genetic algorithm
Genetic  algorithms are  based on ideas  of  evolution theory  (Holland,

1975). The main principle here is that only the fittest entities survive (Reid,

2000; Jung and Moon, 2002; Lukasiewycz et al., 2008a). A genetic algorithm

can  be  divided  into  several  sub-parts  that  are  used  in  this  algorithm:
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representation,  fitness  function  evaluation,  initialization,  selection,

recombination (crossover  and mutation),  termination.  The whole  process  of

genetic algorithm is described in Figure 2.

1. The initial population is created, where each individual is expressed

via defined representation; 

2. The fitness function is evaluated for the initial population;

3. The subset of the population (so-called parents) is selected that will

be used in recombination operators to generate offspring;

4. The crossover operator is applied to parents to create new offspring;

5. The mutation operator is applied with a certain probability;

6. The fitness function is evaluated and the individuals with the worst

fitness value are removed;

7. If the stopping criterion is not met, go to Step 3.

Fig. 2. Steps of a genetic algorithm

Representation. The classical genetic algorithm paradigm deals with the

solutions encoded as a literal string, called chromosomes. A chromosome is the

representation  of  a  single  solution  of  the  problem  and  requires  additional

encoding/decoding  steps  to  be  defined  in  the  algorithm.  Genetic  algorithm

approaches can be divided into two sets: algorithms that are applied to the VRP

represented as a chromosome, and algorithms that skip the encoding/decoding

step.  In  genetic  algorithms,  where  encoding/decoding is  bypassed,  a  single

solution is usually called individual. The TSP problem has a single constraint –

all cities should be visited. The solutions of the TSP problem are vectors of the

nodes, where each solution starts always from the same node and the direction

is not important:
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A single solution within a problem can be defined as xtsp  Stsp, where Stsp is the

whole search space of the TSP and |Stsp| = (k – 1)!/2. Each TSP solution can be

easily encoded as a queue of indexes (chromosome):

Such encoding can be useful for any problem that can be expressed as TSP, for

example  in  computer  wiring,  scheduling  of  jobs  on  a  single  machine,  etc.

(Deep  and  Adane,  2011).  However,  it  is  worth  mentioning  that  such  a

representation does not hold any additional information.

Population  and  initialization. In  initialization,  the  initial  set  of

chromosomes, also called as the initial population, is created. The size of initial

population is important for the overall genetic algorithm. A small size of the

initial population can lead to finding of a local optimum only, while a larger

initial population gives a higher probability that the global optimum will be

found, however, the computation time increases (Reid, 2000). While the TSP is

defined as a complete graph, usually the initialization is  done by randomly

selecting a node and assigning it to the route.

Evaluation  and  selection  for  reproduction. The  selection  operator  is

used to identify chromosomes which will  be  used in  reproduction and will

survive in the next generation. Different techniques can be used in selection

operators, however, usually a natural selection process is simulated, where the

“strongest”  individuals  are  used  in  reproduction.  One  of  the  method  for

selection is called  roulette wheel. The name explains the method: a wheel is

divided into parts according to the fitness of the individuals in the population,

where better individuals get a larger part of the wheel and the worst individuals

get  a  small  part  of  the wheel.  So,  the probability  to be  selected is  directly

proportional to the fitness value. When the wheel is spinning, a pin on the

wheel will most probably point to a better individual. The individuals with a
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higher fitness value have a higher probability to be selected for reproduction,

and vice versa (Golberg and Deb, 1991; Zhong et al., 2005).

The  second  method  for  selection  is  called  ranking.  In  the  ranking

method, all individuals in population are sorted according to the fitness value

f(x)  to assign ranks,  where the individual with a better fitness value gets  a

higher rank. In TSP, usually  f(x) defines the length of the total path traveled,

however, this function can include additional characteristics and measurements

in order to keep individuals in the population. If in the roulette wheel method

the fitness value is used when assigning a probability to be selected, in the

ranking method individuals are selected proportionally to the rank (Golberg

and Deb, 1991; Zhong et al., 2005)

Another  method  for  selection  is  called  tournament  selection.  This

method uses characteristics  from the  ranking method,  but,  in contrast  to it,

tournament  selection ranks  only  a  subgroup  of  individuals.  At  first,  two

subgroups from a population are selected. Each subgroup must contain at least

two individuals. The individuals are ranked within a group like in the ranking

selection  operator.  The  best  individual  from  each  group  is  selected  for

reproduction, and the worst individuals are chosen to leave the population. To

generate l new offsprings in each iteration, assuming that two new offsprings

will be generated from two selected parents,  l subgroups have to be selected

from the population (Golberg and Deb, 1991; Alvarenga et al., 2005; Zhong et

al., 2005). 

Recombination. An  important  part  of  the  genetic  algorithm  is

recombination  operators.  The  crossover  operator  simulates  the  reproduction

between  two  individuals,  where  the  created  offsprings  inherit  some

characteristics from parent individuals. Many crossover and mutation operators

exist that operate with a chromosome encoded as a literal line of symbols or

numbers. The list of common crossovers used for solving TSP as well as for
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solving VRP is as follows (Blanton and Wainwright, 1993; Jih et al., 1996;

Ombuki et al., 2002; Tan et al., 2006; Kumar et al., 2012):

 Partially matched crossover (PMX), 

 Cycle crossover (CX), 

 Ordered Crossover (OX),

 Uniform Crossover (UX), 

 Uniform Order Crossover (UOX), 

 Edge Assembly Crossover (EAX),

 Merge crossovers (MX1, MX2), etc.

Crossovers  listed  above  produce  an  encoded  chromosome  or

chromosomes as a result that need to be decoded for evaluation. 

Binary string: 0 1 1 0 1 1 0 0 

1st parent: 1 2 3 4 5 6 7 8

2nd parent: 3 5 1 8 4 7 2 6

Intermediate offsprings

1st offspring: – 5 1 – 4 7 – –

2nd offspring: 1 – – 4 – – 7 8

Generated offsprings:

1st offspring 2 5 1 3 4 7 6 8

2nd offspring 1 3 5 4 2 6 7 8

Fig. 3. Uniform order crossover (UOX)

In (Jih et al., 1996) we can find a review, where the Uniform Order Crossover

is mentioned as a good approach for solving VRP. It  is an analogue of the

Uniform Crossover translated into an order-based form: 

1) a binary string of the same length as parent chromosomes is generated;

2) the first intermediate offspring preserves nodes from the second parent,

where the generated string contains “1”;
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3) permute nodes from the second parent where a binary string contains

“0” in the same order as they appear in the first parent;

4) fill  these  permuted  elements  in  the  gaps  of  the  first  intermediate

offspring;

5) switch the  parents  and perform the steps  2 – 4 to  create the  second

offspring (Jih et al., 1996).

Figure 3 provides an example of a uniform order crossover.

A mutation operator is used with intention to prevent getting stuck in

the local optimum and increase a probability to find the global optimum (Hong

et al.,  2002).  In the mutation operator,  a new offspring is  created from the

single  solution  by  changing  some  characteristics  within  it.  In  the  genetic

algorithm,  crossover  and  mutation  operators  are  applied  by  a  predefined

probability. We can find the values for these probabilities proposed in (Srinivas

and Patnaik, 1994; Hong et al., 2002). In the adaptive probability approach, the

probabilities  are  adjusted  during  computation  depending  on  the  current

population characteristics, flow of the computation and other parameters.  In

(Zhang  et  al.,  2004,  2007),  a  fuzzy  logic  is  considered  for  adjusting  the

probabilities. The simplest mutation operator extracts a single gene (an element

of  the  chromosome)  and  places  it  back  to  the  chromosome  by  randomly

choosing a new location (Potvin and Bengio, 1996). Initially the evolutionary

algorithms had only selection and mutation, while the genetic algorithms also

utilize the crossover operator (Reid, 2000). Both operators play an important

role in genetic algorithms due to the success of recombination of the existing

solutions into a new one.

Diversity maintenance and selective pressure. Two important factors of

the genetic algorithm are a population diversity and a selective pressure. These

two factors are related: if the selective pressure is increasing, the population

diversity  decreases  and  vice  versa.  The  selective  pressure  is  a  task  of  the
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selection operator. Too-weak selective pressure can lead to ineffective search.

The selection operator as well as other operators influences overall diversity of

the  population.  A  good  performance  is  achieved,  while  maintaining  the

diversity of the population as long as possible. The mutation is important in the

variation of individuals, when the population becomes homogeneous (Srinivas

and  Patnaik,  1994).  The  population  diversity  can  also  be  maintained  by

increasing  the  size  of  the  population  or  by  having  greater  mutation  rates,

however,  the  performance  factor  should  be  taken  into  account.  Other

techniques are also used. A common approach is to avoid duplicates in the

population.  It  means  that  the  generated  offspring  is  not  allowed  in  the

population, if it is the clone of the existing individual.

Termination. The genetic algorithms are stochastic methods that could

run forever, if a termination criterion is not applied.  Simple stopping criteria

are  the  maximum  computation  time,  the  maximum  iteration  number  or

iterations that are counted from the last successful improvement of the best

individual  (Reid,  2000;  Hong,  2002;  Jung  and  Moon,  2002;  Berger  and

Barkaoui, 2004; Yeniay, 2005). The probability to improve the best individual

decreases proportionally to the computation time. So, the number of iterations

without  improvement  is  directly  proportional  to  the  probability  of

improvement. A large value would increase the computation time and possibly

a better solution will be found, while a low value will involve an early stop

with a poor solution found.

Many derived GA approaches can be found in the literature, some of

which include multiple populations, dynamically chosen genetic operators or

any  hybrids  with  other  known  heuristic  approaches  (Yeun  et  al.,  2008).

However, the main principles of the genetic algorithm remains the same. In the

rest of the thesis, we will investigate a genetic algorithm implementation for
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VRP. The main research presented here is based on recombination operators

used for solving VRP and their influence on the whole genetic algorithm.

1.4. Genetic algorithms and VRP
As already mentioned,  VRP is  a  generalization of  the  TSP problem.

VRP  includes  additional  components,  i.e.  fleet  of  vehicles,  and  additional

constraints. An additional component of the problem can affect computation

and even require  to  design  the  problem specific  genetic  operators.  Genetic

algorithm approaches to solve the VRP can be categorized according to the

following features:

 Representation.  Solution  in  GA  can  be  encoded  as  a  chromosome

(expressed  as  a  literal  string),  or  unencoded,  where  encoding  of  the

solution within chromosome is not addressed.

 Feasibility  handling.  Genetic  algorithm operators  can be designed to

preserve the feasibility of individuals within a population or allow the

generation of infeasible individuals.

An  example  of  VRP  solution,  where  3  routes  are  used  to  service

customers  expressed  as  a  chromosome is  as  follows  (Berger  et  al.,  1998),

where  "ne belongs  to  one  route,  "nf belongs  to  the  second route  and  "ng

belongs to the third route:

| ne1 ne2 … | nf1 nf2 … | ng1 ng2 …|

The standard  genetic operators can be applied to such a chromosome,

however, such a representation does not hold any problem specific information

and, depending on the encoding approach, the selected genetic algorithm can

be  ineffective.  Different  approaches  for  encoding the  VRP solution  can  be

found  in  the  literature,  i.e.  in  (Thangiah  et  al.,  1991),  a  chromosome

representation based on the angles of vectors starting from a depot node is

proposed, where the VRP is treated as a planar graph problem (Thangiah et al.,

1991; Jung and Moon, 2002). Researches can be found that compare crossover
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operators designed to work with the chromosome representation (Jih et  al.,

1996; Misevičius and Kilda, 2005; Kumar et al., 2012).

When dealing with constraints,  a stochastic approach to find optimal

solutions can compute very long, until an acceptable solution has been found

(Reid,  2000).  For a  constrained problem, there exist  feasible  and infeasible

search spaces SF (x SF does not violate any of the defined constraints) and

SU (x SU does  violate  at  least  one defined constraint).  Let  us  define  the

whole search space  S, then  SF S,  SU S,  SU SF =  S,  SU   SF =  .  The

solution  x belongs  to  the  feasible  search  space  SF, if  Fc(x)  =  0. Highly

constrained problems are those, where the feasible search space is very small.

Thus the probability to generate solutions in such a space for crossover and

mutation operators can be adequately small (Reid, 2000). Approaches, where a

solution is represented as a chromosome or where solutions are allowed to be

generated in the infeasible search space  SU, require additional approaches for

constraint  handling.  The  following  approaches  are  used  to  deal  with  the

infeasibility in genetic algorithms:

 Applying penalty function.

 Treating problem as multi-objective.

 Repairing solution.

 Preserving feasibility in the genetic operators.

Penalty.  The penalty  function  p(x)  transforms a  constrained problem

into  an  unconstrained  one  (Reid,  2000;  Yeniay,  2005;  Lukasiewycz  et  al.,

2008; Lukasiewycz et al., 2008a). A penalty method is widely used in genetic

algorithms for constrained problems. The main target is to add a significant

value to the fitness value for the generated offsprings that violate constraints.

In (Michalewicz, 1995) the author discusses the advantages and disadvantages

of having feasible and infeasible solutions in genetic algorithms and how they

influence the results. The discussion is carried out on the issue how the feasible
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and infeasible solutions can be compared. In general, two evaluation functions

ff(x), where x SF, and fu(x), where x  SU, are considered. Different evaluation

functions  ff(x)  and  fu(x)  are  defined  because  of  the  ability  to  compare  the

solutions in two distinct search spaces. However, the relation between these

two functions can be designed via the extended function q(x), where q(x) can

be  either  the  penalty  function  or  the  cost  for  repairing  the  solution

(Michalewicz,  1995;  Yeniay,  2005).  There  are  two  main  ways  of  penalty

function application (Yeniay, 2005):

 additive: fu(x) = ff(x) + q(x), where q(x) = 0, if none of the constraints is

violated, and q(x)>0, otherwise. 

 multiplicative: fu(x) = ff(x)q(x), where q(x) = 1, if none of the constraints

is violated, and q(x)>1, otherwise.

The penalty method is directly applied to the fitness value, where the

highest benefit of the penalty function is to adjust the ranking mechanism in

the population and increase the selective pressure on the feasible individuals.

Good  results  are  reported,  when  the  penalty  function  is  designed  so  that

feasible results are always treated better than infeasible results (Michalewicz,

1995). Various  penalty  functions  are  considered  on  the  basis  of  their

application  characteristics  (Yeniay,  2005).  Some  of  them  can  dramatically

change  the  fitness  value  or  completely  remove from a population  list.  The

death penalty has the penalty function q(x) = + for each x SU. Although the

death penalty will help to avoid having infeasible solutions, it is expected to

work well when the feasible search space is a reasonable part of the whole

search space (Michalewicz, 1995).  However, for highly constrained problems

the  algorithm  can  suffer  a  degradation  when  trying  to  search  for  feasible

solutions and if the feasible solution is found, the search may prevent to find a

better one (Yeniay, 2005). Adaptive penalties update the parameters for each

generation according to information gathered from the population. Although
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penalty functions help to identify infeasible solutions and keep individuals with

the best characteristics in the population, they affect the generation of feasible

solutions only indirectly and still allow the generation of infeasible solutions. It

is the waste of computation time when infeasible solutions are generated and

later eliminated (Reid, 2000).

Multi-objective. In a multi-objective approach, the constrained problem

is transformed into a multi-objective problem. In (Berger and Barkaoui, 2004;

Ombuki et al., 2006; Tan et al., 2006; Garcia-Najera and Bullinaria, 2011), the

Pareto  ranking  method  is  used  to  solve  the  VRPTW  expressed  as  multi-

objective, where Pareto ranking, similarly to the penalty approach, is used to

adjust the ranking mechanism of the genetic algorithm and assign the relative

strength of individuals in the population.  The ranking mechanism assigns the

smallest rank to non-dominated individuals and the dominated individuals are

ranked according to the individuals in the population and the defined criteria.

Pareto ranking attempts to assign a single fitness score to the solution of a

multi-objective problem. In literature there can be found Pareto ranking in the

genetic algorithm treated as equivalent to the penalty approach (Michalewicz,

1995a).

Repair. The second approach for feasibility handling is a repair method.

The  repair  method  defines  the  transition  function  y =  r(x),  where  y is  the

repaired version of x, such as y SF, and x  SU. The repair can be designed in

two different ways: 

 An individual is repaired for evaluation only, where fu(x) = ff(y), and y is

a  repaired (i.e.  feasible)  version of  x.  It  is  the  so-called  Lamarckian

approach (Michalewicz, 1995; Zhu, 2003; El-Mihoub et al., 2006). The

weakness of such an approach is that it depends on the problem and a

specific repair algorithm has to be designed (El-Mihoub et al., 2006).
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 An individual is repaired and the previous individual is replaced by its

repaired  version.  It  is  called  a  Baldwinian approach  (Michalewicz,

1995; Zhu, 2003; El-Mihoub et al., 2006). This method has the same

limitation  as  the  previous  one.  The  question  of  replacement  is  also

widely considered. In some researches the fixed percent of the repaired

individuals replace the previous one or this can be dependent on the

problem or even on the evolution process.

In  (Jung  and  Moon,  2002)  the  authors  have  proposed  to  use  2D

chromosomes for VRP encoding to handle additionally the position of nodes in

the  2D  Euclidean  space.  The  described  crossover  operator  uses  a  2D

partitioning to interchange routes between two chromosomes, where each route

represents the traveling path of a single vehicle. However, the repair algorithm

is considered to connect separate fragments of the route by taking into account

additional decision variables. Repair algorithms are very helpful for solving a

single-constrained problems. However, identification of the parts for solution

improvement can be quite complex because of constraints. A problem can arise

when the improvement of one objective can lead to a degradation of others.

Preserving  feasibility. The  author  in  (Reid,  2000)  discusses  the

possibility  of  having feasible solutions generated in crossover and mutation

operations, where feasibility handling in a two-point crossover where a set of

crossovers with different boundary indices is considered. Probability function

is defined to find a feasible crossover for a linearly constrained optimization

problem. However, for a highly constrained problem where a feasible space is

very small as compared to the full search space, only a half-feasible crossover

with a single boundary point is discussed. In order to handle feasibility in the

mutation process,  the proposed mutation operator is  based on the crossover

operator, where the selected individual is crossed with a randomly generated

individual (Reid, 2000). 
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In (Tan et al., 2006) the authors use individuals that are composed of a

set of routes,  where each route contains a list  of customers.  A crossover is

defined to exchange the routes between individuals. If the newly added route

contains  the  customer  that  has  already  been  visited  in  another  route,  the

customer is removed from the previous one and left in a newly added route

(Tan  et  al.,  2006).  If  individuals  selected  for  crossover  are  feasible,  the

offspring, generated from parent individuals, will remain feasible. However, a

set of transitions is proposed for feasibility handling in the mutation operator,

where  constraint  violation  is  evaluated  after  each  transition.  If  mutation

transitions generate an infeasible solution, the original routes are restored (Tan

et al., 2006). Such approach does not help to generate feasible solutions, but it

helps to avoid infeasibility. 

In (Alvarenga et al., 2005) the authors have proposed a crossover where

feasible routes from the parent individuals are inserted in the offspring. At first

the  routes  with  the  maximum number  of  customers  are  inserted.  After  all

feasible  routes  have  been  inserted  in  the  offspring,  the  insertion  of  the

remaining customers is tested in the existing routes. If some customers are still

not included to any route, a new route is created and a stochastic push-forward

insertion heuristic is used to insert customers (Alvarenga et al., 2005).

Other approaches. In literature we can find approaches of using genetic

algorithms in a two-phase approach, where in the first phase genetic algorithms

are  used  to  solve  a  single  objective  and  in  the  second  phase  different

algorithms are used to continue the optimization process (Berger and Barkaoui,

2004; Alvarenga et al., 2005; Ombuki et al., 2006). The fluctuating population

size is  also considered to keep infeasible solutions in the solution set.  It  is

proposed because some parts of infeasible solutions can sill remain significant

for crossover and mutation operators (Reid, 2000). In (Alvarenga et al., 2005)
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the authors have proposed to use 10 hierarchical criteria to rank individuals in

the population.

The authors in (Berger and Barkaoui, 2004) have proposed parallel two-

population co-evolution genetic algorithms, Pop1 and Pop2, for VRPTW. The

first population, Pop1, has the objective to minimize the travel distance to the

fixed number of  vehicles.  On the  other  hand,  Pop2 works  to  minimize the

violated time window in order to find at least one feasible individual. In Pop2

the vehicle number is limited to the number obtained by Pop1 minus one. Each

time a feasible individual is found, the population Pop1 is substituted by Pop2

and the fixed number of vehicles considered in both populations is decreased

by one.

Different  mutation  and  crossover  operators  can  produce  different

offsprings and thus affect the performance of the genetic algorithm. Dynamic

genetic algorithms are considered in (Hong et al., 2002). Since the efficiency

of different genetic operators can depend on different problems and also on

different  stages  of  the  genetic  algorithm,  the  proposed  dynamic  genetic

algorithm is designed to choose different operators as well as to dynamically

adjust their application probabilities.

Local  route improvement algorithms are considered for a chromosome

improvement  as  an  additional  step  of  the  genetic  algorithm.  Multiple

improvement algorithms are also considered in computation to better exploit

their  characteristics.  The local  route  improvement is  used to  add additional

intensification to the genetic algorithm with a view to increase the convergence

speed (Potvin and Bengio, 1996; Jung and Moon, 2002; Berger and Barkaoui,

2004; Nagata and Bräysy, 2009). In (Jung and Moon, 2002), usage of Or-opt,

crossover  and  relocation  methods  together  are  investigated  for  the

improvement of routes. Another known improvement algorithms, commonly
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used in VRP implementations are 2-opt, and also its generalization 3-opt and

-opt.

Most  of the feasibility  handling approaches  deal with the population

control to preserve feasible individuals. The common approaches like penalty

methods  or  repair  algorithms  can  help  to  rank  individuals  for  the  next

generation  by  identifying  the  infeasible  ones.  However,  the  crossover  and

mutation operators are still organized to generate solutions in the whole search

space. It is still time consuming to get an acceptable solution. In literature we

can find approaches to define the feasibility preserving operators. Limitations

still exist where the constraint violation is evaluated after each step and the

original solution is restored in an unsuccessful case. Repair algorithms usually

take into account a specific problem or specific constraints. 

1.5. Insertion heuristics in genetic algorithm operators
Genetic  algorithm  approaches  that  deal  with  infeasible  individuals

require additional approaches to intensify a search to a feasible search space.

Usually these approaches require a specific improvement or repair methods to

avoid situations where repair of a single constraint can have a negative impact

on other constraints. Another approach is to avoid infeasibility in the created

solutions.

Depending  on  the  problem  definition  and  constraints,  a  feasible

solution, where all the nodes are visited without violating constrains, could not

be possible to  be created. Solutions  are  possible,  where  either some of  the

constraints are not satisfied or not all nodes are included in the solution. 

In (Reid, 2000), probability functions are defined to find a feasibility-

preserving two-point crossover for a linear constraint problem. However, for a

highly constrained problem, where a feasible search space is reasonably small

compared to an infeasible search space, only a half-feasible crossover with a

single boundary point is discussed.
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Usually,  in  order  to  create  feasible  solutions,  various  approaches  of

construction heuristics are taken into consideration. Construction heuristics can

include  the  minimization  function  and  work  as  the  stand-alone  algorithms.

Insertion heuristics are one group of construction heuristics, where the routes

are constructed by inserting all the nodes one by one into the routes. 

Insertion heuristics are popular because they are easy to implement and

they show good characteristics  in creating feasible solutions (Campbell  and

Savelsbergh, 2004). However, they still depend on the methods of selecting the

nodes and the place in the route for insertion. In this thesis the usage of the

insertion heuristic together with the genetic algorithm approach, seeking for

better efficiency, is considered. As already mentioned, the insertion heuristic is

usually  used  in  the  initialization  of  solutions  in  the  genetic  algorithm.  In

(Potvin and Bengio, 1996; Jung and Moon, 2002) the authors have proposed

the usage of Solomon insertion heuristic to create the initial population that is

used in the genetic algorithm. Because of existence of adjustable weights in

criteria functions of Solomon insertion heuristic I1 the initial set of different

solutions can be generated. A similarity of insertion heuristics can be found in

or-opt and relocation algorithms used in the mutation operation, proposed in

the paper (Jung and Moon, 2002), where the constraint violation is evaluated

for the nodes before inserting them in different parts of the solution. In the

literature a random node insertion is also considered for creating the initial

population for genetic algorithm (Tan et al., 2006).

In (Potvin and Dubé, 1994) the approach of the genetic algorithm is

defined to find the best values of coefficients (for Solomon insertion

heuristic I1The coefficient values in the range [0,1] are mapped to values [0,

127] and encoded in 7 symbol substrings as a binary expression and a single

point crossover operator is used. The authors argue that the results of insertion

heuristic can be greatly improved by a careful search for coefficients.
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In  (Alvarenga  et  al.,  2005;  Ombuki  et  al.,  2006)  a  push-forward

insertion heuristic (PFIH) is used to create an initial solution and also as part of

the  crossover  operator.  PFIH  originally  was  defined  for  the  VRPTW  by

Solomon (1987). PFIH starts by selecting the first node and forming the initial

route  from  a  depot.  The  algorithm  inserts  all  the  other  nodes  into  the

constructed route by minimizing the insertion cost function for each node. The

concept “push-forward” originally means checking pushed-forward values of

all the subsequent node in the route (Tan et al., 2001). In PFIH, the first node

of the new route is identified deterministically, where the node to be inserted is

the one that is distant from the depot, not too far from the last inserted node in

the previous route, and that has an early time window. Other nodes are inserted

by minimizing the insertion cost by evaluating insertion of all the free nodes in

all the existing insertion positions in the route. An important characteristic of

PFIH is that insertion of the node is possible, only if no constraint is violated. 

From the overview of insertion heuristic usage in genetic algorithms for

the  VRP  we  can  see  that  usually  the  insertion  heuristic  is  used  in  the

initialization step of GA to create the initial  set of solutions. There are some

approaches to use insertion heuristics in genetic algorithm operators, but the

insertion heuristics used are still treated as the methods to support the main

algorithm.  The  authors  in  (Campbell  and  Savelsbergh,  2004)  describe  the

benefits  of  insertion  heuristics  in  handling  constraints  and  in  generating

feasible  solutions.  In  contrast  to  insertion  heuristics,  genetic  algorithms are

designed to intensify the search towards an optimal solution. However, genetic

algorithms require additional approaches to handle the constraints discussed in

Section 1.4.

When the insertion heuristic is used as a part of the crossover operator,

it plays an important role in the general genetic algorithm approach: a random

insertion can increase the diversity of the population, whereas the usage of the
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minimization  function  in  the  insertion  can  give  better  results  initially,  but

reduce the diversity. For further crossover operators, we define the following

questions:

 what  information  is  taken  from  parents  to  create  partial  (or  full)

offspring?

 which insertion approach is used to insert unassigned nodes back?

Best cost route crossover (BCRC), proposed in (Ombuki et al., 2006),

creates two offsprings from two parents. For a better explanation, let us denote

the parent solutions as xp1 and xp2, denote the offspring solutions as xo1  and xo2

and intermediate  offspring  solutions  as  x'o1 and  x'o2.  The  defined  crossover

creates an offspring solution in the following steps:

1) Ntemp = select a random route rr  xp2;

2) create a partial solution x'o1 = xp1\{n   Ntemp};

3) create xo1 by inserting the node n  Ntemp into x'o1, by randomly selecting

a node from Ntemp and inserting it with the minimal insertion cost: nodes

are inserted into the existing routes; if it is not possible to do insertion

due to constraint violation, a new route is created;

4) create xo2 by swapping the parent solution and repeating steps 1-3.

The defined crossover operator takes a single parent, forms an offspring

from it, partly destroys it and reconstructs it back (reconstruction is not the

same  as  repair,  where  repair is  used  to  create  a  feasible  version  of  an

infeasible solution). For the stage of destruction, Ombuki et al. (2006) have

proposed to use the second parent as  a reference,  where a single randomly

chosen route provides information which node should be removed from the

offspring solution. A couple of cases can be noticed in such an approach: a) if a

solution has a lot of small routes, a single route could include a small set of

nodes, where removal of a small number of nodes from the solution could not
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give the expected intensification result; b) if the problem is defined only for a

single vehicle (i.e. TSP), the resulting solution will have only one route and, in

the destruction stage, the whole route will be destroyed. The first case can be

solved by increasing the number of routes selected as references. However, the

question, what useful information is shared between the parents, and why this

approach is better than random node remove, is not explained in (Ombuki et

al., 2006). The design of BCRC leads to a minimization of routes, because the

nodes to be removed can form the route in the second parent solution, and

there exist a probability that the whole route will be removed in the offspring

solution. 

SBX. In  (Potvin  and  Bengio,  1996)  two  crossover  operators  are

proposed that  repair  the  generated offspring  by removing correlating  nodes

from  it  and  reinserts  them  by  minimizing  the  additional  detour.  The  first

crossover, called a  sequence-based crossover (SBX), selects two routes from

the parent solutions and merges them by selecting a split place (break-point) in

each route:

1) x'o1 = xp1;

2) select a random route rr1 from xp1 and a random route rr2 from xp2;

3) create  a  new  route  rnew by  adding  nodes  from  rr1 starting  from  the

beginning till a randomly selected place;

4) append nodes to rnew from rr2 starting from a randomly selected place till

the end;

5) remove duplicates from rnew if such exist;

6) x'o1 = x'o1\ {n  rnew} – remove the nodes from x'o1 that belong to the new

route rnew;

7) remove rr1 from x'o1, add n  rr1 to Ntemp;

8) add rnew to x'o1;
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9) create  xo1 by  inserting  the  nodes  n    Ntemp to  x'o1 by  evaluating  the

insertion cost function;

10)create xo2 by swapping the parent solution and repeating steps 1-9.

RBX. The second crossover proposed in (Potvin and Bengio, 1996) is

called  a  route-based crossover (RBX).  In  this  crossover,  a  route  from one

parent replaces one route from the second parent:

1) x'o1 = xp1;

2) select a random route rr2 from xp2;

3) x'o1 = x'o1\ {n  rr2} – remove the nodes from x'o1 that belong to the route

rr2;

4) remove a random route rr1 from x'o1, add n  rr to Ntemp;

5) add the route rr2 to x'o1;

6) create  xo1 by  inserting  the  nodes  n   Ntemp to  x'o1 by  evaluating  the

insertion cost function;

7) create xo2 by swapping the parent solution and repeating steps 1-6.

Both crossovers, SBX and RBX, add some parts from both parents to

the final  solution.  The first  crossover merges  two routes from the opposite

parents, so it can be applied in the cases where parent solutions have only one

route. If solutions have more than one route, the probability to select parent

routes for a crossover, such that the created offspring were competitive in the

population, decreases, when the number of routes increases. The operation of

removing duplicates in the route might be insufficient. A merge of two routes

at  random positions  can  involve  a  violation  of  constraints  in  the  offspring

solution. For example, let us have a VRPTW, where time window constraints

are defined for all nodes. Let us have a break-point selected in the first route rr1

after the node nr1,i, and a break-point selected in the second route rr2 before the

node nr2,j. The new constructed route will connect two routes to the following
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route (nr1,1, …, nr1,i,  nr2,j, …). The node nr2,j could have an early time window

constraint, then, since it was at the beginning of the route rr2, the time window

constraint will probably be violated when the node  nr2,j is added to the “late”

position in the new route. An additional constraint check should be applied to

avoid a constraint violation in the offspring.

The RBX preserves a feasibility in the offspring. If the parent routes are

feasible, then the routes in the offspring remain feasible. Randomly selected

routes  in  both  individuals  may  have  no  common  node,  so  the  removal  of

duplicate  nodes  and  removal  of  a  randomly  selected  route  can  reduce  the

number  of  routes  in  the  intermediate  solution.  So,  this  crossover  has  a

possibility to minimize the number of routes. However, after the reconstruction

the number of routes can still be increased. If parent solutions have a larger

number of routes, then the approach can be adjusted to take a larger number of

routes from the second parent. However, there exist a limitation, if there is only

one route in the parent solution. 

LRX. The crossover used in (Alvarenga et al., 2005) is similar to that of

RBX  described  above,  because  it  combines  the  routes  from  the  parent

individual by evaluating the number of nodes in the routes (let us call it largest

route  crossover (LRX)).  Originally,  the  genetic  algorithm  approach  was

defined to  handle  infeasibility  as  well.  In  the  original  crossover,  infeasible

routes are skipped in the offspring and added to the list of unassigned nodes.

This crossover can also be applied to feasible solutions:

1) Lr =  is a list of routes;

2) add  r  xp1 to Lr;

3) add  r  xp2 to Lr; 

4) xo1 =  is the initial empty solution;

5) rs = select a route from Lr with the largest number of nodes;
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6) for  r  Lr, r = r \{n  rs} - remove the nodes belonging to rs from all

the other routes;

7) add rs to xo1;

8) repeat the steps 5-7, while Lr has routes with at least one node.

The LRX produces only one offspring. Stochastic PFIH was used as a

reconstruction  method  to  insert  unassigned  nodes  in  the  LRX.  If  in  the

deterministic PFIH, the first node (the initial route) is chosen deterministically,

in the stochastic PFIH, each new route is started by choosing an unassigned

node  randomly.  By  inserting  routes  with  a  larger  number  of  tasks,  the

described crossover intensifies the first objective of the VRPTW problem. So,

this crossover is designed for a special problem (or a special objective) and is

not effective in the cases, where parent solutions have only one route.

Reconstruction. All the described crossovers use an insertion heuristic

for reconstruction of solutions. However, insertion approaches slightly differ in

each crossover.  In  all  of  them, at  first,  nodes  are  inserted into the  existing

routes, if the constraints are not violated, and a new route created, otherwise.

Such a method intensifies the route minimization objective of the VRPTW.

Usually, in GA, intensification is a task of the selection operator and depends

on a selective pressure. The usage of intensification in the crossover operator

needs to be adequate to the intensification in the selection operator, otherwise,

the crossover will, most probably, generate an offspring that will not survive in

the population.

1.6. Shortest path search
At first sight, the shortest path problem seems to be very simple and

global  positioning  system (GPS)  devices  and  many  other  systems  find  the

shortest path between two locations rather quickly. When the solution is given

within a few seconds, it does not seem very slow and the result is acceptable.
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However,  modern  systems  deal  with  much  broader  route  planning  tasks  –

vehicle routing problems. The objective of the VRP is to find the optimal path,

when a number of customers are serviced. The real-world VRP depends on the

road network and a task to reach separate nodes in the road graph  from the

starting node which is the shortest path problem. In order to solve the logistic

task made up of k+1 nodes, the (k+1)k shortest paths need to be calculated. In

the simplest case, the distance between these nodes can be calculated according

to the coordinates of nodes. However, the difference between the real shortest

path and the straight line can be significant for small distances. For example, if

the  river  exists  between  two  nodes,  then  the  shortest  path  will  increase

depending on the nearest bridge, or the shortest path is searched in the city

with  many  one-way  roads,  and  then  the  search  of  the  shortest  path  may

increase  several  times.  For  VRP  the  (k+1)k shortest  paths  need  to  be

calculated and the standard Dijkstra's algorithm can be used to find the shortest

path  between  all  pick-up  and  delivery  places.  This  task  becomes  more

complicated, if we take into account the additional detailed information, for

example, a permissible maximum weight of a bridge, and the parameters of the

vehicle, or even dynamic information, such as traffic jams that could influence

the value of the shortest path. While searching for the VRP solution by the

genetic algorithm, different solutions are created that include different travel

paths  in  road  network.  Each  initially  calculated  shortest  path  needs  to  be

verified by taking into account the additional information at runtime. If the

additional data involves changes in the path (i.e. because of traffic jams the

travel time significantly increases) the path needs to be recalculated. If all the

paths  are  calculated  by  taking  into  account  the  additional  data  initially,  it

would require a lot of time and all the shortest paths would not be necessary

used in VRP optimization. However the search of shortest path at runtime of

VRP optimization will  affect  a  calculation time.  The usage of the different
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shortest  path  search  speed-up  techniques  could  reduce  this  time.  So,  the

shortest path search is of a great importance in vehicle routing problems that

involve real-world road network. 

When searching for the shortest path in the road network, a graph with

non-negative  weights  is  commonly  used.  An  edge  in  the  graph  can  be

described by any numerical value: distance, time, speed, etc. And a commonly

used approach for finding the shortest path in the graph is Dijkstra's algorithm. 

1.6.1. Shortest-path computation speed-up techniques

Route planning and shortest path problems have gained more and more

attention  in  recent  researches.  There  are  some  attempts  to  develop  new

algorithms and accelerate the already known ones, by adding a new ingredient

or processing additional information. Some of them pay attention to dynamic

information, such as road congestion or weather conditions. The others refer to

the fact that the path between two points is static, i.e., a graph does not change

during  the  calculation  of  the  shortest  path  between  two  nodes,  and  no

additional calculations, based on the traffic condition changes, are made. Such

algorithms are simply called static route planning algorithms.

As  mentioned  before,  one  of  the  most  popular  static  algorithms  is

Dijkstra's  algorithm  (Dijkstra,  1959).  It  is  known  as  the  most  efficient

algorithm for the shortest path problem in a directed weighted graph. Here we

focus on the published results on speed-up techniques of Dijkstra's algorithm.

Dijkstra's algorithm is a weighted breadth-first search algorithm. Although this

algorithm was designed to calculate the “shortest distance” from one node to

other nodes in the graph, it can be easily used for calculating the distance from

one node to the destination node. One of the speed-up modification algorithms

is a bidirectional Dijkstra's algorithm (Goldberg et al.,  2006; Koehler et al.,

2006; Berrettini et al., 2009). This method calculates a path starting a search

operation from both sides at the same time. The calculation “meets” and stops
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somewhere in the middle of the road and gives the answer in quest. We will

review the mentioned modification more in detail in Section 1.6.3.

Another attempt to speed-up Dijkstra's algorithm is index usage for the

priority queue of labeled nodes. A Fibonacci heap (von Lossow, 2007) or a

binary heap (Madduri et al.,  2007) is proposed for indexing a set of nodes.

Usage of such an index in a queue of nodes speeds up the algorithm just by one

step, extracting nodes with the minimum distance from all the available labeled

nodes. Using this technique, the calculation accelerates only in a very large

graph,  where  the  count  of  labeled  nodes  significantly  increases  during

calculation. However, one-step acceleration does not yield a significant result.

Also,  attempts  are  made  to  implement  Dijkstra's  algorithm  in

reconfigurable hardware. The paper (Tommiska and Skytta, 2001) provides an

overview  of  applications  of  reconfigurable  computing  in  network  routing,

where  a  FPGA-based  (FPGA  –  field-programmable  gate  array)  version  of

Dijkstra's  shortest  path  algorithm  is  also  presented  and  differences  of  the

performance between the FPGA-based and microprocessor-based versions of

the  same  algorithm  are  compared. Another  interesting  hardware  used  for

Dijkstra's  algorithm  implementation  is  DAPDNA-2  –  dynamically

reconfigurable  processor  developed  by  IPFlex  (Ishikawa  et  al.,  2007).  The

modified algorithm finds the shortest paths in parallel, using the  processing

elements (PE) matrix. Although the use of the array of 376 PE compared to the

microprocessor gives better results, the implemented schema is designed only

for DAPDNA-2 and is not suitable for the other hardware.

Since  Dijkstra's  algorithm is  static  and calculations  are  made  with a

static  graph,  various  preprocessing techniques are  used for  speeding up the

process. One of the easiest methods is to count the shortest paths between all k

nodes (Romeijn and Smith, 1999). The obtained kk matrix then can be easily

used in the next level route planning system.  However,  the use of such an

47



approach together with road data of the real world would be very inefficient.

Great speed-up factors can be achieved using highway hierarchies (Koehler et

al., 2006; Knopp et al., 2007). The highway hierarchy method is based on the

idea that only a highway network needs to be searched outside a fixed size

neighborhood around the source and target. A highway approach is faster in

preprocessing  as  compared  to  the  Arc-flags  approach,  but  calculates  the

shortest path more slowly (Koehler et al., 2006). The main “arc-flag” method

idea is  a  graph partition  into regions. Then,  all  the  edges  are  reviewed by

marking with property flags, which indicate whether the edge is on the shortest

route  to  the  regions  or  not.  During  the  route  search,  only  those  edges  are

selected the properties of which are appropriate, and the rest are rejected.

In (Koehler et al., 2006), the graph partitioning techniques are reviewed:

rectangular  partition  (grid),  quadtree,  kd-tree,  multi-way  arc  separator.  The

splitting technique can be used to form a second-level graph, i.e., the graph is

split  into  parts,  which  together  make  a  new graph  of  macronodes  and  the

macronodes  are  comprised  of  smaller  graphs  (Romeijn  and  Smith,  1999).

Thus, Dijkstra's algorithm would be first used in the macronode graph, and

then,  according  to  the  obtained  results,  it  would  be  used  in  other  smaller

graphs. All of these preprocessing technologies give good results, but they also

have  disadvantages:  each  preprocessing  technique  requires  additional  data

storage for the edge or node, such as in the arc-flag method, where each node

keeps  property  flags  about  all  regions.  Thus,  for  a  very  huge  graph  (for

example, OpenStreetMap data is made up of ~600M nodes), we should have to

deal with memory problems, or will reduce the algorithm efficiency using a

hard  disk  and  reading  it  constantly. Another  drawback  is  a  difficult

implementation  using  dynamic  data,  such  as  roads  closed  for  repair,  or

congestion, etc. Then all the partitions will have to be preprocessed once more,

which may last very long for a very large graph. Important aspect is that the
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preprocessing of the data is performed through the calculation of distances: the

division  is  made  by  taking  into  account  geographical  features  of  the  road.

Since Dijkstra's algorithm may calculate the route using the edge cost, which

may  include  not  only  the  distance,  but  also  the  time  or  other  values,

preprocessing methods lose their value.

Another useful technology to speed up Dijkstra's algorithm is parallel

computing. The approach has already been mentioned in adapting Dijkstra's

algorithm to reconfigurable hardware. To speed up the preprocessing part, the

kk road calculation is proposed using the parallel computing. To calculate all

roads, the usage of total k processors is proposed (Romeijn and Smith, 1999;

Lu and Chen, 2006). However,  this method is still very limited, even with a

modern technology. It is suitable to use more in local computer network, which

usually covers a smaller physical area, like home, office, or a small group of

buildings, than in street routes. Dijkstra's algorithm is iterative and, in each

iteration,  it  uses  the  data  obtained  in  the  previous  iteration. Due  to  these

properties, the algorithm cannot be easily adapted to parallel computing, but it

is  still  widely  considered.  Usually,  due  to  the  large  amount  of  data,  it  is

difficult  to  adapt  Dijkstra's  algorithm  to  the  distributed  memory  parallel

computing.  However,  today's  multi-core  technology  allows  us  to  easily

implement parallel calculations based on a shared memory technique, called

transactional memory (TM), thus avoiding synchronization of large amounts of

data. TM is a technology in multi-core platforms that allows several different

processes to access the same memory location. The developer has a possibility

to mark certain parts of the code, indicating that during the program execution

at this point, some memory allocations can be accessed by several different

processes. TM monitors process the transactions, and, if several processes are

trying  to  access  the  conflicting  memory,  TM  decides  how  to  handle

(Anastopoulos et al., 2009; 2009a). In general, all the processes are blocked,
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only one process can access the memory allocation and, when the operation is

completed, the blocked process is again continued. If the transactions are not

conflicting, processes are carried out without any interruption. Because of their

properties TM is very useful for parallel computations, based on the shared

memory. There are some attempts to implement Dijkstra's algorithm in parallel

computing using the transactional memory together with helper threads (Lu

and Chen, 2006; Anastopoulos et al., 2009, 2009a). Such a parallel computing

technology is proposed to use in the inner loop of Dijkstra's algorithm, where

nodes are processed for labeling. The helper thread reads the tentative distance

of the vertex in the queue and attempts to relax its outgoing edges based on this

value (Anastopoulos et al., 2009). When the processes are finished, the main

process continues its work up to the next inner loop. It is also proposed not to

wait to the end of the helper processes, and the main process continues to work

without paying attention to the adjacent processes (Anastopoulos et al., 2009,

2009a).  Such  an  approach  cannot  work  properly  without  TM  technology.

However, such helper thread computing can last shorter than its starting and

termination.  The  periodic  creation  and  destruction  of  such  processes  could

adversely affect the operation of the algorithm.

The paper (Edmonds et  al.,  2006) gives a similar parallel  computing

method, but introduces an additional heuristic, for example, choosing which

edges  need  to  be  dismissed.  Also,  attempts  are  made  to  adapt  parallel

computing to algorithms that are based on preprocessing. In a modified arc-

flag algorithm, a linear preprocessing method was left,  but only the shortest

path searches are performed in parallel (Berrettini et al., 2009). The parallel

computing is possible without TM technology, and then each new process will

have to keep in memory a separate copy of the road data (Lu and Chen, 2006).

However, bearing in mind the size of the modern road networks, problems can

arise due to technological limitations, while having multiple copies of the same
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graph in memory. Although this method can be easily implemented in parallel

with a separate memory, this method requires an additional synchronization in

order to update data everywhere.

Acceleration and parallelization of Dijkstra's algorithm still remains a

complex  problem  and  completely  unsolved.  In  order  to  speed-up  this

algorithm,  several  methods together  are  often used,  for  example,  Fibonacci

heap  and  highway  hierarchies.  However,  in  order  to  speed  up  Dijkstra's

algorithm,  the  main  idea  of  this  algorithm  is  often  distorted:  if  it  is  the

“shortest”  path  search  algorithm.  And  many  of  speed-up  methods  lead  to

nearly the shortest path calculation,  such as heuristic introduction or highway

hierarchies.

1.6.2. Dijkstra's algorithm

Dijkstra's algorithm finds the shortest distance from one node to all the

others  in the graph with non-negative weights. Let us consider a road graph

Gr = (Nr, Er), which consists of the nodes of nr  Nr and edges er Er. Let us

denote by ls(nr) the distance from the node nr to the starting node ns
r  Nr, and

by l(nv
r,  nu

r) the distance from node  nv
r to node nu

r. All the labeled nodes are

organized by the algorithm in the priority queue Q and all the visited nodes are

stored in array NS
r. During each iteration the algorithm extracts node nk

r from

queue Q with the lowest value of ls(nk
r). Then all the outgoing edges of node nk

r

are  relaxed,  which  could  reduce  the  keys  of  the  corresponding  neighbors.

Relaxing an edge (nk
r, nv

r) means testing whether we can improve the shortest

path to  nv
r found so far by going through node nk

r. If  ls(nk
r) + l(nk

r,  nv
r) is less

than ls(nv
r) found so far, ls(nv

r) is replaced by a new value. If the adjacent nodes

have not  yet  been labeled,  they  are  inserted in  queue  Q.  This  operation  is

performed in the decreaseKey operation (Goldberg et al., 2006; Ishikawa et al.,

2007;  Anastopoulos  et  al.,  2009a).  The  following  pseudo-code  illustrates
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Dijkstra's  algorithm. The algorithm terminates when the destination node is

found. 

procedure Dijkstra(Gr = (Nr, Er), ns
r,nd

r)
ls(ns

r) = 0
NS

r =  // visited nodes
Q =  // labeled nodes
Q.insert(ns

r,0)
while Q is not empty // outer loop
 nu

r = Q.extractMin()
S.addNode(nu

r) 
if nu

r = nd
r // stopping criterion

break // route found
end if
for each nv

r adjacent to nu
r // inner loop

sum = ls(nu
r) + l(nu

r, nv
r)

 if ls(nv
r) > sum

Q.decreaseKey(nv
r, sum)

ls(nv
r) = sum

pr(nv
r) = nu

r // set predecessor
end if

 end for
end while

end 

Dijkstra's algorithm is a labeling algorithm. When the distance from the

current node to the start node is known, then adjacent nodes are labeled. So by

starting labeling of the nodes adjacent to the start node, the algorithm iterates

until  the  set  of  labeled  nodes  is  empty.  Dijkstra's  algorithm  is  a  greedy

algorithm because at each step, the best alternative is chosen. The algorithm

produces a correct shortest-paths tree whose top is the start node, and to every

other node in the graph Gr there is only one possible path. So, while executing

the search from the start node ns
r to the target node nd

r, the algorithm must visit

all the nodes nv
r  Nr, with the distance ls(nv

r) < ls(nd
r).

1.6.3. Bidirectional algorithm

In  search  of  the  path  between  two  specific  nodes  of  the  graph,  a

modified  Dijkstra's  algorithm  –  bidirectional  method  –  can  be  used.  This
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method performs the searches starting from the start and end nodes (Goldberg

et al., 2006; Berrettini et al., 2009). The algorithm is simply run by executing

one step on each side in a single period. At first, the processing step with the

extracted node is performed from the start node, and then the same calculation

is made from the end node. During such a step a single node is extracted from

the  priority  queue,  marked  as  visible  and  all  the  corresponding  edges  are

relaxed (inner loop). Such process will not necessarily be symmetrical. It will

depend on the number of edges of all the visited nodes. 

To execute such algorithm, separate data containers must be used, so

each  search  must  have  its  own  sets  for  labeled  and  visited  nodes.  In  the

following pseudo-code, a forward search is using the priority queue QS and the

set of visited nodes NS
r and a backward search is using the priority queue QD

and the set of visited nodes ND
r.

procedure bidirectionalDijkstra(Gr = (Nr, Er), ns
r, nd

r)
QS =  // labeled nodes in search from start
QD =  // labeled nodes in search from end
NS

r =  // visited nodes in search from start
ND

r =  // visited nodes in search from end
…
while QS is not empty and QD is not empty // outer loop

// calc from start
nu

r = QS.extractMin()
NS

r.addNode(nu
r)

… 
if stoppingCriterion() is true // stopping criterion

break
end if
for each nv

r adjacent to nu
r // inner loop

…
end for
// calc from end
nu

r = QD.extractMin()
ND

r.addNode(nu
r)

…
if stoppingCriterion() is true // stopping criterion

break
end if
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for each nv
r adjacent to nu

r // inner loop
…
end for

end while
end

The  bidirectional  algorithm  stops  when  the  stopping  criterion

(stoppingCriterion()) is met. This occurs somewhere in the middle between the

start and end nodes. Since the bidirectional Dijkstra's algorithm is two-sided

and the search is carried out from the start node and from the end node at the

same time, it is necessary to establish a clear stopping criteria. An algorithm

without such criteria will be run as long as the search from the start node will

find the end node or the search from end node will find the start node. In this

case, there will  be a lot of nodes that will  be visited twice by contrariwise

computations. So, there will be such a set NH
r = NS

r  ND
r, and the set NH

r will

consist  of  all  the  twice  visited  nodes.  To  increase  the  efficiency  of  the

bidirectional  Dijkstra's  algorithm,  the  set  NH
r needs  to  be  minimized.  The

papers  (Goldberg  et  al.,  2006;  Berrettini  et  al.,  2009)  present  two possible

stopping criteria: when the current labeled node has already been labeled by

the other search and when the current visited node has already been visited by

the other search.  With the first  stopping criterion the algorithm stops when

such node  nw
r is found, where  nw

r  QS and  nw
r  QD. This stopping criterion

can be defined as the intersection of two sets:  QS  QD = {nw
r}. If we denote

the shortest path from the node nv
r to the start node by P(nv

r), nv
r  Nr, and the

shortest path from the node nu
r to the end node by P|(nu

r), nu
r  Nr, we get the

shortest path  P(nw
r)  P|(nw

r) with the first stopping criterion. Application of

this stopping criterion to the search in the example graph is illustrated in Figure

4. The shortest path is ACB.
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Fig. 4. The bidirectional algorithm chooses the shortest path ACB by applying the first
stopping criterion

The algorithm stops by applying the second stopping criterion, when the

node nz
r is found, where nz

r  NS
r and nz

r  ND
r. This stopping criterion can be

defined as the intersection of two sets: NS
r  ND

r = {nz
r}. Then the shortest path

from the node  ns
r to the node  nd

r is  P(nz
r)  P|(nz

r).  Figure  5 illustrates the

example  graph,  in  which  we  get  the  wrong  result  by  applying  the  second

stopping criterion. It happens because NS
r  NS

r = {E}, and the nodes B and C

remain just labeled by different searches. 

Fig. 5. The bidirectional algorithm chooses the path ABECD by applying the second stopping
criterion

By applying the second stopping criterion to the first example, we also

get the “wrong shortest” path, however, in the second example, the difference

between the correct and wrong shortest paths is more obvious. By applying the

second  stopping  criterion  to  the  second  example,  we  get  the  shortest  path

ABECD instead of ABCD. It happens because there exists such node E, where

l(B, E) < l(B, C) and l(C, E) < l(B, C). In the worst case, the path BEC can be
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almost  twice  longer  than  the  path  BC.  Such  situation  can  lead  to  a  really

significant inaccuracy.

1.7. Summary 
Various  vehicle  routing  problems  are  analyzed in  the  literature.

Different variants of the VRP includes specific constraints that describe some

specific  situation  of  the  real-world  vehicle  routing  problem.  A  set  of

algorithms,  their  modified  variants  and  various  hybrids  are  analyzed  for

solving the mentioned problems. Only a small number of researches focus on

creating algorithm that could be applicable to a larger group of VRP. 

The genetic algorithm is one of the metaheuristic approaches that is also

used for solving VRP. The genetic algorithm is a stochastic approach that is

based  on  ideas  of  evolution  theory.  The  search  in  the  genetic  algorithm

depends  on  two  factors:  selective  pressure  and  population  diversity.  These

factors play an important role in  the genetic algorithm, where the selective

pressure  describes  the  intensification  of  search  for  the  optimal  solution  by

choosing better individuals for reproduction in each next generation, and the

diversity  maintenance  is  responsible  for  having  a  non-homogeneous

population. New solutions are  obtained by applying recombination operators

on selected individuals  from the previous  generation.  When dealing with a

constrained  problem,  genetic  operators  can  generate  solution  in  the  whole

search space, thus requiring additional approaches to find feasible solutions.

Penalty  methods  are  common  approaches  to  deal  with  constraints  in  GA.

However,  a  penalty  approach  does  not  prevent  generation  of  solution  in

infeasible search space. Repair and improve methods are other approaches for

dealing with constraints in genetic algorithm, however usually they are hardly

adjustable to new constraints. Existing approaches for solving VRP are usually

designed for special problem and are hardly applicable to the different problem

with different constraints or objective, so there still is a need for the algorithm
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that could be extended with additional parameters and applicable for a larger

group of VRPs.

The shortest  path calculation is  an important part  for  solving a real-

world VRP. The different shortest paths can exist depending on the additional

search data (i.e. permissible maximum weight of a bridge and the parameters

of the vehicle, or even dynamic information, such as traffic jams). This chapter

reviews Dijkstra's shortest path algorithm speed-up techniques for calculation

of the shortest  path while searching for real  world vehicle routing problem

solution  that  involves  real  road data.  One  of  the  modification  of  Dijkstra's

algorithm,  a  bidirectional  Dijkstra's  algorithm  lacks  of  stopping  criterion

definition  and  in  some  cases  this  leads  to  the  significant  error  of  the

calculation.

The review presented in the chapter has been also published in (Vaira

and Kurasova, 2010; Vaira and Kurasova, 2011; Vaira and Kurasova, 2013;

Vaira and Kurasova, 2013a; Vaira and Kurasova, 2014).
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Chapter 2
A new algorithm for vehicle routing 
problem 

This chapter presents the main theoretical results of the doctoral research.
Section  2.1 proposes the genetic algorithm for  vehicle routing problem.
Proposed  algorithm  involves  usage  of  insertion  heuristic  in  genetic
operators,  proposed  expression  of  the  individuals  in  population,  second
population  usage  in  mutation  operator,  and  genetic  algorithm  operators
based on repeated reinsertion  approach.  Section  2.2 describes  a  general
vehicle  routing  problem  definition  and  genetic  algorithm  operators
designed for intensifying search. Section 2.3 describes a parallel version of
Dijkstra's algorithm for the shortest path search.  Section  2.4 summarizes
this chapter.

2.1. Genetic algorithm for vehicle routing problem
A genetic algorithm based on insertion heuristics without considering

any additional local search methods for the improvement is proposed in this

section.  The  definition  “genetic  algorithm”  can  describe  either  a  general

approach or a set of the specific genetic operators. In this thesis the proposed

version of  genetic  algorithm for  VRP with  constraints  will  be  called  “new

genetic algorithm” further on to distinguish it from other approaches.

Genetic algorithms and insertion heuristics combine together their best

characteristics to search for the optimal solution. It is generally accepted that

any genetic algorithm for solving a problem should have basic components,

such  as  a  genetic  representation  of  solutions,  the  way  to  create  the  initial

solution,  the  evaluation  function  for  ranking  solutions,  genetic  operators,

values of the parameters (i.e. population size, probabilities for applying genetic
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operators,  etc.).  In Sections  2.1.1,  2.1.2,  2.1.3,  2.1.4 there are described all

components of the new genetic algorithm in more detail.

2.1.1. Incorporating insertion heuristics

As already  mentioned in Section  1.5, in some variants of the genetic

algorithm for  VRP the  insertion  heuristic  is  used  in  the  initialization  step,

where  Solomon I1  method has  been used with random coefficients  for  the

criterion function. Although such a random insertion is possible, randomization

is limited by the defined criterion function. 

Let us assume that we have a set of nodes N={n0, ..., nk}, where N\{n0}

are the nodes that should be visited by a single vehicle and n0 is the depot. The

constructed  partial  solution  is  x0=({n0}, r0=,  Nr0=N\{n0}),  where  r0 is  the

empty set of arcs, Nr0 is a set of unvisited nodes. So the solution contains only

the depot n0.

In the first iteration the randomly selected node nr1 from Nr0 is inserted

into a partial solution x0. The new constructed partial solution is x1=({n0, nr1},

r1={(n0, nr1),  (nr1, n0)},  Nr1=Nr0\{nr1}=N\{n0, nr1}).  Two  new  arcs  (n0, nr1),

(nr1, n0) have been created in the solution. Assume that the route is feasible and

it  can  be  agreed  that  it  would  be  the  shortest  route  for  a  single  customer

problem {n0, nr1}.

In the second iteration a random node nr2 is selected from Nr1. For the

newly selected node there exist two possible places for insertion in the solution

x1: either in the arc (n0, nr1) or in the arc (nr1, n0). Assume that both insertions

are feasible and the arc (nr1, n0) has a lower insertion cost than the arc (n0, nr1).

So  the  newly  constructed  partial  solution  is  x2=({n0, nr1, nr2},  r2={(n0, nr1),

(nr1, nr2), (nr2, n0)}, Nr2=N\{n0, nr1, nr2}). The newly constructed partial solution

is feasible and optimal. 

In the third iteration another random node nr3 is selected from Nr2 and a

new optimal solution x3 is created.
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In each next iteration k a random node nrk is selected from Nr(k–1). If there

exists  such  an  arc  in  rk–1,  where  the  inserted  node  does  not  violate  any

constraints and produces a new feasible partial solution xk, the added node nrk

removes the existing arc (ni, nj) and adds two new arcs (ni, nrk) and (nrk, nj). If

we find the optimal partial solution in the iteration k–1, the solution created in

iteration k is not necessarily optimal, because two new arcs (ni, nrk) and (nrk, nj)

are created and there can exist a shorter path to some nodes in the route rk.

The  random insertion heuristic with only one minimization objective,

i.e.  traveling  salesman  problem  (TSP)  with  the  total  traveling  path

minimization, has a complexity O(k2) to construct a single solution, where the

complexity of search for the best arc to insert a single node is O(k).  When

adding  additional  constraints,  the  computation  time  is  affected.  Solving

VRPTW by the insertion heuristic has the complexity O(k3). The handling time

window constraint involves additional check for any violations occurring in a

partial route after inserting a new node. So, for each node to be inserted the

best arc search has the complexity O(k2), where the insertion complexity for all

nodes is O(k3).

As already mentioned, when solving the problem with constraints by the

genetic algorithm, the constraint violation is checked per solution, usually in

the form of penalty or repair cost.  In the proposed algorithm the constraint

violation  is  evaluated  in  the  insertion.  For  each  randomly  selected  node  a

feasible  insertion  needs  to  be  determined,  where  feasible  insertion  means

finding such an arc of a partial solution, where the inserted node as well as all

the previously added nodes do not violate any constraints. The partial solution

with a new inserted node should remain feasible.  Let us define the function

hc(n, a) that evaluates the violation for the certain constraint c with the newly

inserted node n in arc a. The function hc is similar to the function fc, where fc

evaluates  the  whole  solution for  constraint  violation,  but  hc is  applied to  a
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single  node  insertion  only.  The  function  hc is  defined  here  as  follows:

hc(n, a) = 0, if  the constraint  c C is  satisfied,  and  hc(n, a)  > 0, otherwise.

Insertion of the node n into the arc a is feasible, if Hc(n, a) = 0, where 

Subject to the insertion order and the constraint set, a partial route can

be constructed in such a way that no additional nodes can be inserted without

violating constraints. So, usage of random insertion heuristics does not always

guarantee  the  creation  of  a  feasible  solution,  but  the  feasibility  can  be

preserved  in  a  partial  solution.  An  infeasible  insertion  would  require  an

additional  definition  of  constraint  hierarchy  or  any  decision  variables  for

ranking constraints or different penalty approaches for the evaluation of the

constraint violation.

In order to avoid any additional complexities, we define the solution x

of the genetic algorithm as follows: 

where each route  ri R represents a vehicle traveling path and  U is a set of

unassigned  nodes  left  due  to  constraint  violation.  The  single  route  ri is

represented as a graph,  where each arc  ai is  the shortest  path between two

nodes. Set U is part of the solution x, where Nv U = N and Nv  U = . If set

U is empty, then the solution x is feasible or infeasible, otherwise. 

In the proposed algorithm the insertion is  carried out as follows. An

initial solution has an empty route list (R = ) and an empty unassigned node

list (U = ).  The node  nr is randomly selected from the set N.  All arcs are
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checked for feasible insertion of the selected node. All the arcs that pass the

constraint  violation  check are  then  evaluated  by  the  insertion  cost  function

c(ns, nr, nt), where the path length is the cost. The arc with the smallest value

c(ns, nr, nr)  is  chosen  for  the  insertion  of  the  node  nr.  If  no  arcs  pass  the

violation check, a new route is started. If the maximum number of routes is

reached,  the node  nr is  added to an unassigned node list  U.  The following

pseudo-code describes the insertion process:

Nu =N
R = 
U = 
while Nu  

nr = select a random node from Nu

A = get all arcs from R
for each constraint c C

remove arcs from A where insertion of nr violates constraint c
end for
if A = and |R|<cv

ri = new route({n0, nr})
add ri to R

else if (A  )
find a A, a = (ns, nt) by minimizing the function c(ns, nr, nt)
insert nr to a

else
add nr to U

end if
end while

Figure  6 shows the insertion steps where a filled circle represents the

depot node  n0,  the arrows and empty circles represent the route  ri,  a dotted

circle represents the node nr selected for insertion and the dotted arrows show

possible insertion arcs. The maximum vehicle number constraint cv  C check

is integrated in the insertion process.
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Fig. 6. Node insertion process: a) current solution constructed; b) arcs, where the feasible
insertion of a node is possible; c) search for the minimal insertion cost; d) solution with the

inserted node

Capacity  constraints  Cc C define  the  maximal  allowed  amount  of

goods that can be assigned to a vehicle. The load increases by assigning a new

node to the route. Let us define the function dc(nj) that evaluates the load of the

single node nj. The condition ci
c  dc(nj),  nj ri and ci

c
 Cc,  should not be

violated in the VRPTW. The check of this constraint has the complexity O(1)

for a single node insertion. In the VRPPD the load varies during traveling and

the function dc(nj) represents loading or unloading at a specified node nj, where

dc(nj) > 0,  if  goods  are  loaded,  and  dc(nj) < 0,  if  goods  are  unloaded.  Node

insertion  to  one  place  can  involve  capacity  violation  in  other  places.  The

function gc(ai) calculates the current capacity load in the arc ai. For node to be

inserted into the arc ai all subsequent arcs in a current partial solution need to

be  evaluated  for  possible  constraint  violation  and  this  can  take  a  long
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computation time. To avoid this, we initially compute an available load space

in  each  arc  and  then  determine  all  arcs,  where  insertion  does  not  violate

capacity.  The  function gfc(ai)  is  used  to  determine  the  maximal  capacity

available for the node insertion in the arc  ai without involving the constraint

violation  in  the  subsequent  parts  of  the  route.  The  function  hcapacitiy(ai,  nr)

defines  constraint  check  function  that  checks  the  violation  of  capacity

constraints, while inserting the node nr into the arc ai.  The check for capacity

constraint has the complexity O(k) for a single node insertion. The insertion

does not violate capacity constraints, if hcapacitiy(ai, nr) = 0:

Time  window  constraints  Ctw  C have  characteristics  similar  to

capacity  constraints  in  the  VRPPD:  adding  a  new  node  in  one  place  can

involve a constraint violation in other places of the current route. The defined

function ta(nj), nj ri, identifies the arrival time to node nj in route ri. For node

to be inserted into a ri  all subsequent parts in current partial solution need

to be evaluated for possible time violation: for each subsequent node  nj  ri

equation  ta(nj)   cj
tw should  be  satisfied  after  insertion.  Evaluation  of  the

equation can take long computation time. To speed-up insertion, we initially

compute available time space in each arc and then determine all arcs, where the

insertion does not violate time windows constraint.  Figure 7 represents  two

possible situations of arrivals at customers. If a vehicle arrives at a customer in

the defined time window, the available time is equal to the time left to the end
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of window (Figure 7 b). If a vehicle arrives too early, the waiting time is added

to the available time (Figure 7 a).

Fig. 7. Arrival at a customer with time window constraint: a) arrival too early; b) arrival in
the time window

 

The function  gft(ai) is used to determine the maximal amount of time

available for the node insertion in the arc  ai without involving a constraint

violation in subsequent parts of the route. Let us define the function htw1(ai, nr)

that evaluates time window constraint violation in a subsequent part of route

and the function htw2(ai, nr) that evaluates time window constraint violation for

newly inserted node nr. The insertion does not violate time window constraints

if htw1(ai, nr) + htw2(ai, nr) = 0. The time window constraint evaluation does not

increase the complexity of a single node insertion and it still remains O(k). 

65



The  pick-up  and  delivery  constraints  Cpd C connect  pick-up  and

delivery  nodes  with a  logical  relation.  In  order  to  determine the arcs for  a

feasible insertion of node nr, the opposite node nop  (pick-up or delivery node)

has to be examined. If nop is not yet assigned to the route, all arcs in the partial

solution remain competitive for the insertion of the node nr. If nop has already

been assigned to the route, the following rules are applied:

 if nr is a delivery node, arcs, where the insertion of node nr is possible,

are in the same route as the node nop and after the node nop;

 if nr is a pick-up node, arcs, where the insertion of node nr is possible,

are in the same route as the node nop and before the node nop.

In the initialization of the genetic algorithm an initial population with

the above described random insertion process is created, where the creation of

single  solution  has  complexity  O(k2).  The  infeasible  solutions  can  still  be

generated by the defined insertion method, where infeasible solutions have not

empty set of unassigned nodes U. In the proposed algorithm a feasible solution

is always treated better than the infeasible solution (infeasible solution is the

one, that has some nodes not assigned to routes). The following pseudo-code

shows how a better solution xmin is identified from the two solutions xi and xj:
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if fu(xi) fu(xj), where fu(xi) = |Ui|, Ui  xi

if fu(xi)< fu(xj), 
 xmin = xi

else
 xmin = xj

else if fv(xi) fv(xj)
if fv(xi)< fv(xj)

 xmin = xi

else
 xmin = xj

else 
if fd(xi)< fd(xj)

 xmin = xi

else
 xmin = xj

Described  random  insertion  approach  is  suitable  to  increase

diversification in genetic algorithm population by creating initial solutions. By

removing some nodes  and reinserting  them back different  solutions  can be

created,  however,  they  can  be  either  better  ones  or  worse  ones.  Genetic

operators that involve a described random insertion approach are proposed in

Sections 2.1.3 and 2.1.4. Section 2.1.2 presents the proposed genetic algorithm.

2.1.2. New genetic algorithm

In the proposed genetic algorithm crossover and mutation operators are

defined in the “remove and reinsert” approach. The approach is similar to a

single point relocation method, where the node is extracted and inserted into a

different place. However, reinsertion of a single node in a different place can

be unsuccessful, because the constructed routes have reached constraint limits

and cannot be extended by an additional node. If a single node has been chosen

for reinsertion, there is a large probability that the node will be inserted in the

same  place  from which  it  has  been  removed.  In  order  to  enable  the  node

reinsertion, multiple nodes have to be extracted. The crossover and mutation
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operators that follow the idea of node reinsertion are defined in Sections 2.1.3

and 2.1.4.

In  the  proposed  algorithm  the  mutation  operator  is  applied  with

probability  MP =  0.1 and the crossover operator is applied to all individuals

selected for mating. In the crossover operation new offsprings are generated

from  two  parent  solutions  that  are  selected  from  population  by  using  the

ranking method. The new offsprings are added to the population and the worst

individuals are removed from the population to keep the same population size

in  each  iteration.  The  defined  mutation  operators  are  based  on  a  random

insertion and can produce individuals that will not survive. In order to increase

the  probability  of  the  mutation  operator  to  generate  individuals  that  will

survive, a second population is created. The success of the mutation operator

depends  on  the  generated  solution  in  comparison  to  the  solutions  in  the

population. If the fitness value of generated solution is better than the average

fitness value in the population, such solution will have a higher probability to

be  selected  for  reproduction.  If  the  fitness  value  of  generated  solutions  is

similar to the worst fitness value in the population, there is higher probability

that  the  solution  will  be  removed from the population  in  next  generations.

There is no benefit if the solution generated in the mutation operator does not

participate  further  in  the  reproduction.  Figure  8 presents  the  behavior  of

mutation operators that are applied in typical way as it is presented in Section

1.3 (applied mutation operators are presented in Section  2.1.4) and Figure  9

presents  the  behavior  of  mutation  operator,  where  the  new  population  is

created and computed. The solid line in Figure 8 and Figure 9 presents the best

fitness value in the population,  the dashed line presents  the average fitness

value of the population and the dots present the average fitness value obtained

in the mutation operator in each iteration. The fitness value obtained in the

mutation operator is not presented as a line because the mutation is applied
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with certain probability and in some iterations it is not applied at all and in

some iterations it  can be applied couple times where the averaged value is

presented  in  this  case.  When  the  second  population  is  created  in  mutation

operation  (Fig.  9),  the  generated  solutions  have  better  than  average  fitness

value, so these solutions have higher probability to “survive” and to be selected

for  crossover  operator.  This  can  increase  the  diversification  in  the  genetic

algorithm.

Fig. 8. The behavior of mutation operator applied in typical way 

Fig. 9. The behavior of mutation operator when the second population in mutation operator is
created and computed
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The following pseudo-code represents the proposed genetic algorithm:

Pop1 –  initial  population of  size  PS1 //create  a  set  of solutions  using the feasible
insertion method
while number of iterations without improvement < IL1 and time < TL1

sort(Pop1) // sort individuals with a defined comparison function
remove (|Pop1| – PS1) worst individuals from Pop1

for i=1...PL1

xp11, xp12 – select parents from Pop1 by using the ranking method
xc11 = crossover(xp11, xp12) // generate offspring
xc12 = crossover(xp12, xp11) // generate offspring
add xc11 and xc12 to Pop1

if random(0,1) < MP // apply the mutation with probability MP
(x'm1, N'm1) – create partial solution x'm1 and node list N'm1 by 

mutating xc11 

Pop2 – create population of size PS2 by inserting N'm1 to x'm1

PROCESS Pop2

xm1 = select the best individual from Pop2

add xm1 to Pop1

end if
end for

end while
best solution is Pop1[1] // the best individual in the first population

PROCESS Pop2

while number of iterations without improvement < IL2

sort(Pop2) // sort individuals with a defined comparison function
remove (|Pop2| – PS2) worst individuals from Pop2

for j=1...PL2

xp21, xp22 – select parent solutions from Pop2

xc21 = crossover(xp21, xp22)
xc22 = crossover(xp22, xp21)
add xc21 and xc22 to Pop2

 if random(0,1) < MP
xm2 – generate offspring by mutating xc21

add xm2 to Pop2

end if
end for

end while

Crossover and mutation operators are randomly selected from operators

defined in  the  Sections  2.1.3 and  2.1.4.  In  the  mutation operation  the  new

population is created in two steps. Firstly, the mutation operator is applied to
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the solution xc11 to create a partial solution x'm1 with some routes left as well as

the set of nodes N'm1 that need to be reinserted back. Then Pop2 is created by

copying the partial solution x'm1 and inserting N'm1 using a random insertion and

computation of second population is invoked.

Computation of  Pop2 stops when the best solution is not improved in

iterations IL2. The stopping criterion in Pop2 intentionally does not include the

maximal time limit. The value  IL2 is chosen to be small to avoid redundant

computation in Pop2. The values used in the experimental evaluation (Section

3.3)  are  as  follows:  PS1 = 100,  PL1 = 10, IL1 = 50,  TL1 = 5min,  MP = 0.1,

PS2 `= 20, IL2 = 5, PL2 = 2.

2.1.3. Crossover operators

In  the  genetic  algorithm  new crossover  operators  that  are  based  on

insertion heuristics are proposed. However, apart from the insertion heuristics,

the proposed crossover operators handle most of the negative aspects of the

reviewed crossover operators in Section 1.5 and include another intensification

approach.

The crossover operators, proposed here, are based on the idea of a large

neighborhood  search  (LNS)  heuristic  presented  in  Section  1.2.  The

effectiveness of LNS depends on the degree of destruction, where, if only a

small part is destroyed, LNS can have troubles in exploring the search space,

or  can be involved in the repeated re-optimization,  if  a very large space is

destroyed (Pisinger and Ropke, 2009). It should be such destruction method

which would explore the search space, where the global optimum is expected

to be found.

The  BCRC  crossover,  mentioned  in  Section  1.5,  involves  the

destruction of the parent individuals to build an offspring, but the exploration

depends on the route from the second parent individual. The nodes in the route

from the second individual could be assigned depending on their time window
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constraint. Thus, it means that the removed nodes can have a low probability to

change their  positions in  the solution.  Other crossovers (SBX, RBX, LRX)

convey the union of the solutions, where some parts from both individuals are

combined with the intention to find a better solution. Such crossovers explore

only a small neighborhood and only in the cases, where additional unassigned

nodes are left during the recombination of parents.

Differently than the union crossover operators, the proposed crossovers

are designed to preserve common parts of the two selected individuals. The

common  parts  could  be  the  nodes  assigned  to  the  same  route,  the  nodes

assigned to the route starting from the same depot, or the nodes that are related

to the same type of cargo, etc. By removing the nodes that do not belong to the

common parts  of  solutions,  the  common neighborhood  of  two  solutions  is

identified. A size of the neighborhood is inversely proportional to the size of

the common parts. If the initial individuals in a genetic algorithm are created in

a stochastic way, by preserving the nodes that have common characteristic in

both parents,  the nodes will  be preserved that  more probably are optimally

constructed than the other parts of the solution. Most probably, the nodes will

be removed that prolong the overall path, where long paths can lead to a larger

number of routes. 

The  target  of  the  proposed  crossover  operators  is  to  identify  the

common parts in the parent individuals, preserve it in the intermediate solution

and  reconstruct  it  in  the  offspring  individual.  Three  different  crossovers

(common  nodes  crossover,  common  arcs  crossover and  longest  common

sequence crossover) are defined to increase the probability of convergence to

the global optimum where each crossover produces an offspring by focusing

on a different information obtained from parents. Crossover operators generate

new solutions from the chosen parent solutions xi and xj. Each of them produces

a single offspring partial solution x'o and the set of extracted nodes Ntemp from
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the parent solutions xi and xj. The offspring solution xo is created by inserting

all unassigned nodes Ntemp to x'o using the defined random insertion method.

The  common nodes crossover (CNX) intersects the routes  Ri  xi and

Rj  xj according to the visited node sets Ni and Nj:

Ntemp= Uj

x'o – offspring solution
for each route rs  Rj

Rtemp =  // temporary set of routes
for each node n  rs, n  n0

rt= find route in Ri, where n rt

if rt not found
add n to Ntemp

else if rt(tmp)  Rtemp

assign node n to rt(tmp)

else 
rt(tmp) = new route({n0,n})
add rt(tmp) to Rtemp

end if
rbest  = select a route with the maximal number of nodes visited from Rtemp

assign all nodes n  Rtemp\ rbest to Ntemp.
add rbest to x'o

end for
create xo by inserting n Ntemp into x'o using the defined random insertion

The first crossover examines all nodes in each route and groups them

into partial routes according to the attendance in the routes from the opposite

solution. The partial route with the maximum number of nodes is selected to

preserve the path. All other partial routes are discarded by adding nodes to the

unassigned node list  Ntemp.  In the worst case the crossover operators have a

complexity of O(k2). This crossover still has one negative aspect: it can not be

applied to the case when each of the parent solutions  xi and xj have only one

route.  In  this  case  a  created  offspring  will  always  be  equal  to  the  parent

solution.

VRP solution  is  the  sequence  of  the  nodes  that  need  to  be  visited.

Solutions varies depending on the order of nodes, i.e. by having a different
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sequence of nodes there are different travel path lengths in the solutions. So,

the sequence of nodes is important characteristic that needs to be preserved in

the offspring solutions. The next two crossovers (common arcs crossover and

longest common sequence crossover) are defined to handle the same sequence

of the nodes in both parents.

 The  common arcs crossover (CAX) preserves arcs in the first parent

solution, if the corresponding arcs exist in the second parent solution, where

the corresponding arc has the same start and the same end. The common arcs

crossover preserves the sequence between two nodes in the graph.  The CAX

operator intersects two sets of arcs  Ai  xi and Aj  xj. The complexity of this

crossover is O(k), where  k  is the total number of nodes in the problem.  The

algorithm to find the common arcs in two parent solutions for new problem

definition is as follows: 

Ntemp = Ui

x'o – offspring solution
for each arc ai  Ai

if ai exist in Aj

 add ai to x'o 
else 

add node ns  ai  to Ntemp, where ns is the starting node of arc ai

end if
end for
create xo by inserting n Ntemp into x'o using the defined random insertion

Figure  10 represents  the  behavior  of  CNX  and  CAX  crossover

operators, where a) and b) are parent solutions, c) is the intermediate solution

obtained by CNX, where the common nodes from both parents are displayed as

gray  circles,  d) is  the  intermediate  solution  obtained  by  CAX,  where  the

common arcs from both parents are displayed with solid arrows. Dotted circles

show unassigned nodes Ntemp that will be inserted back. Dotted lines in c) and

d)  are new arcs that connect the nodes according to their position in the first

parent solution to form the route.
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Fig. 10. Behavior of crossover operators: a) b) two parents; c) partial offspring obtained by
the CNX; d) partial offspring obtained by the CAX

The Longest common sequence crossover (LCSX) is the third crossover

operator,  proposed  in  this  thesis.  It  examines  the  two  parent  solutions  by

searching for the longest common sequences in all the routes. An example of

the longest common sequence between two routes is displayed in Figure  11,

where a) displays the first route with the indexed nodes in the route (literal

string displays the indexed sequence); b) for all the nodes in the second route

indexes  are  assigned  according  to  the  route  in  a);  c)  displays  the  longest

common sequence solution example, where the solution is found by solving the

longest common increasing subsequence (LCIS) (Schensted, 1961; Yang et al.,

2005; Chan et al., 2007; Kutz et al., 2011) for the index line, identified in b).
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Fig. 11. The longest common increasing sequence between two routes

The longest common increasing sequence presented in c) is not the only

one, there exist different longest common sequences that have the same length

as in c). All the possible longest common sequences are as follows: 

1 2 4 5 8 9 10 12
1 2 4 5 8 9 10 13
1 2 4 5 8 9 11 12
1 2 4 5 8 9 11 13
1 2 4 6 8 9 10 12
1 2 4 6 8 9 10 13
1 2 4 6 8 9 11 12
1 2 4 6 8 9 11 13
1 2 4 7 8 9 10 12
1 2 4 7 8 9 10 13
1 2 4 7 8 9 11 12
1 2 4 7 8 9 11 13

For LCSX, all the longest common sequences are identified and a single

sequence  is  chosen  randomly  as  the  longest  common  sequence  for  the

offspring. In LNS the parts of solution are destroyed by evaluating a single

solution.  In  the  LCSX  crossover,  some  parts  of  solution  are  destroyed  by

evaluating  the  selected  solution  and  another  solution  taken  from  the

population.
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In Figure  12, an example of finding common sequences among more

than  one  route  in  a  solution  is  presented.  For  each  route  ri in  the  first

individual,  the routes in the second individual are identified that  contain at

least one node belonging to ri (Figure 12, d)). Then the route with the largest

number of common nodes is selected (Figure 12, e)) and the longest common

sequence between routes in c) and e) is found. In e), the removed routes could

also be evaluated for the longest common sequence, however, search for the

longest common sequence in all of the routes increases the complexity of the

crossover.  To  avoid  extra  complexity,  the  longest  increasing  sequence  is

identified for the routes with the largest number of common nodes. The same

method is applied to all the routes in the first individual to get the intermediate

solution x'o (Figure 13):

Ntemp= Ui

x'o – offspring solution
for each route ri  Ri

rint = find the intersecting route rint xj that has the largest number of 
common nodes

SEQ = find the longest common sequence between the routes ri and rint

rnew =  
for each node n  ri

 if n exist in the sequence SEQ
 add the node n into rnew

else 
add n to Ntemp

end if
end for
if |rnew| > 1

add rnew to x'o
else 

n  rnew add to Ntemp

end if
end for
create xo by inserting n Ntemp into x'o using the defined random insertion

The  CAX  crossover  preserves  the  sequence  only  for  each  the  two

subsequent nodes in the route, where the LCSX crossover preserves the longest

common sequence between two solutions. In all three crossover operators, if
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the  route  has  one node,  it  is  removed and the  node is  added to the list  of

unassigned  nodes.  The  complexity  of  LCSX  is  O(k2)  in  the  worst  case

including computation of the longest common sequence.

Fig. 12. Identification of the longest common sequence in all routes: a) and b) two parent
solutions; c) the selected route from the first individual for evaluation; d) the routes in the

second individual are identified that include the same nodes as in the c) selected route; e) the
route with the largest number of common nodes is selected from the routes in d); f) the

longest common sequence between the routes from c) and e) is identified 

Fig. 13. The longest common sequence crossover: a) and b) two parent solutions; c) the
intermediate solution found by the crossover
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The proposed crossover operators preserve common parts in all routes.

In most cases, the crossovers will create an intermediate offspring that has the

same number of routes as in the parent solution. To minimize the number of

routes, as it is defined in the objective, the number of routes should be reduced

in the intermediate offspring by removing a randomly selected route. The last

step of each proposed crossover is processed as follows:

1) while fv(x'o) > fv(xi) – , remove the randomly selected route rr from x'o

and insert n rr to Ntemp;

2) create xo by  inserting n Ntemp into  x'o using  the  defined  random

insertion.

In step 1), the value  can have values from 0 to fv(xi)–1, where xi is a

parent solution participating in the crossover operation. If  = 0, the crossover

will  not  try  to  minimize the  number of  routes.  For  the  proposed crossover

operators    is  a  random value  from the  set  {0,1},  if  fv(xi) > 1,  and   =  0

otherwise.

In  Section  3.2,  the  new  crossover  operators  are  compared  to  other

crossover operators, described in Section 1.5.

2.1.4. Mutation operators

The  behavior  of  the  proposed  mutation  operators  are  similar  to  the

defined  crossover  operators,  however,  mutation  operators  deal  only  with  a

single solution  xi. The designed mutation operators extract a subset of nodes

from the solution in the defined ways and reinsert them back by applying a

random insertion. By extracting a set of nodes we aim to preserve one part of

the solution and reorganize the other one. A set of mutation operators that are

applied by selecting one of them randomly is defined.
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The first mutation operator selects a node set for extraction randomly

with the limit of 0.5z|N|, where z is a random number in the range (0, 1). The

complexity of random extraction is O(k).

The  second mutation operator picks up a random node  nr from  xi and

extracts  the  set  of  nodes  closest  to  nr by minimizing the  distance function

l(nr, ni), where ni  Ri:

x'o = xi

Ntemp= U'o
U'o = 
nr  = select a random node from x'o
extract nr from x'o
add nr to Ntemp

while limit reached is not reached
nri  = find the nearest node to nr in x'o
extract nri from x'o
add nri to Ntemp

end while
create xo by inserting n Ntemp into x'o using the defined random insertion

The number of extracted nodes is limited to 0.5z|N|, where z is a random

number in the range (0, 1). The complexity of the second mutation operator is

O(k2).

The third mutation operator  extracts  random routes  with the  limit  of

0.5z|Ri| routes, where Ri  xi. The complexity of the described method is O(k).

The fourth mutation operator extracts nodes with the longest detour. The

search selects nodes with maximal values of the function  lr(nr) =  l(nr–1, nr) +

l(nr, nr+1)  –  l(nr–1, nr+1).  The number of extracted nodes is limited to 0.5z|N|,

where  z is  a  random  number  in  the  range  (0,  1).  In  the  worst  case  the

complexity  of  the  fourth  mutation  operator  is  O(k2).  The  fourth  mutation

operator is combined with other mutation operators,  where initially the first

mutation operator is applied and then the fourth mutation operator is applied

with probability 0.1.

80



The fifth mutation operator searches for nodes visited around the same

time.  This mutation operator is  similar  to the second mutation operator.  At

first,  a  random node  nr is  selected,  afterwards  other  nodes  are  selected  by

minimizing the function tr(ni)= |ta(nr) – ta(ni)|, where ni  Ri, Ri  xi. The fifth

mutation operator is applied when time constraints are defined in the problem.

The complexity of the fifth mutation operator is O(k2).

In Figure  14, the behavior of mutation operators is presented, where a

filled circle shows a depot, empty circles show visited nodes and dotted circles

show the extracted nodes.

Fig. 14. Mutation operators:  a) initial solution; other cases show the nodes extracted in b) the
first, c) the second, d) the third, e) the fourth, and f) the fifth mutation operators

2.2. Genetic operators for rich vehicle routing problem

2.2.1. Rich vehicle routing problem

The typical VRP can be extended by adding additional constraints and

other parameters to the problem. The MDVRP includes additional depot nodes

and CVRP includes  load  capacity  limitation  for  a  vehicle.  VRP with  time

windows (VRPTW) is an extension, where time window constraints are added.
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The time window constraint defines a time frame in which a customer can be

serviced, i.e. loading or unloading of a vehicle. A vehicle may arrive earlier,

but  it  must  wait  until  the start  of  the service  is  possible.  The VRP can be

extended with some additional  constraints,  like  driver  working hours,  time,

required for  a driver  to take a rest,  etc.  Similarly,  depending on additional

parameters, other variants of VRP are defined. In (Yeun et al., 2008) particular

mathematical  formulations  can  be  found  for  each VRP,  VRPTW,  VRPPD,

CVRP  problem,  where  each  formulation  is  based  on  a  customer  set,

represented as nodes in a graph. Jih and Hsu (2004) have proposed the problem

definition  for  PDPTW,  based  on  transportation  requests  as  tasks  to  be

completed. 

Although in academic literature specific problems are investigated, there

are attempts to generalize vehicle routing problem. The aim of this research is

to create the algorithm for the general VRP: rich vehicle routing problem. The

first attempt to define rich vehicle routing problem can be found in (Toth and

Vigo, 2002). The paper (Hasle and Kloster,  2007) refers to this problem as

industrial vehicle problem. In (Goel and Gruhn, 2008) it is called the general

vehicle routing problem. Usually rich vehicle routing problem is a description

of  different  information  and  constraints  reflecting  real  world  situation.  A

summary  of  real-world  constraints  is  described in  (Drexl,  2012)  where  the

fundamental activity to be planned is treated as request. To generalize a VRP,

it can be divided into the following components:

 data, used in the problem;

 tasks, defined to be accomplished;

 constraints that should be satisfied;

 objective of the problem.

Data definition includes the graph  G = (N,  E),  which consists of the

nodes  N and  edges  E.  The  data  definition  also  includes  a  set  of  vehicles
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V = {v1, …, vt}. The set of nodes can be divided into subsets of a) Nd – depots,

b)  Nc – customers,  c)  No – other nodes that  can be divided into rest  areas,

gasoline stations, etc. For data definition, a start position is assigned to each

vehicle  vi, where the initial node can be marked as  ni
init. Additional data, like

drivers and their properties, vehicle parameters or types of the goods, can be

defined within the problem.

Tasks, similarly  as in  (Jih and Hsu,  2004; Hasle and Kloster,  2007),

define a set of targets to be achieved. Let us define a set M = {m1, …, mq} as a

set of  q requests and  T = {t1, …,  tk} as a set of  k tasks to complete requests.

Each request  mi can be expressed via a set of tasks  mi = {ti1,  ti2,...},  where

tij  T, |mi|  > 0,  mi  M,  m1  …  mq =   and  m1  …  mq =  T. The

main difference between the request and task is that the task can be processed

one at a time by a single vehicle and the requests may be processed in parallel.

The task can have other smaller subtasks, in such a way granularity increases,

however, for VRP, the task does not require to be split to smaller tasks, if it

means “to be processed one at a time by the vehicle”. In the VRP, each task ti

is defined as ti = (ni
start, ni

end), where the node ni
start  N is a start node of the task

ti and ni
end  N is the end node. To complete the task ti, at first, a vehicle needs

to arrive to the node ni
start to start service, and then to complete service at the

node ni
end.

For VRP that deal with a delivery of cargo, the request can be defined as

mi = {ti
+, ti

–}, where mi is a request to deliver cargo from one place to another

and to complete it tasks ti
+ (to load cargo at a specific place) and ti

– (to unload

cargo at a specific place) have to be performed. The properties of cargo are

defined for each request. Let us define a function w(mi) that evaluates the cargo

capacity value  wi =  w(mi). Tasks in the delivery problem can be defined as

ti = (ni
start, ni

end, wi) for loading/unloading of wi at the node ni
start = ni

end. Usually

VRP defines the return to the depot tasks  Tend ={t1
end, …,  tt

end}  M,  tvi  T.
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An example of the task that starts and ends at different places could be found

in the taxi problem, where a service of each customer starts at pick-up place

and ends at the destination place.

The VRP target is to complete tasks by using vehicles. Let us define a

single solution of the VRP as x = {s1, …, st}, where sj = (tj1, tj2, …), tji T,

s1  …  st =  and s1  …  st = T. sj defines a sequence of tasks assigned

to the vehicle vj  V and |x|  |V|. Let us define a function Fm(x) that evaluates

the solution x for incompleteness of requests and fm(x) that evaluates a single

request for task incompleteness.

All the requests are completed, if Fm(x) = 0.

Constraints define restrictions to the problem that usually reflect real

life situations. Let us define a set of constraints C, where c  C defines a single

constraint. The constraints can be defined for a task (i.e. time window), for a

vehicle (i.e. not exceed capacity), for a cargo, etc. One of the constraint of the

delivery problem (VRPPD) is that ti
+ needs to be completed before ti

– or return

to  the  depot  task  should  be  completed  after  all  the  other  tasks.  So,  the

constraint can define the order of tasks. There can be also constraints defined

for a driver, i.e. time required for a driver to take a rest, or constraint not to

empty the fuel tank. Let us define a function Fc(x) that evaluates violation of

constraints  in the solution  x,  and  fc(x)  that  evaluates violation of the single

constraint c  C:
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 The solution x does not violate any constraint, if Fc(x) = 0. 

Objective. The objective of the typical VRP is to minimize the number

of the used vehicles and then to minimize the length of the total travel path. So,

the objective is, at first, to minimize the function fv(x), then fd(x), in addition,

the equalities Fc(x) = 0 and Fm(x) = 0 need to be satisfied:

Different objectives could include different minimization/maximization

functions, i.e. a real life problem could be defined, where the feasible solution

that completes all the tasks is not possible. The objective of such a problem

could  be  to  find  a  solution,  where  the  maximum  number  of  requests  is

completed.

2.2.2. Crossover and mutation operators for RVRP

In Section 2.2.1 we have defined the solution of the problem as a set of

sequences constructed from the tasks. Such a definition differs from a widely

used definition for VRP, where the solution is defined as a sequence of nodes
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visited by separate vehicles, where each sequence is called a route. Tasks are

accomplished “traveling by the vehicle in the graph”. The sequence of nodes

can be expressed via a sequence of tasks, where the solution does not have

duplicated tasks. The sequence of tasks can be expressed via the sequence of

nodes, however, the same node can be visited a couple of times per solution, if

a couple of different tasks include it. Further on the methods and algorithms

will be expressed by a sequence of tasks instead of the original expression –

route of nodes. For a better explanation, sequence of tasks will  be called a

route of tasks.

Solutions within a proposed genetic algorithm are treated to be feasible,

if all the constraints are satisfied. However, the solution can be incomplete –

not all the tasks are completed in the constructed solution. It requires to extend

the objective to handle this approach: to find the solution that accomplishes a

higher number of tasks. The solution x for the RVRP is defined as follows:

Let us express the route of tasks rr  x as a graph Gr
T = (Tr, Ar), where

the set Tr = {tr
init, tr1, …, tr

end}  defines the set of tasks assigned to the route, and

tr
init represents the start of the route at the node nr

init.  Set  Tu defines the set of

unhandled  tasks  in  the  solution  x,  where  {T1,  …,  Tt}  Tu = T and

{T1, …, Tt}  Tu = .  Expression of route via tasks eliminates the possibility

of duplicate entries, where the expression of a route via nodes could give the

same node, visited a couple of times, if the same node is a part of a couple of

different tasks. In Figure 15 the solution of nodes and related solution of tasks

are  presented.  The  arcs  from  the  set  Ar connect  the  tasks:  ari  Ar,

ari = (tri, tr(i+1)), where tri is the start of the arc and tr(i+1) is the end. Insertion of

the new task tm into the arc ari, means to:

1) remove the arc ari from the set Ar;

2) add the task tm to Tr; 
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3) add two new arcs (tri, tm) and (tm, tr(i+1)) to the set Ar. 

An empty route (vehicle without tasks assigned) is still a graph with

Tr = {tr
init, tr

end} and Ar = {(tr
init, tr

end)} (Figure 15). The insertion process can be

split into the following parts and intensification can be applied in both of them:

 select a task for insertion;

 select a place for insertion.

The following approaches can be used for implementing the insertion heuristic:

 Choose a random task and then search for the best arc to insert in. A

random  task  selection  is  a  stochastic  approach  that  can  be  used  to

choose  a  task  for  insertion.  This  method  does  not  affect  overall

intensification  and  corresponds  to  the  general  idea  of  the  genetic

algorithm being a stochastic approach. The usage of the minimization

function then can be applied to arc selection.

 Choose  a  random  arc  and  then  search  for  the  unassigned  task  for

insertion. The usage of the minimization function can be applied to node

selection.

 Search  for  a  task  and  arc  at  the  same  time  by  evaluating  the

minimization function.  The minimization function could also include

evaluation of the vehicle and additional information that could help to

identify the best task and the best place for the next insertion. 

Fig. 15. Solution of different expressions: a) solution of nodes; b) solution of tasks
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To select a place for the task insertion means to select an arc from the

set of Aall (all the arcs in all the routes in the partial solution x'). For a feasible

insertion, we have to evaluate the violation of all the constraints. Let us have a

function Fc(ai, tm) that checks the violation of all constraints, while inserting the

task tm into the arc ai  x', x'i,m is the solution x' with the task tm inserted into the

arc ai:

The function  fc(ai,  tm) checks the violation of single constraint,  while

inserting the task tm into the arc ai. The insertion of a task does not increase the

constraint violation, if Fc(ai, tm) = 0. To follow the objective of the problem, the

arc needs to be selected by minimizing the functions fv(ai, tm) and fd(ai, tm) that

evaluate the difference of objective functions, while inserting the task  tm into

the arc ai. For the VRP, there exist two functions for task insertion. At first, the

difference of the route number is evaluated and, in the second function, the

difference of the route length is evaluated:

The overall insertion process with the feasibility check is similar to node

insertion process defined in Section 2.1.1 and presented in Figure 6.

Crossovers  defined  in  Section  2.1.3 can  be  applied  to  the  problem

defined via tasks. Overall idea of the crossover is not changed. The defined

crossovers  search  for  common  parts  in  two  parent  solutions.  Instead  of

searching for the nodes, the crossovers will search for the common parts in the

solution expressed via tasks: CNX will  search for the common set  of tasks

handled in the routes of parent solutions; CAX will search for common arcs

that  connect  the  same  tasks;  LCSX  will  search  for  the  longest  common
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sequence  of  tasks  in  parent  solutions.  Identified  parts  are  preserved in  the

intermediate offspring solution and all unhandled tasks are inserted in to the

solution by using the defined construction heuristic in a reconstruction phase.

A random insertion heuristic  is  chosen for  a  reconstruction to  preserve the

stochastic approach of the genetic algorithm. A task is chosen randomly from

the  list  of  unassigned  tasks  and  inserted  into  the  route  by  evaluating  the

feasibility and minimizing the insertion cost functions fv(ai, tm) and fd(ai, tm). If

the  crossover  operators  search  for  the  common  parts  in  the  solutions  to

intensify the search, the random task insertion involves a diversification in a

population. 

Mutation operators proposed in Section  2.1.4 can also be applied for

problem expressed via tasks. By applying defined mutation operators tasks will

be removed from solution and reinserted back to create a new one. If crossover

operators  involve  intensification  by  preserving  common parts  between  two

solutions, the mutation operator creates the new solution by recombining single

one  and  may  destroy  the  part  that  is  probably  correct  one.  The  second

population  usage in  mutation operators  proposed in  Section  2.1.2 increases

probability that in mutation operator generated solutions will be competitive in

the population. 

The defined crossover and mutation operators and insertion method can

be applied to  any problem that  can be described in the form as defined in

Section 2.2.1. Depending on the defined constraints, random insertion method

needs to be adjusted to preserve feasible solutions,  i.e.  for periodic vehicle

routing problem multiple tasks will be added for each visit to the customer,

constraints  that  the  tasks  will  be  completed  per  defined  period  need to  be

preserved. For problems, where refueling is important, additional travel time

check for refueling needs to be taken into account. Each refueling will take

time to travel detour and it is important to refuel not too often. Refueling will
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add additional weight to arc and it needs to be recalculated after each insertion,

however this can be optimized with precomputing described in Section 2.1.1.

Problems, where the target is the visit of the arc (i.e., road cleaning), can also

be defined in the new form. The start and the end of the task in such problem

will coincide with the start and end of the target arc. The problem expressed in

the new form can be further solved by the genetic algorithm with proposed

new genetic operators. 

2.3. Parallel bi-directional shortest path algorithm
As we have already mentioned, Dijkstra's algorithm was developed to

calculate the shortest path. As we have seen, the bidirectional algorithm and

many  other  Dijkstra's  algorithm  modifications  reviewed  in  Section  1.6

produces nearly the shortest path. However, sometimes the error of calculation

can be significant. To achieve accurate results by means of the bidirectional

algorithm, we combine both stopping criteria. The algorithm is extended with a

set  Z of  possible  answers  and  with  a  finish  phase.  If  the  visited  node  of

contrariwise computation is  found for  the first  time (found node  nz
r,  where

nz
r  NS

r and  nz
r  ND

r),  then the  algorithm enters  the  finish  phase.  In  this

phase, the process continues without appending the priority queue with new

labeled nodes, i.e., without the inner loop. After completing these additional

steps, we get alternative nodes nz
r  NZ

r, where Nz
r = (NS

r  QS)  (NS
r  QD).

During such process other alternative routes are found and added to the set Z.

Thus, after finishing such process, the set Z = {P(nz
r)  P|(nz

r), nz
r  NZ

r}. The

calculation  ends,  when the  priority  queues  QS and  QD are  empty.  Then the

shortest  path  can  be  extracted  from  the  set  Z of  possible  answers.  The

following pseudo-code implements the proposed algorithm. 
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procedure biDijkstra(Gr
 = (Nr, Er), ns

r,nd
r)

boolean finish = false
Z =  // possible answers list
…
while QS is not empty and QD is not empty // outer loop

// PERFORM FORWARD SEARCH
nu

r = QS.extractMin()
NS

r.addNode(nu 
r)

if nu
r  NS

r and nu
r  ND

r // stopping criterion 
finish = true // set finish phase
Z.addAnswer()

end if
if finish = false 

for each nv
r adjacent to nu

r // inner loop
… 

 end for
end if
// PERFORM BACKWARD SEARCH
…

end while
Z.findShortest() // get shortest path from list

end

We  get  (NS
r  QS)   (ND

r  QD)  =  {E,  B,  C}  according  to  this

termination condition, where the example, presented in Figure 5, is analyzed.

We  get  the  set  Z =  {P(E)  P|(E),  P(B)  P|(B),  P(C)  P|(C)}  and  the

obtained results |P(E)  P|(E)| = 100, |P(B)  P|(B)| = 70 and | P(C)  P|(C) |

= 70. By selecting the smallest of these values we get the shortest path ABCD.

In the first example, when solving the shortest path problem in the same way,

we get the shortest path ADB. The modified bidirectional Dijkstra's algorithm

finds  the  same  path  as  the  standard  Dijkstra's  algorithm.  The  bidirectional

Dijkstra's algorithm is 2 times faster than the standard one (Goldberg et al.,

2006;  Berrettini  et  al.,  2009). The  modified  bidirectional  algorithm  lasts

slightly  longer  because  of  the  finish  phase.  However,  the  algorithm is  still

faster than the standard Dijkstra's algorithm. 

Parallel algorithm.  The scheme of the parallel algorithm, proposed in

this research, is essentially based on the modern multi-core technology. The
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modified bidirectional Dijkstra's algorithm is transformed into a parallel form,

based on a shared memory technology. For this method, an ordinary two-core

processor is required. Thus, the two processes may look for the shortest path

from  the  start  and  end  nodes  at  the  same  time.  Like  in  the  modified

bidirectional  Dijkstra's  algorithm,  each  process  must  access  data  of  the

contrariwise  computation  to  check  for  stopping  criteria.  If  the  stopping

criterion is reached, then the process proceeds  to the finish phase and “tells”

the  opposite  process  to  do  the  same.  Both  processes  fill  out  the  set  Z of

possible  answers  with  the  shortest  paths  found.  The processes  are  stopped,

when the priority queues  QS and  QD become empty. Then the main process

selects the shortest path from set Z.

procedure parallelDijkstra(Gr = (Nr, Er), ns
r,nd

r)
Z =  // possible answers list
NS

r = ,ND
r =  – empty sets of visited nodes 

…
// call backward process
start second thread → calcBackwardsDijkstra(Gr, nd

r, NS
r,ND

r, Z)
boolean finish = false
QS =  // labeled nodes
QS.insert(ns

r,0)
while QS is not empty // outer loop

nu
r = QS.extractMin()

NS
r.addNode(nu

r)
if nu

r  NS
r and nu

r  ND
r // stopping criterion

finish = true // set finish phase
Z.addAnswer()

end
if finish = false

for each nv
r adjacent to nu

r // inner loop
…

end
end

end
waitSecondThread() //wait for second thread to finish
Z.findShortest()

end
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procedure calcBackwardsDijkstra(Gr, nd
r, NS

r,ND
r, Z)

boolean finish = false
QD =  // labeled nodes
QD.insert(nd

r,0)
while QD is not empty // outer loop

nu
r = QD.extractMin()

ND
r.addNode(nu

r)
if nu

r  NS
r and nu

r  ND
r // stopping criterion

finish = true // set finish phase
Z.addAnswer()

end
if finish = false

for each nv
r adjacent to nu

r // inner loop
…

end
end

end
end

Since this algorithm is based on parallel shared memory computing, it

allows  avoiding  the  additional  data  transfer,  which  is  necessary  in  the

distributed memory parallel technology. However, the problem of sharing data

in memory needs to be solved, because the access to shared data cannot be

achieved in an uncontrolled fashion. In this thesis, we have already mentioned

about  the  transactional  memory technology  by  which  this  problem can  be

solved.  However,  this  problem  can  be  solved  also  by  means  of  other

technologies, for example, mutual exclusion (mutex) directives. Such directives

in the  program can ensure  that  only  one process  is  executing an operation

protected by the  mutex object. In this research we do not explicitly deal with

the  efficiency  of  the  mentioned  technologies  or  other  similar  technologies.

However, no matter which technology is chosen, we need to identify certain

parts  of  the  algorithm,  which  cannot  be  carried  out  simultaneously  by  two

separate  processes.  By  identifying  those  areas  of  the  algorithm  we  can

guarantee that the two processes at the same time will not operate the data at

the same memory location. In the proposed algorithm, such areas are the sets
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NS
r, ND

r and  Z.  The parts of the algorithm in which these two sets used are

either read or modified are as follows:

NS
r.addNode(nu

r).
… 
ND

r.addNode(nu
r) 

…
if nu

r  NS
r and nu

r  ND
r // stopping criterion

…
Z.addAnswer()

Those identified parts of the algorithm need to be synchronized so that

only one process at a time could perform the operation, and one process at a

time would be blocked until another process ends the transaction. However, the

other part of the code will run in parallel. 

The main disadvantage of this algorithm is that it cannot be adapted to a

larger  number of  processes,  when a single  path is  calculated.  However,  an

additional process will be started and destroyed only once and will take the

most  time  during  the  calculation.  This  allows  us  to  avoid  a  number  of

additional delays that  occur in the start-up and destruction of an additional

process. The mentioned approach can be adapted to calculate the shortest-path

between more than two places in the graph at the same time or even forward

and backward at the same time.

In  Section  3.4,  parallel  bidirectional  Dijkstra's  algorithm  is

experimentally evaluated.

2.4. Summary
In order to keep solutions in the feasible search space, we propose a

genetic algorithm that is based on a random insertion heuristics. The random

insertion heuristic is considered to preserve a stochastic characteristic of the

genetic algorithm, and to generate solutions in the feasible space by checking

compliance to the defined constraints in the insertion process. Precomputation
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scheme  is  proposed  for  speed-up  evaluation  of  constraints  in  insertion

heuristic. Infeasibility is still allowed in the proposed algorithm because the

random insertion approach can create infeasible initial solutions in a highly

constrained  problem. The  defined  GA  individual  includes  feasible  partial

routes and a set of customers that were not serviced due to constraint violation.

The  novelty  of  the  proposed  approach  is  the  usage  of  random  insertion

heuristics in combination with the proposed crossover and mutation operators.

Differently from other genetic algorithms, the proposed crossover operators do

not  construct  the  offspring  directly,  but  by  evaluating  information  from

previous generation, identify those parts of solutions that should be preserved

for  the  next  generation  and  weak  parts  that  should  be  reconstructed.  The

crossover and mutation operators are defined to identify those weak parts of

the solution. The second population is used in the mutation process, where the

second population increases the probability that the solution, obtained in the

mutation  process,  will  survive  in  the  first  population,  and  increase  the

probability to find the global optimum.  In contrast to other approaches, the

proposed  algorithm  does  not  involve  additional  local  search  methods  to

improve  the  solution;  therefore  it  does  not  depend  on  the  local  search

limitations and can be easily extended with additional constraints. 

The rich vehicle routing problem definition consisting of the tasks to be

completed. Node and arc routing problems can be transformed to the proposed

general formulation of task problem. The proposed operators are applicable to

the  defined  RVRP,  where  the  crossover  operators  intensify  the  search  by

identifying the common sequence of tasks in parent solutions.

A parallel version of Dijkstra's algorithm is proposed for searching for

the shortest paths in a road graph. The algorithm can be used for recalculation

of the shortest paths between two places in road network while executing the

genetic algorithm to optimize routes. The recalculation may be necessary if the
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additional data involves changes in the path (i.e. because of traffic jams the

travel  time  significantly  increases). The  stopping  criterion  is  defined  for

bidirectional Dijkstra's algorithm that prevents of inaccuracies in the shortest

path  search.  The  parallel  version  of  bidirectional  Dijkstra's  algorithm  is

proposed  for  speed-up  the  search.  The  proposed  algorithm  is  based  on  a

transactional memory to avoid large data synchronization issues.

The results of this chapter have been published in (Vaira and Kurasova,

2010;  Vaira  and  Kurasova,  2011;  Vaira  and  Kurasova,  2013;  Vaira  and

Kurasova, 2013a; Vaira and Kurasova, 2014).
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Chapter 3
Experimental researches

This chapter presents the results of experimental  evaluation.  Section  3.1
describes  VRP  data  sets  used  for  evaluation  of  the  genetic algorithm.
Section  3.2 provides  experimental  evaluation  of  the  proposed crossover
operators.  Two  different  cases  were  evaluated:  with  mutation  operator
applied  and  without  it.  Section  3.3 provides  results  of  experimental
evaluation  of  the  genetic  algorithm  scheme.  In  Section  3.4 parallel
bidirectional  Dijkstra's  algorithm  for  the  shortest  path  calculation  is
evaluated. Section 3.5 summarizes experimental researches.

3.1. Data sets used for experimental evaluation 

3.1.1. Solomon problem instances

The first  data  set  includes  the  well-known Solomon instances of  the

VRPTW,  where  all  instances  have  100  customers,  distributed  over  the

geographical  area  (Solomon,  1987).  The  Solomon  problem  consists  of  6

different  problem sets  R1,  R2,  C1,  C2,  RC1,  RC2,  where  all  56  VRPTW

instances are categorized as: 

 set C (C1, C2) – nodes (customers) are located in geographical clusters;

 set R (R1, R2) – nodes (customers) are randomly distributed  over the

geographical area;

 set  RC (RC1,  RC2)  –  some customers  are  randomly distributed  and

some customers are located in clusters. 

Problem instances are also split into Class 1 (R1, C1, RC1) and Class 2

(R2,  C2,  RC2),  where  problem instances  in  Class  1  have  a  small  vehicle

capacity and narrow time windows and problem instances in Class 2 have a

large  vehicle  capacity  and  large  time  windows.  Each  Solomon  problem
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instance  defines  the  central  depot,  the  maximum vehicle  number,  limits  of

vehicle capacity, demands for each node and also the maximum travel time for

a single vehicle (Figure 16).

VEHICLE

NUMBER CAPACITY

25 200

CUSTOMER

CUST NO. XCOORD. YCOORD. DEMAND READY TIME DUE DATE SERVICE TIME

0 40 50 0 0 1236 0

1 45 68 10 912 967 90

…..

100 55 85 20 647 726 90

Fig. 16. Structure of data file of Solomon problem instance

For the problem instances the Euclidean distance between two nodes is

treated as the shortest path value. For computation the shortest path distance

value is also treated as travel time value. 

3.1.2. Li and Lim problem instances

The second data  set  is  defined for  the  VRPPD (Li  and Lim,  2003).

VRPPD instances  LC1,  LC2,  LR1,  LR2,  LRC1,  LRC2 are  generated  from

Solomon problem sets C1, C2, R1, R2, RC1, RC2 respectively, described in

Section  3.1.1.  Problem  instances  have  100  customers.  VRPPD  instances

include the central depot, time window constraints, pick-up and delivery nodes

and the maximal travel time for a single vehicle (Figure 17).

Similarly  as  for  VRPTW  instances,  for  the  VRPPD  problem  the

Euclidean distance between two nodes is treated as the shortest path value and

the same value is also treated as travel time value. 
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NUMBER OF VEHICLES CAPACITY

25 200

CUST

NO.

X Y DEMAND EARLIEST

PICKUP/

DELIVERY

TIME

LATEST

PICKUP/

DELIVERY

TIME

SERVICE

TIME

PICKUP

(index  to

sibling)

DELIVERY

(index  to

sibling)

0 35 35 0 0 230 0

1 41 49 -20 133 198 10 65 0

2 35 17 7 22 87 10 0 55

….

Fig. 17. Structure of data file of VRPPD problem instance

3.2. Evaluation of crossover operators
The crossover operators proposed in Section 2.1.3 are implemented with

the Java programming language in order to compare it with other crossover

operators.  The  other  crossover  operators  (BCRC,  RBX,  LRX) described in

Section  1.5,  are  also  implemented  for  comparison.  For  these  crossover

operators that use insertion heuristics, the construction of solutions is the same

as in the algorithm definition. For comparison of crossovers, other parts of the

genetic algorithm are common:

 The initialization of the population is performed by randomly selecting

nodes for insertion and inserting them by evaluating the feasibility and

minimizing  the  cost.  The  same  population  is  used  for  a  single

experiment with all the crossover operators. The population size is equal

to 100.

 For evolution strategy, the  k-tournament selection of the size  k = 2 is

chosen. In each iteration, 10 new offsprings are created.

 Mutation. To identify the features of a crossover better two groups of

experiments are carried out.  The first  group of experiments does not

involve the mutation operator. In the second group of experiments, the

mutation operator is applied. The mutation operator used extracts 0.5z
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nodes  from  the  solution  and  reconstructs  the  solution  by  the  same

reconstruction method that  is  used in  the  crossover,  z is  the  random

value within the range (0,1). Mutation is applied with the probability

0.15.

 Computation is stopped, when the best solutions are not improved for

300 iterations or when the maximum computation time (5 minutes) is

reached.

The experiments are carried out using the Solomon problem instances

described in Section  3.1.1.  For the evaluation of crossovers, we choose two

problem instances from each set of problems. For each instance, the genetic

algorithms with different crossovers run 10 times, and each time, a new initial

population  is  created. Computations  are  performed on a  personal  computer

with  Intel  Core  2  Duo  2.2  GHz  CPU  and  4GB  RAM.  Tables  1 and  2

summarize the results, where computations are performed without applying the

mutation  operator,  and  Tables  3 and  4 summarize  the  results,  where

computations involve the mutation operator. In Tables 1 and 3, the best results

identified are presented, and, in Tables 2 and 4, the averaged results for each

crossover operator are presented. The results in the tables show the difference

from the best known solutions, reported in the papers (Solomon, 1987; Potvin

and Bengio,  1996; Tan et  al.,  2001; Jung and Moon,  2002; Ombuki et  al.,

2002; Berger and Barkaoui, 2004; Alvarenga et al., 2005; Ombuki et al., 2006;

Tan et al., 2006; Garcia-Najera and Bullinaria, 2011). The results are displayed

in  the  form “difference  of  the  total  path  length  /  difference  of  the  vehicle

number”.  Problem  instances  used  in  the  experiments  and  the  best  known

solutions are as follows:

 C104 – vehicles 10, total path length 824.78;

 C106 – vehicles 10, total path length 828.94;

 C204 – vehicles 3, total path length 590.6;
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 C207 – vehicles 3, total path length 588.29;

 R101 – vehicles 19, total path length 1645.79;

 R105 – vehicles 14, total path length 1377.11;

 R205 – vehicles 3, total path length 994.42;

 R209 – vehicles 3, total path length 909.16;

 RC101 – vehicles 14, total path length 1696.94;

 RC107 – vehicles 11, total path length 1230.48;

 RC201 – vehicles 4, total path length 1406.91;

 RC208 – vehicles 3, total path length 828.14;

Table 1. The difference between the best results, found by using crossover operators without 
applying mutation, and the best known solutions

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C104 22.27/0 22.98/0 907.52/0 0/0 0/0 0/0

C106 0/0 0/0 886.69/2 0/0 0/0 0/0

C204 0/0 10.61/0 708.94/1 0/0 0/0 0/0

C207 0/0 8.49/0 696.19/1 0/0 0/0 0/0

R101 46.0/0 46.3/0 186.5/0 9.0/0 17.32/0 7.74/0

R105 30.35/1 58.77/1 286.72/1 26.7/0 10.38/0 0/0

R205 46.04/0 82.61/0 698.16/1 68.0/0 73.010/0 27.32/0

R209 34.35/0 61.04/3 485.63/1 35.57/0 41.92/0 19.43/0

RC101 -8.5/1 30.55/1 125.31/2 -45.09/1 -52.68/1 -53.07/1

RC107 62.43/0 54.62/1 438.83/2 8.05/0 268.73/1 3.81/0

RC201 22.61/0 34.94/0 724.57/1 28.1/0 10.86/0 6.61/0

RC208 39.38/0 70.4/0 922.42/1 19.7/0 18.1/0 4.22/0

Table 2. The difference between the averaged results, found by using crossover operators 
without applying mutation, and the best known solutions

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C104 61.88/0 61.03/0 1292.83/0 8.98/0 20.16/0 2.86/0

C106 47.53/0 91.65/0.1 1043.65/2.2 0/0 0/0 0/0
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BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C204 1.69/0 27.96/0 860.58/3 3.24/0 0/0 0/0

C207 0/0 23.48/0 1078.35/1 0/0 0/0 0/0

R101 83.64/0.3 83.56/0.5 194.31/0.5 23.32/0 37.58/0.3 15.93/0

R105 73.68/1 134.69/1.1 322.18/1.9 120.5/0.5 77.18/0.3 16.32/0.2

R205 80.76/0 122.82/0 722.36/1 99.11/0 119.46/0 65.15/0

R209 58.99/0 110.87/0 646.42/1 66.40/0 75.48/0 44.18/0

RC101 33.07/1.7 98.23/1.5 186.03/2.1 -28.1/1.2 4.4/1.1 -38.89/1.3

RC107 71.15/0.8 1253.52/1 488.63/2.9 85.04/0.5 303.1/1.1 25.9/0.5

RC201 76.01/0 128.65/0 894.62/1.1 74.55/0 93.9/0 30.99/0

RC208 59.51/0 98.21/0 982.84/1 81.85/0 63.43/0 17.69/0 

Averaged

CPU time

32.82 94.84 7.37 89.131 82.99 35.75

Table 3. The difference between the best results, found by using crossover operators and 
mutation also being applied, and the best known solutions

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C104 0/0 15.17/10 94.75/0 0/0 0/0 0/0

C106 0/0 0/0 0/0 0/0 0/0 0/0

C204 0/0 0/0 0.57/0 0/0 0/0 0/0

C207 0/0 0/0 0/0 0/0 0/0 0/0

R101 8.51/0 8.97/0 36.58/0 6.38/0 6.78/0 5.22/0

R105 0.66/1 106.17/0 56.61/0 0.61/0 10.38/0 0/0

R205 45.69/0 38.91/0 99.77/0 39.63/0 28.97/0 38.83/0

R209 25.19/0 44.51/0 62.35/0 37.72/0 13.01/0 6.0/0

RC101 –40.5/1 –24.87/1 -14.91/1 -50.11/1 -40.62/1 -53.95/1

RC107 28.92/0 32.35/1 109.31/0 5.59/0 5.53/0 3.53/0

RC201 22.83/0 56.88/0 99.72/0 17.46/0 6.61/0 8.09/0

RC208 32.49/0 45.69/0 128.38/0 34.72/0 17.47/0 0.87.01/0
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Table 4. The difference between the averaged results, found by using crossover operators and
mutation also being applied, and the best known solution

BCRC RBX LRX CNX

(proposed)

CAX

(proposed)

LCSX

(proposed)

C104 31.95/0 61.83/0 313.5/0 1.76/0 0.19/0 0/0

C106 29.71/0 34.78/0 3.81/0 0/0 0/0 0/0

C204 0.74/0 5.69/0  38.79/0.3 0/0 0/0 0/0

C207 0/0 0/0 56.23/0.3 0/0 0/0 0/0

R101 33.29/0.1 33.06/0.3 76.54/0.3 15.8/0 14.47/0 14.34/0

R105 41.33/1 62.68/0.9 83.43/0.5 96.57/0.4 23.59/0.1 5.18/0

R205 82.19/0 78.21/0 189.15/0.6 69.14/0 56.66/0 66.98/0

R209 52.97/0 79.53/0 192.97/0.7 79.56/0 49.47/0 24.33/0

RC101 -2.48/1.4 21.69/1.4 26.81/1.3 -35.46/1 -39.06/1 -41.44/1

RC107 67.39/0.7 96.1/1.1 122.5/0.8 68.07/0.4 78.58/0.3 36.39/0.3

RC201 69.73/0 82.74/0 147.17/0.7 71.18/0 33.53/0 18.95/0

RC208 50.89/0 70.6/0 167.23/0.3 75.17/0 44.25/0 23.48/0

Averaged

CPU time, s

39.78 150.79 110.44 96.62 92.74 43.29

The results are compared according to the defined objective: at first, the

vehicle number differences are compared, and afterwards differences of the

total path length is compared. The best values are bold in Tables 1-4 and the

second best values are displayed in italics.

In Figure  18 a comparison of  the average difference of path lengths

found  by  the  described  crossover  operators  are  presented.  In  Figure  19 a

comparison of the average difference of vehicle number found by the described

crossover operators are presented. We can see that the results found by LCSX

crossover  are  smaller  than  the  results  of  other  crossover  operators  when

comparing  results  obtained  with  mutation  applied  and  without  mutation

applied.  We can also see that  LCSX crossover found better results  without

mutation applied in comparison with results of other crossover operators when

mutation was applied. 
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Fig. 18. Average difference of total path length found by the described crossover operators

Fig. 19. The average difference of route number found by the described crossover operators

 The results show that the LCSX crossover, proposed in this research,

has found better  average solutions than the other crossover operators in 22

cases out of 24 (in ~92% cases). In 2 cases out of 24, the better solutions has
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been  found  by  CAX.  Comparing  the  best  results,  LCSX  has  found  better

solutions in 23 cases out of 24 (in 96% cases), and in the experiments, where

mutation was not applied, LCSX has found better solutions in all the cases. For

the RC101 problem instance, the identified path length difference is negative,

however, the difference of vehicle number is positive. It means that a better

path length is identified for the RC101 problem, but the number of routes was

not minimized to the best known number. The best CPU time in the cases,

where the mutation was not applied, belongs to crossover LRX, however, the

solutions found by this crossover are worst. The computation with the LRX

crossover stopped early without finding better solutions, so it leads to a short

CPU time and not so good solutions found. The LRX crossover showed better

characteristics, when the mutation was applied, but the results are still worst

comparing to other crossovers.

The  best  computation  time  in  the  cases,  where  mutation  is  applied,

belongs to BCRC. The computation time of LCSX is the second best one and

is  quite  similar  to  the  computation  time of  BCRC.  However,  the  solutions

found by LCSX are  more accurate  than that  found by BCRC. The genetic

algorithm with CAX has found the second best solutions in most cases, where

mutation was applied, and in some cases, where mutation was not applied. The

CPU time of CAX is longer than LCSX, because preservation of the common

arcs  at  the  beginning  produces  more  unrouted  nodes  and  requires  more

insertion trials while searching for a solution that could be competitive in the

population. The CPU time of CNX is similar to the time of CAX, because

more iterations requires to improve the best solution comparing to LCSX: the

CNX preserves common nodes and produces small amount of unrouted nodes,

so CNX requires to cross more solutions to find better one. However, in all

cases the proposed genetic operators found the best and the second best results.
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Although the  CPU time of  BCRC is  shorter  than LCSX and CAX, BCRC

cannot be applied to the problems, where the solutions is one route. 

It  is  worth  mentioning,  that  crossovers,  defined  by  other  authors

(BCRC, RBX, LRX), can be dependent on other parts in the genetic algorithm,

i.e. on the created initial population or the selection operator, etc. LCSX has

showed better results when computing without mutation or with mutation that

randomly removes and reinserts nodes. 

3.3. Results of the proposed genetic algorithm
The algorithm proposed in Section 2.1 is tested using two problem sets

described  in  Sections  3.1.1 and  3.1.2.  The  proposed  genetic  algorithm  is

implemented  using  the  Java  programming  language.  All  computations  are

performed by a  personal  computer  (Intel  Core  2 Duo 2.2  GHz CPU,  4GB

RAM).  In  the  experimental  evaluation,  parameter  values  in  the  genetic

algorithm are defined as follows: 

• PS1 = 100 – size of the first population;

• PL1 = 10 – recombination operations in a single iteration;

• IL1 = 50 – maximum iteration number without improvement in the first

population; 

• TL1 = 5min – maximum execution time of the algorithm;

• MP = 0.1 – mutation rate;

• PS2 `= 20 – size of the second population;

• IL2 = 5  –  maximum  iteration  number  without  improvement  in  the

second population;

• PL2 = 2 – recombination operations in a single iteration performed in the

second population.

All the obtained results are compared with the best results obtained by

other algorithms in the following papers:

[1] (Solomon, 1987);
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[2] (Berger et al., 1998);

[3] (Ho et al., 2001);

[4] (Tan et al., 2001);

[5] (Tan et al., 2001a);

[6] (Jung and Moon, 2002);

[7] (Bent and Hentenryck, 2003);

[8] (Li and Lim, 2003);

[9] (Zhu, 2003);

[10] (Berger and Barkaoui, 2004);

[11] (Alvarenga et al., 2005);

[12] (Ombuki et al., 2006);

[13] (Tan et al., 2006);

[14] (Hasle and Kloster, 2007);

[15] (Garcia-Najera and Bullinaria, 2011).

The above mentioned papers describe different algorithms for solving

VRPTW  and  VRPPD.  The  different  genetic  algorithms  designed  to  solve

VRPTW include different crossover operators reviewed in Sections  1.3 and

1.5. Different algorithms also include different approaches for a diversification

where various mutations are applied that involve the generation of feasible and

infeasible  solutions,  a  simultaneous  evolution  of  two  populations  is  also

involved to increase the diversification. To intensify the search different repair

and improvement  methods  based on  the  local  search  heuristics,  as  well  as

hybrid approaches that involve the ant colony optimization, the tabu search, the

column  generation  heuristic,  the  parallelization  and  multi-objective

optimization, are used. The dynamic adaptation of the crossover probability

and the mutation rate that depends on the changing population dynamics is also

used. The algorithms used for comparison of VRPPD results involve hybrid
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approaches  of  large  neighborhood  search,  tabu  search,  simulated  annealing

where different algorithms are applied in different stages of the computation.

In Tables  5-10, the results of VRPTW instances are summarized. The

first column defines the problem instance name; three next columns present the

best  known  solutions,  the  best  known  solutions  obtained  by  other  genetic

algorithms and the best solution obtained by the proposed algorithm. In the last

three columns, there are presented the published best average results obtained

by  other  genetic  algorithms,  average  results  obtained  by  the  proposed

algorithm and the average CPU time used in calculation. 

The average results are obtained by executing the proposed algorithm

10 times for each problem instance when each time a new initial population is

created.  The results  in  Tables  are  displayed in  the  form “total  path length

/vehicle number”.

Table 5. Results of problem set R1

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

R101 1645.79
/19

1650.8
/19 [15]

1650.8
/19

1693.23
/19.6 [12]

1650.8
/19

42.5

R102* 1486.12
/17

1487.31
/17 [15]

1486.12
/17

1525.46
/18.2 [12]

1487.04
/17

27.27

R103 1292.68
/13

1299.18
/13 [15]

1296.29
/13

1281.32
/13.8 [12]

1234.48
/13.8

31.48

R104 1007.24
/9

999.82
/10 [15]

982.02
/10

1035.10
/10 [12]

989.96
/10

48.09

R105* 1377.11
/14

1377.11
/14 [15]

1377.11
/14

1430.86
/14.9 [12]

1385.56
/14

52.85

R106 1251.98
/12

1263.21
/12 [15]

1252.03
/12

1298.27
/12.8 [12]

1259.28
/12

59.64

R107 1104.66
/10

1164.14
/11 [6]

1117
/10

1115.87
/11 [12]

1127.04
/10

70.20
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Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

R108 960.99
/9

960.99
/9 [10]

968.97
/9

990.39
/10 [12]

970.18
/9

51.8

R109 1194.73
/11

1156.05
/12 [15]

1245.32
/11

1244.87
/12.5 [12]

1175.5
/11.8

21.12

R110 1118.59
/10

1119
/10 [10]

1119
/10

1146.11
/11.9 [12]

1091.95
/10.9

43.66

R111 1096.72
/10

1084.76
/11 [12]

1096.74
/10

1132.51
/11 [12]

1107.13
/10

75.04

R112 982.14
/9

953.63
/10 [6]

962.03
/10

1022.51
/10.3 [12]

977.05
/10

52.71

Table 6. Results of problem set R2

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution of
the

proposed
algorithm

R201 1252.37
/4

1253.32
/4 [15]

1253.23
/4

1313.23
/4 [12]

1262.83
/4

17.32

R202 1191.7
/3

1081.6
/4 [15]

1195.3
/3

1114.77
/4 [12]

1196.60
/3

27.76

R203 939.50
/3

959.75
/3 [15]

947.09
/3

974.51
/3 [12]

966.71
/3

14.92

R204 825.52
/2

760.82
/3 [12]

846.42
/2

777.37
/3 [12]

849.17
/2

60.68

R205 994.42
/3

1030.92
/3 [15]

1029.1
/3

1070.66
/3 [12]

1052.89
/3

31.00

R206 906.14
/3

919.73
/3 [12]

918.75
/3

949.25
/3 [12]

932.26
/3

26.07

R207* 890.61
/2

821.32
/3 [12]

890.61
/2

848.30
/3 [12]

911.02
/2

88.19

R208* 726.82
/2

736.47
/2 [15]

726.82
/2

747.98
/3 [12]

734.53
/2

37.43
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Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution of
the

proposed
algorithm

R209 909.16
/3

921.37
/3 [15]

913.14
/3

955.46
/4 [12]

931.54
/3

40.72

R210 939.34
/3

954.12
/3 [10]

954.12
/3

999.02
/3 [12]

969.81
/3

29.89

R211 885.71
/2

906.19
/2 [10]

900.88
/2

823.34
/3 [12]

929.60
/2

80.99

Table 7. Results of problem set C1

.
Problem

Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution of
the

proposed
algorithm

C101* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

12.2

C102* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

13.1

C103* 828.06
/10

828.06
/10 [6]

828.06
/10

828.06
/10 [6]

828.06
/10

15.25

C104* 824.78
/10

824.78
/10 [6]

824.78
/10

824.78
/10 [6]

824.78
/10

16.4

C105* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

12.55

C106* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

12.86

C107* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

12.85

C108* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

13.24

C109* 828.94
/10

828.94
/10 [6]

828.94
/10

828.94
/10 [6]

828.94
/10

14.67

110



Table 8. Results of problem set C2

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution of
the

proposed
algorithm

C201* 591.56
/3

591.56
/3 [6]

591.56
/3

591.56
/3 [6]

591.56
/3

12.34

C202* 591.56
/3

591.56
/3 [6]

591.56
/3

591.56
/3 [6]

591.56
/3

12.57

C203* 591.17
/3

591.17
/3 [6]

591.17
/3

591.17
/3 [6]

591.17
/3

13.29

C204* 590.6
/3

590.6
/3 [6]

590.6
/3

590.6
/3 [6]

590.6
/3

15.03

C205* 588.88
/3

588.88
/3 [6]

588.88
/3

588.88
/3 [6]

588.88
/3

12.68

C206* 588.49
/3

588.49
/3 [6]

588.49
/3

588.49
/3 [6]

588.49
/3

12.85

C207* 588.29
/3

588.29
/3 [6]

588.29
/3

588.29
/3 [6]

588.29
/3

12.86

C208* 588.32
/3

588.32
/3 [6]

588.32
/3

588.32
/3 [6]

588.32
/3

12.88

Table 9. Results of problem set RC1

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

RC101 1696.94
/14

1636.92
/15 [12]

1697.43
/14

1668.52
/15.4 [12]

1649.63
/14.8

76.94

RC102* 1554.75
/12

1470.26
/13 [13]

1554.75
/12

1536.04
/13.8 [12]

1547.69
/12.4

63.34

RC103 1261.67
/11

1267.86
/11 [13]

1273.81
/11

1350.15
/12 [12]

1280.27
/11

84.99

RC104 1135.48
/10

1136.81
/10 [6]

1135.83
/10

1184.29
/10.4 [12]

1141.37
/10

46.27
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Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best
solution of

the proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

RC105 1629.44
/13

1629.44
/13 [10]

1540.18
/14

1618.63
/15 [12]

1556.01
/14

88.91

RC106 1424.73
/11

1424.73
/11 [10]

1376.26
/12

1450.3
/12.8 [12]

1390.15
/12

38.35

RC107 1230.48
/11

1235.37
/11 [15]

1230.95
/11

1227.81
/12.03 [6]

1232.78
/11

58.62

RC108* 1139.82
/10

1141.34
/10 [12]

1139.82
/10

1135.81
/11 [6]

1151.75
/10

88.54

Table 10. Results of problem set RC2

Problem Best distance/vehicles Average distance/
vehicle

Average
CPU

 time of the
proposed
algorithm

Best
solution

Best GA
solution

Best solution
of the

proposed
algorithm

Best GA
solution

 Solution
of the

proposed
algorithm

RC201 1406.91
/4

1423.73
/4 [12]

1417.45
/4

1492.67
/4 [12]

1435.06
/4

30.06

RC202 1365.65
/3

1162.54
/4 [15]

1367.09
/3

1212.49
/4 [12]

1415.48
/3

105.47

RC203 1049.62
/3

1058.33
/3 [15]

1058.33
/3

1152.64
/3 [12]

1088.31
/3

44.42

RC204* 798.46
/3

801.90
/3 [15]

798.46
/3

826.19
/3 [12]

812.77
/3

28.03

RC205* 1302.42
/4

1304.93
/4 [15]

1302.42
/4

1378.44
/4 [12]

1330.06
/4

20.93

RC206* 1146.32
/3

1203.7
/3 [12]

1146.32
/3

1164.33
/3.3 [12]

1159.36
/3

43.09

RC207 1061.14
/3

1093.25
/3 [12]

1070.85
/3

1052.13
/3.7 [12]

1080.66
/3

77.18

RC208* 828.14
/3

834.88
/3 [15]

828.14
/3

938.24
/3 [12]

851.43
/3

28.13
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The  asterisks  near  the  names  of  the  problems  in  Tables  5-10 show

which instance solution found by the proposed algorithm is equal to the best

known solution. The results are compared in the same way as they have been

defined in the objective: firstly, the found vehicle numbers are compared and

afterwards  the  found  traveling  distances  are  compared.  The  best  solutions

obtained by other genetic algorithms are compared to the best solutions found

by the proposed algorithm and the best average results are compared with the

average results found by the proposed algorithm. Better values are in bold in

Tables 5-10.

We see that  the proposed algorithm shows very good results  for  the

problem set C, where the average results are equal to the best known values

and  the  computation  time  is  very  small.  The  results  show  that  for  other

problem sets R and RC the best values are found only in some cases. However,

the  results  obtained  by  the  proposed  algorithm,  in  comparison  with  other

genetic algorithm approaches, show that the same or better results are obtained

for 51 out of 56 problem instances (in ~91% cases) of for the best solutions,

and the same or better results for 56 out of 56 problem instances (in ~100%

cases) comparing with the best published average results.

Table 11 shows the best results that are averaged over categories (C, R,

RC). The columns show the results from different papers as well as the average

results obtained by the proposed algorithm.

The bold values in Table 11 show the minimal value compared at first

according to the found vehicle number and then according to the found shortest

distance.  The  results  show that  for  problem sets  C1  and  C2  the  proposed

algorithm  finds  solutions  that  are  equal  to  the  best  results.  The  proposed

algorithm finds solutions that are better than other ones for problem sets R2

and  RC2,  where  problems  have  large  time  windows.  Better  results  were

obtained in [10] for problems with narrow time windows, R1 and RC1.
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Table 11. Travel distance and the number of vehicles, averaged over categories

[4] [5] [3] [9] [12] [10] [11] [15] Solution  of
the
proposed
algorithm

C1 861
/10.1

860.62
/10.1

833.32
/10

828.9
/10

828.48
/10

828.38
/10

828.38
/10

828.38
/10

828.38
/10

C2 619
/3.3

624.47
/3.3

593
/3

589.86
/3

590.6
/3

589.93
/3

590.9
/3

591.74
/3

589.86
/3

R1 1227
/13.2

1314.79
/14.4

1203.32
/12.6

1242.7
/12.8

1220.92
/12.5

1221.1
/11.92

1224
/11.92

1187.32
/13.08

1213.66
/12.08

R2 980
/5

1093.37
/5.6

951.17
/3.2

1016.4
/3

938.75
/3.1

975.43
/2.73

1012
/2.73

897.95
/4

961.44
/2.73

RC1 1427
/13.5

1512.94
/14.6

1382.06
/12.8

1412
/13

1386.35
/12.12

1389.89
/11.5

1417
/11.5

1348.22
/12.63

1370.01
/11.75

RC2 1123
/5

1282.47
/7

1132.79
/3.8

1201.2
/3.7

1132.12
/3.38

1159.37
/3.25

1195
/3.25

1036.65
/5.63

1126.75
/3.25

It  is  worth  mentioning  that  the  results,  obtained  by  the  proposed

algorithm, were identified on average in 38.97 seconds for VRPTW instances

by Intel Core 2 Duo 2.2 GHz (1.09 Gflops/s for single core operations). The

results obtained in [11] were found in 15 minutes by Pentium IV 2.4.GHz (0.9

Gflops/s), in [9] they were found in 592 seconds by Pentium IV 2.4 GHz (0.9

Gflops/s)  and  in  [10]  the  presented  results  were  found  in  30  minutes  by

Pentium 400 MHz (54 Mflops/s). In [15] the results were found in 117 seconds

by a computer cluster with dual-processor dual-core AMD Opteron 2.6 GHz

(1.23 Gflop/s  for single core operations).  In Figure  20 the average floating

point  operations  used  to  solve  VRPTW instances  are  displayed,  where  the

proposed genetic algorithm performs ~2 times less floating point operations to

find the results comparing to the best value of other algorithms. 
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Fig. 20. Average floating point operations 1.e9

The results in Figure 20 are presented by taking into account computer

performance  values  obtained  by  public  benchmarks.  The  theoretical

performance of computer used in the experiments is 8.8 Gflops/s (4 flops per

cycle) for single core. The theoretical performance of the computer used in

[10] is 400 Mflops/s (1 flop per cycle). In the experiments 8.8 Gflops/s  38.97

seconds = 342.94  109 average  floating  point  operations  are  used  to  solve

VRPTW. To obtain results in [10] 400 Mflops/s   1800 seconds = 720  109

average floating point operations are used. Taking into account a theoretical

CPU performance, the proposed genetic algorithm still performs ~2 times less

floating point operations to find the results comparing to other algorithms.

In Figure  21 the average difference of routes found by the proposed

algorithm and other genetic algorithms comparing to the route numbers of the

best  known results  is  presented.  Route numbers found in [10] and [11] are

equal to route numbers of the best known results.
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Fig. 21.  Average difference of routes numbers comparing to the route number of the best
know results

In Tables 12-17, the results of VRPPD instances are presented. The first

column shows instance names, in the second column the best known results are

presented; the third column presents the best results, obtained by the proposed

algorithm, and the last two columns show the average results and average CPU

time obtained by the proposed algorithm. 

Table 12. Results of problem set LR1

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LR101 1650.8/19 [8] 1650.8/19 1650.8/19 15.315

LR102 1487.57/17 [8] 1487.57/17 1487.57/17 17.115

LR103 1292.68/13 [8] 1292.68/13 1292.68/13 17.661

LR104 1013.39/9 [8] 1013.39/9 1013.39/9 44.836

LR105 1377.11/14 [8] 1377.11/14 1377.11/14 15.959

LR106 1252.62/12 [8] 1252.62/12 1252.62/12 14.673

LR107 1111.31/10 [8] 1111.31/10 1111.31/10 20.001

LR108 968.97/9 [8] 968.97/9 968.97/9 16.577

LR109 1208.96/11 [14] 1208.96/11 1208.96/11 46.617

LR110 1159.35/10 [8] 1159.35/10 1167.55/10.7 50.68
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Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LR111 1108.9/10 [8] 1108.9/10 1108.9/10 35.007

LR112 1003.77/9 [8] 1003.77/9 1003.77/9 41.956

Table 13. Results of problem set LR2

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LR201 1253.23/10 [14] 1253.23/10 1253.23/10 13.59

LR202 1197.67/3 [8] 1197.67/3 1213.39/3.3 26.806

LR203 949.40/3 [8] 949.40/3 949.40/3 15.59

LR204 849.05/2 [8] 849.05/2 849.05/2 20.18

LR205 1054.02/3 [8] 1054.02/3 1054.02/3 16.68

LR206 931.63/3 [8] 931.63/3 931.63/3 14.40

LR207 903.06/2 [8] 903.06/2 921.41/2.3 29.76

LR208 734.85/2 [8] 734.85/2 734.85/2 17.75

LR209 930.59/3 [14] 930.59/3 939.92/3.1 16.6

LR210 964.22/3[8] 964.22/3 999.74/3 22.09

LR211 911.52/2 [14] 911.52/2 911.52/2 31.3

Table 14. Results of problem set LC1

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LC101 828.94/10 [8] 828.94/10 828.94/10 12.245

LC102 828.94/10 [8] 828.94/10 828.94/10 12.458

LC103 1035.35/9 [7] 1035.35/9 1057.70/9 32.96

LC104 860.01/9 [14] 860.01/9 839.31/9.5 27.353

LC105 828.94/10 [8] 828.94/10 828.94/10 12.38

LC106 828.94/10 [8] 828.94/10 828.94/10 12.477

LC107 828.94/10 [8] 828.94/10 828.94/10 12.454
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Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LC108 826.44/10 [8] 826.44/10 826.44/10 12.609

LC109 1000.6/9[7] 1036.41/9 896.72/9.7 26.813

Table 15. Results of problem set LC2

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LC201 591.56/3 [8] 591.56/3 591.56/3 12.265

LC202 591.56/3 [8] 591.56/3 591.56/3 12.307

LC203 585.56/3 [8] 591.17/3 591.17/3 12.479

LC204 590.60/3 [14] 590.60/3 590.60/3 13.166

LC205 588.88/3 [8] 588.88/3 588.88/3 12.432

LC206 588.49/3 [8] 588.49/3 588.49/3 12.546

LC207 588.29/3 [8] 588.29/3 588.29/3 12.516

LC208 588.32/3 [8] 588.32/3 588.32/3 12.475

Table 16. Results of problem set LRC1

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LRC101 1708.80/14 [8] 1708.80/14 1708.80/14 18.2

LRC102 1558.07/12 [14] 1558.07/12 1558.07/12 20.383

LRC103 1258.74/11 [8] 1258.74/11 1258.74/11 19.47

LRC104 1128.40/10 [8] 1128.40/10 1128.40/10 16.787

LRC105 1637.62/13 [8] 1637.62/13 1637.62/13 23.077

LRC106 1424.73/11 [14] 1424.73/11 1424.73/11 36.105

LRC107 1230.15/11 [8] 1230.14/11 1230.14/11 19.488

LRC108 1147.43/10 [14] 1147.43/10 1168.4/10.7 25.531
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Table 17. Results of problem set LRC2

Problem Best distance/vehicles Average results

Best solution Solution of the
proposed algorithm

Solution of the
proposed algorithm

CPU time of
the proposed

algorithm

LRC201 1406.94/4 [14] 1406.94/4 1406.94/4 42.016

LRC202 1374.27/3 [8] 1374.27/3 1392.59/3.6 37.966

LRC203 1089.07/03 [8] 1089.07/03 1089.07/03 18.329

LRC204 818.66/3 [14] 818.66/3 818.66/3 15.961

LRC205 1302.20/4 [8] 1302.2/4 1302.20/4 29.366

LRC206 1159.03/3 [14] 1159.03/3 1159.03/3 21.527

LRC207 1062.05/3 [14] 1062.05/3 1062.05/3 22.121

LRC208 852.76/3 [8] 852.76/3 852.76/3 18.563

The bold numbers in Tables 8-13 for the VRPPD problem show where

the best solutions, obtained by the proposed algorithm, are equal to the best

known solutions.  The results  for  VRPPD instances show that  the solutions,

found by the proposed algorithm, are equal to the best known solutions for 54

out of 56 problem instances (in ~96% cases) and the average results found are

equal to the best known solutions for 45 out of 56 problem instances (in ~80%

cases). For VRPTW and VRPPD instances the minimal computation time is for

problem set C, where customers are located in clusters. 

3.4. Results  of  the  parallel  bi-directional  shortest  path
algorithm

This parallel bidirectional Dijkstra's  algorithm was implemented with

pthread – a POSIX standard for threads. Each process of the proposed parallel

approach is  implemented  as  a  separate  thread.  In  order  to  solve  conflicted

access to the same memory area, we used “mutexes” - pthread algorithms that

are  used  in  concurrent  programming  to  avoid  the  simultaneous  use  of  the

common resource by pieces of the computer code called critical sections. The
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algorithm was  developed in  the  C language  and  tested  in  the  latest  64-bit

Fedora  Linux  Operating  System.  The  experiments  were  carried  out  using

personal  computer  with  the  Intel  Core  2  Duo  2.2GHz processor  and  4GB

RAM.  The  algorithm  was  tested  on  a  real  road  network  using  the

OpenStreetMap data (Haklay and Weber, 2008). Figure 22 provides examples

that  were  visualized  with  the  UMN-Mapserver  open  source software.  The

description of UMN-Mapserver can be found in (Vatsavai et al., 2006).

a) b)
 

c) d)

Fig. 22. The shortest path calculation: a) using the standard Dijkstra's algorithm; b) using the
modified bidirectional Dijkstra's algorithm; c), d) using the proposed parallel scheme

The  steady  reading  of  data  from  the  disk  can  cause  delays,  which

distorts the results. In order to avoid that, a Lithuanian road network has been
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selected and placed in the computer memory before testing. Five random nodes

A, B,  C,  D and E were selected in  the graph in the same city  and all  the

shortest paths between them were calculated. The tests were calculated by the

standard  Dijkstra's  algorithm  (Figure  22 a),  the  modified  bidirectional

Dijkstra's  algorithm (Figure  22 b),  and  by  the  parallel  algorithm proposed

(Figure 22 c). Figure 22 d) shows the shortest path calculation, where the start

of the second process is delayed because of the operating system loads. The

test results are presented in Figures 23 and 24. These results indicate that the

modified  bidirectional  Dijkstra's  algorithm  is  still 2  times  faster  than  the

standard one. However,  the parallel Dijkstra's algorithm is almost 2.9 times

faster  than  the  standard  one  and  1.4  times  faster  than  the  bidirectional

Dijkstra's algorithm. So the efficiency E(p) of the proposed parallel algorithm

is 0.7 (p = 2), where T1 is the execution time of the sequential algorithm, and

Tp is the execution time of the parallel algorithm with p processors:

Fig. 23. The execution time of the calculation of the shortest path between nodes A B C D E
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Fig. 24. The number of processed nodes in the calculation of the shortest path
between nodes A B C D E

Fig. 25. The execution time of the calculation of all the shortest paths between random k
nodes

Fig. 26. The number of processed nodes in the calculation of all the shortest paths between
random k nodes

122



Table 18. The execution time and the number of processed nodes in the calculation of all the 
shortest paths between random k nodes 

Execution time (seconds) Processed nodes

k Standard Bidirectional Parallel Standard Bidirectional Parallel

10 47.56 33.68 21.02 5271562 4163721 4244089

20 184.19 122.50 73.34 18511173 14073612 13961447

30 477.07 309.28 200.67 46566414 36361419 36652408

40 800.10 546.23 333.48 84806593 65769961 65779506

50 1488.55 847.68 553.10 131125250 98978796 98404846

Table 19. Average execution time and average numbers of processed nodes

Execution time Processed nodes

Standard 0.536 53738.97

Bidirectional 0.350 41530.77

Parallel 0.219 41671.60

In the second experiment, the total time of the shortest path calculations

between all k randomly selected nodes was measured. The experiments were

done by using the whole road network of Lithuania. Test results are presented

in Table 18, Figure 25 and Figure 26. The results show that the calculation of

all  the  shortest  paths  between  all  randomly  selected  50  nodes  lasted  ~24

minutes on the same hardware. Meanwhile,  the parallel Dijkstra's algorithm

calculates the same shortest paths in ~9 minutes. The average execution time

and the average numbers of processed nodes are presented in Table 19.

3.5. Summary
The  proposed  new  genetic  algorithm  is  applied  to  two  different

problems  (VRPTW,  VRPPD).  As  the  results  show,  the  proposed  genetic

algorithm finds solutions that in most cases are better or equal than the ones

found by other genetic algorithms. The results are compared according to the

objectives defined for the test problem instances. Although the found solutions

are not equal to the best  known solutions in all  cases,  they are found in a

reasonably short time. However, no additional improvement/repair algorithms
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or local search algorithms are used here. That makes the proposed algorithm

competitive with other known algorithms.

The  new crossover  operators  that  search  for  common parts  between

parent solutions are compared to other crossover operators that also deal with

insertion heuristics for constructing feasible solutions. The proposed crossover

operators are applied to VPRTW instances for comparison. The experimental

evaluation shows that the new crossover operators, in most cases, find better

solutions  than other  crossover  operators.  The  computation  time of  the  new

crossover operator LCSX is similar to that of other crossovers, however, the

found  solutions  are  more  accurate  as  compared to  that  found by  the  other

crossovers. The solutions are found in the experimental evaluation by applying

the  mutation  operator  that  randomly  removes  parts  of  the  solutions  and

reconstructs the solution. However, such mutation operator was chosen just for

the comparison of crossover operators. Different mutation operators could be

used to find better solutions. Also, it is worth mentioning that some solutions

are equal to the best known solutions even in the cases, where the mutation

was not applied, however, no additional improvement approaches are used.

The  proposed  algorithm can  be  applied  to  any  problem that  can  be

expressed as a graph. Mutation and crossover operators of the proposed genetic

algorithm are  based on a  random insertion heuristic.  The operators  are  not

designed to a certain specific problem and can be applied to different problems.

The proposed algorithm can be applied in general cases. 

The proposed parallel version of the Dijkstra's algorithm is almost 2.9

times faster than the standard one and 1.4 times faster than the bidirectional

Dijkstra's algorithm. Although the evaluation was performed only between two

places in the graph, the mentioned approach can be adapted to calculate the

shortest-path between more than two places in the graph at the same time or

even forward and backward at the same time.
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The results of this chapter have been published in (Vaira and Kurasova,

2010;  Vaira  and  Kurasova,  2011;  Vaira  and  Kurasova,  2013;  Vaira  and

Kurasova, 2013a; Vaira and Kurasova, 2014). 
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Conclusions
The  research  completed  in  this  thesis  has  led  to  the  following

conclusions:

1. In contrast to crossover operators, where solutions are constructed

from parts of the parent solutions, the proposed crossover operators,

that search and preserve parts of the solution that are common to

both  parents,  find  the  results  that  in  most  of  the  cases  are  more

accurate  than  the  ones  found by other  crossover  operators.  Some

solutions are equal to the best known solutions even in the cases,

where mutation was not applied.

2. As results of VRPTW instances show, the proposed algorithm, based

on feasible reinsertion approach in genetic algorithm operators, on

crossovers preserving common parts, and on the second population

in mutation operator, finds better solutions for 4 out of 6 problem

instance  groups  in  comparison  with  other  genetic  algorithm

approaches.

3. By  repeatedly  applying  random  insertion  heuristic,  the

diversification is enabled in the population and, by dealing only with

feasible  solutions,  infeasible  search  space  is  not  examined,  thus

avoiding  unnecessary  computation  and  increasing  overall

computation  speed.  The  solutions  are  found  on average  in  38.97

seconds.  The  proposed  genetic  algorithm performs  ~2  times  less

floating point  operations to find the results comparing to the best

value of other algorithms.

4. The best solutions for VRPPD instances, obtained by the proposed

algorithm, are equal to the best known solutions in ~96% cases. The

found average solutions  are  equal  to  the  best  known solutions  in

~80% cases.
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5. The results of the shortest path search experiments indicate that the

modified bidirectional Dijkstra's algorithm is 2 times faster than the

standard one and the parallel Dijkstra's algorithm is almost 2.9 times

faster  than  the  standard  one  and  1.4  times  faster  than  the

bidirectional Dijkstra's algorithm.

6. Mutation and crossover operators in the proposed genetic algorithm

are  based  on a  random insertion  heuristic.  The  operators  are  not

designed to a certain specific problem and can be applied to different

problems. The proposed algorithm can be applied for the rich vehicle

routing problem. No additional repair or improvement methods are

used  that  could  be  a  problem for  extending  scheme  with  a  new

constraint handling. Proposed genetic operators do not break main

genetic algorithm principles, so different objective functions can be

applied to rank solutions in the population, including multi-objective

approaches.
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