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Notation

SL(2,7Z)
(Z/qZ)*

Euler constant

prime number

k-th Bernoulli number

modulo of Dirichlet character x

greatest common divisor of natural k and [
the residue mod [ defined by kk = 1( mod [)
set of all natural numbers

Nu {0}

set of all integer numbers

set of real numbers

set of all complex numbers

imaginary unity: i = v/—1

complex variable

real part of z

imaginary part of z

primitive Dirichlet character

conjugate to Dirichlet character y

pricipal Dirichlet character

full modular group

group of invertible residues mod ¢

1

ms

foro > 1

[e.e]
Riemann zeta-function ((s) = >
m=1

Dirichlet L-function L(s,x) = >_ % for o > 1
m=1



E(s; %, ) Estermann zeta-function E(s; %, a) = 3> U‘;ET) exp{2mim%}

m=1

for o > max(1 + Ra, 1)

L(\, B, s) Lerch zeta-function L(\, §,s) = Z S for o> 1LAER,0< <
((s,B) Hurwitz zeta-function ((s,8) = >_ m+ﬁ for o >1
m=1
d(m) divisor function d(m) = }_,,,1
To(m) generalized divisor function aa(m) =2 gmd®, 2 €C
['(s) Euler gamma-function I'(s) = [e™*x* !dx for o > 0
0
©(m) Euler totient function
)
1 if m=1,
pu(m) Mébius function pu(m) = (=1)% if  m = pipo..pr,
0 otherwise
(
a(q) Zp\q lﬁf
c(q) a1 X(@)(q,a = 1)
G(x) Gauss sum G(x) = S0, x()e*r/s
m(x;a,q) number of primes p < x, p = a mod ¢
Z1(s,x) modified Mellin transform of Dirichlet L-function

Ress—. f(s) residue of the function f at the point z

The symbols O, ~, and < are used in their standard meaning.



Introduction

Dirichlet L-functions L(s,x), s = o + it, are a generalization of the Riemann zeta-
function ((s). In the half-plane o > 1, the function L(s, x) is defined by the Dirichlet

series

Lis,) Y xm),

where y(m) is a Dirichlet character modulo ¢ € N, i.e., x(m) is a homomorphism of the
group (Z/qZ)* of invertible residues mod ¢ into the multiplicative group of complex

numbers modulo 1.

Actuality

The importance of Dirichlet L-functions is comparable with that of the famous Riemann
zeta-function. They were introduced in 1837 by P.G.L. Dirichlet for investigations of
prime numbers in arithmetic progressions. Using an analytic machinery of L-functions,
he proved that each arithmetic progression m = a mod ¢, (a,q) = 1, contains infinitely
many prime numbers. The accuracy of the asymptotic formula for the function

r(riag)= Y 1

p<z
p=a mod q

as r — oo essentially depends on the properties of Dirichlet L-functions. Dirichlet
L-functions also have a series of applications for solution of other difficult problems of
analytic number theory. Therefore, many well known number theorists, among them

R. Balasubramanian, E. Bombieri, B.Conrey, J.Friedlander, A.Fujii, P.X. Gallagher,



A.A. Karatsuba, M.Katsurada, S.M. Gonek, S. Kanemitsu, E. Kowalski, A. Laur-
inc¢ikas, Yu.V. Linnik, K. Matsumoto, H.L.Montgomery, Y. Motohashi, M.J. Narlicar,
K. Ramachandra, P. Sarnak, K. Soundararajan, J, Steuding, K. Titchmarsh, A.I
Vinogradov, S.M.Voronin, V. Zhang and others, investigated the value distribution
of Dirichlet L-functions.

In the theory of Dirichlet L-functions, an important role is played by the moments.

In 1995, Y. Motohashi [29] observed that, for investigation of the moments of the

e+

the modified Mellin transforms can be successfully applied. This was realized in a series

of works by A. Ivi¢, M. Jutila, Y. Motohashi, and by M. Lukkarinen. She also began

Riemann zeta-function
2%

dt,k >0,

to study the Mellin transforms corresponding the average mean square of Dirichlet

> /‘L(%—l—it,x)

x(mod q)

L-functions
2

dt.

There exists a more difficult problem to study the individual mean square of L-functions

T
1
/\L(W’X)
0

Some results in this direction were obtained in [28]|. For this problem, also the modified

2

dt.

Mellin transform can be applied. Therefore, analytic properties of the modified Mellin

transform

x %dx

o [ (1
Z1(s,x) d:f/'L (§+Z$aX)
1

are needed.

Aims and problems

The aim of the thesis is to obtain a meromorphic continuation for the modified Mellin

transform of | L (% + 1t X) ‘ 2,

10



The problems are the following.

1. Formulae for the Laplace transforms of ‘ L (% + 1t, X) ] ? with primitive character

x and principal character yg.
2. Transformation formulae for some functions involving the divisor function.

3. A meromorphic continuation to the whole complex plane of Mellin transforms
with principal and primitive characters modulo g, i.e., for the functions Z; (s, xo)

and Z1(s, x)-

Methods

For the proof of results obtained, various methods of functions of a complex variable
are applied. Among them, the methods of countour integration , residue theory and

transformations are used.

Novelty

All results of the thesis are new. Earlier the modified Mellin transforms corresponding

the individual moments of Dirichlet L-functions were not considered.

History of the problem and results

In the moment problem of zeta and L-functions, usually approximate functional equa-
tions are applied. For example, an asymptotic formula for the mean square of the

Riemann zeta-function

2
dt

¢4+

is easily obtained by using the approximate functional equation [33]

11



((s)=> mi +x(s) Y m}_s +0(z7)+0 (mé—“ y”‘l)

m<x m<y
which is valid in the critical strip 0 < 0 < 1,

x(s) =27%7 7 sin %SF(S),

and z, y and t are related by 2mrzy = t, x,y > ¢ > 0. Taking in this equation x = Qﬁ\/t@

and y = v/logt gives, in view of the estimate y (3 + it) = O(1), that

C(%—H’t) =)

m<x

T +0(z77)+0 (log% t> :

Thus, it suffices to prove that

T

/

0
as T — oo, and this a simple exercise. However, in the case of the higher moments,

2
dt ~ TlogT

>
m3tit

m<x

approximate functional equations for powers (¥(s) becomes more complicated, and the
problems arise for their using. Therefore, it is natural to use another approaches for
investigations of the moments of zeta-functions.

In 1995, a Japanese mathematician Y. Motohashi proposed [29] for the investigation
of moments of the Riemann zeta-function to apply Mellin transforms. We remind that

the Mellin transform F'(s) of the function f(z) is defined by

F(s) = F(s, f) «f /f(:c)x31d:c

provided that the integral exists. If the function f(x) is continuous and the function

f(x)z°~! is integrable over (0, 00), then it is well known the inverse formula
1 c+1i00
fz) = 5 F(s)x™%ds. (1)

Y. Motohashi proposed [29] to use the so-called modified Mellin transforms of the

powers of the functions ((s). Let, for 0 > og(k) > 1,

w3

12

2%
x %dx, k > 0.




Then an application of formula (1) with ¢ > 1 leads to

T N T etioo 7\ ° T 2%
o) o[ T (D)) ()
1 1 c—100
1 c+1i00
= 2—m A F(s)TSZk(s)ds.

Thus, if we have a sufficient information on the modified Mellin transform Z(s), we

[ ()

Therefore, a suitable choice of the function f(z) allows to estimate the moments

[IGe)

This example shows that the modified Mellin transforms of zeta-functions are powerful

may to evaluate the integral

2k

dz.

2k
dt.

tool in analytic number theory.

Let Fi(s) be the modified Mellin transform of f(z), i.e.,

F(s) = s )™ [ flayed.

We note that sometimes the function Fj(s) is more convenient than F(s) because a
convergence problem for the integral does not arise at point x = 0. Moreover, there

exists a simple relation between F'(s) and Fj(s). Define

f(3) if 0<az<l,
0 otherwise.

Then it was observed in [12] that

Fs.f) = F (5. 150).

Historically, the function Z5(s) was the first one studied for needs of the fourth power

moment of ((s). The function Z5(s) was introduced in [29] by Y. Motohashi, see also

13



[30], Chapter 5. He proved that, in the half-plane ¢ > 0, the function Z5(s) has
the pole at s = 1 of order five, simple poles at s = % tiRj, Kj = A/ Aj — }1, where
{\j = K3+ 1} U{0} is the discrete spectrum of the non-Euclidean Laplacian

oo (2 (3))

acting on the space of automorphic forms with respect to the full modular group
SL(2,Z), and poles at s = £, where p are a complex zeros of ((s). Using properties

of the function Z(s), several new results concerning the fourth power moment were

[]¢(3+

where Py(y) is a polynomial of degree 4. In [29] and [30], it was obtained that Ey(T") =

obtained. Let
4

Q. (T?2), where f(z) = Q,(g(x)) means that exists a constant ¢ > 0 such that f(z) >
cg(x) for a sequence x = z,, limz, = oo, f(r) = Q_(g(x)) means that then exists

a constant ¢ > 0 such that f(z) < —cg(x) for a sequence z = x,, limz, = oo, and
f(z) = Q4(g(x)) means that both f(x) = Q,(g(z)) and f(z) = Q_(g(x)) are true.

Moreover, in [8], [9], [10], it was proved the estimates

Eo(T) < T3 log™' T,

T
/ E2(T) < T*log™* T,
0

T
/EQ(T) < T>
0

with effective constants Cy and Cl.

The study of the function Z5(s) was continued in [15], where the analytic continua-
tion and growth for Z(s) were discussed. It was obtained that Z,(s), for p > —1, has
only poles at the points s = £, where, as above, p are complex zeros of ((s). Moreover,
it was proved that, for ¢ — % < 0 <1 — ¢, there exists a constant b = b(c) > 0 such

that

Zy(s) < (1+|t))°.

14



The analytic properties of the function Z(s) were began to study in [15]. There the

meromorphic continuation for Z;(s) to the half-plane ¢ > —3 had been obtained. More

3

precisely, it was proved that Z(s) is regular for 0 > —7, except for a double pole at

s =1, and

1 270 + log 27
(s —1)2 * s—1 *
In [16], M. Jutila, by another method, observed that Z;(s), for ¢ < 0, has at most

Z(s) =

double poles at s = —k, k € N. Finally, M Lukkarinen proved [26] that the function

Z(s) has simple poles at s = —(2k — 1),k € N, and no other singularities. She also

found that
Z'72k(1 _ 2172k)32k
Z =
B, 2il) o 7
keN

where By denote the Bernoulli numbers. Also, in [15], the following results for Z;(s)

were obtained. For 0 <o <1,t >ty > 0,
Zl (S) <<€ tlfchrE’

and

T 4o .

o T3ote if 0<o <4
121 (0 +it)]* dt <.

/ T2 20t if L 45 < 1,

In [16], the above estimate for Z;(s) was replaced by the following

(|t| + 1)1—40’/3+E lf

=)
IA
Q
IN
N |+

Zi(o+it) <
(‘t| + 1)5/670%*6 if

D=
A
Q
VAN
—_

It turned out that to remove a e-factor is not easy. Finally, in [26] it was proved that,

for 0 <o <1 and [t| > 2,
Zi(o 4 it) < |t|' 7 log? |t] .

which, for a small o, is better than the above Jutila’s estimate.
The meromorphic continuation and some estimates for the modified Mellin trans-

form

2
x °dx

Zi(s,p) = 7‘<(p+iﬂf)

15



with fixed 1 < p < 1 were discussed in [20]-[24], and [11], [13]
M. Lukkarinen, in [26], shortly discussed the modified Mellin transform of Dirichlet

b= 5 JJo(bn)

x mod g

L-functions
2

x %dx.

and indicated a way how to obtain meromorphic continuation for Z (s, x) to the half-
plane o > 0.

In the thesis, we consider the individual Mellin transform of Dirichlet L-functions

j L(beinn)

and obtain for it a meromorphic continuation to the whole complex plane. We ob-

2
x °dr,

serve that the study of Z,(s, y) is more complicated than that of Z,(s, y) because the
summing over all characters modulo ¢ simplifies the problem.

Chapter I of the thesis is auxiliary one. Here formulae for the Laplace transform
of Dirichlet L-functions are obtained. Relation between the Laplace and Mellin trans-
forms for the Riemann zeta-function was observed in [14]. We recall that the Laplace

transform £(s, f) of the function f(x) is defined by

)= [ e s

provided the integral converges for ¢ > o(, with some oy. It is well known that the
Laplace transform can be applied for the investigation of the moments of zeta-functions.
This is easily seen from the following simple observation [33|. Suppose that f(z) > 0

for x > 0, and, for a given k£ > 0,

/f 5xdx~—1og’f(15

as 0 — 0. Then .

/f(m)dx ~ Tlog" T
0
as T' — oo.

16



The first formula for the Laplace transform of the function ] ¢ (% + 233) ‘ ? was pre-

sented in [33]. Here it was proved that

[leG+)

for |s| small enough and o > 0, where, as above d(m), is the divisor function. Define

- (2o

Then a more precise formula is true [26].

2 0 0
_ ; o208
e QS.Z’dI, — 27T€ZS § d(m)€27rzme + § amsm
m=1 m=0

2
e *dzx.

Theorem A. Let {s € C:0 < |o| < w}.Then

™

£(s) = ies/? (70 —log 27 — <§ — 3) @> + e is/2 Z d(m)e—%ime—is +A(s),
m=1

where the function \(s) is analytic in the strip{s € C : |o| < 7}, and, for |o| < 6,
0 < 6 <, the estimate
A(s) = O((1 +s])) ™"

18 true.

A similar formula was also obtained for the Laplace transform

2
e Tdx

Lo(s) = ﬂc (p+iz)

with a fixed p, 3 < p <1, in [18].

Let
2

£(s,x) = e dx.

1
‘L (§ + ix,x)

In Chapter 1, the formulae for £(s, x) are obtained. To state them, we use the following

notation.

Let

denote the Gauss sum,

17



:ZL

dlm
the divisor function, vy Euler’s constant, and p(m) Mdbius function.

Moreover, let

and
e(x) if b=0,

e1(x) it b=1.

Theorem 1.1. Let {s € C: 0 < o < 7} and x is a primitive character mod q > 1.
Then

QWibe’% > 2mm
£<s,x>=—2d<m>x<m>exp{— o, “}+>\(S,X),

where the function (s, x) is analytic in the strip {s € C : |o| < 7}, and, for |o| < 6,

0 < 0 <, the estimate
As, x) = O((1+[s])~

s valid.

Theorem 1.2. Let {s € C: 0 < o < 7w} and xo is the principal character mod

q>1. Then
_ o8 log p
2(37)(0)—2@21_[(1—— > ulm) 70—10g27r—(——s> +Z - +logm
plq mlq p\q
p(m - 2mikn
— Omie” = Z Z Zd eXpy T + A(s, x0),
nlg miq k=1

where the function A(s, xo) has the same properties as in Theorem 1.1.

When ¢ = 1, we obtain Theorem A.

18



The same results are also true for the modified Laplace transform

s Jo (3 )

Chapter 2 is auxiliary, too. Here we obtain transformation formulae for the func-

2
e dx.

tions

Zd 2mm mz_70_210gl_10gz
lz ’

where k and [ are coprime positive integers, &z # 0, 2z > 0, and

o0

s (Z; X Q) = Z d(m)X(m)e—QWim/qe—mz

m=1

BRI S (k) I GURPSN B
~ o 2N (”“ 218 (g0 - 1) 1g>’

a=1

where x is a Dirichlet character modulo q.
Before the statements of our results, we recall a transformation formula used in [26]

for the Mellin transform Z(s). Let

1 if Imz>0,
5 =
—1 if Imz <0,
and, for §z # 0 and Rz > 0,
- —1
_ Z d(m)efmz . Y0 ng.
z

m=1

Theorem B. Let 1 < b < 2, then for the function ®(z) transformation formula

b+ioco
1
Oz = —2mazzcz eI / (2m)' 7 T (w)¢* (w)
i
b—ioco
™ 1—w l
(cot<2)+5z) dw+4.
s true.
Define
bioco 1-2w T
1 27T . -1 k
-5 | () <w><<sm (ru) ™ & (wi.0)
b—ioco

+ (cot (mw) + i) E (w; —?, O) )Zl_wdw,

19



and, for a Dirichlet character x,

b+ico 1—2w
I b) = = T
(50D = 5 Zx [ (%) rw
b—ioco

(@)

X { sin™! (mw) E (w; L{l), O> (g,a — 1) + cot (Tw)
(Q7a_1)
< a—1 ) (a—1)
a—1 a— _
X E(w;—%,@) (g, a — 1) 4 §i E( (@ 7 U,O) }zl Ydw,
(‘La“_l) (q,a—l)
b+ioc0
27(q,a — 1) 12w
1 b) = 7 77 T
i) = 5t Zx [ (=) rw
b—ioco
( a—1 ) ( a—1 )
X { sin™! (mw) E (w; %, 0) + (cot (mw) + i) E (w; —%, O) }zl_wdw,
(Q7a_1) (q,(z—l)
where E( T ), [ > 1, (k,1) = 1, is the Estermann zeta-function defined, for o >

max(1 + Rea, 1) by the series

k =L 0q(m) _k
E(s; 7,04) = mZ::l - exp{2mm7},
k is connected to k by the congruence kk = 1( mod [), and af and a; are the constant
terms in the Laurent series expansions for the functions F ( s; ;, O) and F <s; —%, O),

respectively. Then our results are contained in the following theorems.

Theorem 2.1. If Rz > 0 and Sz # 0, then for the function ® (Z; %) the transfor-

mation formula

k, 2 5 o . % w2mz l 1

m=1

18 valid.

Theorem 2.2. If Rz > 0 and Iz # 0, then for the function ® (z;x,q) the trans-

formation formula

21072 o an?ms
O (275 x0q) = — 0 Y d(m)x(m)e 2/ ae e
q m=1

q a X(a) o am ..
T am) az_; (g,a—1) (@30 = aga) +1(2x, D),

20



18 valid.

Theorem 2.3. If Rz > 0 and Iz # 0, then for the function ® (z;x,q) the trans-

formation formula

2midz ¢ - o EJ@asD _4r?m(ga-1)s
B (2hix0q) = e S X(a)ga—1) Y d(m)e” TS e

a=1 m=1

X - ~
27TQG Z q,a—l aOa aOa)+I<Z;X7b)7

a=1

1s valid.

In Chapter 3, using the results of Chapters 1 and 2, we obtain the meromorphic
continuation for the Mellin transform Z(s, x). We have the following results.

Define
Zx (q.a—1),

and

a(g) =) osp.

p—1
plg

also ¢ denote, as usual, Euler’s totient function, and By Bernoulli numbers.

Theorem 3.1. The function Zi(s,x0) has a meromorphic continuation to the
whole complex plane. It has a double pole at the point s = 1, and the main part of its
Laurent expansion at this point 1s

©(q) 1 270 + 2a(q) — log 27
g (<s—1>2+ s—1 )*

Zl (Sa XO) =

The other poles of Z1(s,xo0) are the simple poles at the points s = —(25 — 1),j € N,

and

1 —27 1 — 2172]' B,
Res | Zils) = S0 By

—(2j-1) 27q
]EN

Theorem 3.2. The function Z,(s, x) has a meromorphic continuation to the whole

complex plane.

21



1. If ¢(q) # 0 it has a double pole at the point s = 1, and the main part of its

Laurent expansion at this point 1s

-b q

21050 = - S w@ga— 1) (g + TR

a=1

the other poles of Z1(s, x) are the simple poles at the points s = —(2j—1),7 € N,

and
=2 (1 — 217%) By,
Res Zi(s,x) = : J X(a)(q,a —1).
B 1(5,X) 7ia ;x( )(g,a—1)
; —

2. If c(q) = 0, the function Z1(s, x) is entire function.

22



Approbation

The results of the thesis were presented at the Conferences of Lithuanian Mathemati-
cal Society (2011-2014), at the 17th International Conference Mathematical Modelling
and Analysis (Tallin, Estonia, June 6-9, 2012), 18th International Conference Math-
ematical Modelling and Analysis and 4th Conference Approximation Methods and
Orthogonal Expansions (Tartu, Estonia, May 27-30, 2013), 19th International Con-
ference Mathematical Modelling and Analysis (Druskininkai, Lithuania, May 26-29,
2014), XII International Conference Algebra and Number Theory: Modern Problems
and Application, dedicated to 80-th anniversary of Professor V. N. Latyshev (Tula,
Russia, April 21-25, 2014), at the doctorant conferences of Institute of Mathematics
and Informatics and at the seminars of Number theory of the faculty of Mathematics

and Informatics of Vilnius University.
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Chapter 1

The Laplace transform of Dirichlet

L-functions

Let x be a Dirichlet character modulo ¢, and let L(s, x) denote the corresponding
L-function which is defined, for ¢ > 1, by

g

Denote by xo the principal character modulo ¢q. Then it’s well known that the

function L(s, xo) is analytically continued to the whole complex plane, except for a

()

plg

simple pole at s = 1 with residue

where p denotes a prime number. If x # xo, then L (s, x) is analytically continued to
an entire function.

In the theory Dirichlet L-functions, usually the moments

> / (o +it,x)|*dt, k>0, o>

x=x (mod q)

Y

DO | —

are considered, see, for example, [27]. This corresponds to the Laplace transform

Z / (o +it,x) |* e " dux.

x=x (mod q)
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The aim of this chapter is an explicit formula for the individual Laplace transform

£(s,x) of [L (3 +iz,x)|*, ie., for the function

ef [ 1
S(s,x)d:f/o ‘L(§—i—m,x)

The results of this chapter are published in [5]. We consider separately the cases of

2
e *dx. (1.1)

the principal and primitive Dirichlet characters. Later, in Chapter 3, these results will
be used to get meromorphic continuation to the whole complex plane for the Mellin

transform Z (s, x).

1.1 Statement of the main theorem

For the statements of the formulae obtained, we need some notations.

Let G(x) denote the Gauss sum, i.e.,

Moreover, let

b—
1 if x(-1)=-1,
€ if b=0,
Bly) = (x)
e1(x) if b=1,
where

00y O
e(x) = Vi 1(X) /7

As usual, denote by d(m) the divisor function

d(m) = Z 1,

dm

7o is Euler constant, and p(m) is the Mdbius function.
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Theorem 1.1. Let {s € C:0 < o < 7}, and x be a primitive character modulo

q>1. Then

(s, ) = Q}QEW 3 dimpxiom) e { _ 2mim

where the function \(s,x) is analytic in the strip {s € C : |o| < 7w}, and, for |o| <

} (s ),

0, 0<0<m, the estimate
s, x) = O((1+[s])~
s valid.

Theorem 1.2. Let {s € C:0 < o < w}, and xo be a principal character modulo

q>1. Then
s 1 T ,
£(s,x0) =ie? [] (1 - ;9) > u(m) (Vo — log 2m — <§ - S) i+a(q) + log m)
pla mlq
it Sy ) oritn
2mie le - ;d(k) exp — + A(s, X0),
nlg mlq =

where the function \(s, xo) has the same properties as in Theorem 1.1

The case ¢ = 1 corresponds the Riemann zeta-function ((s). Let £:(s) be the

Laplace transform of |¢ (% + w:) 2.

Corollary 1.3. Let {s€ C:0< o <7}. Then
£e(s) —ie% <% —log 2w — <g - s) Z) +2me Z d(m)exp { — 2mime™"} + X(s),
m=1

where function \(s) has the same properties as in the above theorems.

1.2 Analytic lemmas

In the proof of Theorems 1.1 and 1.2, we will use some auxiliary results. We state

these results as separate lemmas. First we remind the functional equation for L(s, x).

Let L
I(s;x) = (g) T (Sgb) L(s, x),
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where I['(s) is the gamma-function.

Lemma 1.1. If x is a primitive character modulo ¢ > 1, then

I(s,x) = EQOU1 = 5,X)-
Proof of the lemma is given, for example, in [6].
Lemma 1.2. Foro > 1,

LZ(S, X) _ Z d(m))i(m)

m
m=1

Proof. For o > 1, using the multiplicative property of Dirichlet characters, we have

that

where

Denote by ¢(q) the Euler totient function.

Lemma 1.3. Let oy be arbitrary real number. Then, for o > oy,

15,0 = 20204 0, (a1 (1 + 2))

where ¢ = c(oy) > 0, and
1 Zf X = Xo,
0 4 X#Xo
The lemma is Theorem 7.3.2 from [31].

EOI

Lemma 1.4.
1 c
d (5 o X) = 0@ (It +2)),
holds with some ¢; > 0.

Proof. The lemma is a corollary of Lemma 1.3. and the integral Cauchy formula.

Lemma 1.5. Suppose that a>0 and b>0. Then

. a-+100
97 I(s)b%ds = e".

a—100
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The lemma is the well-known Mellin formula, see, for example, [32].

1.3 Proof of theorems

Define the function A(s, x) by

2
(S, X) /‘ ( + iz, X) e *dx
is §+ZOO . (7r )
2 L L(1 — 2z x)e #2277
_;;l/ EOL0 =206 "
2 o __ Tz
O oS ( 2 T 2 )
2
First suppose that b = 0. Using the formulae
ez’s + e—is
CoS§ = ————
2

and
L(s, x) = L(5,X),
and making a substitution z = 1 + iz in (1.2) we have
is %—’—ZOO s
= L)L~ 2 )e =6
2
21 cos &
1 _ioo
2
s / L(5 +iz,x)L(3 —iz, x)exp{—-Z + £ + & — xs}
=€ 2 dx
oxp(% — %) +op{—F 1 7

s [ L(3 +z':c,><>L( iz, ) exp{—§ + 5 + 5 —as}
=e 2 T i T da (13)
exp{Z — }~|—exp{———|— =}

_ \L( + iz, x)|? exp{—% —i—% — xS}dw
oo — 5] + ol % + %)

[ LG + i, Q)2 exp{—= — = 4+ 5}

: dz.
exp{% + 5} +exp{-% — ZF

Since

exp{—7 + 5’}
xp(f — (-5 + 5
_ exp{Z — =}
(- 5} +op(—F + )

1—
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we find from (1.2) and (1.3) that

I (1 2 5 7 Lz )L - 2, y)e " E)
A3, X) :/ L(=+izx)| e de— / )L =2 e 7 )
2 21 cos &
0 5 —100
r 1 2 ooLl—l—ix, Zexp{—T 4+ T _ s
:/ L<—+ix,x) e dr — (3 — XZL P L }dzc
J 2 exp{% — 5} +exp{—TF + 5}
OoLl+z'x,’QeX —T T 4 g
- | (2 ) X7)r|m p{ ; uy’ : T }dl’ (14)
exp{% + 5} +exp{—-T — 5
it ; 2 _zs ) T s : -\ |2 xs v’ T
_ LGt fermep{y -5} (LG i x) [emep{-F - 5}
exp{F — 5} +exp{—F + 5} ) exp{f + 5 +exp{—F — 5}
Now let b = 1. In this case, in view of the formula
) eis - efis
sing = ————
20
we find that
is %J’_ZOO iz( T
Ay R ENIER (SR
z
2 sin %
1 oo
2
s / L(5 +iz,x)L(5 — iz, x)exp{—TF + 5 + 5 — a:'s}d
=—c . A x
J (5~ 5} - op(—5 + 5
OOL1+Z'3:, Zexp{—TL + £ — g5

exp(F — 5 - exp{—% + 5

(LG Fim )P exp{=TF — F +us}

: . dz.
exp{% + 5} —exp{—F — %

Clearly, we have

1+

exp{—Z¢ + 2}

exp(F 5} {5+ %

_ exp{% — 5}
Yy pp—

thus, from (1.2) and (1.5), it follows that
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Als, x) = [ LG +,m’9<) P exp %— 5
) (TR e T 1 7

TN AL iy o) |2oes _m _m
|L (2 tizx’i’(@? ‘ . eXp{ 7ri4 71'902 dl’ (16)
exp{g + 5} —exp{—F — %

By estimates for L (1 + iz, x) of Lemma 1.3, we have that the integrals in (1.4) and
(1.6) converge uniformly on compact subsets of the strip{s € C : |o| < 7}, thus, the
function A(s, x) is analytic in that strip.

It remains to estimate the function A(s, x). Suppose that |o| < 0, where 0 < 6 < 7.
First let |s| be small. Then the integrals in (1.4) and (1.6) are convergent, therefore

bounded by a constant. If |s| is large, then integrating by parts with respect to e**®
and using the estimate

1 2\ I Y
(’L (§+zx,x) ) = (L (§+zx,x) L (5 —zx,x))
(1. r . I . (T
=1L (§+zx,x)L(§—m:,X>—ZL<§+Z:B,X)L(2 m,x)—
:O<q(\x|+2))

with some ¢y > 0, which follows from Lemmas 1.3 and 1.4, we obtain, that

A(s,x) = O([s[ ™).
So, in all cases, we have that, for |o| < 60,0 <0 <,
As,x) = O+ [s|)".

Equality (1.2) shows that

) 100
% T Lz )L - 2, Qe =G
£ = d A 1.7
<87X) 27;1717 / cos <%b - %) Z+ (S7X)7 ( )

2
where the function A(s, x) is analytic in the strip {s € C : |o| < 7}, and for |o| < 6,
0 < 0 < 7, the estimate

Als,x) =01 +1s])
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is valid.

It remains to calculate the integral in (1.7). Using Lemma 1.1, we find

—z+ z b
T 2 T(¢+42)
L= 20 = 500 (%) 12 1.
q r+2-2
Taking into account the formulae, see [25],
()T - 2) = — ¢
z —z)= z

sinz’ ’

and

we obtain that

PG _ TETG+35 _ TETG+3)cos %
r(3-3 TG-3TG+3) ™
2/m27°T I ,
= VT (2)cos % =2'"*7721(2) cos
™
and
LG~ 3) ™

_ I'(2)sin7z
- 22\/mcos I
Since b =0 or b = 1, hence have that

rE+2 b
1(2 ; 2>Z _ 21—271_—%11(2) COS (W_ — W_Z) ,
MG+3-2)

= 21*Z7r*%1ﬂ(z) sin %

and, in view of (1.8), this gives

b
L= 20 = B2 i s (- ) 26,
Hence, we find that
is %J’_ZOO s (T
e T L)L -z Qe 5
‘1—b b Tz dz
2 cos (5 — %)
%71'00
%Jrioo

- / T(2)L2(2, X) (%e) i

1_ .
3 100
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Now we shift the line of integration to the right.

Proof of Theorem 1.1. For a non-principal character y the integrand in (1.11) is a
regular function in the strip {z € Z : 3+ < Rz < 2}. Therefore,

) %—H’oo
_is

_c / D(2)L2(, y) (ﬁe—w)zdz

AN J
5 —1i00
is 2+i00 _
e 2 2 .\
= (2)L%(z, x (—e_“) dz. 1.12
zlb\/aE(X)2/ L (2 (112)
Moreover, in view of Lemmas 1.2 and 1.5,
24100 _
2 .\
/ [(2)L*(z, ) (ﬂe_“) dz
2—1i00 1
o 24100 _
27 N\
=Y d(m)x(m) / F(z)( mme“) dz
q
m=1 2-"ico

oo 2 B )
=27 Z d(m)x(m) exp { - 7T;me”}.
m=1

This, (1.11), (1.12) and (1.7) prove Theorem 1.1.

Proof of Theorem 1.2. For the principal Dirichlet character x(, we have that

L) =< [T (1 ).

pS
plg

Using the functional equation for ((s)

wir (5) ¢ =T (15 ) s

and formula (1.10), we find that

pl—z
plg
N E 1
T (L)
2 [(52) P
plg
_ 11—z __—=z Tz 1
=((2)2' 7#7*I'(2) cos > H (1 — pl—z)
plg
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Therefore,
L(z, x0)L(1 — 2, xo)e 37

-z, —z —iz(Z—s 1 1
=C*(2)2" 1 *I'(2) cos %Ze 3 )H (1 — E) H (1 — p1z> :

plg plg

Similarly (see formula (1.2)) to the case of non-principal character, we define the func-

tion A(s, xo)

A(s, Xo) :/ ‘L (5 —|—ix,X0> e **dx
0
) %-&-ioo
e / L(z, x0)L(1 — 2, x0)e ”(%‘s)d
- z
21 cos I
and obtain that
is %-{—ioo
e 2 2 . _is\—% 1 1
£(s, x0) = ; ['(2)¢%(2) (2mie™™) H 1—- = H 1-——)dz
1 s plg b plg b
2
+A(8, Xo)- (1.13)

We write the product

IL== g (1 - pll‘z>

as a sum using the Mdobius function p(m). Let ¢ = p{'p5*...pe*, then

[L==11 (1 - pll‘z)

plg

=1 —pi "+ (pp2)” o+ (1) (paper)TT = Z p(m)m*~".

m|g

The function

P(2)¢(2)(2mie)* ] (1 _ L) -

pZ
plg

has the pole of order 2 at z = 1, and its Laurent expansion at this point is

therefore,




and
(z = 1)2¢C(2) =1+ 29(2 — 1) + ...,

moreover, since I'(1) = 1, I''(1) = —v, we find that

/
z—1

lj:elsF(z)Cz(Z) (2mie ™) " = lim <(Z —1)’T(2)¢*(2) (Qﬂie_is)_z>

= lim (F(z) (2mie™") " + 270z — 1)F(z)(27rz’e’i5)*z)/

z—1

= lim <F’(z) (2mie ™) " = T(z) (2mie ") log 2mie™*

z—1
+ 270(z — DIV (2) — 270(2 — DT(2)(2mie ) * log 2mie "

+ 270F(z)(27rie*is)*z>
1 o
= —— (—70 — log 2mie ™ + 27)
2mie"s

= g (0~ tom2r = (5 =2)1).

Finally, we get

plg 7

-y (- UG (arie ) [T (1- L) e

a2 1 -
= E_I)n ((z —1)°T'(2)(*(2) (2mie™™) ) H <1 - ];) m* !

plg
+ hir%(z - 1)2F(Z)§2(z) (QWZG_ZS)_Z H <1 — %) Z pzioglp z=1
plg plg P*
+ ll_rg(z — 1)’T(2)¢3(2) (2mie ™)~ logmH (1 - %) m* !
= 2613 (70 —log 21 — (— —3> 2) 1_|[ (1 — %)
+ (2mie~"*) 7t H (1 - %) Z ;Ofﬁ
plg plg
+ (2mie )7t logmH (1 — %)
plg

51 (1) [ o-toeee = (G- )i T2 e



Therefore, in view of (1.13),

£(s, X0)

| s 1 s , log p
:2621_[(1—1—?)2 fyo—log27r—(§—s>z+zp_1+u(m)logm
plg mlq plg
24100

—je 3 / L(2)¢*(2) (2mie ) 7 [] (1 — l) (1 - L) dz + (s, xo0).  (1.14)

pz pl—z
2—ico plg

0 (-

plg

We have that

)= S ()

nlg mlq
Moreover, for o > 1, [33]
= d(k
e =35
k=1
Therefore, the application of Lemma 1.5, leads to

:Zor(z)g?(z) (2mie™") " g (1 - pi) (1 - p%) dz
SS9 W i d(k) exp { - 2”;]“”@—“}.
nlqg mlq k=1

This together with (1.14) proves the theorem.

Further, we study the modified Laplace transform of a Dirichlet L- function, which

is defined
e o 1
£(s,x) def / ‘L (5 + ia:,x)
1

It differs a bit from the usual Laplace transform, where the lower limit of integration

2
e dx. (1.15)

is 0. By partial integration, using Lemmas 1.3 and 1.4, similarly to the proof of

Theorems 1.1 and 1.2 we find that

s(s,x):/ol L(%—Fim,x)

Moreover, the last integral is an entire function. Therefore, it can be included in the

2

e dr = O((1+ |s])) "

function A(s). So, Theorems 1.1 and 1.2 also are valid for the Laplace transform defined
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by formula (1.15) As it was mentioned above, in Chapter 3, we will use Theorems 1.1
and 1.2 for the meromorphic continuation of the modified Mellin transform. For this,

we will understand the Laplace transform as in formula (1.15).
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Chapter 2

Summation formulae with exponential

term

In meromorphic continuation for Mellin transform of Dirichlet L-functions, some spe-
cific integrals appear. In general case, such integrals do not converge absolutely, there-
fore we transform the integrand. After this, it turn out that we could decompose Mellin
transform to a holomorphic part with d(m) series, and parts which produce poles. For
this, transformation formulae are used, and this chapter is devoted for them, see |2]

and [4].

2.1 Transformation of exponential sums

Let k£ and [ be coprime positive integers, and Sz # 0. For Rz > 0, define

. k - 2mim® _—mz Yo — Qlogl _ IOgZ
o (z, 7) = mZ:ld(m)e re” M — : (2.1)

Iz

and, for a Dirichlet character y modulo g,

 (2x,4) = Y d(m)x(m)e ™/ 1e

m=1

IR TR o S (e ) Y S
G(y)ZX() p (70 2log "3 1g>- (2.2)

a=1

The aim is to obtain formulae for ® (27'; %) and @ (27%; x, q).
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Let k be connected to k by the congruence kk = 1( mod 1), af and a, be the con-
stant terms in the Laurent series expansions for Estermann zeta-functions F (s; %, O)

and F (s; —%, O), respectively, which we will define in next section. Denote

1 if Imz>0,

5=
-1 if Imz <0,
and, for 1 < b < 2, define
b+ioco —
1 9 1—2w L
I(2,0) = nill T(w) | (sin (rw)) ™ B (w; ~,0
2mi [ [
b—ioco

+ (cot (mw) + 6i) £ (w; —?, O) >zlwdw,

and, for Dirichlet character x,

b+ioco
q
1

m;x(a) / (Q—W)I_Qwr(w)

q

I(z;x,b) =

b—ioco

a—1
X { sin™! (mw) E <w; M, 0) (g,a — 1)'7*" + cot (mw)

(qvafl)

( a—1 ) (a—1)
x B (w; —%, 0) (q,a — 1) 4+ 5iE (w; (q’agl) ,O> }zlwdw,
(qvafl)

(qvafl)

q b+ioco 27T(q o 1) 1—2w
I = SR T
Tent) = g 2o [ () rw
a b—ioco

Theorem 2.1. If Rz > 0 and Sz # 0, then for the function ® (

mation formula

kz 2 6 m2mz l 1
@(Z_l, ): e sz —27'rzml€ 4l2 _’_ﬁ(a{]’_—a]a)—f—z—i—l(z,b)

2; %) the transfor-
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18 valid.

Theorem 2.2. If Rz > 0 and Iz # 0, then for the function ® (z;x,q) the trans-

formation formula

— 2’/TZ(SZ > —omim _47r2mz
® (27 x,q) = — q > d(m)x(m)e e
m=1
n q i X(a) (ag, — ag,) + I(z; X, b)
27T2G<Y) — <q7 a — 1) Oa Oa 3 X0

1s valid.

Theorem 2.3. If Rz > 0 and Sz # 0, then for the function ® (z;x,q) the trans-

formation formula

(@a—D/(g,a—1) _ An2m(g,a-1)22

Y((I) (Q7 a — 1) Z d(m)eﬂmm q/(q,a—1) 6_ a2

2.2 Estermann zeta-function

Let [ > 1 and (k,l) = 1. The Estermann zeta-function E (s; %,a), for 0 > max(1 +
Ra, 1), is defined by the series

where, for a € C,

is the generalized divisor function.
For A € R and 0 < 8 < 1, denote by L(\, 3, s) the Lerch zeta-function defined, for
o >1, by



It is well known, see, for example, [25], L(\, 3, s), for A ¢ Z, is analytically continu-
able to an entire function, while for A € Z, the function L(\, 3, s) becomes the Hurwitz

zeta-function
o0

def 1
B =D

which is meromorphically continuable to the whole complex plane where it has a simple

m=0

pole at s = 1 with residue 1.

It is not difficult to see that, for o > maz(1 + Ra, 1),

l
k k
E (s; 7,@) = o ;:1: exp{27rivT}L(1, %,s - a)L(%, 1,s). (2.3)

This equality and the mentioned properties of L(\, 3, s) show that the function E (s; %, a)
is analytic in the whole complex plane, except for two simple polesat s = 1 and s = 1+«
if a # 0, and a double pole s =1 if a = 0.

Equality (2.3) together with the functional equation for the Lerch zeta-function,
see, for example,|25], leads to the functional equation for £ (s; %, a)

L 1 9 25—1—a
E(S;T,a):—(%) Fr1l—s)I'(l4+a—s)x

™

e’ k e’ k
(0087E (1 +a—s; 7,@) — oS (7rs — 7) E (1 +a—s; —7,04)) . (2.4)

The functions L(1, ¥, s) and L(%, 1, s) are expressed linearly by Hurwitz zeta-functions

and the Riemann zeta-function. Therefore, it is not difficult to obtain that (see [17] )

k 1 1 279 — 2logl k
Efs;— == - 2.
(S’Z’O) Z(<s—1>2+ s—1 >+C°(Z>+ 23)

The function E(s; %, ), for a = 0, was introduced by T. Estermann in |7] for needs

of the representation of numbers as a sum of two products. In [19], the extension for

a € [—1,0] was given. From formula (2.4), when o = 0, we find that

E (1 — 5 %,o) = % (27”)“8 I'?(s) <E <s; ?0) + cos (7s) E <s; —?0)) . (2.6)

The series of the definition for ®(z; %) contains the product d(m)exp{27ri%} which
are coefficients of the Dirichlet series for £ (3' k 0). Therefore, the function £ (s; %, 0)

R

is involved in the formulae for ® (zfl; %) and @ (271 x, q).
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2.3 Auxiliary results

s

In the proof of Theorem 2.2, we need to express the exponential sum Y d(m)x(m)exp{2mim/q}m~
m=1
by the Gaussian sum. Therefore, we will use the following lemma.

Lemma 2.4. For o > 1,

E:“m”“m@m{_%?n}mSIz%gEZﬂ@E(aaijxo,

m=1

Proof. It is well known, see, for example, [6], that, for every m € N,

X(m)G(R) = 3 xla)emmels

Using this, we get

q

[]= 10

> (a—1)
e N =)}

1 m=1 a=1 m

Q
Il

and the claim of the lemma follows.

2.4 Proof of transformation formulae

Proof of Theorem 2.1. For Rz > 0, the series

Z d(m) exp {27‘(%771%} e M
m=1

converges absolutely, therefore, by the Mellin formula (Lemma 1.5) and definition of

the Estermann zeta-function, we have
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(2.7)

Now we move the line of integration in (2.7) to the left. Let 0 < a < 1. Since, as it

is noted in Section 2.2, the function F(w; %

that

0o a+00

Zd(m) exp 2772'771E e M L ['(w)E | w; k 0z Ydw

e l 270 A

k _
+ §§F(w)E (w, 7,0) z7v
Clearly,
I(1)(w — 1)2
D) = 1~ ol — 1) 4 DW=y

—1)%log”
7TV = g le (W Dlogz — -1 <1 —(w—1)logz+ (w=1)]log” = + ) :

2
Therefore, in view of (2.5),

7Y — 2logl —log 2

k
Rf,?l“(w)E (w; 7,0) 27

lz
This, (2.8) and the definition of ® (z; %) show that
a+ico
) (z; ?) = % F(w)E (w; ?, 0) z Ydw.
Hence,
aioco
) (2_1, l;) = % (w)E (w, %,0) 2 dw

; 7,0) has a double pole at w = 1, we obtain

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)



Substituting formulae (2.6) and (1.11) into (2.12), we have

P / n I_Qwr(w)(sm w) " E (w;~,0) 2 vd
1) 2w l " s
l—a—ioco
l—a+ioco -
1 o 1—2w k.
B < T E v 1—w
LT s o)
l—a—ioco
52 1 1—a+ico E A 2 —w
127z =
I\ 2mi / (w) (w’ l’0>( 12 ) w
l—a—ioco
l—a+ico -
1 9 1—2w
+ = / T T (w) | (sin (mw)) ™" B w0
27 l l
l—a—ico
. E 1—w
+ (cot (mw) + 9i) E | w; 7 0) |z “dw
_ 1—a+ioco
__27m'(52® A’z k -I—L / 2 172w[‘(w)
- l 27 1 271 [
l—a—ico

(2.13)

X ((sin (rw)) " E (w; ? 0) + (cot (Tw) + §i) E (w; —EO)) 2 dw

l

def 2mi0z %z k
= — o P—— I
z < Zo7)"

Y

in virtue of (2.11), since 0 < 1 —a < 1.

It remains to transform the integral I in (2.13). For this, we move the line of

integration to the right. Let 1 < b < 2. Then we have that

b+ioco

I (%”)r (w) (<sin ) 8 ?o)

b—ico

+ (cot (w) + 6i) E (w; —? 0) >z1—wdw — Res (...).

(2.14)

Let us consider the residue term in formula (2.14). We will apply (2.9), and the

expansions
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1 s

t =——-(w—-1 2.16
o —1—(w—1)logz+ ..., (2.17)
o\ Y l [ 2m

— = ———log—(w-—1 2.18

() -5 o8 (0D (2.18)
as w — 1. We see that the first terms of —— and cot(mw) differ only by sign. Having
in mind that the Laurent series of £ ( ; ’;, O) and F ( =7 0> (see formula (2.5)) have
the same main parts, we see that all terms, which arise from the fractions iﬁ van-
ish, except for the term — 5 (af —ag ). The second terms of m and cot(mw) give us
the term (=2 —%)5- = —1. There are no other terms arising from m and cot(mw).

The other terms of the residue term arise only from d¢ (2%)1—210 F(w)E (w; —%, 0) 2w

and give

o1 2 01
! 279 — 2logl — vy — log z — 2log — 7 :—2(70—10g47r22).
o [ 2m

Finally, we get

Res (QZT) wP (w) ((Sin (rw)) " E (w; ?0) + (cot (mw) + 6i) B (w; _?0> >Zl—w

l _ 01 1
= —2—7r2(a8L —ag) + - (70 — logdn?z) — 1 (2.19)

Thus, by (2.14) and (2.19),

15%W7¥YMMM@MW»@@£@

b—ioco

. k y l i 1
+(cot(7rw)—|—6z)E(w;—7,0)) I dw +ﬁ( E{—ao)—%(%—logllﬁz)—l—z
Now, from (2.13), we have

k 2midz An?y k I 5i
S AT N R ] B ) 1
(I)(Z ’l> ;i (I)( TR l)+f(zb)+22( ag) 27r(% log 47°2) +

2 5 © 7r2mz 2 5 - 21 l - 1 47r £
=~ TN d(m)e2mimte e +77Z<% e )*sz
12

»-l>|>—‘

01
+—(ag —ag) — o (yo — log 4w z)
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and this finishes the proof.

Proof of Theorem 2.2. By Lemmas 1.5 and 2.4, we have the formula similar to (2.7),

namely,
o0
Zd m) exp{—2mim/q}e ™
m=1
2+i00 (a—1)
— . (g,a—1) —w
27rzG ZX / w)E(w, 7 ,O)z dw. (2.20)
=1 900 (q,a—1)
Since

(a—1)
(ga—1) o (gya—1) q
ResT'(w)E | w; 0 =" —2log ———— —1
€5 (w) (wa q ) )Z (,YO og (q’a _ 1) og Z) )

v @a—D 7

moving the line of integration in (2.20) to the left, for 0 < ¢ < 1, we obtain that

c+1i00 (a—1)
@ (2, 9) %ZG ZX / w)E(w; el ,0) 2 duw. (2.21)

1
eico (g,a—1)

We change 27! to z, and the integration variable w — 1 — w in (2.21). This gives

(qvafl)

c+i00 (a—1)
P ( PXs q 2mG Z X(a / (w)E (w; (q,aq_l) 7()) 2 dw

l—c+ioco (a—1)
1 - / (g,a—1) 1
= — E X(a Nl—w)E|1—w;-= ,0 |2 "dw. 2.22
2miG(X) p ( )1_ / ) (qvaq_l) (2.22)

Substituting formulae (1.9) and (2.6) into (2.22), we get

1—c+ico

o0 =g on [ () e fan e
_— 7 w) < sin” " (Tw
1—c—ico
( a—1 ) ( a—1 )
a—1 ,a—1
X E(w; (q’q—),0> + cot (mw) E(w; —%,0) }zl_wdw
(g,a—1) (g,a—1)
1—c+ico
2m'5z(1) Am?z N 1 1 () / o\ 2
= — N _— a _
q ¢ v 2miG(X) lx S\
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(qvafl)

( a—1 > (a—]_)
x F (w; —L{l), O) (g,a — 1) 4 5iE <w; (q’aq_l) ,O> }zlwdw (2.23)

x T (w) { sin™! (mw) E (w; @, 0) (g,a —1)'7*" + cot (7w)

(g,a—1) (g,a—1)
def 2mi0z 4m?y
- <I>( 2 0 + 1(x)-

In the same way as in Theorem 2.1, using formulae (2.5), (2.9) and (2.15)-(2.18), we
find that

2\ 172 (@?5—11))
Re§ (—) I (w) < sin~! (7w) E | w; ——,0(q,a— 1)t
w= q

(g,0—1)
( a—1 ) (a—1)
+ cot (mw) E (w; —%, 0) (g0 — 1) + §iE (w; (q’aq_l) ,O) }zl_w
(g,a-1) (g,a—1)

1 di(qg,a—1) 4z q _
ST S L —1 — +
+ o Yo og (q’ a— 1)2 27_[_2((]’ a— 1) (aOa aOa)7

a—1
where ag, and ay, are the constant terms in Laurent series expansions of E (w; M, O>

q

(g,a—1)
and £ (w; —@, 0), respectively. Therefore,
(g,a—1)
1-etioo (a1 )
1 q o\ 12w ((q a—1)>
27TZG(X> a=1 1—c—ioco 1 (q,aq—l)
< a—1 )
x (g,a — 1) 4 cot (mw) E <w; _ﬁj O> (¢, — 1)1~
(g,a—1)
e I PP
+ 5ZE w; ga— ,O zl—wdw = — y(a) / (_) T ('LU)
( (qvaq—l) ) } 2miG(X) ; Vo q
(=) (=)
X { sin”™' (mw) E (w; ﬁ, 0) (¢,a —1)""%" 4 cot (rw) E (w; ——(qul) ,0>
(g,a—1) G-
(a—1)
x (g,a = 1) + 8B (w; aa) ,0) }Zl_wdw
(qva_l)
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Y a=1 a=1
q ? X(a) at —a
+ QWZG(X) i (q, a — 1)( Oa Oa)
= [(Z; X ) 9 g(—> ZX(G)(CL a 1) (70 —log ( Zi1,7r—zl>2>

q < X(a) ot — a-
+2W2G(X);(q,a—1)( Oa 0a)7

where 1 < b < 2. Now, from (2.23), we find

(27 x.q) =—

5i R A%z
- 27 G X) ZX(G)((L@ —1) (70 — log m)

a=1

2midz 4?2
. <I>( Z ;x,q>+1(z;x,b)

q X(a) + -
* 3G 22 [ga— 1) o W)

a=1

2midz > —omim _4r’mz
- - Zd<m>x<m>e primiag
m=1
277252 g X(a q Aty
—2log ——— —1 IT(z;x, b
)Z 471.22, (70 0og (q)a_ 1) 0g q2 ) + (Z7X7 )
q 2
4z
—log —m——
27rG ;X (% o8 (q,a—1)2>

q ! Y(a) +
+ 27T2G(Y) Z (q’a . 1) (a[)a Oa)a

a=1

and the claim of Theorem 2.2 follows.

Proof of Theorem 2.3. We express the series

Z d(m>X<m)672ﬂ'im/qefmz

m=1

as a finite sum of functions ®(z; ¥). For this, write formula (2.23) in the form
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l—c+ioco

o) = g v [ (D) e { s ()

1—c—i00
( a—1 ) < a—1 )
x E (w; #, 0) + cot (mw) E (w; —%, O) }zl_wdw
(q,a—l) (q»a_l)
1—c+ioco a—1
i d om(g,a — 1)\ ' ((q,a71)> 1
= Zy(a) / (—) ['(w) E|w;———%,0 |z “dw
2miG(X) a=1 i q (q,aqfl)
1—c+ico
1 ! 27T(Qa a— 1) e s —1
+ o= ZY(@) / <— [ (w) 4 sin™ (7w)
2mG
(X) a=1 l—c—ic0 1
( a—1 ) < a—1 )
x E (w; %, 0) + (cot (mw) + i) E (w; —%, O) }zl_wdw (2.24)
(‘La_l) (q,(l—l)
def 2mi0z i_( ) 1o 47%(q,a — 1)2z ((q?a_—ll)> i f( )
Ry x\a){g,a — 7T X)-
G(X)q = ¢ @D

Since, in this case,

Ry (2724 2) { s () E (w; () 0)

q (qvafl)
)
+ (cot (mw) + 6i) E (w; —%, 0) }21“’
(qzafl)
1 & q
=+ Py —logan?) — — L (ot —ar
4 + 9 (/70 0g am Z) 277_2((]’ a— 1) (aOa aOa)a

we have that

I(x) = I(z;x,b) + %2?;(@ > (qz(ci) D (ag, — aga)s

where I(z;x,b) is defined by the same formula as (), but we integrate from b — ico

to b+ ico. Therefore, by (2.24),

(a=D/(ga—1) _4r°m(ga=1)=

2Tz o A
P Z_l;X,C] = === X(a)(qg,a —1 d(m)e Fm @a-1 ¢ 2
( ) G(X)q; (a)(g,a—1) ) d(m)

m=1

20



2Tz Yo — 2log Ga-1) log e ~
+ — Y(a)(%a_ 2 2 —|—I(Z,X,b)
q 472(q,a—1)%z
G(X)a = i 2
i q : X(a) ( + )
Qn, — Q
2m2G(X) &~ (ga— 1) % 0

The second term here vanishes, and we get the claim of the theorem.
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Chapter 3

Mellin transforms of Dirichlet

L-functions

3.1 Statements of the theorems

In this chapter, applying transformation formulae obtained in Chapter 2, we indicate
singularities, and give the meromorphic continuation to the whole complex plane for

the modified Mellin transform defined by the integral, for o > 1,

e (<], (1, ?
21(57X) d:f/ ‘L <§+ZI7X>
1
Lk

x dx. (3.1)
As it was mentioned above, the Estermann zeta-function F (s, T ), is analytically

continuable to the whole complex plane, except for a double pole at the point s =
1. This makes the influence that Z(s, x) also has a double pole at the same point,
and simple poles at the points s = —(2k — 1). Also we find the main part of the
Laurent series expansions of Z(s, x) at the point s = 1, and the residues at other
singularities. We consider the transform (3.1) separately for the principal x, and
primitive y characters modulo ¢, and use the previous notation. In the statements of

the theorems, we use the Bernoulli numbers By, which can be defined by

and also define



Then the following result is presented in [3].

Theorem 3.1. The function Zi(s,x0) has a meromorphic continuation to the
whole complex plane. It has a double pole at the point s = 1, and the main part of its
Laurent expansion at this point 1s

R0 1 2790 + 2a(q) — log 27
20 = 2 (gt ) ¢

The other poles of Z1(s,xo0) are the simple poles at the points s = —(25 — 1),j € N,

and

1—279 1 — 21—2j B,
_Res  Zi(s,x0) = play By

—(2j-1) 27q
]EN

Theorem 3.2. The function Z,(s,x) has a meromorphic continuation to the whole

complex plane.

1. If ¢(q) # 0, it has a double pole at the point s = 1, and the main part of its

Laurent expansion at this point 1s

R 1 270 + log (q,a — 1)?/27q .
sX)—ng(a)(q,a—l)(<s_1)2+ s 1 )+...,

the other poles of Z1(s,x) are the simple poles at the points s = —(2j —1),j € N,

and

ib_Qj(l 21 2] 4q
R Z = _ 1
LRes  Zi(sx) E_ )(g;a
jEN =

2. If c¢(q) = 0, the functionZ,(s, x) is an entire function.

3.2 Connection between Laplace and Mellin trans-

forms

Now we study analytic properties of the Mellin transform Z;(s, x) using the modified
Laplace transform £(s, x) (see formula (1.15)). For ¢ > 1, the definitions of Z(s, x),

23



£(s, x), and of T'(s) imply

oo ([o (b

2
e_mdx> w* ™ tdw

00 1 2 poo 0o 1 2
:/ L{=+4ixx / e s tdw dmzf(s)/ L -+ix,x ||z %de
1 2 0 1 2
= ZI<S7 X)F(S>
Hence, for o > 1,
1 o
Z = — *dw. 3.2
50 = 5 | Slwgu (32

Since Theorems 1.1, and 1.2 are valid in the vertical strip 0 < Rw < m, we change
the integration over the positive real axis in the above integral using Cauchy’s integral

theorem.

Lemma 3.3. Let 0 <a<fand L={wecC:w= Re*.0 < ¢ < «a}. Then, for

o>1

lim [ £(w,x)w* 'dw = 0.
R—o0
L

Proof. By Lemma 1.7, we find C' > 0 such that, for Rw > C,

<l (1 2 1l (1 B
Llw, x) = L|=+ix,x]| e “dor=—— L|=+ix,x || de ™

1 2 w Jy 2

o /
1|, (1 ? 1 o[> 1 ?
:_—'L (—+iw,x) +—/ e (‘L (——l—ix,x) ) dx, (3.3)
w 2 w J; 2

where the second term in above integral vanishes, therefore, £(w, x) = O(|w|™).

2

e*’LUCE

1

Let m > o arbitrary positive integer. Integrating m times in formula (3.3), we find

that
L(w, x) = O(|w[™™).

Thus

/S(M, Yw' tdw =0 | R~ / ldw| | =0 (R™™7),
L L

and the lemma follows.
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Lemma 3.4. Let 0 < o < 5 and Ly = {w € C: w =re¥?,0 < ¢ < a}. Then, for

o>1,

lim [ £(w, x)w* 'dw = 0.
r—0
Ly

Proof. Integrating by parts in the definition of £(w, x), we obtain

2 2
oo x x 1
L(w, x) :/ e ""d / L (1 + it,x) dt | = ew“/ L <— + it,x) dt
1 e e 1
0o x 1 2
1 1

where the right-hand side of (3.4) vanishes. It is well-known that

(1
L{=+it
[l Grs)

Now, integrating by parts in the remaining integral leads to

o0

2

dt = O (zlogx).

> —Rw i
L(w, x) = \w\/ e~ 00 iy = O (e (2 + Rw — log §Rw)) |
1

|w| cos? a
Thus,
/S(w, X)w* dw = O (r"logr),

L1

and the claim of the lemma follows, because o > 1.
O

Now we move the line of integration in (3.2) to the ray w = Re', where 0 < a < o
and obtain, that for o > 1,

Zi(s,x) = ﬁ/o £(w, x)w* dw. (3.5)
Next we split the integral (3.5) into two parts by a point wy = |wg|e™ with 0 < Rwy <
7. The first part of the path of integration is contained in the vertical strip 0 < Rw < m,
and we use there Theorems 1.1, and 1.2. In the second part, we write the Laplace

transform according to its definition.
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3.3 Entire parts of Mellin transforms

As mentioned above, we fix a point wy = |wgle’™ with 0 < Rwy < 7, and define the

functions

Z11(5,X0) = ZIS,D((;I)) Zu(m) /wo (7 — log 27 — (g — w) i+ a(q) + log m> e w dw,
mlq 0

1 wo
Zals.x0) = 15 / Alw, o) du,

suers =ty [ ([ (3o

2 - wo iw 2 k’ .
Z14(8,x0) = T M Z d(k) / e % exp {_ Uy ne_“”} .
0

2
ewxdx> w¥ dw,

m

q
and the functions Z11(s, x) — Z13(s, X)

= Mw, Y)w* ™ dw,
), M

gt [ ([

2mi = YO i omik _,
Z13(8,X) = =————— d(k)x(k e 2 expy — e " b w T dw,
o) = 5 ) [ e {2

where Yo, and x are the principal and the primitive characters modulo ¢, respectively.

2
e‘“”%l:v) w dw,

Then, taking into account (3.5), we find, by Theorem 1.1, that, for o > 1,

Zl(SaXO) = Zzlj(S,Xo)a (36)

and, by Theorem 1.2, that, for o > 1,

Zi(s,x) = ZZU(S’ X)- (3.7)

Lemma 3.5. Let the function f(w) be holomorphic in half-plane Rw > 0, and have
bounded derivatives. For o > 1, define

wo

ef 1
&f f(w)w* dw.

I'(s) Jo

26
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Then the function F(s) is entire.

Proof. Let k € N be arbitrary. Integrating by parts k times and using the functional

equation for the gamma-function, we find that

1 wo . B
s J, fw)w™tdw =
! " dw® = ;f(w Ywy — _t " f (w)w*dw =
sT'(s) Jo J(w)dwr = T(s+1)" "% T(s+1)/, B
(1) U (g (=DF "™ stk—1
jzl [(s +7) FiGrm fy T (32)

Since ﬁ is entire, we see that the right-hand side of (3.8) is a holomorphic function

for 0 > —k-+1. Since k is arbitrary, hence F(s) is an entire function.

From Lemma 3.5 follows that the functions 21 (s, x0), Z12(s, X0), and Z1(s, x) are en-

tire functions. Functions Zi3(s, x0), and Z15(s, x) are entire by its definitions. It
remains to study the functions Z14(s, xo), and Z13(s, x).

Functions Z14(s, xo) and Z13(s, x) produce poles of the corresponding Mellin trans-
forms. Using theorems of Chapter 2, we transform these parts to a holomorphic
parts, and an integral parts producing poles. Firstly, in the definition of the functions
Z14(s, x0) and Z3(s, x), we make a substitution e = 1+, and let zg = (e7™°—1)~".

This leads to the formulae

Z14(5,v0) 27m ZZ pu(m

nlq mlq

TTIRT o 1 N
de ’“/ 2_2(1—1——)
20 <

[NIE

1 871 Tk
(log (1 + ;)) S dz (3.9)

and

27t

P(s)vas(x)

271 o 1 B 1 s—1 _2m
X Z d(k : / z72 (1 + ;) <log (1 + ;)) i dz, (3.10)
20

where the integrals are taken over the curve z = (e‘"em — 1)L

213(87 X) =

D=
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3.4 Entire parts of Z4(s, xo)

Let consider the integral (3.9) separately for small and large values of |z|, suppose here
that |29| < 1, and apply Theorem 2.1 for the function Z4(s, xo) in formula (3.9). In
view of the definition of ®(z; ), we find that

00 . n 27rm
Z 2k szt 2 G — 2log iy — log <5
d 2 k 2 k — & ( W@n; . ( T;L )) 4 27”n 7 (311)
Zm ——
=1 (m,n) z(m,n)

because in the definition of ®(z; ™) the numbers n and m are coprime.

First let |z| > 1. We apply Theorem 2.1 with 7%= in place of z. In this case,

S(ax

2 ) < (), therefore 6 = —1, and Theorem 2.1 yields

21N Tmm) = EUTIGEA aniks(mn)?
o L d(k)e ™ m/tmm mn
T T m €
am | A

(m,n)

2min

m n 1 ( mz )
— — I 0.
* 272(m,n) <a0 )+ 4 * 2min’

This, together with (3.11), shows that

27Tzkn 2wikn m n 27”’“("/(’"” n)) 2nikz(m, n)2 m _
e I S g PR )

212(m,n

1 z(m,n) m 2min mz
- ! _ 2] — I ( ,b) . 12
* 4 * 2min <% °8 (m,n) - ) * 2min (3.12)

Now let |z| < 1. We aplly Theorem 2.1 with 57"t e in place of z. In this case,

J(5=imn ) > (), therefore, § = 1, and, by Theorem 2.1, we find that

2rz(m,n)

o <27sz(m,n)2; (n/(m,n))> _ )id(k)e-%ﬁe-w

imn m/(m,n)

Hence, by the definition of ® (z; %),

o0
271'7,kn _ 2mikn
E d zm

k=

B z(m,n)q) (27Tz(m,n)2' (n/(m,n))) ~omz o o z(myn) z(m,n)I < imn )g,b)

imn " m/(m,n) 27T2n<a0 ~ o) - 4n

—

> 2mik(n/(m,n)) (m,n mwikz(m,n 2
(m,n) imn 27
~omz o z(myn) z(m,n)l imn 1 513
27r2n(a0 %) 4n n 21z(m,n)?" ") (3.13)
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Now let Z be a point on the path of integration in formula (3.9) such that |2| = 1

Then, in view of (3.12) and (3.13), we have that
9

Zl4<87 XO) = Z Ij4(87 XO)v

J=1

where
2m = 2w/ )
[].4 S XO Zd m/(m,n)

nlq m|g k=1

e8] 1 —% 1 s—1 dmikz(mom)?

X / 27! (1 + —) (log (1 + —)> e mndz,
20 z V4
_) z 1 —% 1 s—1
I4(s, Xo0) pn) %o / 27! (1 + —) (log (1 + —)> dz,

20 z z

nlq m|g

NG

1 s—1
<log <1 + —)) dz,
z

i =g Sl [ (1)

nlq mlq

i EEH 1211 1)

2 2 IR
X (’yo — 2log m__ log M;Ln)) <log (1 + ;)) dz,

(m,n) im

2772

[54(3 Xo

nlq m|gq

% I (ﬂyb) <log (1 + é))l dz,

2rz(m,n
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27m

]94(5 Xo

n\q m|q

x (27T b) (log (1 + %))1 dz.

Since 0 < rcosa < 7, we have that

1 1

oy Cx : -
SE T Y e \Se”ma(cos(r cosa) — isin(rcosa)) — 1
_ e s gin(r cos ) -
(ersine cos(rcosa) — 1)2 4 (ersine@sin(r cos av))? '

Therefore, R(27iz) < 0 in the integral I14(s, xo). Hence, the series and integral both
converge absolutely and uniformly in s on compact subsets of C. Thus, the function
I14(s, x0) is entire. The functions Ia4(s, xo0) — L4a(s, Xo) are entire by their definitions.

The formula for the Laplace transform in Theorem 1.1 is valid only for Rw > 0.
The integrand in the definition of I(z,b) has simple poles at w = j,j € N. If we move
the integration line in the integral for I(z,b) to the right , we get residues at these
points. The contribution of a double pole at w = 1 is incorporated in the formula for
(21 2). If we move the integration in the function I(z,b) more to the right, we get

residues at the points w = j + 1,7 € N. Since

sinTw = (=1 sinw(w — j — 1),

and
cosmw = (—1)" cosm(w — j — 1),
we find that
o7 1—2w . E w
wP:{]efl = (7) ['(w)sin™ (rw)E <w, 7,0) z

o\ Y m(w—j—1) K
= 1 — r : E | w; - w
w1 ( [ ) (w) (=) *lrsinm(w —j — 1) (w, l’o) :
27\ ¥! i 3 .
= (= 1yl p (1455 0)
) T )
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and

o 1—2w E -
Res = i ['(w) cot(mw)E w;—j,O z Y

1-2w . . —
= lim 2 F(w)ﬁ(w_j,_1)COS7T,(w_‘7 _1)E w;—E,O 27
msinm(w —j —1) [

9 —2j—1 7 - A
_ (1) g (1 ﬂ,_é,o)
l s l

Thus, by the residue theorem,

I(z,0) = a1z +apz? + ..+ a2z +1(z,by), (3.14)

where

o\ V! ! k k

Here the function I(z, by) is defined by the same formula as I(z,b) with j+1 < by < j+2.
By the latter formula, we have that

mn , mn
I|{——=,b) =a 02 + o+ a:2 + T ——— b
(27Tz(m,n)2’ ) 12 + G227 4 -+ 452+ <27rz(m,n)27 1)

with

2 2\ J
o — (M) 0.

mmn

Therefore, I54(s, xo) is also an entire function of s.

3.5 Poles of Z4(s, xo)

The reminder functions Ig4(s, Xo) — Toa(s, Xo) can produce poles.

Proof of Theorem 3.1. Using the Taylor series expansion, we find that

-1 s—1
1) 2 1
z z
1 3 11 1 -
={l1-——+——— ... | |-+ —— ... 3.15
< 2z * 4. 2122 ) (z 222 * 323 > (3.15)

_ s+l S 1
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This and the definition of Ig4(s, xo), for o > 0, yield

a7 — &
Is4(s, x0) 0) Zbk(s)/ 257k,
nlq mlq k=0 z
Obviously,
o) s—s—k
/ pslokgy = 2 : (3.16)
3 S+ k

Thus, the poles at s = —k, k € Ny, are canceled by the zeros of the function I'"!(s), and
the function Ig4(s, xo) is entire. The same arguments show that the function I74(s, xo)
is entire, too.

By formula (3.14), we obtain

](mz ,b) :C:le_1+é22_2++éljz_]+1<mz s >
2min 2min

with

a; = : .
J 2min J

Hence, by formula (3.16), possible poles are canceled by the zeros of the function
I'1(s), and the function Ig4(s,xo) is entire in s. Thus, it remains to consider the
function Ig4(s, xo), and to obtain the poles of the function Z(s, xo). Using expansion

(3.15), we can write Ig4(s, xo0) in the form

184(3 Xo ZZM mn Zbk

nlq m|gq

x/ z_k_s< log(m ME +10gz) dz. (3.17)

Suppose that ¢ > 1. Then, clearly,

00 1 Z—s—i—l
/2 2z log zdz = s——l “tlog 2 + Go1P (3.18)
Therefore,
2mimn s—s+1
/oo | 27mmn+1 y 5—s+1 . (7 log( e >z +
—lo ogz |z *dz =
AN R (s =17 -1

Since by(s) = 1, hence, the first term in (3.15) is

) [ zen (70 — log @f;;g) gt

17 " 51

nlq m|g



This shows that the function Ig4(s,xo) has a double pole at the point s = 1. The

properties of the gamma-function imply

s—1s51—s

! F(Z) = els=Dlogip=(s=Dlog2P—1(g) — (1 4 (s — 1)logi +..)(1 — (s — 1) log 2 + ...)
S

X (I+7(s—=1)+...) =1+ (y +1logi—log2)(s—1)+ ... (3.19)

Therefore, the Laurent series expansion of the function Igs(s,xo) and thus, of the

function Z(s, xo), is

1
15, X0) ZZM )(3—1)2

nlg mig

) <2fyo log o ) — log 27r>

+Zzﬂ(m>’i§2<m’n - +.. (3.20)

nlg miq

From this, the first part of the theorem follows. Now we find simple poles of Z14(s, x0),
and residues at these points.

Suppose that o > 1 — k with £ € N. Then we have that

The poles at the points s = —k, k € Ny, are canceled by the zeros of I'"!(s). For the

same ¢ and k as above, we have that

0 5—s—k+1 s—s—k+1
/2 2 Flog zdz = P — log z + m

In virtue of T"!(s), this shows that the points s = —k, k € Ny, are the possible poles

of Iss(s, x0). However, equality (3.15) involves the coefficients bi(s), and some of them

can cancel the above poles. Indeed, in view of (3.13), bi(s) = —35. Thus, the pole

at s = 0 is cancelled by by(s). To show this in general case, we return to the initial

definition of the function Z4(s, xo)

27r = wo 2mikn
Zuts.0) = g S S ) [T e el T e

n|q mlq k=1

where wg = |wyle’™,0 < |Rwy| < =, is a fixed point. We put e”™ = 1 — iz in the

integral of the above formula, and let zy correspond the point wy. Then we obtain
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that, for o > 1,

Z14(5, X0) 27T ZZM Zd

nlq mlq k=1
20
x/ (1—iz)_%e_%fnkne_%rim(zlog( i2))* tdz. (3.21)
0

By the residue theorem, we write

20 L N |20l 1 nknz
/ (1—iz)"2e” o (ilog(l —iz))* 'dz = / (1— iz)_56_2 G (ilog(1 —iz))* 'dz
0 0

+ / (1—i2) 2" (ilog(l — iz))*tdz, (3.22)
|

20|
where the second integral in the right-hand side of (3.22) is taken along the path
connecting the points |zp| and 2y, and is an entire function. Thus, it remains to
consider the integral over (0, |zo|) in (3.22). Suppose that |z| is small enough. Then we

have, for the part of the integrand of this integral,

(1—iz)"2(ilog(1l —iz))* ' = (1 — 5(—zz) + T(—iz)z + )

(ST

x 57 (—iz)* (1 —(s—1) (—222) +(s—1) (—iz)? 4 ) (3.23)
= oo (1 - g(—iz) + by(s)(—i2)? + ) .

|
VR
—
|
DO
—~
d
N
N—
+
Pp‘
W
o
—~
J
N
S~—
no
+
~_

Here the polynomials b (s) are the same as above. For ¢ > —I[, the integral

o0

|ZO‘ _ 2mknz .
/ 2 e () (—iz) dz
0

j=l+1

is an analytic function. Therefore, for ¢ > —[, we consider only the integral

|zo] .
/ e~ I sl Z bi(s)(—iz)dz
0 -

7=0
o !
:/0 e_wzs_lzbj(s)(_iz)de—/l e IZb (—iz)?dz.  (3.24)
=0 20

The second integral in the above formula reduces to the incomplete gamma-function.

The incomplete gamma-function differs from ordinary gamma-function, where lower
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limit of integration is 0, and defines an analytic function. Thus, in view of (3.21)-

(3.24), we obtain that, for 0 > —I[, the function

def 27r ZZ pu(m Zd _2mikn

nlq mlq

< /0 T gk (Z bj(s)(—iz)j> 21ds (3.25)

gives the main part of the function Z4(s, xo). We have that, for o > 1 — j,

& mknz : s+j
/ e gy = (2m)— <@> ’ [(s+7), (3.26)
0 n

kz ks+] e m = E (S + ]’ povs ’O s (327)
=1

(m,n)
and
L(s+7)
I'(s)
Therefore, for o > 1, by (3.24),

= Z Z Z %M(—i)jbj(s)@w)lsjs(s +1)..(s+j5—1)

J=0 nlq mlq

=(s+j—1)...(s+ 1)s. (3.28)

n

s+j e
x <T> 'E <s+j; (D) ,0) . (3.29)
n

(m,n)

Since the function F (s + ;7 O) is meromorphic with a double pole at s =1 — 7, and

Bsyj @i o) = (mn) 1 i TR
) m_ ) N2 ceey
(m.m) m\(s—(1-7)) s—(1-J)

equality (3.29) gives a meromorphic continuation for J(s), and thus, for Z(s, xo), to

the whole complex plane. Since,

-y —“(mr):(”) (—i)b(s)(2m)' " s(s + 1)...(s + j — 1) (%)SH

j=1 nlg mlq

o 1 210g — log 2w
xE<s+j,< )0>+ZZ“ ( o+ D2 -

(m,n) nlg mlq

(3.30)
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from (3.30), having in mind the factor (s + j — 1), we conclude that J(s) has a simple
pole at s =1—7,5 € N, if b;(1 —j) # 0, and exactly no poles if b;(1 — j) = 0. We take

s =1 — 7 in formula (3.23). This gives

(1 —iz) "2 (ilog(1 —i2) 7 =Y b(1 — j)(—iz)k.

k=0
Let w = —iz. Then, by the formula of Taylor’s coefficients,
b (1 ) = 1 (iw)? (1 + w)~2 (i log(1 + w)) ™
= om witt
|w|=r
1 d
- v (3.31)
27”| - w(l+w)? (log(1 + w))i”

where > 0 is sufficiently small. We make the substitution log(1 4+ w) = —z in (3.31)

and get

L (=1 / dz (—1)/ / dz
bl =j) = : = - .32
]( ]) 27TZ Z](ez/Z _ 672/2> 27T7/ ZJQSinh 57 (3 3 )

where
sinh = =
2
Therefore, (—1)7b;(1 — j) is the (j — 1) th coefficient of the Laurent series expansion

for the function (2 sinh %)_1 at the point z = 0. It is well-known that Laurent series

expansion of this function we can write using the Bernoulli numbers Bsy, namely,

o

1 (2% — 1)Byy o4
== Z SEEToATRE (3.33)

z
2 =1

2 sinh

In formula (3.33), we have only odd powers of z. From one hand, this means that
the coefficients standing in front of the term z?* k € N, in formula (3.33) are equals
to zero. Therefore by;1(—275) = 0,5 € Ny, and J(s) has not simple poles at these
points. From the other hand, the coefficient standing in front of the term 22! k € N,
in formula (3.33) corresponds the coefficient 27, 7 € N, in formula (3.32), and we have
simple poles at points 1 — 27, j € N, because by;(1 —2j) #0,j € N.

Now we get residues at the points 1 — 27, j € N. From formulae (3.33) and (3.32),
it follows that

(1 —2-@=D)By;

(_1)2jb2j(1 - 2]) = (2])'

(3.34)
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Then (3.30) and (3.34) imply

p(m)p(n) - o . RPNy m (m, n)
Res Zi(s.x0) = 3 > A (i) by (1 - 2) (<) A2 - D
JjeN nlg mlq
~2i(1 — 9-(2i-)\ g, .
:ZZ—M(m)u(n)(man)l U2 0By (3.35)
ng mg 27

Properties of the Mobus function show that

505 M ) — 22

~—

nlg mlq
plm)p(n)(m,n) | mn_\ _ 2¢(q)alq)
22 mn lg((man)g)_ q

nlg mlg

and this complets the proof of Theorem 3.1.

3.6 Entire parts of Z3(s, x)

For the Mellin transform with primitive character we have the decomposition defined
by formula (3.7). As it was shown in Section 3.3, the functions Z;(s, x) and Z15(s, x)
are holomorphic, and possible poles of the Mellin transform here arise only from the
part Z3(s, x) in formula (3.10).

For |z| > 1, from formula (2.1) and Theorem 2.1, taking ;= in place of 2, having

in mind that in this case 3(5%) < 0, and therefore, 6 = —1, we have
= 2l T
271'7,k 27'r7,k _ ,a—1
> i ot oo (2 2
k=1 a=1 (¢ga=1)
2miq a—1
(70 - log (q,a—1)22> Z<q7 a— 1) 1 1 qz -1 a—1
* o = G 2 X(@? (3m) 2
X a=1 (Q7a_1)

(’Yo log o= ) 2(¢,a—1)

+ -
211
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(2rik @ DEeD

41r2k(qa 1)2 Az

q/(g,a—1)

5 27
e q

— log —2Z4 ) 2(q,a —1)
q oy, 1 I (ﬁ b) ( (g.0-1)7z ’
- 27r2(q, a1 %~ a) 7 H (5 000) F o
a > (a—1)/(g,a—1) ux ,a— 2,
q’ a — 1 Z d 727”’6( Q/l)q/(aq 1) = 62 k(qq o (336)
a=1 k=1
N q ( N 3 ) N (’70 — log (qiizf)zZ) Z(Qa a— 1)
212(q,a — 1) %~ %0a 270 '
Applying formula (2.1), we obtain
Az W - 2mikE _an?k: (9 — log4mw?z)m
c1>< — i ) Zd me” m? — o (3.37)
On the other hand, Theorem 2.1 yields
7 dnZhks m n m?
d —27rzk 4m2 _ (I)< _1._> L
Z omioz \ Troigz e~ Go)
m m

+ ey + 2m,6zf(z,b). (3.38)

Therefore, combining (3.37) and (3.38) gives

42z W m n
o TY L g ()
(m2 m) omide \ T is-

m m

m2

_|_ —

(o — log 4m?2)m

I(z,0) — 3.39
+ 8midz + 2mid z (2,5) 42z (3:39)
Now if |z| < 1, we take m in place of z. Since & (%) > 0, we have
that 6 = 1, therefore, from (2.1) and(3.39), it follows
a 271
id ez 1 Xq:%(a)cb omi i\ (0~ log gt ) 2(g.a — 1)
k=1 (%) a=1 gz’ (q,aqfl) 2mi
R 472(q,a — 1)? qi (qaa__ll)
=== X(a)® < i
G(X) ; ( 7 2r2(q,a = 1)* )" g
(70 - IOg (q737_ri1(])2z> Z(Q> a— 1)
+

21
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1 g q
= — Y(la — - @ )
&) 2= X ){ 2rilga—1) - i i ——

) " 2rz(q,a—1)2

a=1
2
q L q
T : i (a5, — aga) + < -
4m3i(q,a — 1)% - QWZ(q‘fa_l)Q 8mi(q,a — 1) - —%Z(q‘fa_l)Q
Am2qi
n q 7 ( q@ ) <P)/O - IOg Qﬂ—z(q,aq_l)2> q
2mi(g,a — 1) - spdegy \2m2(g,a—1)% Ar*(q,a = 1) - gty
<'70 — log (qj:rilq)%> Z(Qa a— 1)
+ , (3.40)
271

_omik @=D/(@.a=1) 2mik(q,a—1)2z

= G L X ((q,a—l);d(k)e T e

2 mz(q,a—1)2
(70 —log ((qvaq—n? = (qqz' : )) qz
- Z(Q? a— 1) q . 27|.Z(q7a_1)2 - 2_7_(_2

(g,a—1) qi

Z(Qv a — 1) QZ
A L A— -V —b
4 Haa=1) (27rz(q,a - 1) ) )
_opike=D/(@a=1) 2mik(ga—1)%=

- G X <<q,a—1>;d<k>e T e

9z, +  _, z(ga-1) qi
— L af —ap) - I (—2—— b))
2 (aOa aOa) 4 Z(q7 a ) 271_2((]7 a — 1)2 )

We denote, as in the above case, by 2z the point on the path of integration in formula

(aa_a - aaa)

(3.10) such that |2| = 1. Then, by (3.36), and (3.40), we express Z3(s, x) as a sum of

the functions I3,

6
Zl3(S7X) - ZIjg(S,X),
j=1
where
Iy(50) = =2 S @ ga - 1) S d(kye R
S, X) = — xla)lg,a — e q/(g,a—
v I'(s)yVaE(X)G(X) = —~

dz,

X
S
8
I
AN
VRS
[a—
+
IS
~~
e
/)_‘\
O
og
N\
—
+
|
~_
N~~~
vy
)
[\V)
3
3
S
SR
L
=

1 s—1
(log (1 + —)) dz,
z

on
w
—~
»
>
N~—
I
|
S
~
o
+
w
£}
>
—

Q
N—
—~

S
o
IS

|
)
ISl
IS]
N—
\N
I
iR
VR
—
+
|
~~
o
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N |—=

Qribts q

_ : 1\~
(e = =7 g 5 M = [ (1)

a=1 0

1 s—1
(log (1 + —)) dz,
z
q

27m’b+s _ z . 1 -
felo.) =~y e o Xee - 7 (145)

a=1 20

. s—1
qi 1
[|———— b | 1+ - d
: <2m<q,a—1>2’ )(g( *)) “

Fsls ) = ms)@z;;m Zy”ﬁ [ (+3) . (1o (1+2)) e

ib‘i’S*l

“ o 1\
163(S;X)=F(g)\/(_]E(X)G(y);X(a)(q,a—l)/é 2 (1+Z>

2miq 1N\

All these parts, are holomorphic, except for Ig3(s, x), which produces the poles of
213(57X)'

N |=

3.7 Poles of Z5(s, x)

The poles of Z(s, x) we deduce considering the function Ig3(s, x).

Proof of Theorem 3.1. Using Taylor series expansion (3.15), we have a new form of

]63(87 X)

B jbts—1 q - . o0 ) OOZ_S_k 1 2miq ;
Iss(s, x) = F(s)\/ﬁE(X)G(X) ZX( )(q, 1);01%( )/Z (’YO log (g0 — 1)22) dz.

a=1

Hence, integrating the first term with k£ = 0 and using formula (3.18), we get a double
pole at point s =1

jbts—1 o ¥ ol omiq i
r<s>¢aE<x>G<x>;X(a)(q’“‘”/g = oo o )
- jbs—1 “ s—s+1 ('yo—log (qjiif)Qé) zmst+l
“ TevaEmGwm 2 X W=D | g -1



Now, from (3.19), we find that the main part of the Laurent series expansion for

Z15(s, x) at this point is

a—1)?
1 270 + log L=
-1) 4
\/— ZX q’a ((3_1)2+ s—1 +

(3.41)

213(87 X)

Clearly, the polynomials by (s) which appear in Z3(s, x) from the Taylor series expan-
sion (3.15) are the same as in Z14(s, xo), therefore, we conclude that other singularities
of Z1(s,x) are the simple poles at points 1 — 25,7 € N. With purpose to get residues
at these points, we consider the function

Is) NEN PG

=1

/OO —r (Zb (—iz )zs_ldz,

which get a non-holomorphic part of Z;(s,y). In the same way as in proof of Theo-
rem 3.1, taking into account Lemma 2.4, we write J(s) in the form of finite sum of

Estermann zeta-functions

oI’ o . g\t
J(s) = (—i)7b;(s) (—) s(s+1)(s+j—1)
VaE(x )jz_; ! 2
1 q ((a—li)
X ——— X(@E | s+j;-=—=,0].
G(X) = ( oD
Properties of the Estermann zeta-function and polynomials by (s) imply
b 2](1 2 (25-1) BQ
SPEG_S Zi(s,x) = NG ZX (g,a—1). (3.42)
JEN a=1

Using properties of Dirichlet characters, write the Gauss sum in the form

q
G X) _ ZX(Z 2mil/q __ ZX 27rzl/q‘
=1

Then we have
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Also, it is well-known, see, for example [1], that

VIEWGR)  a(—12y (-Gl X(-DIGOOP — (-D'a ¢

Now this, (3.42), and (3.41) give the assertion of the theorem.
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Conclusions

In the thesis, the following statements were established:

1. The modified Mellin transform Z(s, xo) = [ | L (3 + iz, xo) | ? 7%dx has a mero-
1
morphic continuation to the whole complex plane. It has a double pole at s =1,

and other poles of Z; (s, xo) are the simple poles at the points s = —(25—1),j € N.

2. The modified Mellin transform Z(s, x) with primitive character y mod ¢ also

has a meromorphic continuation to the whole complex plane.

3. Possible poles of Z(s, x) depends on the sum c(q) = >"7_ ¥(a)(g,a — 1):
if ¢(q) # 0, then Z(s, x) has the same poles as 2 (s, xo);

if ¢(q) = 0, then Z,(s, x) is an entire function.
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