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Introduction

In the thesis, the joint universality of periodic Hurwitz zeta-functions as well as that jointly with the

Riemann zeta-function or zeta-functions of normalized cusp forms is obtained.

Actuality

Universality is a very important and useful property of zeta and L-functions, it has a series of theo-

retical and practical applications. Universality is the main ingredient in the proof of the functional

independence of zeta and L-functions, is applied in the investigation of zero-distribution and moment

problem, allows to prove various value denseness theorems, and, of course, plays a crucial role in

approximation of analytic functions. One of possible practical applications is estimation of integrals

over complicated analytic curves in quantum mechanics [4]. Thus, this is a motivation to extend the

class of universal functions.

In practice, often approximation and estimation of systems of analytic functions is needed. This

problem can be successfully solved using the joint universality of zeta-functions. The majority of zeta

and L-functions have approximate functional equations, therefore, due to joint universality, simulta-

neous estimation of analytic functions reduces to that of rather simple Dirichlet polynomials. This is

a singni�cant impact of the universality of zeta-functions to the theory of analytic functions.

After Voronin's remarkable work [42], a series of famous number theorists continued their inves-

tigations on the universality of zeta-functions. The names of B. Bagchi, H. Bauer, R. Garunk²tis,

P. Gauthier, S. M. Gonek, J. Kaczorowski, A. Laurin£ikas, K. Matsumoto, A. Reich, J. Steuding, the

works of young Lithuanian, Japanese, German and Polish mathematicians clearly show the actuality

of the universality problem in the theory of zeta and L-functions.

Aims and problems

The aim of the thesis is to extend the joint universality to new classes of zeta-functions. The concrete

problems are the following.

1. To remove a rank condition in a joint universality theorem for periodic Hurwitz zeta-functions.
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2. To weaken a rank condition in an extended joint universality theorem (a collection of periodic

sequences corresponds each shift parameter) for periodic Hurwitz zeta-functions.

3. To prove a mixed joint universality theorem for the Riemann zeta-function and periodic Hurwitz

zeta-functions.

4. To prove a mixed joint universality theorem for a zeta-function of normalized Hecke eigen cusp

forms and periodic Hurwitz zeta-functions.

Methods

In the thesis, for the proof of joint universality theorems for zeta-functions an analytic method based on

probabilistic limit theorems on the weak convergence of probability measures in the space of analytic

functions is applied. This method also involves elements of the measure theory and the approximation

theory of analytic functions.

Novelty

All results of thesis are new. They improve or extend joint universality results for periodic Hurwitz

zeta-functions.

History of the problem

In 1975, S. M. Voronin discovered [42] the universality of the Riemann zeta-function ζ(s), s = σ + it.

Roughly speaking, he proved that any non-vanishing analytic function can be approximated uniformly

on some sets of the strip D = {s ∈ C : 1
2 < σ < 1} by shifts ζ(s + iτ), τ ∈ R. We state a modern

version of the Voronin theorem which proof is given in [19]. meas{A} denotes the Lebesgue measure

of a measurable set A ⊂ R.

Theorem A. Suppose that K ⊂ D is a compact subset with connected complement, and that f(s)

is a continuous non-vanishing function on K which is analytic in the interior of K. Then, for every

ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Theorem A shows that the set of shifts ζ(s+iτ) approximating a given analytic function is in�nite:

it has a positive lower density. A proof of Theorem A is di�erent from the initial Voronin proof, and

is based on a limit theorem on the weak convergence of probability measures in the space of analytic
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functions. The latter method was proposed by B. Bagchi in this thesis [1], and was developed in the

monographs [19], [27] and [41].

It turned out that some other zeta-functions also have the universality property. The zeta-functions

of cusp forms are among universal in the Voronin sense functions. We remind that the function F (s)

is callied a cusp form of weight κ with respect to the full modular group

SL(2,Z) =


 a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1


if is holomorphic in the upper half-plane Imz > 0, with some κ ∈ 2N satis�es, for all

 a b

c d

 ∈
SL(2,Z), the functional equation

F

(
az + b

cz + d

)
= (cz + d)κF (z),

and at in�nity has the Fourier series expansion

F (z) =

∞∑
m=1

c(m)e2πimz.

Moreover, we assume that the cusp form F (s) is a simultaneous eigen function of all Hecke operators

(Tnf)(z) = nκ−1
∑
d|n

d−κ
d−1∑
b=0

f

(
nz + bd

dz

)
, n ∈ N.

It is known that, in this case, c(1) 6= 0. Thus, we can normalize the function F (s) by taking c(1) = 1.

To a normalized Hecke eigen cusp form F (z), we can attach the zeta-function ζ(s, F ) de�ned, for

σ > κ+1
2 , by

ζ(s, F ) =

∞∑
m=1

c(m)

ms
=
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1

,

where, for primes p, α(p) and β(p) are conjugate complex numbers such that α(p) + β(p) = c(p). It

is well known that the function ζ(s, F ) has analytic continuation to an entire function.

The theory of modular forms is given, for example, in [11] and [7].

The universality of the function ζ(s, F ) was began to study in [15] and completely proved in [29].

Let Dκ = {s ∈ C : κ
2 < σ < κ+1

2 }. Then the following analogue of Theorem A is true.

Theorem B. Suppose that K ⊂ Dκ is a compact subset with connected complement, and that f(s)

is a continuous non-vanishing function on K which is analytic in the interior of K. Then, for every

ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, F )− f(s)| < ε

}
> 0.
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A more interesting and complicated property of zeta-functions than the universality is their joint

universality. The �rst result on joint universality also belongs to S. M. Voronin. In [43], see also

[18], he obtained a joint universality theorem for Dirichlet L-functions. We remind that two Dirichlet

characters χ1 and χ2 are equivalent if they are generated by the same primitive character. The theory

of Dirichlet L-functions can be found, for example, in [38], [17]. We state a modi�ed version of the

Voronin theorem.

Theorem C. Suppose that χ1, . . . , χr are pairwise non-equivalent Dirichlet characters, and L(s, χ1),

. . . , L(s, χr) are the corresponding Dirichlet L-functions. For j = 1, . . . , r, let Kj ⊂ D be a compact

subset with connected complement, and let fj(s) be a continuous non-vanishing function on Kj which

is analytic in the interior of Kj. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|L(s+ iτ, χj)− fj(s)| < ε

}
> 0.

Other versions of Theorem C were independently obtained by S. M. Gonek [8] and B. Bagchi [1],

[2]. The Voronin theorem in the form of Theorem C is given in [26].

In Theorem C, a collection of analytic functions are simultaneously approximated by shifts of

Dirichlet L-functions. This procedure, of course, requires a certain independence of a collection of

L-functions, and this independence is expressed by the non-equivalence of Dirichlet characters. The

known joint universality theorems for other zeta-functions also involve some independence hypotheses.

This is clearly re�ected in a joint universality theorem for Hurwitz zeta-functions. However, �rst we

remind the de�nition and universality of the Hurwitz zeta function.

Let α, 0 < α ≤ 1, be a �xed parameter. The Hurwitz zeta-function ζ(s, α) is de�ned, for σ > 1,

by the series

ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,

and has meromorphic continuation to the whole complex plane with unique simple pole at the point

s = 1 with residue 1. The function ζ(s, α) is an interesting analytical object depending on a parameter

α whose arithmetical nature in�uences the properties of ζ(s, α). The universality of ζ(s, α) is contained

in the following theorem.

Theorem D. Suppose that the number α is transcendental or rational 6= 1, 1
2 . Let K ⊂ D be

a compact subset with connected complement, and let f(s) be a continuous function on K which is

analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α)− f(s)| < ε

}
> 0.
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First Theorem D by di�erent methods has been obtained in [8] and [1], see also [40]. We see that

the approximated function f(s), di�erently from Theorem A, is not necessarily non-vanishing on K,

and this is conditioned by non-existence of the Euler product over primes for the function ζ(s, α) in

the case of Theorem D. We have that ζ(s, 1) = ζ(s) and

ζ

(
s,

1

2

)
= (2s − 1)ζ(s),

therefore, the functions ζ(s, 1) and ζ

(
s, 1

2

)
are also universal, however, the approximated function

f(s) must be non-vanishing on K.

The case of algebraic irrational parameter α remains an open problem.

Now we state a joint universality theorem for Hurwitz zeta-functions. Let, for 0 < αj ≤ 1,

j = 1, . . . , r,

L(α1, . . . , αr) = {log(m+ αj) : m ∈ N0, j = 1, . . . , r} .

Theorem E. Suppose that the set L(α1, . . . , αr) is linearly independent over the �eld of rational

numbers Q. For j = 1, . . . , r, let Kj ⊂ D be a compact subset with connected complement, and let

fj(s) be a continuous function on Kj which is analytic in the interior of Kj. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj)− fj(s)| < ε

}
> 0.

A proof of Theorem E is given in [23]. For algebraically independent over Q numbers α1, . . . , αr

(α1, . . . , αr are not roots of any polynomial p(x1, . . . , xr) 6≡ 0 with rational coe�cients), Theorem E

by a di�erent method has been obtained in [36].

A generalization of the Hurwitz zeta-function is the periodic Hurwitz zeta- function introduced in

[12]. Let a = {am : m ∈ N0} be a periodic sequence of complex numbers with minimal period k ∈ N,

and 0 < α ≤ 1. Then the periodic Hurwitz zeta-function ζ(s, α; a) is de�ned, for σ > 1, by

ζ(s, α; a) =

∞∑
m=0

am
(m+ α)s

.

The periodicity of the sequence a implies, for σ > 1, the equality

ζ(s, α; a) =
1

ks

k−1∑
l=0

alζ

(
s,
l + α

k

)
.

This shows that the function ζ(s, α; a) also admits a meromorphic continuation with a simple pole at

s = 1 with residue

a
def
=

1

k

k−1∑
l=0

al.

In the case a = 0, the function ζ(s, α; a) is entire.
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In [12] and [13], the universality of the function ζ(s, α; a) with transcendental parameter α was

investigated, and the following statement was proved.

Theorem F. Suppose that the number α is transcendental. Let K ⊂ D be a compact subset with

connected complement, and let f(s) be a continuous function on K which is analytic in the interior

of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, α; a)− f(s)| < ε

}
> 0.

Thus, Theorem F is an analogue of Theorem D in the case of transcendental α.

The joint universality for periodic Hurwitz zeta-functions was began to study in [21]. For j =

1 . . . , r, let aj = {amj : m ∈ N} be a periodic sequence of complex numbers with minimal period

kj ∈ N, αj , 0 < αj ≤ 1, be a �xed parameter, and ζ(s, αj ; aj) denote the corresponding periodic

Hurwitz zeta-function. Denote by k the least common multiple of the periods k1, . . . , kr, and de�ne

the matrix

A =


a11 a12 . . . a1r

a21 a22 . . . a2r

. . . . . . . . . . . .

ak1 ak2 . . . akr

 .

In [21], it was proved that if kj = k, αj = α for j = 1, . . . , r, α is transcendental, and rank(A) = r,

then the functions ζ(s, α, a1), . . . , ζ(s, α; ar) are jointly universal. In [22], the requirement that kj = k

for j = 1, . . . , r was removed. Finally, in [14] the following joint universality theorem was proved.

Theorem G. Suppose that the numbers α1, . . . , αr are algebraically independent over Q, and that

rank(A) = r. For j = 1, . . . , r, let Kj and fj(s) be the same as in Theorem E. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− fj(s)| < ε

}
> 0.

It turned out that the rank hypothesis in Theorem G can be removed, and a joint universality

theorem for periodic Hurwitz zeta-functions, without using the matrix A, forms Chapter 1 of the thesis.

Let L(α1, . . . , αr) be the same set as in Theorem E. We give a shortered statement of Theorem 1.1.

Theorem 1.1. Suppose that the set L(α1, . . . , αr), is linearly independent over Q. For j =

1, . . . , r, let Kj and fj(s) be the same as in Theorem E. Then the assertion of Theorem G is true.

The joint universality for periodic Hurwitz zeta-functions has a more general form when a collection

of periodic sequences is attached to each parameter αj . First such an extension of the joint universality

has been proposed in [31] for Lerch zeta-functions. The above idea for periodic Hurwitz zeta-functions

has been applied in [24]. Let lj , j = 1, . . . , r, be positive integers. For every l = 1, . . . , lj , let
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ajl = {amjl : m ∈ N0} be a periodic sequence of complex numbers with minimal period kjl ∈ N.

Suppose that, for j = 1, . . . , r, αj is a �xed parameter, 0 < αj ≤ 1, and, for σ > 1,

ζ(s, αj ; ajl) =

∞∑
m=0

amjl
(m+ αj)s

.

Denote by k the least common multiple of the periods k11, . . . , k1l1 , . . . , kr1, . . . , krlr , and de�ne the

matrix

B =


a111 a112 . . . a11l1 a122 . . . a12l2 . . . a1r1 a1r2 . . . a1rlr

a211 a212 . . . a21l1 a222 . . . a22l2 . . . a2r1 a2r2 . . . a2rlr

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ak11 ak12 . . . ak1l1 ak22 . . . ak2l2 . . . akr1 akr2 . . . akrlr

 .

Moreover, let

κ =

r∑
j=1

lj .

Then in [24], the following result has been obtained.

Theorem H. Suppose that the system L(α1, . . . , αr) is linearly independent over Q, and that

rank(B) = κ. For every j = 1, . . . , r, and l = 1, . . . , lj, let Kjl be a compact subset of the strip D with

connected complement, and let fjl(s) be a continuous function on Kjl which is analytic in the interior

of Kjl. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup

1≤l≤lj
sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε

}
> 0.

In Chapter 2 of the thesis, the rank condition in Theorem H is made weaker. Let kj be the least

common multiple of the periods kj1, kj2, . . . , kjlj , j = 1, . . . , r. De�ne

Bj =


a1j1 a1j2 . . . a1jlj

a2j1 a2j2 . . . a2jlj

. . . . . . . . . . . .

akjj1 akjj2 . . . akjjlj

 , j = 1, . . . , r.

Then the main result of Chapter 2 is the following theorem.

Theorem 2.1. Suppose that the set L(α1, . . . , αr) is linearly independent over Q, and that

rank(Bj) = lj, j = 1, . . . , r. Let Kjl and fjl be the same as is Theorem H. Then the assertion

of Theorem H is true.

In Theorem 2.1, di�erently from Theorem H, we use the information related only to αj , j = 1, . . . , r.

All above joint universality theorems for zeta or L-functions are of the same type. Theorem C is

an example of the joint universality for functions having the Euler product over primes, while all joint
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theorems for periodic Hurwitz zeta-functions form a group of results for zeta-functions having no the

Euler product. The paper of H. Mishou [35] is the �rst work on the joint universality for zeta-functions

of di�erent types: having and having no the Euler product. We call this universality a mixed joint

universality. In [35], a joint universality theorem for the Riemann and Hurwitz zeta-functions has

been proved.

Theorem I. Suppose that the number α is transcendental. Let K1 ⊂ D,K2 ⊂ D be compact

subsets with connected complements, f1(s) be a continuous non-vanishing function on K1 which is

analytic in the interior of K1, and let f2(s) be a continuous function on K2 which is analytic in the

interior of K2. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζ(s+ iτ)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α)− f2(s)| < ε

}
> 0.

A generalization of Theorem I has been given in [16]. Let b = {bm : m ∈ N} be a periodic sequence

of complex numbers with minimal period l ∈ N. Then the periodic zeta-function ζ(s; b) is de�ned, for

σ > 1, by

ζ(s; b) =

∞∑
m=1

bm
ms

.

In view of periodicity of the sequence b, it follows that, for σ > 1,

ζ(s; b) =
1

ls

l∑
j=1

bjζ

(
s,
j

l

)
,

and this gives meromorphic continuation for ζ(s; b) to the whole complex plane with possible pole at

s = 1 with residue

b
def
=

1

l

l∑
j=1

bj .

If b = 0, then the function ζ(s; b) is entire.

We recall that the sequence b is multiplicative if b1 = 1, and bmn = bmbn for all colprimesm,n ∈ N.

The universality of the function ζ(s; b) with multiplicative sequence b has been obtained in [32]. In

this case, the theorem is similar to Theorem A.

In [16], the joint universality for the functions ζ(s; b) and ζ(s, α; a) has been obtained.

Theorem J. Suppose that the sequence b is multiplicative such that, for every prime p,

∞∑
l=1

|bpl |
p
l
2

≤ c < 1,

14



and that the number α is transcendental. Let K1,K2, f1(s) and f2(s) be the same as in Theorem I.

Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζ(s+ iτ ; b)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α; a)− f2(s)| < ε

}
> 0.

A multidimensional version of Theorem J is presented in [25]. In this case, the joint universality

is obtained for the collection of zeta-functions ζ(s; b1), . . . , ζ(s; br1) and ζ(s, α; a1), . . . , ζ(s, αr2 ; ar2).

Theorem K [25]. Suppose that, for j = 1, . . . , r1, the sequence bj is multiplicative such that, for

every prime p,

∞∑
l=1

|bplj |
p
l
2

≤ cj < 1,

and that the numbers α1, . . . , α2 are algebraically independent over Q. For j = 1, . . . , r1, let Kj ⊂ D

be a compact subset with connected complement, and let fj(s) be a continuous non-vanishing function

on Kj which is analytic in the interior of Kj. For j = 1, . . . , r2, let K̂j ⊂ D be a compact subset with

connected complement, and let f̂j(s) be a continuous function on K̂j which is analytic in the interior

of K̂j. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r1
sup
s∈Kj

|ζ(s+ iτ ; bj)− fj(s)| < ε,

sup
1≤j≤r2

sup
s∈K̂j

|ζ(s+ iτ, αj ; aj)− f̂2(s)| < ε

}
> 0.

In Chapter 3 of the thesis, we generalize Theorem 2.1 adding to the functions ζ(s, α1; a11), . . . ,

ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ) the Riemann zeta-function ζ(s). Thus, we have the

following statement.

Theorem 3.1. Suppose that the numbers α1, . . . , αr are algebraically independent over Q, rank(Bj)

= lj, j = 1, . . . , r, and that all hypotheses on the sets Kjl and functions fjl(s) of Theorem 2.1 hold.

Moreover, let K ⊂ D be a compact subset with connected complement, and let f(s) be a continuous

non-vanishing function on K which is analytic in the interior of K. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε

}
> 0.

Chapter 4 of the thesis is devoted to a an analogue of Theorem 3.1 with the function ζ(s, F ) in

place of the function ζ(s). Note that, in this case, we have a more complicated situation because
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the functions ζ(s, F ) and ζ(s, αj ; ajl) are universal in di�erent strips Dκ and D, respectively. We

remind that here ζ(s, F ) denotes the zeta-function attached to a normalized Hecke eigen cusp form F

of weight κ.

Theorem 4.1. Suppose that F is a normalized Hecke eigen cusp form of weight κ for the full

modular group, the numbers α1, . . . , αr are algebraically independent over Q, and that rank(Bj) = lj,

j = 1, . . . , r. Let K ⊂ Dκ be a compact subset with connected complement, f(s) be a continuous

non-vanishing function on K which is analytic in the interior of K, and that all hypothesis on the

sets Kjl and functions fjl of Theorem 2.1 hold. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, F )− f(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε

}
> 0.

History of universality in analysis can be found in a very informative paper [9], see also [41], [20],

[33].

The proofs of all joint universality theorems of the thesis are based on the probabilistic approach

involving limit theorems for weakly convergent probability measures on the space of analytic functions,

and on explicitly given supports of the limit measures.
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Chapter 1

Joint universality for periodic Hurwitz

zeta-functions

In this chapter, we prove a joint universality theorem for periodic Hurwitz zeta-functions ζ(s, α1; a1),

. . . , ζ(s, αr; ar). Here, for j = 1, . . . , r, αj , 0 < αj ≤ 1, is a �xed parameter, aj = {amj : m ∈ N0} is

a periodic sequence of complex numbers with minimal period k ∈ N, and for σ > 1,

ζ(s, αj ; aj) =

∞∑
m=0

amj
(m+ αj)s

.

If

aj =
1

kj

k−1∑
l=0

alj 6= 0,

then the function ζ(s, αj ; aj) is entire, while if aj 6= 0, the function ζ(s, αj ; aj) has a unique simple

pole at s = 1 with residue aj .

1.1. Statement of the main theorem

We recall that

L(α1, . . . , αr) =
{

log(m+ αj) : m ∈ N0, j = 1, . . . , r
}
.

For brevity, denote the elements of the set L(α1, . . . , αr) by em,j = log(m+αj). The set L(α1, . . . , αr)

is linearly independent over the �eld of rational numbersQ if, for every �nite collection em1,j1 , . . . , emn,jl ,

{m1, . . . ,mn} ⊂ N0, {j1, . . . , jl} ⊂ {1, . . . , r}, the equality

qm1,j1em1,j1 + · · ·+ qmn,jlemn,jl = 0
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with rationals qm1,j1 , . . . , qmn,jl holds only in the case qm1,j1 = · · · = qmn,jl = 0. Obviously, in place

of rationals qm1,j1 , . . . , qmn,jl we may use rational integers.

We remind that D = {s ∈ C : 1
2 < σ < 1}.

Theorem 1.1. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. For j = 1, . . . , r,

let Kj ⊂ D be a compact subset with connected complement, and let fj(s) be a continuous function on

Kj which is analytic in the interior of Kj. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− fj(s)| < ε

}
> 0.

We note that Theorem 1.1 removes a certain rank condition on the coe�cients amj which was used

in [14].

A joint limit theorem on the weak convergence of probability measures in the space of analytic

functions for periodic Hurwitz zeta-functions is the main ingredient in the proof of Theorem 1.1.

1.2. Joint limit theorem

We denote by H(D) the space of analytic functions on D equipped with the topology of uniform

convergence on compacta. In this topology, a sequence {gn(s) : n ∈ N} ⊂ H(D) converges to the

function g(s) ∈ H(D) if, for every compact subset K ⊂ D,

lim
n→∞

sup
s∈K
|gn(s)− g(s)| = 0.

De�ne

Hr(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸
r

.

Let, as usual, B(S) denote the class of Borel sets of a space S. Moreover, let

Ω =

∞∏
m=0

γm,

where γm = {s ∈ C : |s| = 1} for all m ∈ N0. Since the unit circle γ is a compact, by the Tikhonov

theorem, see, for example, [37], the in�nite-dimensional torus Ω with the product topology and point

wise multiplication is a compact topological Abelian group. Let

Ωr = Ω1 × · · · × Ωr,

where Ωj = Ω for j = 1, . . . , r. Then Ωr also, by the Tikhonov theorem, is a compact topological

Abelian group. Therefore [39], on (Ωr,B(Ωr)), the probability Haar measure mr
H can be de�ned, and

21



we obtain the probability space (Ωr,B(Ωr),mr
H). We remind that the measure mr

H is invariant with

respect to shifts by points from Ωr, i.e.,

mr
H(A) = mr

H(ωA) = mr
H(Aω)

for every A ∈ B(Ωr) and all ω ∈ Ω. It is important to note that the Haar measure mr
H is the

product of the Haar measures mjH on the coordinate spaces (Ωj ,B(Ωj)), j = 1, . . . , r. Denote by

ωj(m) the projection of an element ωj ∈ Ωj to the coordinate space γm, m ∈ N0, j = 1, . . . , r. Let

ω = (ω1, . . . , ωr) ∈ Ωr, where ωj ∈ Ωj , j = 1, . . . , r, and let, for brevity,

α = (α1, . . . , αr), a = (a1, . . . , ar).

On the probability space (Ωr,B(Ωr),mr
H), de�ne the Hr(D)-valued random element ζ(s, α, ω; a) by

ζ(s, α, ω; a) =
(
ζ(s, α1, ω1; a1), . . . , ζ(s, αr, ωr; ar)

)
,

where

ζ(s, αj , ωj ; aj) =

∞∑
m=0

amjωj(m)

(m+ αj)s
, j = 1, . . . , r.

We note that the latter series converges uniformly on compact subsets K ⊂ D for almost all ωj ∈ Ωj ,

thus it de�nes an H(D)-value random element, j = 1, . . . , r. Denote by Pζ the distribution of the

random element ζ(s, α, ω; a), i.e.,

Pζ(A) = mr
H

(
ω ∈ Ωr : ζ(s, α, ω; a) ∈ A

)
, A ∈ B(Hr(D)).

Let, for A ∈ B(Hr(D)),

PT (A) =
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α; a) ∈ A

}
,

where

ζ(s, α; a) = (ζ(s, α1; a1), . . . , ζ(s, αr; ar)).

This section of the chapter is devoted to the following probabilistic limit theorem.

Theorem 1.2. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then PT

converges weakly to the measure Pζ as T →∞.

We divide the proof of Theorem 1.2 into severe lemmas. The �rst of them is a limit theorem on

the torus Ωr. Let, for A ∈ B(Ωr),

QT (A) =
1

T
meas

{
τ ∈ [0, T ] : (((m+ α1)−iτ :

m ∈ N0), . . . , ((m+ αr)
−iτ : m ∈ N0)) ∈ A

}
.
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Lemma 1.3. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then QT converges

weakly to the Haar measure mr
H as T →∞.

A proof of Lemma 1.3 is based on the Fourier transform method on compact topological group,

and is given in [24].

Now let σ1 >
1
2 be a �xed number, and let, for m,n ∈ N0,

υn(m,αj) = exp

{
−
(
m+ αj
n+ αj

)σ1
}
, j = 1, . . . , r.

De�ne

ζn(s, αj ; aj) =

∞∑
m=0

amjυn(m,αj)

(m+ αj)s
, j = 1, . . . , r,

and

ζn(s, αj , ωj ; aj) =

∞∑
m=0

amjωj(m)υn(m,αj)

(m+ αj)s
, j = 1, . . . , r,

It was proved in [12] that the latter series are absolutely convergent for σ > 1
2 . The next important

step in the proof of Theorem 1.2 are limit theorems in the space Hr(D) for the vectors

ζ
n
(s, α; a) = (ζn(s, α1; a1), . . . , ζn(s, αr; ar))

and

ζ
n
(s, α, ω; a) = (ζn(s, α1, ω1; a1), . . . , ζn(s, αr, ωr; ar)).

Let, for A ∈ B(Hr(D)),

PT,n(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n
(s+ iτ, α; a) ∈ A

}
,

and, for �xed ω0 ∈ Ωr,

QT,n(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n
(s+ iτ, α, ω0; a) ∈ A

}
.

Lemma 1.4. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then PT,n and

QT,n both converge weakly to the same probability measure Pn on (Hr(D),B(Hr(D))) as T →∞.

Before the proof of Lemma 1.4, we remind the well-known fact from the theory of weak convergence

of probability measures. Let (S1,B(S1)) and (S2,B(S2)) be two measurable spaces, and h : S1 → S2

be a (B(S1),B(S2))-measurable function, i.e., for every A ∈ B(S2),

h−1A ∈ B(S1).

Then every probability measure P on (S1,B(S1)) induces the unique probability measure Ph−1 on

(S2,B(S2)) de�ned by

Ph−1(A) = P (h−1A), A ∈ B(S2).
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The following simple lemma which proof can be found in [3], Section 5, often is very useful.

Lemma 1.5. Suppose that Pn, n ∈ N, and P be probability measures on (S1,B(S1)), h : S1 → S2

be a continuous function, and let Pn converges weakly to P as n → ∞. Then Pnh
−1 also converges

weakly to Ph−1 as n→∞.

Proof of Lemma 1.4. Since the series for ζn(s, αj ; aj) and ζn(s, αjωj ; aj), j = 1, . . . , r, converges

absolutely for σ > 1
2 , the functions hn : Ωr → Hr(D) and gn : Ωr → Hr(D) given by hn(ω) =

ζ
n
(s, α, ω; a) and gn(ω) = ζ

n
(s, α, ωω0; a) are continuous. Moreover, we have that PT,n = QTh

−1
n and

QT,n = QT g
−1
n . Therefore, from Lemmas 1.3 and 1.5 we obtain that PT,n and QT,n converge weakly

to mr
Hh
−1
n and mr

Hg
−1
n respectively, as T → ∞. Moreover, the invariance of the Haar measure mr

H

with respect to shifts by points from Ωr shows that

mr
Hg
−1
n = mr

H(fn(f0))−1 = mr
H(f−1

0 f−1
n ) = (mr

Hf
−1
0 )f−1

n = mr
Hf
−1
n ,

where f0 : Ωr → Ωr is given by f(ω) = ωω0, ω ∈ Ωr.

In order to pass from ζ
n
(s, α; a) to ζ(s, α; a), we need an approximation of ζ(s, α; a) and ζ(s, α, ω; a)

by ζ
n
(s, α; a) and ζ

n
(s, α, ω; a), respectively. For this, we will use a metric on Hr(D) which induces

its topology of uniform convergence on compacta. First, we de�ne such a metric on H(D). For

g1, g2 ∈ H(D), we set

ρ(g1, g2) =

∞∑
l=1

2−l
sup
s∈Kl

|g1(s)− g2(s)|

1 + sup
s∈Kl

|g1(s)− g2(s)|
,

where {Kl : l ∈ N} is a sequence of compact subsets of D such that

D =

∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact subset, then K ⊂ Kl for some l. The existence

of such a sequence is given in [5]. Clearly, the metric ρ induces on H(D) the topology of uniform

convergence on compacta.

Now, for g
1

= (g11, . . . , g1r), g2
= (g21, . . . , g2r) ∈ Hr(D), putting

ρ(g
1
, g

2
) = max

1≤j≤r
ρ(g1j , g2j),

we obtain a desired metric on Hr(D).

Lemma 1.6 The equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ(ζ(s+ iτ, α; a), ζ
n
(s+ iτ, α; a))dτ = 0

holds.

The proof of the lemma does not depend on arithmetical nature of the numbers α1, . . . , αr, and is

given in [13].
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Lemma 1.7 Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then, for almost

all ω ∈ Ωr, we have the equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ(ζ(s+ iτ, α, ω; a), ζ
n
(s+ iτ, α, ω; a))dτ = 0.

Proof. Let aτ = {(m + α)−iτ : m ∈ N0}, τ ∈ R, 0 < α ≤ 1, and de�ne ϕτ : Ω → Ω by

ϕτ (ω) = aτω, ω ∈ Ω. Then {ϕτ : τ ∈ R} is a one-parameter group of measurable measure -

preserving transformations on Ω. A set A ∈ B(Ω) is invariant with respect to the group {ϕτ : τ ∈ R}

if, for every τ ∈ R, the sets A and Aτ = ϕτ (A) coincide up to a set of mH -measure zero, where mH

is the probability Haar measure on (Ω,B(Ω)). The invariant sets form a σ-�eld which is a σ-sub�eld

of B(Ω). A one-parameter groups {ϕτ : τ ∈ R} is ergodic if its σ-�eld of invariant sets consists only

of sets of mH -measure zero or one. If the set L(α) = {log(m + α) : m ∈ N0} is linearly independent

over Q, then it is proved in [24] that the group {ϕτ : τ ∈ R} is ergodic. Since the set L(α1, . . . , αr)

is linearly independent over Q, so is each set L(αj), j = 1, . . . , r. Combining this with the classical

Birkho�-Khintchine ergodic theorem, it is proved in [24] that, for every compact subset K ⊂ D,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K

∣∣ζ(s+ iτ, αj , ωj ; aj)− ζn(s+ iτ, αj , ωj ; aj)
∣∣dτ = 0

for almost all ωj ∈ Ωj , j = 1, . . . , r. This and the de�nition of the metric ρ imply the equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
(
ζ(s+ iτ, αj , ωj ; aj), ζn(s+ iτ, αj , ωj ;aj)

)
dτ = 0

for almost all ωj ∈ Ωj , j = 1, . . . , r, which, together with the de�nition of the metric ρ, yields the

assertion of the lemma.

For the proof of Theorem 1.2, we need one more lemma on a common limit measure. Let, for

A ∈ B(Hr(D)),

P̂T (A) =
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω; a)

}
∈ A.

Lemma 1.8. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then PT and

P̂T , both converge weakly to the same probability measure P on (Hr(D),B(Hr(D))) as T →∞.

The proof of the lemma is based on the Prokhorov theory of weak convergence of probability

measures, therefore, �rst we will remind some fact of that theory.

Let {P} be a family of probability measures on (S,B(S)). The family {P} is called relatively

compact if every sequence {Pn} ⊂ {P} contains a weakly convergent subsequence, and the family

{P} is tight if, for every ε > 0, there exists a compact subset K ⊂ S such that

P (K) > 1− ε

for all P ∈ {P}. The Prokhorov theorems connect the notions of the relative compactness and

tightness.
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Lemma 1.9. If the family of probability measures is tight, then it is relatively compact.

Lemma 1.10. Suppose that the space S is complete and separable. If the family {P} is relatively

compact, then it is tight.

We also need one lemma from the theory of weak convergence of probability measures. Denote by
D→ the convergence in distribution.

Lemma 1.11. Suppose that the space (S, d) is separable, and Yn, Xkn, k ∈ N, n ∈ N are S-valued

random elements de�ned on the probability space (Ω̃,B(Ω̃),P). Let Xkn
D→ Xn as k → ∞, Xn

D→ X

as n→∞ and, for every ε > 0,

lim
n→∞

lim sup
k→∞

P
(
d(Xkn, Yn) ≥ ε

)
= 0.

Then Yn
D→ X as n→∞.

The proofs of Lemmas 1.9-1.11 can be found in [3].

Proof of Lemma 1.8. We take a random variable θ de�ned on a certain probability space (Ω̃,B(Ω̃),P)

and uniformly distributed on [0, 1]. On (Ω̃,B(Ω̃),P), de�ne the Hr(D)-valued random element

XT,n = XT,n(s) = (XT,n,1(s), . . . , XT,n,r(s)) = XT,n(s, α; a) by

XT,n(s, α; a) = ζ
n
(s+ iθT, α; a).

Then we have, by Lemma 1.4, that

XT,n
D−−−−→

T→∞
Xn, (1.1)

where Xn = Xn(s) = (Xn,1(s), . . . , Xn,r(s)), is an Hr(D)-valued random element having the distri-

bution Pn, and Pn is the limit measure in Lemma 1.4. We will prove that the family of probability

measures {Pn : n ∈ N0} is tight. We have noted above that the series for ζn(s, αj ; aj), j = 1, . . . , r,

converges absolutely for σ > 1
2 . Therefore, using the properties of the mean square of absolutely

convergent Dirichlet series, we have that, for σ > 1
2 ,

lim
T→∞

1

T

∫ T

0

∣∣ζn(σ + it, αj ; aj)
∣∣2dt =

∞∑
m=0

|amj |2υ2
n(m,αj)

(m+ αj)2σ
≤
∞∑
m=0

|amj |2

(m+ αj)2σ
(1.2)

for all n ∈ N0 and j = 1, . . . , r. Let Kl be a compact subset from the de�nition of the metric ρ. Then

the Cauchy integral formula a standard application of the contour integration and (1.2), for all n ∈ N0

and j = 1, . . . , r lead to the inequality

lim
T→∞

1

T

∫ T

0

sup
s∈Kl

∣∣ζn(s+ iτ, αj ; aj)
∣∣dt ≤ Cl( ∞∑

m=0

|amj |2

(m+ αj)2σl

) 1
2

(1.3)

with some Cl > 0 and σl > 1
2 .

Now let ε > 0 be an arbitrary number, and

Rjl =

( ∞∑
m=0

|amj |2

(m+ αj)2σl

) 1
2

.
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Then, taking Mjl = ClRjl2
l+rε−1, we �nd from (1.3) that

lim sup
T→∞

P
(
∃j : sup

s∈Kl
|XT,n,j(s)| > Mjl

)
≤

r∑
j=1

lim sup
T→∞

P
(

sup
s∈Kl

|XT,n,j(s)| > Mjl

)
≤

≤
r∑
j=1

1

Ml
sup
n∈N0

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kl

∣∣ζn(s+ iτ, αj ; aj)
∣∣dt ≤ r∑

j=1

ClRjl
Mjl

<
ε

2l
.

This and (1.1) show that, for all n ∈ N0,

P
(
∃j : sup

s∈Kl
|Xn,j(s)| > Mjl

)
≤ ε

2l
. (1.4)

De�ne a set

Hr
ε =

{
(g1, . . . , gr) ∈ Hr(D) : sup

s∈Kl
|gj(s)| ≤Mjl, j = 1, . . . , r, l ∈ N

}
.

Then the set Hr
ε is uniformly bounded, thus, is a compact subset in the space Hr(D). Moreover, in

view of (1.4),

P(Xn(s) ∈ Hr
ε ) ≥ 1− ε

∞∑
l=1

1

2l
= 1− ε

for all n ∈ N0. Hence, by the de�nition of Xn(s), we �nd that

Pn(Hr
ε ) ≥ 1− ε

for all n ∈ N0. This means that the family of probability measures {Pn : n ∈ N0} is tight. Then,

by Lemma 1.9, we have that the family {Pn : n ∈ N0} is relatively compact. Therefore, there exists

a subsequence {Pnk} ⊂ {Pn} such that {Pn} converges weakly to some probability measure P on

(Hr(D),B(Hr(D))) as k →∞, so the relation

Xnk

D−−−−→
k→∞

P (1.5)

holds.

On (Ω̂,B(Ω̂,P), de�ne one more Hr(D)-valued random element XT = XT (s, α; a) by

XT (s, α; a) = ζ(s+ iθT, α; a).

Then, for every ε > 0, Lemma 1.6 implies that

lim
n→∞

lim sup
T→∞

P
(
ρ(XT (s, α; a), XT,n(s, α; a)) ≥ ε

)
= lim
n→∞

lim sup
T→∞

1

T
meas

{
τ ∈ [0, T ] : ρ(ζ(s+ iτ, α; a), ζn(s+ iτ, α; a)) ≥ ε

}
≤ lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0

ρ(ζ(s+ iτ, α; a), ζn(s+ iτ, α; a)dτ = 0.

This, and relations (1.1) and (1.5) together with Lemma 1.11 lead to

XT
D−−−−→

T→∞
P, (1.6)
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and this is equivalent to the weak convergence of PT to the measure P as T →∞. Moreover, relation

(1.6) shows that the probability measure P does not depend on the subsequence {Pnk}. Hence, taking

into account the relative compactness of the family {Pn : n ∈ N0}, we have that every subsequence of

that family converges weakly to P , thus

Xn
D−−−−→

n→∞
P. (1.7)

It remains to show that P̂T also converges weakly to the same measure P as T →∞. For this, we

de�ne the Hr(D)-valued random elements

XT,n(s, α, ω; a) = ζ
n
(s+ iθT, α, ω; a)

and

XT (s, α, ω; a) = ζ(s+ iθT, α, ω; a).

Then, using (1.7) and Lemma 1.7, and repeating the above arguments for the random elements

XT,n(s, α, ω; a) and XT (s, α, ω; a), we obtain the weak convergence of PT to the measure P as T →∞.

For the proof of Theorem 1.2, we recall an equivalent of the weak convergence of probability

measures in terms of continuity sets. Let P be a probability measure on (S,B(S)), A ∈ B(S), and

let ∂A denote the boundary of the set A. If P (∂A) = 0, then the set A is called a continuity set of

the measure P .

Lemma 1.12. Let P and Pn, n ∈ N, be probability measures on (S,B(S)). Then Pn, as n→∞,

converges weakly to P if and only if, for every continuity set A of the measure P ,

lim
n→∞

Pn(A) = P (A).

Proof of the lemma is given in [8], Theorem 2.1.

We also need the classical Birkho�-Khintchin ergodic theorem. Denote by Eξ the expectation of

the random element ξ.

Lemma 1.13. Suppose that X(t, ω) is an ergodic process, E|X(t, ω)| < ∞, with sample paths

integrable over every �nite interval in the Riemann sense. Then, for almost all ω,

lim
T→∞

1

T

∫ T

0

X(t, ω)dt = EX(0, ω).

Proof of the lemma can be found, for example, in [6].

We state one more lemma from ergodicity theory.

For τ ∈ R, de�ne

aτ = {((m+ α1)−iτ : m ∈ N0), . . . , ((m+ αr)
−iτ : m ∈ N0)},

28



and let {Φτ : τ ∈ R} be the family of transformations on the torus Ωr given by Φτ (ω) = aτω, ω ∈ Ωr.

Then {Φτ : τ ∈ R} is a one-parameter group of measurable measure-preserving transformations on

Ωr. The ergodicity of {Φτ : τ ∈ R} is de�ned in the same way as that of the group {ϕτ : τ ∈ R}

used in the proof of Lemma 1.7.

Lemma 1.14. The group {Φτ : τ ∈ R} is ergodic.

Proof of the lemma is given in [14], Lemma 3.

Proof of Theorem 1.2. In view of Lemma 1.8, it is su�cient to show that the limit measure P in

that lemma coincides with Pζ .

We �x a continuity set A of the measure P in Lemma 1.8. Then, by Lemmas 1.8 and 1.12, we

have that

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω; a) ∈ A

}
= P (A). (1.8)

Let ξ be a random variable on the probability space (Ωr,B(Ωr),mr
H) given by

ξ = ξ(ω) =

1 if ζ(s, α, ω; a) ∈ A,

0 if ζ(s, α, ω; a) /∈ A.

In view of Lemma 1.14, we have that the random process ξ(Φτ (ω)) is ergodic. Therefore, by

Lemma 1.13, we obtain that, for almost all ω ∈ Ωr,

lim
T→∞

1

T

∫ T

0

ξ(Φτ (ω))dτ = Eξ. (1.9)

On the other hand, the de�nition of ξ shows that

Eξ =

∫
Ωr
ξdmr

H = mr
H(ω ∈ Ωr : ζ(s, α, ω; a) ∈ A),

that is

Eξ = Pζ(A). (1.10)

Since, by the de�nitions of ξ and Φτ ,

1

T

∫ T

0

ξ(Φτ (ω))dτ =
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω; a) ∈ A

}
,

we see from relations (1.9) and (1.10) that, for almost all ω ∈ Ωr,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ(s+ iτ, α, ω; a) ∈ A

}
= Pζ(A).

This, together with (1.8), shows that P (A) = Pζ(A) for all continuity sets A of the measure P .

However, all continuity sets constitute a determining class [3]. Thus, the measures P and Pζ coincide

for all A ∈ B(Hr(D)), and the theorem is proved.
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1.3. Support of the limit measure

Denote by SPζ the support of the measure Pζ . Since the space Hr(D) is separable, SPζ is a minimal

closed set of the spaceHr(D) such that Pζ(SPζ ) = 1. The support SPζ consists of all points g ∈ Hr(D)

such that Pζ(G) > 0 for every open neighbourhood G of g.

Theorem 1.15. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then the

support of the measure Pζ is the whole of Hr(D).

Proof. Let, for Aj ∈ H(D), j = 1, . . . , r,

A = A1 × · · · ×Ar.

Since the space Hr(D) is separable, the σ-�eld B(Hr(D)) coincides with that generated by sets A

[3]. Moreover, the Haar measure mr
H is the product of the Haar measures m1H , . . . ,mrH . Therefore,

Pζ(A) = mr
H(ω ∈ Ωr : ζ(s, α, ω; a) ∈ A) =

mr
H(ω ∈ Ωr : ζ(s, α, ω; a) ∈ A1 × · · · ×Ar) =

mr
H(ω ∈ Ωr : ζ(s, α1, ω1; a1) ∈ A1, . . . , ζ(s, αr, ωr; ar) ∈ Ar) =

m1H(ω1 ∈ Ω1 : ζ(s, α1, ω1; a1) ∈ A1) . . .mrH(ωr ∈ Ω :

ζ(s, αr, ωr; ar) ∈ Ar). (1.11)

Since the set L(α1, . . . , αr) is linearly independent over Q, so is each set L(α1), . . . , L(αr). Therefore,

we have from [13] that, for every j = 1, . . . , r, the support of

mjH(ωj ∈ Ωj : ζ(s, αj , ωj ; aj) ∈ A)

is the whole of H(D). Thus, the latter remark and (1.11) prove the theorem.

1.4. Proof of Theorem 1.1

We start with the famous Mergelyan theorem on approximation of analytic functions by polynomials.

Lemma 1.16. Let K ⊂ C be a compact subset with connected complement, and let f(s) be a

continuous function on K which is analytic in the interior of K. Then, for every ε > 0, there exists

a polynomial p(s) such that

sup
s∈K
|f(s)− p(s)| < ε.

Proof of the lemma is given in [34], see also [44].

30



We also remind an equivalent of the weak convergence of probability measures in terms of open

sets.

Lemma 1.17. Let P and Pn, n ∈ N, be probability measures on (S,B(S)). Then Pn, as n→∞,

converges weakly to P if and only if, for every open set G of S,

lim
n→∞

Pn(G) ≥ P (G).

Proof of the lemma can be found in [3], Theorem 2.1.

Proof of Theorem 1.1. In witue of Lemma 1.16, there exist polynomials p1(s), . . . , pr(s) such that

sup
1≤j≤r

sup
s∈Kj

|fj(s)− pj(s)| <
ε

2
. (1.12)

Let

G =

{
(g1, . . . , gr) ∈ Hr(D) : sup

1≤j≤r
sup
s∈Kj

|gj(s)− pj(s)| <
ε

2

}
.

Clearly, G is an open set. Moreover, in view of Theorem 1.15, (p1(s), . . . , pr(s)) ∈ SPζ . Therefore, by

properties of a support mentioned in the beginning of Section 1.3, the inequality Pζ(G) > 0 holds. By

Theorem 1.1 and Lemma 1.17, we have that

lim inf
T→∞

PT (G) ≥ Pζ(G).

Thus, we deduce from the de�nitions of the set G and PT that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− pj(s)| <
ε

2

}
> 0. (1.13)

However, inequalities (1.12) and

sup
1≤j≤r

sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− pj(s)| <
ε

2

imply

sup
1≤j≤r

sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− fj(s)| < ε.

Therefore, {
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− fj(s)| < ε

}

⊇

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− pj(s)| <
ε

2

}
.

This, together with inequality (1.3), yields that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− fj(s)| < ε

}

≥ lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup
s∈Kj

|ζ(s+ iτ, αj ; aj)− pj(s)| <
ε

2

}
> 0.

The theorem is proved.
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Chapter 2

Extended joint universality theorem

for periodic Hurwitz zeta-functions

The aim of this chapter is an extension of Theorem 1.1 for a wider collection of periodic Hurwitz zeta-

functions. Let lj , j = 1, . . . , r, be positive integers, and, for l = 1, . . . , lj , let ajl = {amjl : m ∈ N0} be

a periodic sequence of complex numbers with minimal period kjl ∈ N. Suppose that, for j = 1, . . . , r,

αj is a �xed parameter, 0 < αj ≤ 1, and that ζ(s, αj ; ajl) is the corresponding periodic Hurwitz

zeta-function. In this chapter, we consider the joint universality for the functions

ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ).

2.1. Statement of an extended joint

universality theorem

Theorem 1.1 was obtained without any hypotheses on the coe�cients of the functions ζ(s, α1; a1, . . . ,

ζ(s, αr; ar). However, in the case when a collection of periodic sequences corresponds each parameter

αj , we need a certain rank condition. Let kj be the common multiple of the periods kj1, . . . , kjlj ,

j = 1, . . . , r. De�ne

Bj =


a1j1 a1j2 . . . a1jlj

a2j1 a2j2 . . . a2jlj

. . . . . . . . . . . .

akjj1 akjj2 . . . akjjlj

 , j = 1, . . . , r.

Then the main theorem of the chapter is of the form.
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Theorem 2.1. Suppose that the set L(α1, . . . , αr) is linearly independent over Q, and that

rank(Bj) = lj, j = 1, . . . , r. For every j = 1, . . . , r and l = 1, . . . , lj, let Kjl be a compact sub-

set of the strip D with connected complement, and let fjl(s) be a continuous function on Kjl which is

analytic in the interior of Kjl. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup

1≤l≤lj
sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε

}
> 0.

2.2. Extended joint limit theorem

The proof of Theorem 2.1, as that of Theorem 1.1, is based on a probability joint limit theorems

for the functions ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ). For brevity, let

a = (a11, . . . , a1l1 , . . . , ar1, . . . , arlr ), and κ =
∑r
j=1 lj , Hκ(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸

κ

. We preserve

the notation used in Chapter 1. On the probability space (Ωr,B(Ωr),mr
H), de�ne the Hκ(D)-valued

random element ζ
κ
(s, α, ω; a) by

ζ
κ
(s, α, ω; a) = (ζ(s, α1, ω1; a11), . . . , ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )),

where

ζ(s, αl, ωl; ajl) =

∞∑
m=0

amjlωj(m)

(m+ αj)s
, j = 1, . . . , lj .

Denote by Pζ,κ the distribution of the random element ζ(s, α, ω; a), i.e.,

Pζ,κ(A) = mr
H(ω ∈ Ωr : ζ

κ
(s, α, ω; a) ∈ A), A ∈ B(Hκ(D)).

In this section, we consider the weak convergence, as T →∞, for

PT,κ(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α; a) ∈ A

}
, A ∈ B(Hκ(D)),

where

ζ
κ
(s, α; a) = (ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr )).

Theorem 2.2. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then PT,κ

converges weakly to the measure Pζ,κ as T →∞.

We see that the statement of Theorem 2.2 does not contain the hypothesis on the rank of the

matrices Bj , therefore, the proof of Theorem 2.2 remains similar to that of Theorem 1.2. For this

reason, we will present only the principal steps of the proof.
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We de�ne

ζn(s, αj ; ajl) =

∞∑
m=0

amjlυn(m,αj)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj ,

and

ζn(s, αj , ωj ; ajl) =

∞∑
m=0

amjlωj(m)υn(m,αj)

(m+ αj)s
, j = 1, . . . , r, l = 1, . . . , lj .

Since the coe�cients amjl are bounded, the latter series, as those for the functions ζn(s, αj ; aj) and

ζn(s, αj , ωj ; aj) in Section 1.2, are absolutely convergent for σ > 1
2 . We start with limit theorems in

the space Hκ(D) for

ζ
n,κ

(s, α; a) = (ζn(s, α1; a11), . . . , ζn(s, α1; a1l1), . . . , ζn(s, αr; ar1), . . . , ζn(s, αr; arlr ))

and

ζ
n,κ

(s, α, ω; a) = (ζn(s, α1, ω1; a11), . . . , ζn(s, α1, ω1; a1l1), . . . ,

ζn(s, αr, ωr; ar1), . . . , ζn(s, αr, ωr; arlr )).

For A ∈ B(Hκ(D)), de�ne

PT,n,κ(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n,κ
(s+ iτ, α; a) ∈ A

}
,

and, for any �xed ω0 ∈ Ωr,

QT,n,κ(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n,κ
(s+ iτ, α, ω0; a) ∈ A

}
.

Lemma 2.3. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then PT,n,κ and

QT,n,κ both converge weakly to the same probability measure Pn,κ on (Hκ(D),B(Hκ(D))) as T →∞.

Proof. The lemma uses Lemmas 1.3 and 1.5, and is obtained in the same way as Lemma 1.4.

Let ρ be the same metric on H(D) as in Section 1.2. For f = (f11, . . . , f1l1 , . . . , fr1, . . . , frlr ),

g = (g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hκ(D), de�ne

ρ
κ
(f, g) = max

1≤j≤r
max

1≤j≤lj
ρ(fjl, gjl).

Then ρ
κ
is a ,metric on Hκ(D) which induces the topology of uniform convergence on compacta.

Two next lemmas give an approximation in the mean for ζ
κ
(s, α; a) by ζ

n,κ
(s, α; a) as well as for

ζ
κ
(s, α, ω; a) by ζ

n,κ
(s, α, ω; a).

Lemma 2.4. The equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
κ
(ζ
κ
(s+ iτ, α; a), ζ

n,κ
(s+ iτ, α; a))dτ = 0

holds.
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Proof of the lemma is given in [24], Lemma 2 . Using the estimate [12]∫ T

0

|ζ(σ + it, αj ; ajl)|2dt = O(T ), σ >
1

2
,

j = 1, . . . , r, l = 1, . . . , lj , �rst it is proved that, for every compact subset K ⊂ D,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K

∣∣ζ(s+ iτ, αj ; ajl)− ζn(s+ iτ, αj ; ajl)
∣∣dτ = 0,

j = 1, . . . , r, l = 1, . . . , lj . From this and the de�nition of the metric ρ
κ
, the lemma follows.

Lemma 2.5. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then, for almost

all ω ∈ Ωr, the equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
κ
(ζ
κ
(s+ iτ, α, ω; a), ζ

n,κ
(s+ iτ, α, ω; a))dτ = 0

holds.

Proof of the lemma is given in [24], Lemma 5 . We note that the linear independence of the set

L(α1, . . . , αr) is not exhausted fully, the linear independence of the sets L(α1), . . . , L(αr) is su�cient.

The ergodicity of group {ϕτ : τ ∈ R} de�ned in the proof of Lemma 1.7 leads, for almost all ωj ∈ Ωj ,

to the estimate ∫ T

0

|ζ(σ + it, αj , ωj ; ajl)|2dt = O(T ), σ >
1

2
,

j = 1, . . . , r, l = 1, . . . , lj . From this estimate, by a standard contour integration method it is derived

that, for every compact subset K ⊂ D,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K
|ζ(s+ iτ, αj , ωj ; ajl)− ζn(s+ iτ, αj , ωj ; ajl)|dτ = 0

for almost all ωj ∈ Ωj , j = 1, . . . , r, l = 1, . . . , lj . Combining the latter relation with the de�nition of

the metric ρ
κ
gives the assertion of the lemma.

De�ne one more probability measure

P̂T,κ(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α, ω; a) ∈ A

}
, A ∈ B(Hκ(D)).

Lemma 2.6. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then PT,κ and

P̂T,κ both converge weakly to the same probability measure Pκ on (Hκ(D),B(Hκ(D))) as T →∞.

Proof. Let θ be the same random variable as in the proof of Lemma 1.8. On (Ω̃,B(Ω̃,P), de�ne the

Hκ(D)-valued random element XT,n,κ = XT,n,κ(s) = XT,n,κ(s, α; a) = (XT,n,1,1(s), . . . , XT,n,1,l1(s),

. . . , XT,n,r,1(s), . . . , XT,n,r,lr (s)) by

XT,n,κ(s, α; a) = ζ
n,κ

(s+ iθT, α; a).

Then, in view of Lemma 2.3, we have that

XT,n,κ
D−−−−→

T→∞
Xn,κ, (2.1)
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where Xn,κ = Xn,κ(s) = (Xn,1,1(s), . . . , Xn,1,l1(s), . . . , Xn,r,1(s), . . . , Xn,r,lr (s)) is an Hκ(D)-valued

random element with the distribution Pn,κ, where Pn,κ is the limit measure in Lemma 2.3. We have

to show that the family of probability measures {Pn,κ : n ∈ N0} is tight.

For j = 1, . . . , r, l = 1, . . . , lj , the series

ζn(s, αj ; ajl) =

∞∑
m=0

amjlvn(m,αj)

(m+ αj)s

converges absolutely for σ > 1
2 . Therefore, this, for σ >

1
2 , implies

lim
T→∞

1

T

∫ T

0

|ζn(σ + it, αj ; ajl)|2dt =

∞∑
m=0

|amjl|2v2
n(m,αj)

(m+ αj)2σ
≤
∞∑
m=0

|amjl|2

(m+ αj)2σ
<∞ (2.2)

for all n ∈ N0, and j = 1, . . . , r, l = 1, . . . , lj . Let Kk be a compact subset from the de�nitions of

the metric ρ (we use the notation Kk in place of Kl). Then, using similar arguments to the proof of

Lemma 1.8, we deduce from (2.2) that, for all n ∈ N0 and j = 1, . . . , r, l = 1, . . . , lj ,

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kk

|ζn(s+ iτ, αj ; ajl)|dτ ≤ Ck
( ∞∑
m=0

|amjl|2

(m+ αj)2σk

) 1
2

(2.3)

with some Ck > 0 and σk > 1
2 .

Now we take an arbitrary ε > 0, and de�ne

Rjlk =

( ∞∑
m=0

|amjl|2

(m+ αj)2σk

) 1
2

.

Moreover, let Mjlk = CkRjlk2k+κε−1. Then, in view of (2.3), we obtain that

lim sup
T→∞

P
(

sup
s∈Kk

|XT,n,j,l(s)| > Mjlk for some (j, l)

)
≤

≤
r∑
j=1

lj∑
l=1

lim sup
T→∞

P
(

sup
s∈Kk

|XT,n,j,l(s)| > Mjlk

)
≤

≤
r∑
j=1

lj∑
l=1

1

Mjlk
sup
n∈N0

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kk

|ζn(s+ iτ, αj ; ajl)|dτ

≤
r∑
j=1

lj∑
l=1

CkRjlk
Mjlk

=
ε

2k+κ

r∑
j=1

lj∑
l=1

1 <
ε

2k
.

Combining this with (2.1), we �nd that, for all n ∈ N0,

P
(

sup
s∈Kk

|Xn,j,l(s)| > Mjlk for some (j, l)

)
≤ ε

2k
. (2.4)

De�ne a set

Hκ
ε =

{
(g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hκ(D) : sup

s∈Kk
|gjl(s)| ≤Mjlk,

j = 1, . . . , r, l = 1, . . . , lj , k ∈ N
}
.
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Then Hκ
ε is a compact subset of the space Hκ(D), and, in virtue if (2.4),

P
(
Xn,κ(s) ∈ Hκ

ε

)
≥ 1− ε

∞∑
k=1

1

2k
= 1− ε

for all n ∈ N0, or, by the de�nition of the random element Xn,κ,

Pn,κ(Hκ
ε ) ≥ 1− ε

for all n ∈ N0. Thus, we proved that the family of probability measures {Pn,κ : n ∈ N0} is tight.

Therefore, by Lemma 1.9, the family {Pn,κ : n ∈ N0} is relatively compact. Thus, there exists a

subsequence {Pnk,κ} ⊂ {Pn,κ} such that Pnk,κ converges weakly to a certain probability measure Pκ

on (Hκ(D),B(Hκ(D))) as k →∞. This is equivalent to the relation

Xnk,κ
D−−−−→

k→∞
Pκ. (2.5)

Now let

XT,κ = XT,κ(s, α; a) = ζ
κ
(s+ iθT, α; a).

Then Lemma 2.4, for ε > 0, implies

lim
n→∞

lim sup
T→∞

P(ρ
κ
(XT,κ(s, α; a), XT,n,κ(s, α; a)) ≥ ε)

= lim
n→∞

lim sup
T→∞

1

T
meas{τ ∈ [0, T ] : ρ

κ
(ζ
κ
(s+ iτ, α; a), ζ

n,κ
(s+ iτ, α; a)) ≥ ε}

≤ lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0

ρ
κ
(ζ
κ
(s+ iτ, α; a), ζ

n,κ
(s+ iτ, α; a))dτ = 0.

This, (2.1) and (2.5) show that Lemma 1.11 can be applied, and we obtain that

XT,κ
D−−−−→

T→∞
Pκ. (2.6)

Thus, we have that PT,κ converges weakly to the measure Pκ as T → ∞. Moreover, (2.6), together

with relative compactness of the family {Pn,κ : n ∈ N0}, shows that

Xn,κ
D−−−−→

n→∞
Pκ. (2.7)

Now we consider the weak convergence of the measure P̂T,κ. De�ne the Hκ(D)-valued random

elements

XT,n,κ(s, α, ω; a) = ζ
n,κ

(s+ iθT, α, ω; a)

and

X̂T,κ(s, α, ω; a) = ζ
κ
(s+ iθT, α, ω; a).

Then, dealing with the latter random elements and using (2.7) and Lemma 2.5, we obtain, similarly

to the case of the measure PT,κ, that P̂T,κ also converges weakly to Pκ as T → ∞. The lemma is

proved.
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Proof of Theorem 2.2. We use the same arguments as in the proof of Theorem 1.2. Let A be an

arbitrary continuity set of the limit measure Pκ in Lemma 2.6. Then the weak convergence of the

measure P̂T,κ to Pκ as T →∞ together with Lemma 1.12 yields the equality

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α, ω; a) ∈ A

}
= Pκ(A). (2.8)

On the probability space (Ωr,B(Ωr),mr
H), de�ne the random variable ξκ by

ξκ = ξκ(ω) =

1 if ζ
κ
(s, α, ω; a) ∈ A,

0 if ζ
κ
(s, α, ω; a) /∈ A.

Let {Φτ : τ ∈ R} be the same ergodic group as in the proof of Theorem 1.2. Then we have that the

random process ξκ(Φτ (ω)) is ergodic, and Lemma 1.13, for almost all ω ∈ Ωr, implies the equality

lim
T→∞

1

T

∫ T

0

ξκ(Φτ (ω))dτ = Eξκ. (2.9)

However, by the de�nition of ξκ,

Eξκ =

∫
Ωr
ξκdmr

H = mr
H(ω ∈ Ωr : ζκ(s, α, ω; a) ∈ A) = Pζ

κ
(A). (2.10)

On the other hand,

1

T

∫ T

0

ξκ(Φτ (ω))dτ =
1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α, ω; a) ∈ A

}
.

Therefore, in view of (2.9) and (2.10),

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α, ω; a) ∈ A

}
= Pζ

κ
(A),

and we have by (2.8) that Pκ(A) = Pζ
κ
(A) for all continuity sets A of the measure Pκ. Hence,

Pκ = Pζ
κ
. The theorem is proved.

2.3. Support of the limit measure

In this section, we will prove the following theorem.

Theorem 2.7. Suppose that the set L(α1, . . . , αr) is linearly independent over Q. Then the

support of the measure Pζ
κ
is the whole of Hκ(D).

For j = 1, . . . , r, de�ne

Pjζ(A) = mjH(ωj ∈ Ωj : (ζ(s, αj , ωj ; aj1), . . . , ζ(s, αj , ωj ; ajlj ) ∈ A), A ∈ B(H lj (D)).

Lemma 2.8. Suppose that rankBj = lj. Then the support of the measure Pjζ is the whole of

H lj (D), j = 1, . . . , r.
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For the proof of Lemma 2.8, we need some auxiliary results, and we state them as separate lemmas.

Lemma 2.9. Let the sequence {g
m

= (gm1, . . . , gmh) ∈ Hn(D) : m ∈ N0} satisfy the hypotheses:

10 Suppose that µ1, . . . , µh be complex-valued measures on (C,B(C)) with compact supports con-

tained in D such that
∞∑
m=0

∣∣∣∣ n∑
j=1

∫
C
gmj(s)dµj(s)

∣∣∣∣ <∞.
Then ∫

C
skdµj(s) = 0, k ∈ N0, j = 1, . . . , n;

20 The series
∞∑
m=0

g
m

(s)

is convergent in Hn(D);

30 For every compact subset K ⊂ D,

∞∑
m=0

n∑
j=1

sup
s∈K
|gmj(s)| <∞.

Then the set of all convergent series with a(m) ∈ γ, m ∈ N0

∞∑
m=0

a(m)g
m

(s)

is dense in Hn(D).

The lemma is a particular case of Lemma 6 from [30].

Lemma 2.10. Suppose that µ is a complex-valued measure on (C,B(C)) with compact support

contained in the half-plane {s ∈ C : σ > σ0},

g(z) =

∫
C
esrdµ(s), z ∈ C,

and g(z) 6≡ 0. Then

lim sup
r→∞

log |g(r)|
r

> σ0.

Proof of the lemma is given in [19], Lemma 6. 4. 10.

Now let A ⊂ N be a set having a positive density, i.e.,

lim
x→∞

1

x
]{m ≤ x : m ∈ A} > 0.

Let 0 < θ ≤ π. We remind that a function g(s) analytic in the closed angular region | arg s| ≤ θ0

is said to be of exponential type if

lim sup
r→∞

log |g(reiθ)|
r

<∞
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uniformly in θ, |θ| ≤ θ0.

Lemma 2.11. Let g(s) be a function of exponential type such that

lim sup
r→∞

log |g(r)|
r

> −1,

and the set A ⊂ N has a positive density. Then∑
m∈A

|g(logm)| = +∞.

The lemma is proved in [28], Lemma 5.

Let

ζ
j
(s, αj , ωj ; aj) = (ζ(s, αj , ωj ; aj), . . . , ζ(s, αj , ωj ; ajlj )),

where aj = (aj1, . . . , ajlj ). For s ∈ D and a(m) ∈ γ, consider the series

∞∑
m=0

a(m)g
mj

(s), (2.11)

where

g
mj

(s) = (gmj1(s), . . . , gmjlj (s)) =

(
amj1

(m+ αj)s
, . . . ,

amjlj
(m+ αj)s

)
.

Lemma 2.12. The set of all convergent series (2.11) is dense in H lj (D).

Proof. Since ζ(s, αj , ωj ; ajl) is an H(D)-valued random element, the series

∞∑
m=0

amjlωj(m)

(m+ αj)s

converges uniformly on compact subsets of the strip D for almost all ωj ∈ Ωj . Therefore, there exists

a sequence {bm : bm ∈ γ,m ∈ N0} such that the series

∞∑
m=0

bmgmj(s)

converges in H lj (D). Since a(m)bm ∈ γ, m ∈ N0, for the proof of the lemma it su�ces to show that

the set of all convergent series

∞∑
m=0

a(m)bmgmj(s) (2.12)

with a(m) ∈ γ is dense in H lj (D). For this aim, we will check the hypotheses of Lemma 2.9 for the

sequence {bmgmj(s) : m ∈ N0}. Hypothesis 20 of Lemma 2.9 is satis�ed by the choice of the sequence
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{bm : m ∈ N0}. Let K ⊂ D be an arbitrary compact subset. Since, for s ∈ D, the inequality σ > 1
2

is true, we have that

∞∑
m=0

lj∑
l=1

sup
s∈K
|gmjl(s)bm| <∞. (2.13)

Thus, it remains to check hypothesis 10 of Lemma 2.9.

Let µ1, . . . , µlj be complex-valued measures on (C,B(C)) with compact supports contained in D

such that

∞∑
m=0

∣∣∣∣ lj∑
l=1

∫
C
gmjl(s)bmdµl(s)

∣∣∣∣ <∞. (2.14)

Since kj is the least common multiple of the periods kj1, . . . , kjlj , it is the period of all sequences

aj1, . . . , ajlj . Therefore, in view of the periodicity of the coe�cients amjl and the de�nition of gmjl(s),

(2.14) shows that, for k = 1, . . . , kj ,

∞∑
m=0

m≡k(modkj)

∣∣∣∣ lj∑
l=1

akjl

∫
C

dµl(s)

(m+ αj)s

∣∣∣∣ <∞. (2.15)

We put

νk(s) =

lj∑
l=1

akjlµl(s).

Then νk(s) also is a complex-valued measure on (C,B(C)) with compact support contained in D,

k = 1, . . . , kj . This together with (2.15) implies, for k = 1, . . . , kj , that

∞∑
m=0

m≡k(modkj)

∣∣∣∣ ∫
C

dνk(s)

(m+ αj)s

∣∣∣∣ <∞. (2.16)

Now let

Ak = {m ∈ N : m ≡ k(mod kj)}

and

ρk(z) =

∫
C
e−szdνk(s), z ∈ C, k = 1, . . . , kj .

Then, obviously, the set Ak has a positive density, moreover, ρk(z) is an entire function of exponential

type, k = 1, . . . , kj . Therefore, by Lemma 2.10, either ρk(z) ≡ 0, or

lim sup
x→∞

log |ρk(x)|
x

> −1, k = 1, . . . , kj . (2.17)

Here we have used the de�nition of the strip D, and the sign minus in the de�nition of ρk(z). If

inequality (2.17) takes place, then lemma 2.11 gives∑
m∈Ak

|ρk(logm)| = +∞, k = 1, . . . , kj . (2.18)
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It is well known that, for all s ∈ C,

es = 1 +O(|s|e|s|).

Hence, for m ≥ 2,

(m+ αj)
−s = m−s

(
1 +

αj
m

)−s
= m−s exp{−s log

(
1 +

αj
m

)
} =

= m−s exp{O(|s|)
m
} = m−s

(
1 +

O(|s|)
m

eO(|s|)
)

= m−s +m−1−σO

(
|s|eO(|s|)

)
.

Since the compact support of the measures ν1, . . . , νkj are contained in D, this and (2.16) show that∑
m∈Ak

|ρk(logm)| <∞, k = 1, . . . , kj ,

and this contradicts (2.18). Therefore, ρk(z) ≡ 0 for k = 1, . . . , kj , and, by the de�nitions of ρk(z)

and νk, we obtain the system of equations

lj∑
l=1

akj l

∫
C
e−szdµl(s) ≡ 0, k = 1, . . . , kj .

Since rank(Bj) = lj , the latter system has only the solution∫
C
e−szdµl(s) ≡ 0, l = 1, . . . , lj .

Hence, by di�erentiation, are �nd that ∫
C
sndµl(s) = 0

for n ∈ N0 and l = 1, . . . , lj . Thus, hypothesis 10 of Lemma 2.9 is also satis�ed by the sequence

{bmgmj(s) : m ∈ N0}. Therefore, by Lemma 2.9, the set of all convergent series (2.12) with a(m) ∈ γ

is dense in H lj (D). The lemma is proved.

For the proof of Lemma 2.8, we will apply one more lemma. Denote by SX the support of the

random element X.

Lemma 2.13. Let {Xm : m ∈ N0} be sequence of independent Hn(D)-valued random elements

such that the series

∞∑
m=0

Xm

converges almost surely. then the support of the sum of this series is the closure of the set of g ∈ Hn(D)

which can be written as a convergent series

g =

∞∑
m=0

g
m
, g

m
∈ SXm .

Proof of the lemma is given in [30], Lemma 5.
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Proof of Lemma 2.8. By the de�nition of Ωj , we have that {ωj(m) : m ∈ N0} is a sequence

independent complex-valued random variables de�ned on the probability space (Ωj ,B(Ωj),mjH),

j = 1, . . . , r. The support of each random variable ωj(m) is the unit circle γ. From this we have that{(
amj1ωj(m)

(m+ αj)s
, . . . ,

amjljωj(m)

(m+ αj)s

)
: m ∈ N0

}
is a sequences of independentH lj (D)-valued random elements on the probability space (Ωj ,B(Ωj),mjH),

and the support of each element(
amj1ωj(m)

(m+ αj)s
, . . . ,

amjljωj(m)

(m+ αj)s

)
is the set {

g ∈ H lj (D) : g(s) =

(
amj1a

(m+ αj)s
, . . . ,

amjlja

(m+ αj)s

)
, a ∈ γ

}
,

m ∈ N0, j = 1, . . . , r. Therefore, by Lemma 2.13, the support of the random element ζ
j
(s, αj , ωj ; aj)

is the closure of the set of all convergent series (2.11), j = 1, . . . , r. This and Lemma 2.12 prove the

lemma because the support of the element ζ
j
(s, αj , ωj ; aj) coincides with the support of the measure

Pjζ , j = 1, . . . , r.

Proof of Theorem 2.7. For Aj ∈ B(H lj (D)), j = 1, . . . , r, let

A = A1 × · · · ×Ar. (2.19)

Since the space Hκ(D) is separable, we have [3] that the σ-�eld B(Hκ(D)) coincides with

B(H l1(D))× · · · ×B(H lr (D)),

that is, it coincides with a σ-�eld generated by sets (2.19). We also remind that the measure mr
H is

the product of the measures mjH on (Ωj ,B(Ωj)), j = 1, . . . , r. Therefore, we have

Pζ
κ
(A) = mr

H(ω ∈ Ωr : ζ
κ
(s, α, ω; a) ∈ A) =

m1H(ω1 ∈ Ω1 : ζ
1
(s, α1, ω1; a1) ∈ A1 × · · ·×

mrH(ωr ∈ Ωr : ζ
r
(s, αr, ωr; ar) ∈ Ar). (2.20)

By Lemma 2.8, the support of the measure

mjH(ωj ∈ Ωj : ζ
j
(s, αj , ωj ; aj) ∈ Aj)

is the whole of H lj (D), j = 1, . . . , r. Therefore, the theorem follows from (2.20).

2.4. Proof of Theorem 2.1

The proof of Theorem 2.1 is similar to that of Theorem 1.1.
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Proof of Theorem 2.1. By Lemma 1.16, there exist polynomials pjl(s), j = 1, . . . , r, l = 1, . . . , lj ,

such that

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|fjl(s)− pjl(s)| <
ε

2
. (2.21)

De�ne

G =

{
(g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hκ(D) : sup

1≤j≤r
sup

1≤l≤lj
sup
s∈Kjl

|gjl(s)− pjl(s)| <
ε

2

}
.

The set G is open in the space Hκ(D), and, by Theorem 2.7, (p11, . . . , p1l1 , . . . , pr1, . . . ,

prlr ) is an element of the support of the measure Pζκ. Therefore, Theorem 2.2 and Lemma 1.17 show

that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1≤j≤r
sup

1≤l≤lj
sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− pjl(s)| <
ε

2

}
≥ Pζκ(G) > 0.

This and inequality (2.21) complete the proof of Theorem 2.1.
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Chapter 3

Mixed joint universality for periodic

Hurwitz zeta-functions and the

Riemana zeta-function.

We preserve the notation of Chapter 3, and consider the joint universality for the periodic Hurwitz

zeta-functions ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr )

and the Riemann zeta-function ζ(s) which is de�ned, for σ > 1, by the series

ζ(s) =

∞∑
m=1

1

ms
,

and can be analytically continued to the whole complex plane, except for a simple pole at the point

s = 1 with residue 1. The Euler product over primes

ζ(s) =
∏
p

(
1− 1

ps

)−1

, σ > 1, (3.1)

is a very important object in the theory of the function ζ(s).

3.1. Statement of a mixed joint universality theorem

The periodic Hurwitz zeta-functions ζ(s, αj ; ajl), j = 1, . . . , r, l = 1, . . . , lj , with transcendental pa-

rameter αj have not the Euler product over primes while the function ζ(s) can be de�ned by equality

(3.1). Thus, the collection ζ(s), ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ) con-

sists of zeta-functions of di�erent types, and this is re�ected in their joint universality - in so called a

mixed joint universality theorem. We remind that the numbers α1, . . . , αr are algebraically indepen-

dent over Q if there is no polynomials p(x1, . . . , xr) 6≡ 0 with rational coe�cients such that

p(α1, . . . , αr) = 0.
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Theorem 3.1. Suppose that the numbers α1, . . . , αr are algebraically independent over Q, and

that rank(Bj) = lj, j = 1, . . . , r. For every j = 1, . . . , r and l = 1, . . . , lj, let Kjl be a compact subset

of the strip D with connected complement, and let fjl(s) be a continuous function on Kjl which is

analytic in the interior of Kjl. Moreover, let K ⊂ D be a compact subset with connected complement,

and let f(s) be a continuous non-vanishing function on K which is analytic in the interior of K.

Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε

}
> 0.

3.2. Joint limit theorem for periodic Hurwitz zeta-functions and

the Riemann zeta-function

We start the proof of Theorem 3.1 with a joint limit theorem in the space of analytic functions for

the functions ζ(s), ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr;

arlr ). In this chapter, we use the notation

κ =

r∑
j=1

lj + 1,

and Hκ(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸
κ

. Moreover, we introduce a torus

Ω̂ =
∏
p

γp,

where γp = {s ∈ C : |s| = 1} for all primes p. By the Tikhonov theorem, with the product topology

and pointwise multiplication, the torus Ω is a compact topological Abelian group. Therefore, on

(Ω̂,B(Ω̂)), the probability Haar measure m̂H can be de�ned, and we have the probability space

(Ω̂,B(Ω̂), m̂H). Denote by ω̂(p) the projection of ω̂ ∈ Ω̂ to γp. We also use the probability space

(Ω,B(Ω),mH) de�ned in Section 1.2.

Now let

Ω = Ω̂× Ω1 × · · · × Ωr,

where Ωj = Ω for j = 1, . . . , r. Then, by the Tikhonov theorem again, Ω is a compact topological

Abelian group, and we obtain a new probability space (Ω,B(Ω),mH), where mH is the probability

Haar measure on (Ω,B(Ω)). We preserve the notation of previous sections for α and a, and denote
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by ω = (ω̂, ω1, . . . , ωr) the elements of Ω̂. On the probability space (Ω,B(Ω),mH), de�ne the Hκ(D)-

valued random element ζ
κ
(s, α, ω; a) by the formula

ζ
κ
(s, α, ω; a) =

(
ζ(s, ω̂), ζ(s, α1, ω1; a11), . . . , ζ(s, α1, ω1; a1l1), . . . ,

ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
,

where

ζ(s, ω̂) =
∏
p

(
1− ω̂(p)

ps

)−1

,

and the H(D)-valued random elements ζ(s, αj , ωj ; ajl) are the same as in Chapter 2, j = 1, . . . , r,

l = 1, . . . , lj . Denote by Pζ
κ
the distribution of the random element ζ

κ
. Moreover, let

ζ
κ
(s, α; a) =

(
ζ(s), ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . ,

ζ(s, αr; ar1), . . . , ζ(s, αr; arlr )
)
,

and

PT,κ(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α; a) ∈ A

}
, A ∈ B(Hκ(D)).

The main result of this section is the following statement.

Theorem 3.2. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

PT,κ converges weakly to the measure Pζ
κ
as T →∞.

We start the proof of Theorem 3.2 with a limit theorem on the torus Ω. Denote by P the set of

all primes, and de�ne

QT (A) =
1

T
meas

{
τ ∈ [0, T ] :

(
(p−iτ : p ∈ P), ((m+ α1)−iτ : m ∈ N0), . . . ,

((m+ αr)
−iτ : m ∈ N0)

)
∈ A

}
, A ∈ B(Ω).

Lemma 3.3. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then the

measure QT converges weakly to the Haar measure mH as T →∞.

Proof. The dual group of Ω is isomorphic to

D =

⊕
p∈P

Zp

⊕
j=1

(⊕
m∈N0

Zjm

)
,

where Zp = Z and Zjm = Z for all p ∈ P and m ∈ N0, j = 1, . . . , r, respectively. An element

k = (kP , krN0
) ∈ D, kP = (kp : p ∈ P), krN0

= (klm : m ∈ N0, j = 1, . . . , r), where only a �nite

number of integers kp and kjm are distinct from zero, acts on Ω by

ω → ωk =
∏
p∈P

ω̂kp(p)

r∏
j=1

∏
m∈N0

ω
kjm
j (m).
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Therefore, the Fourier transform gT (k) of the measure QT is

gT (k) =

∫
Ω

( ∏
p∈P

ω̂kp(p)

r∏
j=1

∏
m∈N0

ω
kjm
j (m)

)
dQT =

1

T

∫ T

0

∏
p∈P

p−ikpτ
r∏
j=1

∏
m∈N0

(m+ αj)
−ikjmτdτ, (3.2)

where, as above, only a �nite number of integers kp and kjm are distinct from zero. It is well known that

the set {log p : p ∈ P} is linearly independent over Q, and this follows from the unique factorization

of positive integers. Since the numbers α1, . . . , αr are algebraically independent over Q, hence the set

L =
def
=
{(

log p : p ∈ P
)
,
(

log(m+ αj) : m ∈ N0, j = 1, . . . , r
)}

is linearly independent over Q. Really, if there exist integers kp and kjm, not all zeros, such that

k1 log p1 + · · ·+ kn log pn + k1m1 log(m1 + α1) + · · ·+ kn1mn1
(mn1 + α1) + . . .

+krmr log(mr + αr) + · · ·+ knrmnr log(mnr + αr) = 0,

then we obtain that

pk11 . . . pknn (m1 + α1)k1m1 . . . (mn1
+ α1)kn1mn1 . . .

(mr + αr)
krmr . . . (mnr + αr)

knrmnr = 1,

and this contradicts the algebraic independence of the numbers α1, . . . , αr. Here pj denotes a certain

prime number not the j th in the set P.

We �nd by (3.2) that

gT (k) =


1 if k = 0,

1−exp
{
−iT
(∑

p∈P kp log p+
∑r
j=1

∑
m∈N0

kjm log(m+αj)
)}

T
(∑

p∈P kp log p+
∑r
j=1

∑
m∈N0

kjm log(m+αj)
) if k 6= 0.

Thus,

lim
T→∞

gT (k) =

 1 if k = 0,

0 if k 6= 0.

This and a continuity theorem for probability measures on compact topological groups [10], Theo-

rem 1.4.2, prove the lemma.

We use the same notation as in previous chapters for υn(m,αj) and ζn(s, αj ; ajl), and de�ne

additionally

vn(m) = exp

{
−
(
m

n

)σ1
}
, m, n ∈ N.

Then we have that the series

ζn(s) =

∞∑
m=1

vn(m)

ms
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is absolutely convergent for σ > 1
2 . For m ∈ N, de�ne

ω̂(m) =
∏
pl‖m

ω̂l(p),

where pl ‖ m means that pl|m but pl+1 - m, and let

ζn(s, ω̂) =

∞∑
m=1

vn(m)ω̂(m)

ms
.

Since |ω̂(m)| = 1, the latter series also is absolutely convergent for σ > 1
2 . For brevity, let

ζ
n,κ

(s, α; a) =
(
ζn(s), ζn(s, α1; a11), . . . , ζn(s, α1; a1l1), . . . ,

ζn(s, αr; ar1), . . . , ζn(s, αr; arlr )
)

and

ζ
n,κ

(s, α, ω; a) =
(
ζn(s, ω̂), ζn(s, α1, ω1; a11), . . . , ζn(s, α1, ω1; a1l1), . . . ,

ζn(s, αr, ωr; ar1), . . . , ζn(s, αr, ωr; arlr )
)
.

For A ∈ B(hκ(D)), now de�ne

PT,n,κ(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n,κ
(s+ iτ, α; a) ∈ A

}
,

and, for any �xed ω0 = (ω̂0, ω10, . . . , ωr0) ∈ Ω,

QT,n,κ(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n,κ
(s+ iτ, α, ω0; a) ∈ A

}
.

We note that PT,n,κ and QT,n,κ are di�erent from those of Section 2.2 because ζ
n,κ

(s + iτ, α; a) and

ζ
n,κ

(s+ iτ, α, ω0; a) are di�erent from similar collections of Section 2.2.

Lemma 3.4. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

PT,n,κ and QT,n,κ both converge weakly to the same probability measure Pn,κ on (Hκ(D),B(Hκ(D)))

as T →∞.

Proof. Since the series ζn(s) and ζn(s, αj ; ajl), j = 1, . . . , r, l = 1, . . . , lj , converge absolutely for

σ > 1
2 , the function hn,κ : Ω→ Hκ(D) given by the formula

hn,κ(ω) = ζ
n,κ

(s, α, ω; a)

is continuous. Moreover, we have that

hn,κ
(
(p−iτ : p ∈ P), ((m+ α1)−iτ : m ∈ N0), . . . ,

((m+ αr)
−iτ : m ∈ N0)

)
= ζ

n
(s+ iτ, α; a).

Therefore, we have that Pt,n,κ = QTh
−1
n,κ. This, the continuity of hn,κ, Lemmas 3.3 and 1.5 show that

PT,n,κ converges weakly to Pn,κ = mHh
−1
n,κ as T →∞.
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Similarly, we obtain that QT,n,κ converges weakly to mHg
−1
n,κ as T →∞, where gn,κ : Ω→ Hκ(D)

is related to hn,κ by gn,κ(ω) = hnκ(ωω0). Since the Haar measure mH is invariant with respect to the

translations by points from Ω, this implies the equality mHg
−1
n,κ = mHh

−1
n,κ, and the lemma is proved.

Now we de�ne a metric on hκ(D). For

f = (f0, f11, . . . , f1l1 , . . . , fr1, . . . , frlr ) ∈ Hκ(D)

and

g = (g0, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hκ(D),

de�ne

ρ
κ
(f, g) = max

(
ρ(f0, g0), max

1≤j≤r
max

1≤l≤lj
ρ(fjl, gjl)

)
,

where ρ is the same metric on H(D) as in previous chapters. Then ρ
κ
is a metric on Hκ(D) inducing

its topology.

Now we will approximate the vectors ζ
κ
(s, α; a) and ζ

κ
(s, α, ω; a) by ζ

n,κ
(s, α; a) and ζ

n,κ
(s, α, ω; a),

respectively.

Lemma 3.5. The equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
κ

(
ζ
κ
(s+ iτ, α; a), ζ

n,κ
(s+ iτ, α; a)

)
dτ = 0

holds.

Proof. It is known [19] that

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
(
ζ(s+ iτ), ζn(s+ iτ)

)
dτ = 0.

This, Lemma 2.4 with remark on the notation by ρ
κ
of a di�erent metric in Chapter 2, and the

de�nition of the metric ρ
κ
prove the lemma.

Lemma 3.6. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then,

for almost all ω ∈ Ω, the equality

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
κ

(
ζ
κ
(s+ iτ, α, ω; a), ζ

n,κ
(s+ iτ, α, ω; a)

)
dτ = 0

holds.

Proof. In [19], it is obtained that, for almost all ω̂ ∈ Ω̂,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
(
ζ(s+ iτ, ω̂), ζn(s+ iτ, ω̂)

)
dτ = 0.

From this, Lemma 2.5 and the de�nition of the metric ρ
κ
, the lemma follows because the algebraic

independence over Q of the numbers α1, . . . , αr implies the linear independence over Q of the set

L(α1, . . . , αr).
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De�ne one more probability measure

PT,κ(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α, ω; a) ∈ A

}
, A ∈ B(Hκ(D)).

Lemma 3.7. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

PT,κ and P̂T,κ both converge weakly to the same probability measure Pκ on (Hκ(D),B(Hκ(D))) as

T →∞.

Proof. We generalize the proof of Lemma 2.6. On the probability space (Ω̃,B(Ω̃),P), de�ne the

Hκ(D)-valued random element XT,n,κ by

XT,n,κ = XT,n,κ(s) = XT,n,κ(s, α; a) =
(
XT,n(s), XT,n,1,1(s), . . . , XT,n,1,l1(s), . . . ,

XT,n,r,1(s), . . . , XT,n,r,lr (s)
)

= ζ
n,κ

(s+ iθT, α; a).

Then, by Lemma 3.4,

XT,n,κ
D−−−−→

T→∞
Xn,κ, (3.3)

where

Xn,κ = Xn,κ(s) =
(
Xn(s), Xn,1,1(s), . . . , Xn,1,l1(s), . . . , Xn,r,1(s), . . . , Xn,r,lr (s)

)
,

is anHκ(D)-valued random element with the distribution Pn,κ (Pn,κ is the limit measure in Lemma 3.4).

Since the series for ζn(s) and ζn(s, αj ; ajl), j = 1, . . . , r, l = 1, . . . , lj , converge absolutely for σ > 1
2 ,

we have that, for σ > 1
2 ,

lim
T→∞

1

T

∫ T

0

∣∣ζn(σ + it)
∣∣2dt =

∞∑
m=1

υ2
n(m)

m2σ
≤
∞∑
m=1

1

m2σ
(3.4)

for all n ∈ N, and (2.2) is true for all n ∈ N, and j = 1, . . . , r, l = 1, . . . , lj . Then, using the Caushy

integral formula, contour integration and (3.4), we �nd that, for n ∈ N,

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kk

∣∣ζn(s+ iτ)
∣∣dτ ≤ C̃k( ∞∑

m=1

1

m2σ̃k

) 1
2

(3.5)

with some C̃k > 0 and σ̃k > 1
2 . Here Kk is a compact subset from the de�nition of the metric ρ. Let

R̃k =

( ∞∑
m=1

1

m2σ̃k

) 1
2

,

and let other notation remain the same as in the proof of Lemma 2.6. Then, taking M̃k = C̃kR̃k2k+1ε−1
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and Mjlk = CkRjlk2k+κε−1, we deduce from (3.5) and (2.3) that

lim sup
T→∞

P
(

sup
s∈Kk

|XT,n(s)| > M̃k or sup
s∈Kk

|XT,n,j,l(s)| > Mjlk

for some (j, l)
)
≤ lim sup

T→∞
P
(

sup
s∈Kk

|XT,n(s)| > M̃k

)
+

r∑
j=1

lj∑
l=1

lim sup
T→∞

P
(

sup
s∈Kk

|XT,n,j,l(s)| > Mjlk

)
≤ 1

M̃k

sup
n∈N

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kk

|ζn(s+ iτ)|dτ

+

r∑
j=1

lj∑
l=1

1

Mjlk
sup
n∈N0

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kk

|ζn(s+ iτ, αj ; ajl)|dτ

≤ C̃RR̃k

M̃k

+

r∑
j=1

lj∑
l=1

CkRjlk
Mjlk

=
ε

2k+1
+

ε

2k+κ

ε∑
j=1

lj∑
l=1

1 ≤

ε

2k+1
+

ε

2k+1
=

ε

2k
.

This together with (3.3) leads, for all n ∈ N, to the inequality

P
(

sup
s∈Kk

|Xn(s)| > M̃k or sup
s∈Kk

|Xn,j,l(s)| > Mjlk for some (j, l)
)
≤ ε

2k
, k ∈ N. (3.6)

Now we take a set

Hκ
ε =

{
(g0, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hκ(D) : sup

s∈Kk
|g0(s)| < M̃k,

sup
s∈Kk

|gjl(s)| ≤Mjlk, j = 1, . . . , r, l = 1, . . . , lj , k ∈ N
}
.

Then the set Hκ
ε is uniformly bounded, thus it is compact on the space Hκ(D). Moreover, in view of

(3.6),

P
(
Xn,κ(s) ∈ Hκ

ε

)
≥ 1− ε

∞∑
k=1

1

2k
= 1− ε

for all n ∈ N. Hence,

Pn,κ(Hκ
ε ) ≥ 1− ε

for all n ∈ N. Thus, we obtained that the family of probability measures {Pn,κ : n ∈ N} is tight.

Therefore, by Lemma 1.9, the latter family is relatively compact, and there exists a sequence {Pnk,κ :

k ∈ N} ⊂ {Pn,κ : n ∈ N} weakly convergent to some probability measure Pκ on (Hκ(D),B(Hκ(D))

as k →∞. Hence

Xnk,κ
D−−−−→

k→∞
Pκ. (3.7)

Let

XT,κ = XT,κ(s) = ζ
κ
(s+ iθT, α; a)
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be one more Hκ(D)-valued random element de�ned on the probability space (Ω̃,B(Ω̃),P). Then, by

Lemma 3.5, we have that, for every ε > 0,

lim
n→∞

lim sup
T→∞

P
(
ρ
κ
(XT,n(s), XT,n(s)) ≥ ε

)
≤ lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0

ρ
κ

(
ζ
κ
(s+ iτ, α; a), ζ

n,κ
(s+ iτ, α; a)

)
dτ = 0.

This, (3.3) and (3.7) together with Lemma 1.11 imply the relation

XT,κ
D−−−−→

T→∞
Pκ (3.8)

which is equivalent to the weak convergence of PT,κ to Pκ as T →∞. Moreover, it follows from (3.8)

that the measure Pκ is independent of the choice of the sequence {Pnk,κ}. Thus, we have that

Xn,κ
D−−−−→

n→∞
Pκ. (3.9)

Now we consider the measure P̂T,κ. For this, de�ne

X̂T,n,κ(s) = ζ
n,κ

(s+ iθT, α, ω; a)

and

X̂T,κ(s) = ζ
κ
(s+ iθT, α, ω; a).

Repeating the above arguments for the random elements X̂T,n,κ(s) and X̂T,κ(s), and using Lemmas 3.4

and 3.6 as well as relation (3.9), we obtain that the measure P̂T,κ also converges weakly to Pκ as

T →∞. The lemma is proved.

In virtue of Lemma 3.7, for the proof of Theorem 3.2 it su�ces to show that the limit measure Pκ

in Lemma 3.7 coincides with Pζ
κ
. To prove this, we need some results from ergodic theory. Let, for

τ ∈ R,

aτ =
{

(p−iτ : p ∈ P), ((m+ α1)−iτ : m ∈ N0), . . . , ((m+ αr)
−iτ : m ∈ N0)

}
.

De�ne Φτ (ω) = aτω, ω ∈ Ω. Then {Φτ : τ ∈ R} is a one-parameter group of measurable measure

preserving transformations on Ω. Moreover, the following statement is true.

Lemma 3.8. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then the

group {Φτ : τ ∈ R} is ergodic.

Proof of the lemma is given in [25], Lemma 7.

Proof of Theorem 3.2. We apply standard arguments. We �x a continuity set A of the limit

measure Pκ in Lemma 3.7. Then, by Lemmas 3.7 and 1.12

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α, ω; a) ∈ A

}
= Pκ(A). (3.10)
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Consider a random variable ξκ de�ned on (Ω,B(Ω),mH) by the formula

ξκ(ω) =

 1 if ζ
κ
(s, α, ω; a) ∈ A,

0 otherwise.

Clearly, its expectation

Eξκ = mH(ω ∈ Ω : ζ
κ
(s, α, ω; a) ∈ A) = Pζ

κ
(A). (3.11)

In view of Lemma 3.8, the random process ξκ(Φτ (ω)) is ergodic. Therefore, by Lemma 1.13, we have

that, for almost all ω ∈ Ω,

lim
T→∞

1

T

∫ T

0

ξκ(Φτ (ω))dτ = Eξκ. (3.12)

On the other hand, the de�nitions of ξκ and Φτ yield

1

T

∫ T

0

ξκ(Φτ (ω))dτ =
1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α, ω; a) ∈ A

}
.

Thus, by (3.11) and (3.12), for almost all ω ∈ Ω,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α, ω; a) ∈ A

}
= Pζ

κ
(A).

Combining this with (3.10), we obtain that Pκ(A) = Pζ
κ
(A) for all continuity sets A of the measure

Pκ. Hence, Pκ(A) = Pζ
κ
(A) for all A ∈ B(Hκ(D)) because the continuity sets form a determining

class [3]. The theorem is proved.

3.3. Support of the limit measure

In this section, we give explicitly the support of the measure Pζ
κ
. De�ne

S =
{
g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0

}
.

Let κ1 = κ− 1.

Theorem 3.9. Suppose that the numbers α1, . . . , αr are algebraically independent over Q, and

that rank(Bj) = lj , j = 1, . . . , r. Then the support of Pζ
κ
is the set S ×Hκ1(D).

Proof. We write

Hκ(D) = H(D)×Hκ1(D).

Since the spaces H(D) and Hκ
1 (D) are separable, we have [3] that

B(Hκ(D)) = B(H(D))×B(Hκ1(D)).
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Thus, it su�ces to consider Pζ
κ
(A) with A = A1×Aκ1

, A ∈ B(H(D)), Aκ1
∈ B(Hκ1(D)). Let, as in

Chapter 1, Ωr = Ω1×· · ·×Ωr, where Ωj = Ω for all j = 1, . . . , r, and let mr
H be the Haar measure on

(Ωr,B(Ωr)). Then we have that the Haar measure mH is the product of the Haar measures m̂H and

mr
H . (We recall that Ω = Ω̂× Ωr, and m̂H is the Haar measure on (Ω̂,B(Ω̂))). Hence, we �nd that

Pζ
κ
(A) = mH

(
ω ∈ Ω : ζ

κ
(s, α, ω; a) ∈ A

)
= mH

(
ω ∈ Ω : ζ(s, ω̂) ∈ A1,

(
ζ(s, α1, ω1; a11), . . . , ζ(s, α1, ω1; a1l1), . . . ,

ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
∈ Aκ1

)
= m̂H(ω̂ ∈ Ω̂ : ζ(s, ω̂) ∈ A1)

×mr
H

(
(ω1, . . . , ωr) ∈ Ωr :

(
ζ(s, α1, ω1; a11), . . . , ζ(s, α1, ω1; a1l1), . . . ,

ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
∈ Aκ1

)
. (3.13)

In [19], it is obtained that the support of the H(D)-valued random element ζ(s, ω̂) is the set S, i.e.,

S is a minimal closed set such that

m̂H

(
ω̂ ∈ Ω̂ : ζ(s, ω̂) ∈ S

)
= 1. (3.14)

Moreover, by Theorem 2.7, the support of the Hκ1(D)-valued random element

(
ζ(s, α1, ω1; a11), . . . , ζ(s, α1, ω1; a1l1), . . . , ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )

)
is the whole of Hκ1(D), i.e., Hκ1(D) is a minimal closed set such that

mr
H

(
(ω1, . . . , ωr) ∈ Ωr :

(
ζ(s, α1, ω1; a11), . . . , ζ(s, α1, ω1; a1l1), . . . ,

ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
∈ Hκ1(D)

)
= 1.

This, (3.13) and (3.14) complete the proof of the theorem.

3.4. Proof of Theorem 3.1

A proof of Theorem 3.1 is based on Theorems 3.2 and 3.9 as well as on Lemma 1.16.

First suppose that the functions f(s) and fjl(s) have analytic continuations to the whole strip D,

and the analytic continuation of f(s) has no zeros. De�ne

G =

{
(g0, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hκ(D) :

sup
s∈K
|g0(s)− f(s)| ≤ ε

2
, sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|gjl(s)− fjl(s)| <
ε

2

}
.

The set G is open in the space Hκ(D). Therefore, Theorem 3.2, together with Lemma 1.17, implies

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ

κ
(s+ iτ, α; a) ∈ G

}
≥ Pζ

κ
(G). (3.15)
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However, by Theorem 3.9, (f, f11, . . . , f1l1 , . . . , fr1, . . . , frlr ) is an element of the support of the measure

Pζ
κ
. Thus, Pζ

κ
(G) > 0, and the de�nition of G and (3.15) yield

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

2
,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| <
ε

2

}
> 0. (3.16)

Now let the functions f(s) and fjl(s) satisfy the hypotheses of the theorem. Then, by Lemma 1.16,

there exist polynomials p(s), p(s) 6= 0 on K, and pjl(s) such that

sup
s∈K
|f(s)− p(s)| < ε

4
(3.17)

and

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈K
|f(s)− p(s)| < ε

2
. (3.18)

Since p(s) 6= 0 on K, we can de�ne a continuous branch of the function log p(s) in K which will be

analytic in the interior of K. By Lemma 1.16 again, we can �nd a polynomial g(s) such that

sup
s∈K
|p(s)− eq(s)| < ε

4
.

This, together with (3.17), shows that

sup
s∈K
|f(s)− eq(s)| < ε

2
. (3.19)

However, eq(s) 6= 0, therefore, the functions eq(s) and pjl(s) satisfy all hypotheses under which (3.16)

holds. Thus, we have that

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− eq(s)| < ε

2
,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− pjl(s)| <
ε

2

}
> 0. (3.20)

It is easily seen that, in view of (3.19) and (3.18),{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− eq(s)| < ε

2
,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− pjl(s)| <
ε

2

}
⊂{

τ ∈ [0, T ] : sup
s∈K
|ζ(s+ iτ)− f(s)| < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε

}
.

This and (3.20) prove the theorem.
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Chapter 4

Mixed joint universality for periodic

Hurwitz zeta-functions and the

zeta-function of cusp form

Let F (z) be a normalized Hecke eigen cusp form of weight κ for the full modular group

SL(2,Z) =


 a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 .

This means that F (z) is a holomorphic function in the half-plane Imz > 0, for all

 a b

c d

 ∈
SL(2,Z) satis�es the functional equation

F

(
az + b

cz + d

)
= (cz + d)κF (z),

and is a simultaneous eigen function of all Hecke operators

(Tnf)(z) = nκ−1
∑
d|n

d−κ
d−1∑
b=0

f

(
nz + bd

dz

)
, n ∈ N.

In this case, the function F (z) has at in�nity the Fourier series expansion

F (z) =

∞∑
m=1

c(m)e2πimz, c(1) = 1.

The zeta-function ζ(s, F ) attached to F (z) is de�ned, for σ > κ+1
2 , by the series

ζ(s, F ) =

∞∑
m=1

c(m)

ms
.

Moreover, ζ(s, F ) is analytically continuable to an entire function, and, for σ > κ+1
2 , has the Euler

product expansion over primes

ζ(s, F ) =
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1

,
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where α(p) and β(p) are conjugate complex numbers related to c(m) by the equality α(p)+β(p) = c(p).

In this chapter, we consider the joint universality for a collection of zeta-functions ζ(s, F ), ζ(s, α1;

a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; a1rlr ).

4.1 Statement of the main theorem

Let Dκ =
{
s ∈ C : κ

2 < σ < κ+1
2

}
. Other notation is the same as in Chapter 3.

Theorem 4.1. Suppose that F is a normalized Hecke eigen cusp form of weight κ for the full

modular group, the numbers α1, . . . , αr are algebraically independent over Q, and rank(Bj) = lj,

j = 1, . . . , r. Let K ⊂ Dκ be a compact subset with connected complement, and f(s) be a continuous

non-vanishing function on K which is analytic in the interior of K. Moreover, for j = 1, . . . , r,

l = 1, . . . , lj, let Kjl be a compact subset of the strip D with connected complement, and let fjl(s) be

a continuous function on Kjl which is analytic in the interior of Kjl. Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, F )− f(s)| < ε,

sup
1≤j≤r

sup
1≤j≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− fjl(s)| < ε

}
> 0.

We see that Theorem 4.1 is an analogue of Theorem 3.1 in which the Riemann zeta-function

ζ(s) is replaced by the function ζ(s, F ). This change requires some additional arguments because in

Theorem 4.1 we have two di�erent strips Dκ and D.

4.2. Joint limit theorem for periodic Hurwitz zeta-functions and

the function ζ(s, F )

In this chapter, let

v1 =

r∑
j=1

lj , v = v1 + 1.

Denote by H(Dκ) the space of analytic functions on Dκ endowed with the topology of uniform

convergence on compacta, and let

Hv(Dκ, D) = H(Dκ)×H(D)× ...×H(D)︸ ︷︷ ︸
v1

.
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Moreover, for brevity, we set

ζ
v
(ŝ, s, α; a, F ) =

(
ζ(s, F ), ζ(s, α1; a11), . . . ,

ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr )
)

On the probability space (Ω,B(Ω),mH), de�ne theHv(Dκ, D)-valued random element ζ
v
(ŝ, s, α, ω; a, F )

by the formula

ζ
v
(ŝ, s, α, ω; a, F ) =

(
ζ(ŝ, ω̂, F ), ζ(s, α1, ω1; a11), . . . ,

ζ(s, α1, ω1; a1l1), . . . , ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
,

where

ζ(ŝ, ω̂, F ) =
∏
p

(
1− α(p)ω̂(p)

ps

)−1(
1− β(p)ω̂(p)

ps

)−1

.

Other notation is the same as in Chapter 3. Denote by Pζ
v
the distribution of the random element

ζ
v
(ŝ, s, α, ω; a, F ), i.e., for A ∈ B(Hv(Dκ, D)),

Pζ
v
(A) = mH

(
ω ∈ Ω : ζ

v
(ŝ, s, α, ω; a, F ) ∈ A

)
.

In this section, we consider the weak convergence of

PT,v(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

v
(ŝ+ iτ, s+ iτ, α; a, F ) ∈ A

}
, A ∈ B(Hv(Dκ, D))

as T →∞.

Theorem 4.2. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

PT,v converges weakly to the measure Pζ
v
as T →∞.

Proof of Theorem 4.2 is analogical to that of Theorem 3.1. Therefore, we will omit some details.

For n ∈ N, de�ne

ζn(ŝ, F ) =

∞∑
m=1

c(m)vn(m)

ms

and

ζn(ŝ, ω̂F ) =

∞∑
m=1

c(m)ω̂(m)vn(m)

ms
.

Then we have [15] that the latter series are absolutely convergent for σ > κ
2 . For brevity, we set

ζ
n,v

(ŝ, s, α; a, F ) = (ζn(ŝ, F ), ζn(s, α1; a11), . . . , ζn(s, α1; a1l1), . . . ,

ζn(s, αr; ar1), . . . , ζn(s, αr; arlr ))

and

ζ
n,v

(ŝ, s, α, ω; a, F ) = (ζn(ŝ, ω̂, F ), ζn(s, α1, ω1; a11), . . . , ζn(s, α1, ω1; a1l1), . . . ,

ζn(s, αr, ωr; ar1), . . . , ζn(s, αr, ωr; arlr )).
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Now on the space (Hv(Dκ, D),B(Hv(Dκ, D))), de�ne two probability measures

PT,n,v(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n,v
(ŝ+ iτ, s+ iτ, α; a, F ) ∈ A

}
and

QT,n,v(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n,v
(ŝ+ iτ, s+ iτ, α, ω0; a, F ) ∈ A

}
,

where ω0 = (ω̂0, ω10, ..., ωr0) is a �xed element of Ω.

Lemma 4.3. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

PT,n,v and QT,n,v both converge weakly to the same probability measure Pn,v on

(Hv(Dκ, D),B(Hv(Dκ, D))) as T →∞.

Proof. We repeat the arguments used in the proof of Lemma 3.4. The absolute convergence of the

series for ζn(ŝ, F ) and ζn(s, αj ; ajl), j = 1, . . . , r, l = 1, . . . , lj , implies the continuity of the function

hn,v : Ω→ Hv(Dκ, D) de�ned by the formula

hn,v(ω) = ζ
n
(ŝ, s, α, ω; a, F ).

Moreover, we have that

hn,v
(
(p−iτ : p ∈ P),

(
(m+ α1)−iτ : m ∈ N0

)
, . . . ,

(
(m+ αr)

−iτ : m ∈ N0

))
=

= ζ
n,v

(ŝ+ iτ, s+ iτ, α; a, F ).

Hence, PT,n,v = QTh
−1
n,v, where QT is the measure from Lemma 3.3. This, the continuity of the

function hn,v and Lemma 1.5 together with Lemma 3.3 show that the measure PT,n,v converges

weakly to Pn,v = mHh
−1
n,v as T →∞.

Now let the function gn,v : Ω → Hv(Dκ, D) be given by the formula gn,v(ω) = hn,v(ω ω0).

Then the above arguments show that the measure QT,n,v converges weakly to the measure mHg
−1
nv as

T → ∞. However, the invariance of the Haar measure mH implies the equality mHh
−1
n,v = mHg

−1
n,v.

This proves the lemma

Let {K̂k : k ∈ N} be a sequence of compact subsets of Dκ such that

Dκ =

∞⋃
k=1

K̂k,

K̂l ⊂ K̂l+1 for all l ∈ N, and, for every compact K̂ ⊂ Dκ, there exist l such that K̂ ⊂ K̂l. For

f̂ , ĝ ∈ H(Dκ), de�ne

ρ̂(f̂ , ĝ) =

∞∑
k=1

2−k
sups∈K̂k |f̂(s)− ĝ(s)|

1 + sups∈K̂k |f̂(s)− ĝ(s)|
.

Then ρ̂(f̂ , ĝ) is a metric on H(Dκ) which induces the topology of uniform convergence on compacta.

For f = (f̂ , f11, . . . , f1l1 , . . . , fr1, . . . , frlr ), g = (ĝ, g11, . . . , g1l1 , . . . , gr1, . . . ,

grlr ) ∈ Hv(Dκ, D), de�ne

ρv(f, g) = max

(
ρ̂(f̂ , ĝ), max

1≤j≤r
max

1≤l≤lj
ρ(fjl, gjl)

)
.
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Then we have that ρv is a metric on Hv(Dκ, D) inducing its topology.

Having the metric on Hv(Dκ, D), we can approximate ζ
v
(ŝ, s, α; a, F ) by ζ

n,v
(ŝ, s, α;

a, F ), and ζ
v
(ŝ, s, α, ω; a, F ) by ζ

n,v
(ŝ, s, α, ω; a, F ).

Lemma 4.4. The relation

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
v

(
ζ
v
(ŝ+ iτ, s+ iτ, α; a, F ), ζ

n,v
(ŝ+ iτ, s+ iτ, α; a, F )

)
dτ = 0.

holds.

Proof. In [29], it was obtained that, for every compact subset K ⊂ Dκ,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K
|ζ(s+ iτ, F )− ζn(s+ iτ, F )|dτ = 0.

Hence, we have that

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ̂ (ζ(ŝ+ iτ, F ), ζn(ŝ+ iτ, F )) dτ = 0. (4.1)

From the assertion of type of Lemma 2.4, it follows that

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

max
1≤j≤r

max
1≤l≤lj

ρ (ζ(s+ iτ, αj ; ajl), ζn(s+ iτ, αj ; ajl) dτ = 0.

This, (4.1) and the de�nition of the metric ρv prove the lemma.

Lemma 4.5. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then,

for almost all ω ∈ Ω,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
v

(
ζ
v
(ŝ+ iτ, s+ iτ, α, ω; a, F ), ζ

v
(ŝ+ iτ, s+ iτ, α, ω; a, F )

)
dτ = 0.

Proof. In [15], it was proved that, for every compact subset K ⊂ Dκ,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K
|ζ(s+ iτ, ω̂, F )− ζn(s+ iτ, ω̂, F )|dτ = 0

for almost all ω̂ ∈ Ω̂. From this, we obtain that, for almost all ω̂ ∈ Ω̂,

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ̂ (ζ(ŝ+ iτ, ω̂, F ), ζn(ŝ+ iτ, ω̂, F )) dτ = 0. (4.2)

The assertion of type of Lemma 2.5 yields the relation

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

max
1≤j≤r

max
1≤l≤lj

ρ (ζ(s+ iτ, αj , ωj ; ajl), ζn(s+ iτ, αj , ωj ; ajl)) dτ = 0 (4.3)

for almost all (ω1, ..., ωr) ∈ Ω1× · · · ×Ωr. Since the measure mH is the product of the Haar measures

on (Ω̂,B(Ω̂)), and on (Ω1× · · · ×Ωr,B(Ω1× · · · ×Ωr)), relations (4.2), (4.3) and the de�nition of the

metric ρv imply, for almost all ω ∈ Ω, the equality of the lemma.
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For ω ∈ Ω, de�ne one more probability measure

P̂T,v(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

v
(ŝ+ iτ, s+ iτ, α, ω; a, F ) ∈ A

}
, A ∈ B(Hv(Dκ, D)).

Lemma 4.6. Suppose that the numbers α1, . . . , αr are algebraically independent over Q. Then

PT,v and P̂T,v both converge weakly to the same probability measure Pv on (Hv(Dκ, D),B(Hv(Dκ, D)))

as T →∞.

Proof. We follow the proof of Lemma 3.7. On the probability space (Ω̃,B(Ω̃),P), de�ne the

Hv(Dκ, D)-valued random element XT,n,v by the formula

XT,n,v = XT,n,v(ŝ, s) =
(
XT,n(ŝ), XT,n,1,1(s), . . . , XT,n,1,l1(s), . . . ,

XT,n,r,1(s), . . . , XT,n,r,lr (s)
)

= ζ
n,v

(ŝ+ iθT, s+ iθT, α; a, F ).

Then Lemma 4.3 implies the relation

XT,n,v
D−−−−→

T→∞
Xn,v, (4.4)

where

Xn,v = Xn,v(ŝ, s) = (Xn(ŝ), Xn,1,1(s), . . . , Xn,1,l1(s), . . . , Xn,r,1(s), . . . , Xn,r,lr (s))

is an Hv(Dκ, D)-valued random element with the distribution Pn,v in the notation of Lemma 4.3.

We have mentioned above that the series for ζn(s, F ) converges absolutely for σ > κ
2 . Therefore, for

σ > κ
2

lim
T→∞

1

T

∫ T

0

|ζn(σ + it, F )|2 dt =

∞∑
m=1

c2(m)vn(m)

m2σ
≤
∞∑
m=1

c2(m)

m2σ
<∞

for all n ∈ N, because of the Deligne estimate [11]

c(m) = O
(
m

κ−1
2

)
.

Thus, a simple application of the Cauchy integral formula lead to the inequality

lim sup
T→∞

1

T

∫ T

0

sup
s∈K̂k

|ζn(s+ iτ, F )|dτ ≤ Ĉk

( ∞∑
m=1

c2(m)

m2σ̂k

) 1
2

, n ∈ N, (4.5)

with some Ĉk > 0 and σ̂k > κ
2 . We set

R̂k =

( ∞∑
m=1

c2(m)

m2σ̂k

) 1
2

,

and take M̂k = ĈkR̂k2k+1ε−1 and Mjlk = CkRjlk2k+vε−1, ε > 0, where we preserve the notation of

Section 2.3. Now, from (2.3) and (4.5), we obtain that

lim sup
T→∞

P

(
sup
ŝ∈K̂k

|XT,n(ŝ)| > M̂k or sup
s∈Kk

|XT,n,j,l(s)| > Mjlk for some (j, l)

)
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≤ lim sup
T→∞

P

(
sup
ŝ∈K̂k

|XT,n(ŝ)| > M̂k

)
+

r∑
j=1

lj∑
l=1

lim sup
T→∞

P

(
sup
ŝ∈K̂k

|XT,n,j,l(s)| > Mjlk

)

≤ 1

M̂k

sup
n∈N

lim sup
T→∞

1

T

∫ T

0

sup
ŝ∈K̂k

|ζn(ŝ+ iτ, F )|dτ

+

r∑
j=1

lj∑
l=1

1

Mjlk
sup
n∈N0

lim sup
T→∞

1

T

∫ T

0

sup
s∈Kk

|ζn(s+ iτ, αj ; ajl)|dτ

≤ ĈkR̂k

M̂k

+

r∑
j=1

lj∑
l=1

CkRjlk
Mjlk

=
ε

2k+1
+

ε

2k+v

r∑
j=1

lj∑
l=1

1 ≤ ε

2k+1
+

ε

2k+1
=

ε

2k
.

Using relation (4.4), hence we deduce that, for all n ∈ N,

P

(
sup
ŝ∈K̂k

|Xn(ŝ)| > M̂k or sup
s∈Kk

|Xn,j,l(s)| > Mjlk for some (j, l)

)
≤ ε

2k
. (4.6)

De�ne a set

Hv
ε =

{
(g, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hv(Dκ, D) : sup

ŝ∈K̂k
|g(ŝ)| ≤ M̂k,

sup
s∈Kk

|gjl(s)| ≤Mjlk, j = 1, . . . , r, l = 1, . . . , lj , k ∈ N
}
.

Then Hv
ε is a compact subset of the space Hv(Dκ, D), and, by (4.6),

P
(
Xn,v(ŝ, s) ∈ Hv

ε

)
≥ 1− ε

∞∑
k=1

1

2k
= 1− ε

for all n ∈ N. Thus, by the de�nition of the random element Xn(ŝ, s),

Pn,v (Hv
ε ) ≥ 1− ε

for all n ∈ N. This means that the family of probability measures {Pn,v : n ∈ N} is tight,and, by

Lemma 1.9, it is relatively compact. Therefore, there exists a subsequence {Pnk,v : k ∈ N} ⊂ {Pn,v :

n ∈ N} such that Pnk,v converges weakly to a certain probability measure Pv on

(Hv(Dκ, D),B(Hv(Dκ, D))) as k →∞. This can be written in the form

Xnk,v
D−−−−→

k→∞
Pv. (4.7)

De�ne one more Hv(Dκ, D)-valued random element XT,v = XT,v(ŝ, s) by the formula

XT,v(ŝ, s) = ζ(ŝ+ iθT, s+ iθT, α; a, F ).

Then Lemma 4.4 shows that, for every ε > 0,

lim
n→∞

lim sup
T→∞

P
(
ρ
v

(
XT,n,v(ŝ, s), XT,v(ŝ, s)

)
≥ ε
)

=

lim
n→∞

lim sup
T→∞

1

T
meas

{
τ ∈ [0, T ] : ρ

v

(
ζ(ŝ+ iτ, s+ iτ, α; a, F ),

ζ
n,v

(ŝ+ iτ, s+ iτ, α; a)
)
≥ ε
}
≤ lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0

ρ
v

(
ζ
v
(ŝ+ iτ,
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s+ iτ, α; a, F ), ζ
n,v

(ŝ+ iτ, s+ iτ, α; a, F )

)
dτ = 0.

The latter relation, (4.4), (4.7) and Lemma 1.11 yield

XT,v
D−−−−→

T→∞
Pv, (4.8)

thus, PT,v converges weakly to Pv as T → ∞. The relation (4.8) also shows that the measure Pv is

independent of the choice of the sequence {Pnk,v : k ∈ N}, and this gives the relation

Xn,v
D−−−−→

n→∞
Pv. (4.9)

It remains to show that the measure P̂T,v also converges weakly to Pv as T →∞. We set

X̂T,n,v(ŝ, s) = ζ
n,v

(ŝ+ iθT, s+ iθT, α, ω; a, F )

and

X̂T,v(ŝ, s) = ζ
v
(ŝ+ iθT, s+ iθT, α, ω; a, F ).

Then the above arguments, together with Lemmas 4.3 and 4.5, and relation (4.9) applied for the

random elements X̂T,n,v(ŝ, s) and X̂T,v(ŝ, s) show that the measure P̂T,v also converges weakly to Pv

as T →∞. The lemma is proved.

Proof of Theorem 4.2. In order to prove Theorem 4.2, it su�ces to show that the limit measure

Pv in Lemma 4.6 is the distribution of the random element ζ
v
(ŝ, s, α, ω; a, F ). For this, we repeat the

proof of Theorem 3.2. Let A be a �xed continuity set of the limit measure Pv in Lemma 4.6. Then

Lemmas 4.6 and 1.12 imply the relation

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ

v
(ŝ+ iτ, s+ iτ, α, ω; a, F ) ∈ A

}
= Pv(A). (4.10)

On the probability space (Ω,B(Ω),mH), de�ne the random variable ξv by the formula

ξv(ω) =

1 if ζ
v
(ŝ, s, α, ω; a, F ) ∈ A,

0 otherwise.

Then we have that

Eξv = mH

(
ω ∈ Ω : ζ

v
(ŝ, s, α, ω; a, F ) ∈ A

)
= Pζ

v
(A). (4.11)

Let {Φτ : τ ∈ R} be the same group as in the proof of Theorem 3.2. Then Lemma 3.8 implies the

ergodicity of the random process ξv(Φτ (ω)). This together with Lemma 1.13 shows that, for almost

all ω ∈ Ω,

lim
T→∞

1

T

∫ T

0

ξv (Φτ (ω)) dτ = Eξv. (4.12)

64



However, on the other hand, the de�nitions of ξv and Φτ imply the equality

1

T

∫ T

0

ξv (Φτ (ω)) dτ =
1

T
meas

{
τ ∈ [0, T ] : ζ

v
(ŝ+ iτ, s+ iτ, α, ω; a, F ) ∈ A

}
.

Therefore, in view of (4.11) and (4.12), we have that, for almost all ω ∈ Ω,

lim
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ

v
(ŝ+ iτ, s+ iτ, α, ω; a, F ) ∈ A

}
= Pζ

v
(A).

This and (4.10) show that Pv(A) = Pζ
v
(A). Since A is an arbitrary continuity set of Pv, hence

Pv(A) = Pζ
v
(A) for all continuity sets of Pv. Since all continuity sets form a determining class, we

obtain that Pv(A) = Pζ
v
(A) for all A ∈ B(Hv(Dκ, D)). This complete the proof of Theorem 4.2.

4.3. Support of the limit measure

De�ne

Sκ = {g ∈ H(Dκ) : g(s) 6= 0 or g(s) ≡ 0} .

We recall that v1 = v − 1.

Theorem 4.7. Suppose that the numbers α1, . . . , αr are algebraically independent over Q, and

that rank(Bj) = lj, j = 1 . . . , r. Then the support of the measure Pζ
v
is the set Sκ ×Hv1(D).

Proof. By the de�nition,

Hv(Dκ, D) = H(Dκ)×Hv1(D).

In virtue of the separability of the spaces H(Dκ) and Hv1(D), the equality

B(Hv(Dκ, D)) = B(H(Dκ))×B(Hv1(D))

holds. Hence, it su�ces to consider the measure Pζ
v
for A = B × C, where B ∈ B(H(Dκ)) and

C ∈ B(Hv1(D)). Therefore, using the same notation as in the proof of Theorem 3.9, we �nd that, for

A = B × C ∈ B(Hv(Dκ, D)),

Pζ
v
(A) = mH

(
ω ∈ Ω : ζ

v
(ŝ, s, α, ω; a, F ) ∈ A

)
= mH

(
ω ∈ Ω : ζ(ŝ, ω̂, F ) ∈ B,

(
ζ(s, α1, ω1; a11), . . . , ζ(s, α1, ω1; a1l1), . . . ,

ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
∈ C

)
= m̂H

(
ω̂ ∈ Ω̂ : ζ(ŝ, ω̂, F ) ∈ B

)
mr
H

(
(ω1, . . . , ωr) ∈ Ωr :

(
ζ(s, α1, ω1; a11), . . . ,

ζ(s, α1, ω1; a1l1), . . . , ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )
)
∈ C

)
. (4.13)

In [30], it was obtained that the support of the random element ζ(ŝ, ω̂, F ) is the set Sκ, i. e., Sκ is a

minimal closed subset of H(Dκ) such that

m̂H

(
ω̂ ∈ Ω̂ : ζ(ŝ, ω̂, F ) ∈ Sκ

)
= 1. (4.14)
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As in the proof of Theorem 3.9, we have that the support of the random element (ζ(s, α1, ω1; a11)

, . . . , ζ(s, α1, ω1; a1l1), . . . , ζ(s, αr, ωr; ar1), . . . , ζ(s, αr, ωr; arlr )) is the space H
v1(D). Thus, from this,

(4.15) and (4.14), the theorem follows.

4.4. Proof of Theorem 4.1

A proof of Theorem 4.1 di�ers from that of Theorem 3.1 only by details of the notation.

By Lemma 1.16, there exist polynomials p(s) and pjl(s), j = 1, . . . , r, l = 1, . . . , lj , such that

sup
s∈K
|f(s)− p(s)| < ε

4
(4.15)

and

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|fjl(s)− pjl(s)| <
ε

2
. (4.16)

Since f(s) 6= 0 onK, p(s) 6= 0 onK as well if ε is small enough. Thus, onK we can de�ne a continuous

branch of the logarithm log p(s) which will be an analytic function in the interior of K. Therefore, by

Lemma 1.16, there exists a polynomial q(s) such that

sup
s∈K

∣∣∣p(s)− eq(s)
∣∣∣ < ε

4
.

This together with (4.16) shows that

sup
s∈K

∣∣∣f(s)− eq(s)
∣∣∣ < ε

2
. (4.17)

De�ne

G =
{

(g, g11, . . . , g1l1 , . . . , gr1, . . . , grlr ) ∈ Hv(Dκ, D) :

sup
ŝ∈K
|g(ŝ)− eq(ŝ)| < ε

2
, sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|gjl(s)− pjl(s)| <
ε

2

}
.

In view of Theorem 4.7, the collection
(
eq(s), p11(s), . . . , p1l1(s), . . . , pr1(s), . . . , prlr (s)

)
is an element

of the support of the measure Pζ
v
. Since the set G is open, hence we have that Pζ

v
(G) > 0. Therefore,

Theorem 4.2 and Lemma 1.17 yield

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : ζ

v
(ŝ+ iτ, s+ iτ, α; a, F ) ∈ G

}
=

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ, F )− eq(s)| < ε

2
,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

|ζ(s+ iτ, αj ; ajl)− pjl(s)| <
ε

2

}
≥ Pζ

v
(G) > 0. (4.18)

However, in view of (4.16) and (4.17),{
τ ∈ [0, T ] : sup

s∈K

∣∣ζ(s+ iτ, F )− eq(s)
∣∣ < ε

2
, sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

∣∣ζ(s+ iτ, αj ; ajl)−
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pjl(s)
∣∣ < ε

2

}
⊂
{
τ ∈ [0, T ] : sup

s∈K

∣∣ζ(s+ iτ, F )− f(s)
∣∣ < ε,

sup
1≤j≤r

sup
1≤l≤lj

sup
s∈Kjl

∣∣ζ(s+ iτ, αj ; ajl)− fjl(s)
∣∣ < ε

}
This and (4.18) lead to the assertion of Theorem 4.1.
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Conclusions

In the thesis, the following approximation properties of periodic Hurwitz zeta-functions were estab-

lished:

1. The periodic Hurwitz zeta-functions ζ(s, α1; a1), . . . , ζ(s, αr; ar) with parameters α1, . . . , αr such

that the set L(α1, . . . , αr) = {log(m+αj) : m ∈ N0, j = 1, . . . , r} is linearly independent over

�eld of rational numbers Q are jointly universal.

2. The periodic Hurwitz zeta-functions ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s, αr;

arlr ) with the set L(α1, . . . , αr) linearly independent over Q and a rank condition related only

to each �xed αj , j = 1, . . . , r, are jointly universal.

3. The Riemann zeta-function ζ(s) and periodic Hurwitz zeta-functions ζ(s, α1; a11), . . . , ζ(s, α1;

a1l1) . . . , ζ(s, αr; ar1), . . . , ζ(s, αr; arlr ) with algebraically independent overQ parameters α1, . . . ,

αr and a rank condition related only to each �xed αj , j = 1, . . . , r, are jointly universal.

4. The zeta-function ζ(s, F ) attached to a normalized Hecke eigen cusp form F for the full modular

group and periodic Hurwitz zeta-functions ζ(s, α1; a11), . . . , ζ(s, α1; a1l1), . . . , ζ(s, αr; ar1), . . . , ζ(s,

αr; arlr ) with algebraically independent over Q parameters α1, . . . , αr and a rank condition re-

lated only to each �xed αj , j = 1, . . . , r, are jointly universal.
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Notation

j, k, l,m, n natural numbers

p prime number

(m,n) greatest common divisor of natural m and n

P set of all prime numbers

N set of all natural numbers

N0 N ∪ {0}

Z set of all integer numbers

R set of all real numbers

C set of all complex numbers

i imaginary unity: i =
√
−1

s = σ + it complex variable

<s = σ real part of s

=s = t imaginary part of s⊕
m
Am direct sum of sets Am

A×B Cartesian product of the sets A and B

Am Cartesian product of m copies of the set A

meas{A} Lebesgue measure of the set A

H(D) space of analytic functions on D
D→ convergence in distribution

B(S) class of Borel sets of the space S

χ Dirichlet character

L(s, χ) Dirichlet L-function

SL(2,Z) full modular group

F (z) cusp form

f(x) = O(g(x)), x ∈ I means that |f(x)| ≤ Cg(x), x ∈ I
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ζ(s) Riemann zeta-function de�ned by

ζ(s) =
∞∑
m=1

1
ms , for σ > 1,

and by analytic continuation elsewhere

ζ(s; a) periodic zeta-function de�ned by

ζ(s; a) =
∞∑
m=1

am
ms , for σ > 1,

and by analytic continuation elsewhere

ζ(s, α) Hurwitz zeta-function de�ned by

ζ(s, α) =
∞∑
m=1

1
m+αs , for σ > 1,

and by analytic continuation elsewhere

ζ(s, α; a) periodic Hurwitz zeta-function de�ned by

ζ(s, α; a) =
∞∑
m=0

am
(m+1)s , for σ > 1,

and by analytic continuation elsewhere

Γ(s) Euler gamma-function de�ned by

Γ(s) =
∞∫
0

e−xxs−1dx for σ > 0

and by analytic continuation elsewhere
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