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Introduction

In the thesis, the joint universality of periodic Hurwitz zeta-functions as well as that jointly with the

Riemann zeta-function or zeta-functions of normalized cusp forms is obtained.

Actuality

Universality is a very important and useful property of zeta and L-functions, it has a series of theo-
retical and practical applications. Universality is the main ingredient in the proof of the functional
independence of zeta and L-functions, is applied in the investigation of zero-distribution and moment
problem, allows to prove various value denseness theorems, and, of course, plays a crucial role in
approximation of analytic functions. One of possible practical applications is estimation of integrals
over complicated analytic curves in quantum mechanics [4]. Thus, this is a motivation to extend the
class of universal functions.

In practice, often approximation and estimation of systems of analytic functions is needed. This
problem can be successfully solved using the joint universality of zeta-functions. The majority of zeta
and L-functions have approximate functional equations, therefore, due to joint universality, simulta-
neous estimation of analytic functions reduces to that of rather simple Dirichlet polynomials. This is
a singnificant impact of the universality of zeta-functions to the theory of analytic functions.

After Voronin’s remarkable work [42], a series of famous number theorists continued their inves-
tigations on the universality of zeta-functions. The names of B. Bagchi, H. Bauer, R. Garunkstis,
P. Gauthier, S. M. Gonek, J. Kaczorowski, A. Laurin¢ikas, K. Matsumoto, A. Reich, J. Steuding, the
works of young Lithuanian, Japanese, German and Polish mathematicians clearly show the actuality

of the universality problem in the theory of zeta and L-functions.

Aims and problems

The aim of the thesis is to extend the joint universality to new classes of zeta-functions. The concrete

problems are the following.

1. To remove a rank condition in a joint universality theorem for periodic Hurwitz zeta-functions.



2. To weaken a rank condition in an extended joint universality theorem (a collection of periodic

sequences corresponds each shift parameter) for periodic Hurwitz zeta-functions.

3. To prove a mixed joint universality theorem for the Riemann zeta-function and periodic Hurwitz

zeta-functions.

4. To prove a mixed joint universality theorem for a zeta-function of normalized Hecke eigen cusp

forms and periodic Hurwitz zeta-functions.

Methods

In the thesis, for the proof of joint universality theorems for zeta-functions an analytic method based on
probabilistic limit theorems on the weak convergence of probability measures in the space of analytic
functions is applied. This method also involves elements of the measure theory and the approximation

theory of analytic functions.

Novelty

All results of thesis are new. They improve or extend joint universality results for periodic Hurwitz

zeta-functions.

History of the problem

In 1975, S. M. Voronin discovered [42] the universality of the Riemann zeta-function ((s), s = o + it.
Roughly speaking, he proved that any non-vanishing analytic function can be approximated uniformly
on some sets of the strip D = {s € C: % < ¢ < 1} by shifts (s + i), 7 € R. We state a modern
version of the Voronin theorem which proof is given in [19]. meas{A} denotes the Lebesgue measure

of a measurable set A C R.

Theorem A. Suppose that K C D is a compact subset with connected complement, and that f(s)
s a continuous non-vanishing function on K which is analytic in the interior of K. Then, for every
e >0,

lim inf %meas {T €[0,T]: sup|{(s+iT) — f(s)] < 5} > 0.

T—o00 seK

Theorem A shows that the set of shifts ((s+i7) approximating a given analytic function is infinite:
it has a positive lower density. A proof of Theorem A is different from the initial Voronin proof, and

is based on a limit theorem on the weak convergence of probability measures in the space of analytic



functions. The latter method was proposed by B. Bagchi in this thesis [1], and was developed in the
monographs [19], [27] and [41].

It turned out that some other zeta-functions also have the universality property. The zeta-functions
of cusp forms are among universal in the Voronin sense functions. We remind that the function F'(s)

is callied a cusp form of weight x with respect to the full modular group

a b
SL(2,Z) = s a,be,d€Z, ad—bc=1
c d
a b
if is holomorphic in the upper half-plane Imz > 0, with some x € 2N satisfies, for all €
c d

SL(2,Z), the functional equation

F<Zi2) = (cz + d)*F(2),

and at infinity has the Fourier series expansion

F(z)= Z c(m)e?mim=,

m=1

Moreover, we assume that the cusp form F(s) is a simultaneous eigen function of all Hecke operators

d—1
(T f)(z) = "1 Zd"‘Zf(nZ;; bd), neN.
d|n b=0

It is known that, in this case, ¢(1) # 0. Thus, we can normalize the function F'(s) by taking ¢(1) = 1.
To a normalized Hecke eigen cusp form F'(z), we can attach the zeta-function ((s, F') defined, for

U>"T+l,by

)= 32 STI(- o) (- )

et . P’ P
where, for primes p, a(p) and S(p) are conjugate complex numbers such that a(p) + 8(p) = ¢(p). It
is well known that the function ((s, F') has analytic continuation to an entire function.
The theory of modular forms is given, for example, in [11] and [7].

The universality of the function (s, F') was began to study in |15] and completely proved in [29].

Let D, ={s € C: % <o < “f1}. Then the following analogue of Theorem A is true.

Theorem B. Suppose that K C D, is a compact subset with connected complement, and that f(s)
s a continuous non-vanishing function on K which is analytic in the interior of K. Then, for every
e >0,

1
lim inf —meas {7’ €[0,T]: sup|((s+iT, F) — f(s)| < 5} > 0.
T—oo T seEK



A more interesting and complicated property of zeta-functions than the universality is their joint
universality. The first result on joint universality also belongs to S. M. Voronin. In [43], see also
[18], he obtained a joint universality theorem for Dirichlet L-functions. We remind that two Dirichlet
characters y; and y» are equivalent if they are generated by the same primitive character. The theory
of Dirichlet L-functions can be found, for example, in [38], [17]. We state a modified version of the

Voronin theorem.

Theorem C. Suppose that x1, ..., X, are pairwise non-equivalent Dirichlet characters, and L(s, x1),
..., L(s,xr) are the corresponding Dirichlet L-functions. For j =1,...,r, let K; C D be a compact
subset with connected complement, and let f;(s) be a continuous non-vanishing function on K; which

is analytic in the interior of K;. Then, for every e > 0,

1
liminf —meas{ 7€ [0,7]: sup sup |L(s+i7,x;)— fi(s)] <ep >0.
T—oco T 1<j<r s€K;

Other versions of Theorem C were independently obtained by S. M. Gonek [8] and B. Bagchi [1],
[2]. The Voronin theorem in the form of Theorem C is given in [26].

In Theorem C, a collection of analytic functions are simultaneously approximated by shifts of
Dirichlet L-functions. This procedure, of course, requires a certain independence of a collection of
L-functions, and this independence is expressed by the non-equivalence of Dirichlet characters. The
known joint universality theorems for other zeta-functions also involve some independence hypotheses.
This is clearly reflected in a joint universality theorem for Hurwitz zeta-functions. However, first we
remind the definition and universality of the Hurwitz zeta function.

Let o, 0 < o < 1, be a fixed parameter. The Hurwitz zeta-function ((s, @) is defined, for o > 1,

by the series

— 1
(s, ) = Z m,

m=0
and has meromorphic continuation to the whole complex plane with unique simple pole at the point
s = 1 with residue 1. The function ((s, «) is an interesting analytical object depending on a parameter
« whose arithmetical nature influences the properties of ((s, ). The universality of (s, «) is contained

in the following theorem.

Theorem D. Suppose that the number « is transcendental or rational # 1, % Let K C D be
a compact subset with connected complement, and let f(s) be a continuous function on K which is

analytic in the interior of K. Then, for every e > 0,

lim inf %meas {T €1[0,T]: sup|{(s+it, o) — f(s)] < 5} > 0.

T—o0 seK
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First Theorem D by different methods has been obtained in [8] and [1], see also [40]. We see that
the approximated function f(s), differently from Theorem A, is not necessarily non-vanishing on K,
and this is conditioned by non-existence of the Euler product over primes for the function {(s,a) in

the case of Theorem D. We have that ((s,1) = ((s) and

(53) =@ - e

therefore, the functions ((s,1) and ¢ (s, ;) are also universal, however, the approximated function
f(s) must be non-vanishing on K.

The case of algebraic irrational parameter « remains an open problem.

Now we state a joint universality theorem for Hurwitz zeta-functions. Let, for 0 < a5 < 1,

i1=1...,r

L(aq,...,ap) ={log(m+a;): meNy, j=1,...,7}.

Theorem E. Suppose that the set L(ay, ..., ) is linearly independent over the field of rational
numbers Q. For j =1,...,r, let K; C D be a compact subset with connected complement, and let

fi(s) be a continuous function on K; which is analytic in the interior of K;. Then, for every e > 0,

T— 00 1<j<r seK;

1
lim inf 7 meas {T €[0,T): sup sup [((s+iT,a5) — fi(s)] < 5} > 0.

A proof of Theorem E is given in [23]. For algebraically independent over Q numbers «;,. .., .
(a1,...,q, are not roots of any polynomial p(z1,...,z,) # 0 with rational coefficients), Theorem E
by a different method has been obtained in [36].

A generalization of the Hurwitz zeta-function is the periodic Hurwitz zeta- function introduced in
[12]. Let a = {a,, : m € Ny} be a periodic sequence of complex numbers with minimal period k € N,
and 0 < a < 1. Then the periodic Hurwitz zeta-function ((s, a;a) is defined, for o > 1, by

00 a
((s,a;a) = mzzjom'

The periodicity of the sequence a implies, for o > 1, the equality

k—1
C(s,a5a) = % Zalg(s, l—;a)
1=0

This shows that the function ((s, «;a) also admits a meromorphic continuation with a simple pole at

s = 1 with residue

In the case a = 0, the function ((s, «;a) is entire.

11



In [12] and [13], the universality of the function ((s,a;a) with transcendental parameter o was

investigated, and the following statement was proved.

Theorem F. Suppose that the number « is transcendental. Let K C D be a compact subset with
connected complement, and let f(s) be a continuous function on K which is analytic in the interior

of K. Then, for every e > 0,

1
lim inf —meas {T €[0,7]: sup|((s+ir,o;a) — f(s)] < 5} > 0.
T—oo T scK

Thus, Theorem F is an analogue of Theorem D in the case of transcendental o.
The joint universality for periodic Hurwitz zeta-functions was began to study in [21]. For j =

1...,7,let aj = {am; : m € N} be a periodic sequence of complex numbers with minimal period

ki € N, aj, 0 < aj < 1, be a fixed parameter, and ((s,a;;a;) denote the corresponding periodic

Hurwitz zeta-function. Denote by k the least common multiple of the periods kq,...,k,, and define
the matrix
a1 a2 ... Qi1r
A= a21 A22 . agy
g1 k2 ... Gy
In [21], it was proved that if k; = k, o; = a for j = 1,...,r, o is transcendental, and rank(A) = r,
then the functions ¢(s, o, a1),...,((s, o;a,) are jointly universal. In [22], the requirement that k; = k
for j =1,...,r was removed. Finally, in [14] the following joint universality theorem was proved.
Theorem G. Suppose that the numbers oy, . .., . are algebraically independent over Q, and that

rank(A) =r. For j=1,...,r, let K; and f;(s) be the same as in Theorem E. Then, for every e > 0,

1
liminf —meas< 7 € [0,T]: sup sup |((s+iT,j;a;) — fi(s)] <ep >0.
T—oo T 1<j<r s€K; ’

It turned out that the rank hypothesis in Theorem G can be removed, and a joint universality
theorem for periodic Hurwitz zeta-functions, without using the matrix A, forms Chapter 1 of the thesis.

Let L(a, ..., a,) be the same set as in Theorem E. We give a shortered statement of Theorem 1.1.

Theorem 1.1. Suppose that the set L(aq,...,q.), is linearly independent over Q. For j =

1,...,7, let K; and f;(s) be the same as in Theorem E. Then the assertion of Theorem G is true.

The joint universality for periodic Hurwitz zeta-functions has a more general form when a collection
of periodic sequences is attached to each parameter a;. First such an extension of the joint universality
has been proposed in [31] for Lerch zeta-functions. The above idea for periodic Hurwitz zeta-functions

has been applied in [24]. Let l;, j = 1,...,7, be positive integers. For every | = 1,...,l;, let

12



aj; = {amji : m € No} be a periodic sequence of complex numbers with minimal period kj; € N.

Suppose that, for j =1,...,r, o  is a fixed parameter, 0 < a; <1, and, for o > 1,

o]
am]l

C S5, ajaajl § m+a
m=0 J

Denote by k the least common multiple of the periods ki1,...,k11,,...,kr1,..., k., and define the

matrix
a1l G112 ... G111, G122 ... Q120, ... Q1r1 QA1r2 ... QAlrl,
a211 G212 ... G211, G222 ... G220, ... Q271 Q272 ... A2r,
agi1  Aag12  -.. Qg1 Q22 ... Ag2l, ... Qkgr1 Qkgr2 ... Qkrl,.

Moreover, let
R = Z lj
j=1
Then in [24], the following result has been obtained.

Theorem H. Suppose that the system L(aq,...,q,) is linearly independent over Q, and that
rank(B) = k. For every j=1,...,r, andl =1,...,1;, let K;; be a compact subset of the strip D with
connected complement, and let f;;(s) be a continuous function on Kj; which is analytic in the interior

of Kji. Then, for every e > 0,

1
liminf —meas< 7€ [0,7]: sup sup sup [((s+iT, o ;a5) — f(s)] <ep >0.
T—oo T 1<j<r 1<I<l; s€K

In Chapter 2 of the thesis, the rank condition in Theorem H is made weaker. Let k; be the least

common multiple of the periods kj1, kja, ..., kji;, j =1,...,r. Define
aij1 ayj2 ... ai1ji;
B; = G271 G2z e Ol , j=1,...,r
Ak;j1  Ok;52  ---  Qkjjl;

Then the main result of Chapter 2 is the following theorem.

Theorem 2.1. Suppose that the set L(aq,...,a,) is linearly independent over Q, and that
rank(B;) = l;, j = 1,...,r. Let Kj and f;; be the same as is Theorem H. Then the assertion

of Theorem H is true.

In Theorem 2.1, differently from Theorem H, we use the information related only to oj, j =1,..., 7.
All above joint universality theorems for zeta or L-functions are of the same type. Theorem C is

an example of the joint universality for functions having the Euler product over primes, while all joint

13



theorems for periodic Hurwitz zeta-functions form a group of results for zeta-functions having no the
Euler product. The paper of H. Mishou [35] is the first work on the joint universality for zeta-functions
of different types: having and having no the Euler product. We call this universality a mixed joint
universality. In [35], a joint universality theorem for the Riemann and Hurwitz zeta-functions has

been proved.

Theorem 1. Suppose that the number « is transcendental. Let K1 C D, Ky C D be compact
subsets with connected complements, f1(s) be a continuous non-vanishing function on Ky which is
analytic in the interior of Ky, and let f3(s) be a continuous function on Ks which is analytic in the
interior of Ko. Then, for every e > 0,

1
lim inf Tmeas{r €[0,7]: sup |((s+iT) — f1(9)| <&,

T—o0 s€eK,

sup |C(s +i1,a) — fa(s)] < 6} > 0.
seEKo

A generalization of Theorem I has been given in [16]. Let b = {b,, : m € N} be a periodic sequence
of complex numbers with minimal period [ € N. Then the periodic zeta-function ((s; b) is defined, for

o>1, by

oobm
=D

m=1

In view of periodicity of the sequence b, it follows that, for o > 1,
1 j

and this gives meromorphic continuation for {(s;b) to the whole complex plane with possible pole at

s = 1 with residue

defl o
:72

If b = 0, then the function ((s;b) is entire.

We recall that the sequence b is multiplicative if by = 1, and b,,,,, = b,,b,, for all colprimes m,n € N.
The universality of the function ((s;b) with multiplicative sequence b has been obtained in [32]. In
this case, the theorem is similar to Theorem A.

In [16], the joint universality for the functions ((s;b) and ((s, «; a) has been obtained.

Theorem J. Suppose that the sequence b is multiplicative such that, for every prime p,

Z

|by

<c<1,

M\N



and that the number « is transcendental. Let K1, Ko, f1(s) and fa(s) be the same as in Theorem I.

Then, for every e > 0,

1
lim inf meas{T €[0,7]: sup [{(s+iT;b) — f1(s)] <,
T—oo T s€K,

sup [C(s + i a50) — fa(s)| < g} >0,
seKo

A multidimensional version of Theorem J is presented in [25]. In this case, the joint universality
is obtained for the collection of zeta-functions {(s;b1),...,((s;b,,) and {(s,a;a1),...,C(s, Qpry;ary).

Theorem K [25]. Suppose that, for j =1,...,r1, the sequence b; is multiplicative such that, for

every prime p,

and that the numbers a1, ..., oz are algebraically independent over Q. For j =1,...,rq, let K; C D
be a compact subset with connected complement, and let f;(s) be a continuous non-vanishing function
on K; which is analytic in the interior of K;. For j=1,...,ry, let I/(\] C D be a compact subset with
connected complement, and let E(s) be a continuous function on I/(\j which is analytic in the interior
of I/(\j Then, for every e > 0,

1
lim inf meas{r €10,T): sup sup [((s+iT;b;) — fi(s)| <e,
T—oo T 1<j<r s€K;

sup sup [((s+iT, a5 ;a;5) — fg(s)\ < a} > 0.
1<j<rs sef{\j

In Chapter 3 of the thesis, we generalize Theorem 2.1 adding to the functions ((s, a1;a11),. ..,
C(syan;a1,), .-+, C(8, a5 001), ..., C(8, 5 0y, ) the Riemann zeta-function ((s). Thus, we have the

following statement.

Theorem 3.1. Suppose that the numbers o, ..., o, are algebraically independent over Q, rank(B;)
=1;,j=1,...,r, and that all hypotheses on the sets K;; and functions f;;(s) of Theorem 2.1 hold.
Moreover, let K C D be a compact subset with connected complement, and let f(s) be a continuous

non-vanishing function on K which is analytic in the interior of K. Then, for every e > 0,

1
lim inf meas{r €10,T): sup|¢(s+ir)— f(s)] <¢,
T—oo T scK

sup sup sup [C(s+iT,a;5a5) — fu(s)] < 6} > 0.
1<j<r 1<I<l; s€K;,

Chapter 4 of the thesis is devoted to a an analogue of Theorem 3.1 with the function ((s, F') in

place of the function ((s). Note that, in this case, we have a more complicated situation because

15



the functions ((s, F') and ((s,;;a;) are universal in different strips D, and D, respectively. We
remind that here ((s, F') denotes the zeta-function attached to a normalized Hecke eigen cusp form F

of weight k.

Theorem 4.1. Suppose that F is a normalized Hecke eigen cusp form of weight x for the full
modular group, the numbers aa, ..., o, are algebraically independent over Q, and that rank(B;) =,
j=1,...,r. Let K C D, be a compact subset with connected complement, f(s) be a continuous
non-vanishing function on K which is analytic in the interior of K, and that all hypothesis on the
sets K, and functions f; of Theorem 2.1 hold. Then, for every ¢ > 0,

1
lim inf meas{r € (0,77 : sup [((s +i7, F) — f(s)| <e,
T—oo T seK

sup sup sup |((s+iT, o ;a5) — f(s)] < 5} > 0.
1<j<r 1<i<l; s€eKj;

History of universality in analysis can be found in a very informative paper [9], see also [41], [20],
The proofs of all joint universality theorems of the thesis are based on the probabilistic approach
involving limit theorems for weakly convergent probability measures on the space of analytic functions,

and on explicitly given supports of the limit measures.

16
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Chapter 1

Joint universality for periodic Hurwitz

zeta-functions

In this chapter, we prove a joint universality theorem for periodic Hurwitz zeta-functions ((s, a1;a1),
.,C(s,ar;a,). Here, for j =1,...,r, a;, 0 < a; <1, is a fixed parameter, a; = {a; : m € Ny} is
a periodic sequence of complex numbers with minimal period k£ € N, and for o > 1,
) o
C(s,a550a5) = Z ﬁ

m=0
If

k—1

1
ajZFZalj#O»

T 1=0
then the function (s, a;;a;) is entire, while if a; # 0, the function ((s,a;;a;) has a unique simple

pole at s = 1 with residue a;.

1.1. Statement of the main theorem

We recall that
L(oy,...,ap) ={log(m+a;): meNy, j=1,...,r}.

For brevity, denote the elements of the set L(a, ..., o) by en, j = log(m+a;). The set L(a, ..., o)
is linearly independent over the field of rational numbers Q if, for every finite collection e, 5,5 ..., €m,. ji»

{mi,....,mu} CNo, {j1,-.-,5:r C{L,...,7}, the equality

Gmy,jr €m0 T Am i GG = 0

20



with rationals g, ji - - @m,,; holds only in the case g, j, = - = @m,,; = 0. Obviously, in place
of rationals ¢, ;- -, qm,,;, We may use rational integers.

We remind that D = {s € C: } <o <1}.

Theorem 1.1. Suppose that the set L(aq, ..., ay) is linearly independent over Q. Forj=1,...,r,
let K; C D be a compact subset with connected complement, and let f;(s) be a continuous function on
K which is analytic in the interior of K;. Then, for every e > 0,

1
lim inf meaS{T €[0,T]: sup sup [((s+iT,a;5a;) — fi(s)] < 5} > 0.
T—oo T 1<j<r seK;

We note that Theorem 1.1 removes a certain rank condition on the coefficients a,,; which was used
in [14].
A joint limit theorem on the weak convergence of probability measures in the space of analytic

functions for periodic Hurwitz zeta-functions is the main ingredient in the proof of Theorem 1.1.

1.2. Joint limit theorem

We denote by H(D) the space of analytic functions on D equipped with the topology of uniform
convergence on compacta. In this topology, a sequence {g,(s) : n € N} € H(D) converges to the
function g(s) € H(D) if, for every compact subset K C D,

lim sup |gn(s) — g(s)| = 0.

n—oo scK

Define

Let, as usual, B(S) denote the class of Borel sets of a space S. Moreover, let

)
Q= H Tm
m=0

where v, = {s € C: [s| =1} for all m € Ny. Since the unit circle v is a compact, by the Tikhonov
theorem, see, for example, [37], the infinite-dimensional torus §2 with the product topology and point

wise multiplication is a compact topological Abelian group. Let
Q"= x - xQ,,

where ); = Q for j = 1,...,r. Then Q" also, by the Tikhonov theorem, is a compact topological

Abelian group. Therefore [39], on (27, B(Q2")), the probability Haar measure mj}; can be defined, and
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we obtain the probability space (7, B(Q"), m’;). We remind that the measure m?; is invariant with

respect to shifts by points from Q7 i.e
mi(A) = mpy(wA) = mpy (Aw)

for every A € B(Q") and all w € Q. It is important to note that the Haar measure m; is the

product of the Haar measures m;y on the coordinate spaces (;,B(€;)), 7 = 1,...,r. Denote by
w;(m) the projection of an element w; € 2, to the coordinate space v,,, m € Ng, j =1,...,7. Let
w=(wi,...,wy) € Q7, where w; € Q;, j=1,...,r, and let, for brevity,

a=(ay,...,a), a=(ap,...,0q.).

On the probability space (Q",B(2"), m};), define the H"(D)-valued random element ((s, o, w;a) by

£<87Q7Q7g) = (C(S,OKLUJ]_;C(]_),. .. 7C<S7a’raw7‘;a7“))7
where
o W m
C(s,a5,wj;a5) = Z()(m]+Ja j=1,...,m

We note that the latter series converges uniformly on compact subsets K C D for almost all w; € Q;,
thus it defines an H(D)-value random element, j = 1,...,r. Denote by P, the distribution of the

random element ((s,a, w;a), i.e.,

P(A)=mi(weQ :((s,a,w;a) € A), AeB(H(D)).

Let, for A € B(H" (D)),
Pr(A) = ;meas{T €[0,7]: {(s+ir,a;a) € A},
where

((s,aza) = (¢(s,aria1),...,C(s, o5 0)).
This section of the chapter is devoted to the following probabilistic limit theorem.
Theorem 1.2. Suppose that the set L(ay,...,q,.) is linearly independent over Q. Then Pr
converges weakly to the measure P; as T — oo.

We divide the proof of Theorem 1.2 into severe lemmas. The first of them is a limit theorem on

the torus Q". Let, for A € B(Q"),

Qrl) = goneas{ 7 € 0.7+ (m-+0) "

m € Np),...,(m+a,)”™: meNy)) EA}.
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Lemma 1.3. Suppose that the set L(a, . .., «;) is linearly independent over Q. Then Qr converges

weakly to the Haar measure m’; as T — 00.

A proof of Lemma 1.3 is based on the Fourier transform method on compact topological group,
and is given in [24].

Now let o7 > 3 be a fixed number, and let, for m,n € Ny,

m+a;\ 7
v (m, o) :exp{— (W) }, j=1,...,m
j

Define
2\ njUn(m, a)
C(S,Oé,a): ua 7J7 leu )
e MEZ:O (m+ a;)®
and
>\ jwy (m)vn (M, )
<n(s7aj7wj;aj): Z il n 2 s jzl,...,T,

(m + o)

m=0
It was proved in [12] that the latter series are absolutely convergent for o > % The next important

step in the proof of Theorem 1.2 are limit theorems in the space H" (D) for the vectors
gn(sagag) = (Cn(S, 7, al)v e 74-774(87 Qo a'r))
and
Qn(S’Q, W3 Q) = (Cn(sa Q, Wi al)a sy Cn(5705rawr§ ar))~
Let, for A € B(H"(D)),
1 )
Pr,(A) = —meas {T €[0,T]: ¢ (s+ir,a;a) € A} ,
T 2n
and, for fixed w, € Q",
1 .
Qrn(A) = 7 meas {7‘ €0,7]: ¢ (s+ir,a,wya) € A}.

Lemma 1.4. Suppose that the set L(aq, ..., a,) is linearly independent over Q. Then Pr, and
Q1. both converge weakly to the same probability measure P, on (H" (D), B(H"(D))) as T — cc.

Before the proof of Lemma, 1.4, we remind the well-known fact from the theory of weak convergence
of probability measures. Let (S1,2(S1)) and (S2,%(S2)) be two measurable spaces, and h : S; — Sy
be a (B(S1), B(S2))-measurable function, i.e., for every A € B(S,),

hlA € B(S)).

Then every probability measure P on (S1,(S;)) induces the unique probability measure Ph~! on
(S2,B(S2)) defined by

Ph™'(A) = P(h™tA4), AcDB(Sy).
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The following simple lemma which proof can be found in [3], Section 5, often is very useful.

Lemma 1.5. Suppose that P,,, n € N, and P be probability measures on (S1,8(51)), h: S1 — So
be a continuous function, and let P, converges weakly to P as n — oco. Then P,h~"' also converges

weakly to Ph™! as n — oo.

Proof of Lemma 1.4. Since the series for ¢, (s, a;;a;) and (,(s, ajw;sa5), 5 = 1,...,r, converges

absolutely for o > 1, the functions h, : Q" — H"(D) and g, : Q" — H"(D) given by h,(w) =
gn(s7g, w;a) and g, (w) = §n(57g7 wwy; a) are continuous. Moreover, we have that Pr, = Qrh, ' and
Qr.n =Qryg, L. Therefore, from Lemmas 1.3 and 1.5 we obtain that Pr,, and Qr,, converge weakly
to m% kb and mY; g, ! respectively, as T — oo. Moreover, the invariance of the Haar measure m%;

with respect to shifts by points from Q" shows that

gyt =mly (fa(fo)) " =my(fo " fih) = (my fo )t =mif,

where fo: Q" — Q" is given by f(w) = ww,, w € Q".

In order to pass from gn(s,g; a) to ((s, a; a), we need an approximation of (s, a; a) and ((s, a, w; a)
by ¢, (s;a;a) and ¢ (s, a,w;a), respectively. For this, we will use a metric on H"(D) which induces
its topology of uniform convergence on compacta. First, we define such a metric on H(D). For

91,92 € H(D), we set

o sup [g1(s) — g2(s)]

_ €K,
plgr,g2) = 271 :
; 1+ sup [g1(s) — g2(s)|
- seK;

where {K; : | € N} is a sequence of compact subsets of D such that

D= [j K,
=1

K; C Kj4q for all 1 € N, and if K C D is a compact subset, then K C K; for some [. The existence
of such a sequence is given in [5]. Clearly, the metric p induces on H(D) the topology of uniform

convergence on compacta.

Now, for g, = (g11,---,91r), g, = (921,--.,927) € H"(D), putting

0(9,:9,) = max p(g15: 925),

we obtain a desired metric on H" (D).

Lemma 1.6 The equality

1 T
tim timsup [ pl(s + imv30).C, (5 + im. i) d7 =0
0

N0 T o0 - -n
holds.
The proof of the lemma does not depend on arithmetical nature of the numbers a4, ..., «;, and is

given in [13].
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Lemma 1.7 Suppose that the set L(aq,...,a;) is linearly independent over Q. Then, for almost

all w € Q0" we have the equality

1 T
lim limsup T / p(l(s+im,a,w;a), (s+iT,a,w;a))dr = 0.
0

n00 Tooo T -

Proof. Let a; = {(m+a)™™ : m € No}, 7 € R, 0 < a < 1, and define p, : Q — Q by
or(w) = a;w, w € Q. Then {p, : 7 € R} is a one-parameter group of measurable measure -
preserving transformations on Q. A set A € B(Q) is invariant with respect to the group {¢, : 7 € R}
if, for every 7 € R, the sets A and A, = ¢, (A) coincide up to a set of my-measure zero, where m g
is the probability Haar measure on (2,23(Q)). The invariant sets form a o-field which is a o-subfield
of B(Q). A one-parameter groups {¢, : 7 € R} is ergodic if its o-field of invariant sets consists only
of sets of my-measure zero or one. If the set L(a) = {log(m + @) : m € Ny} is linearly independent
over Q, then it is proved in [24] that the group {¢, : 7 € R} is ergodic. Since the set L(aq,...,a;)
is linearly independent over Q, so is each set L(«;), j = 1,...,r. Combining this with the classical
Birkhoff-Khintchine ergodic theorem, it is proved in [24] that, for every compact subset K C D,

1 (T
nl;ngo li;n_?olip T/o fél}}; |C(s +i7, a5, wj;05) — Gu(s 40T, 0, wy; aj)|d7' =0

for almost all w; € 25, j =1,...,7. This and the definition of the metric p imply the equality

T
nh—>120 li;njip % /0 p(C(s + 47, a5, wj505), Cu(s + 47, 05, w;j50;))dT = 0
for almost all w; € Q;, j = 1,...,r, which, together with the definition of the metric p, yields the
assertion of the lemma.

For the proof of Theorem 1.2, we need one more lemma on a common limit measure. Let, for
A e B(H"(D)),

~

Pr(A) = ;meas{T € [0,77: ((s +i7,a,w;a)} € A.

Lemma 1.8. Suppose that the set L(a,...,a,) is linearly independent over Q. Then Pr and
Pr, both converge weakly to the same probability measure P on (H"(D),B(H"(D))) as T — co.

The proof of the lemma is based on the Prokhorov theory of weak convergence of probability
measures, therefore, first we will remind some fact of that theory.

Let {P} be a family of probability measures on (S,8B(S)). The family {P} is called relatively
compact if every sequence {P,} C {P} contains a weakly convergent subsequence, and the family

{P} is tight if, for every ¢ > 0, there exists a compact subset K C S such that
PK)>1-c¢

for all P € {P}. The Prokhorov theorems connect the notions of the relative compactness and

tightness.
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Lemma 1.9. If the family of probability measures is tight, then it is relatively compact.

Lemma 1.10. Suppose that the space S is complete and separable. If the family { P} is relatively
compact, then it is tight.

We also need one lemma from the theory of weak convergence of probability measures. Denote by

D e
= the convergence in distribution.

Lemma 1.11. Suppose that the space (S, d) is separable, and Y,,, Xin, k € N, n € N are S-valued
random elements defined on the probability space (&72,%((2)7?’). Let Xy, 2 X, as k — oo, X, 2 x

as n — oo and, for every e > 0,

lim limsupP(d(X;m,Yn) > 5) =0.

n—oo k—o00

ThenYngX as n — 0o.

The proofs of Lemmas 1.9-1.11 can be found in [3].

Proof of Lemma 1.8. We take a random variable 6 defined on a certain probability space (Q, %(ﬁ)7 P)
and uniformly distributed on [0,1]. On (€, B(Q),P), define the H"(D)-valued random element
Xpp=Xp,(s) = (Xrina(s), -, Xoinr(s)) = Xp (s, 0;0) by

Xy, (s,a50) = ¢ (s 40T, a;0).

Then we have, by Lemma 1.4, that

Xy —— X (L.1)

T—o0 =n
where X, = X,,(s) = (Xpn1(s),..., Xn (), is an H"(D)-valued random element having the distri-
bution P,, and P, is the limit measure in Lemma 1.4. We will prove that the family of probability

measures {P, : n € Ny} is tight. We have noted above that the series for (,(s,a;;0a;), j =1,...,7,

converges absolutely for o > % Therefore, using the properties of the mean square of absolutely

convergent Dirichlet series, we have that, for o > %,

17 2 0 @ [202 (m, a;) > |G |?
lim — " it o a)| T dt = mmgl Tnd 0 7)< _rrmat 1.2
dm 7 [ 1olobitassanfar= 37 ) < 57 (1.2

forallm € Ngand j =1,...,r. Let K; be a compact subset from the definition of the metric p. Then
the Cauchy integral formula a standard application of the contour integration and (1.2), for all n € Ny

and j =1,...,7 lead to the inequality

w L[ - = aml \?
lim T sup [Ca(s +ir, o3 a;5)|dt < Cy Z T+ a2 (1.3)
0

)20,
m 4+ «
seK; m=0 .7)

with some C; > 0 and o7 > %

Now let € > 0 be an arbitrary number, and
0o 1
|am;]? :
Lo
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Then, taking M;, = C;R;;2!7"e~1, we find from (1.3) that

limsupP(ﬂj sup | X7.,,;(s)] > Mjl) thsupl?( sup |Xrn,i(s)| > Mjl) <

T— o0 seK; =1 T—o0 seK;

1 [T €
< — sup limsup —= / sup |Cn(s + im, a5 a5)|dt < < =
Z M, neNyg T—oo T 0 s€K; ‘ " 7 | Z M]l 2

This and (1.1) show that, for all n € Ny,

P(Ej sup | X, ;(s)| > Mjl) <
seK;

(1.4)

l\D‘m

Define a set
H! = {(gl,...,gr) € H' (D) : sup |g;(s)| <My, j=1,...,r, l¢€ N}.
seK
Then the set H! is uniformly bounded, thus, is a compact subset in the space H" (D). Moreover, in

view of (1.4),

) > 1
IE”(LL(S)eH,;)zl—EZ@:l_5
=1

for all n € Ny. Hence, by the definition of X ,(s), we find that
P,(H)>1-¢

for all n € Ny. This means that the family of probability measures {P, : n € Ny} is tight. Then,
by Lemma 1.9, we have that the family {P, : n € Ny} is relatively compact. Therefore, there exists
a subsequence {P,,} C {P,} such that {P,} converges weakly to some probability measure P on
(H™(D),B(H"(D))) as k — o0, so the relation

X, —=2,p (1.5)

n
k k—oo

holds.
On (ﬁ, %(Q,P), define one more H"(D)-valued random element X, = X (s,;a) by

Xr(s,a5a) = ((s +i0T,a; a).

Then, for every ¢ > 0, Lemma 1.6 implies that

lim limsupP (p(Xr(s,a;0), Xrn(s, o;0)) > ¢)

Nn—00 T _sno

1
= lim limsup 7 meas {re0,T]: p(¢(s+ir,a;0a),(u(s +iT,a50) >}

=00 T 400

1 T
< lim limsup Tf/ p(C(s +iT, a; ), Cu(s + iT,a; @)dT = 0.
g Jo —

Nn—00 T_ o

This, and relations (1.1) and (1.5) together with Lemma 1.11 lead to

X, 2P (1.6)
T—o0

27



and this is equivalent to the weak convergence of Pr to the measure P as T — oco. Moreover, relation
(1.6) shows that the probability measure P does not depend on the subsequence {P,, }. Hence, taking
into account the relative compactness of the family {P,, : n € Ny}, we have that every subsequence of

that family converges weakly to P, thus

X, 2P (1.7)

n—oo

It remains to show that I3T also converges weakly to the same measure P as T — oo. For this, we

define the H"(D)-valued random elements
Xpn(s,a,wia) =¢ (s+i0T, a,w;a)
and
Xr(s,a,wia) = ((s + 10T, o, w; a).

Then, using (1.7) and Lemma 1.7, and repeating the above arguments for the random elements
X7.,(s,a,w;a) and X7 (s, a,w; a), we obtain the weak convergence of Pr to the measure P as T' — oo.

For the proof of Theorem 1.2, we recall an equivalent of the weak convergence of probability
measures in terms of continuity sets. Let P be a probability measure on (S,B(S)), A € B(S), and
let A denote the boundary of the set A. If P(OA) = 0, then the set A is called a continuity set of

the measure P.

Lemma 1.12. Let P and P,, n € N, be probability measures on (S,B(S)). Then P,, as n — oo,

converges weakly to P if and only if, for every continuity set A of the measure P,
lim P,(A) = P(A).

n—00

Proof of the lemma is given in [8], Theorem 2.1.
We also need the classical Birkhoff-Khintchin ergodic theorem. Denote by E¢ the expectation of

the random element £.

Lemma 1.13. Suppose that X (t,w) is an ergodic process, E|X (t,w)| < oo, with sample paths

integrable over every finite interval in the Riemann sense. Then, for almost all w,

1"
Tlgr(l)of/o X(t,w)dt = EX(0,w).

Proof of the lemma can be found, for example, in [6].
We state one more lemma from ergodicity theory.

For 7 € R, define

a. ={((m+a1)"7: meNy),...,(m+a,)"": meNy},

28



and let {®. : 7 € R} be the family of transformations on the torus Q" given by ¢, (w) = a,w, w € Q.
Then {®, : 7 € R} is a one-parameter group of measurable measure-preserving transformations on
Q7. The ergodicity of {®, : 7 € R} is defined in the same way as that of the group {¢, : 7 € R}

used in the proof of Lemma 1.7.

Lemma 1.14. The group {®, : 7 € R} is ergodic.
Proof of the lemma is given in [14], Lemma 3.

Proof of Theorem 1.2. In view of Lemma 1.8, it is sufficient to show that the limit measure P in
that lemma coincides with Pg.
We fix a continuity set A of the measure P in Lemma 1.8. Then, by Lemmas 1.8 and 1.12, we

have that

lim %meas {rel0,T]: {(s+ir,a,w;a) € A} = P(A). (1.8)

T—o0

Let £ be a random variable on the probability space (2", B(2"), m%,) given by
1 if ((s,a,w;a) € A,
0 if ¢(s,a,w;a) ¢ A

In view of Lemma 1.14, we have that the random process £(®,(w)) is ergodic. Therefore, by
Lemma 1.13, we obtain that, for almost all w € Q"
1 (T
lim — (P, (w))dr = EE. (1.9)
On the other hand, the definition of £ shows that

E§ = [ &dmpy =mp(we Q" :((s,a,w;a) € A),
Qr -

that is
E¢ = P (A). (1.10)

Since, by the definitions of £ and @,

17 1 ,

—/ (P, (w))dr = =meas{ 7 € [0,T] : {(s+irT,a,w;a) € Ap,

T 0 T -
we see from relations (1.9) and (1.10) that, for almost all w € Q"

1

lim Tmeas{T €[0,7]: {(s+it,a,w;a) € A} = P (A).

T—o0

This, together with (1.8), shows that P(A) = P;(A) for all continuity sets A of the measure P.
However, all continuity sets constitute a determining class [3]. Thus, the measures P and P coincide

for all A € B(H"(D)), and the theorem is proved.
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1.3. Support of the limit measure

Denote by Sp, the support of the measure P¢. Since the space H" (D) is separable, Sp, is a minimal
closed set of the space H" (D) such that P¢(Sp,) = 1. The support Sp, consists of all points g € H"(D)
such that P¢(G) > 0 for every open neighbourhood G of g.

Theorem 1.15. Suppose that the set L(a,...,,) is linearly independent over Q. Then the
support of the measure P is the whole of H"(D).

Proof. Let, for A; € H(D), j=1,...,r,
A:A1><~-~><AT.

Since the space H"(D) is separable, the o-field B(H" (D)) coincides with that generated by sets A

[3]. Moreover, the Haar measure m}; is the product of the Haar measures mg, ..., m,m. Therefore,

Pe(A) =mpy(we Q" : ((s,a,w;a) € A) =

mhy(w e Q" : ((s,q,w;a) € Ay X -+ X A,.) =

mi (& e Q" C(svahwl;al) € A17~~~>C(Svarawr;ar) € Ar) =
mlH(wl €0 C(s,al,wl;al) S Al)...m,«H(wT e0:

((s;ar,wriay) € Ay). (1.11)

Since the set L(ayq, ..., ;) is linearly independent over Q, so is each set L(ay),..., L(c,). Therefore,

we have from [13] that, for every j =1,...,r, the support of
min(w; € Q51 ((s, aj,wj;a;) € A)

is the whole of H(D). Thus, the latter remark and (1.11) prove the theorem.

1.4. Proof of Theorem 1.1

We start with the famous Mergelyan theorem on approximation of analytic functions by polynomials.

Lemma 1.16. Let K C C be a compact subset with connected complement, and let f(s) be a
continuous function on K which is analytic in the interior of K. Then, for every € > 0, there exists

a polynomial p(s) such that

sup |f(s) —p(s)| <e.
seK

Proof of the lemma is given in [34], see also [44].
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We also remind an equivalent of the weak convergence of probability measures in terms of open

sets.

Lemma 1.17. Let P and P,, n € N, be probability measures on (S,B(S)). Then P,, as n — oo,
converges weakly to P if and only if, for every open set G of S,

lim P,(G) > P(G).

n—roo

Proof of the lemma can be found in [3], Theorem 2.1.

Proof of Theorem 1.1. In witue of Lemma 1.16, there exist polynomials p;(s),...,p-(s) such that

€
sup sup |f;(s) —p;(s)] < 5 (1.12)
1<j<r seK;

Let

‘" {(91""’%) € H'(D): sup sup |g;(s) —p;(s)| < ;}

1<j<r seK;
Clearly, G is an open set. Moreover, in view of Theorem 1.15, (p1(s),...,pr(s)) € Sp,. Therefore, by
properties of a support mentioned in the beginning of Section 1.3, the inequality P (G) > 0 holds. By

Theorem 1.1 and Lemma 1.17, we have that

liminf Pr(G) > Pc(G).

T—o0

Thus, we deduce from the definitions of the set G and Pr that
1
lim inf meas{r €[0,7]: sup sup |((s+iT,a;5;a;) —pj(s)| < 6} > 0. (1.13)
T—oo T 1<j<r s€K; 2

However, inequalities (1.12) and

. S
sup. sup [C(s + im, 53 05) — py(5)| < 5

1<j<r s€K;

imply
sup sup |((s+iT,05;a;) — fi(s)] <e.
1<j<r s€K;

Therefore,

{7‘ €[0,T]: sup sup [((s+iT, 0 ;a;5) — fi(s)] < 5}
1<j<r seK;

1<j<r s€K; 2

) {7’ €1[0,T]: sup sup [((s+iT, 0 ;a;5) —pi(s)] < E}.
This, together with inequality (1.3), yields that

1
liminf —meas< 7 € [0,7]: sup sup |((s+iT,a5;a;) — fi(s)] <e
T—oo T 1<j<rseK;

1
> liminf —meas {7 € [0,7]: sup sup |[C(s+iT,a;;0a;) —p;i(s)] < clso
T—oo T 1<j<r s€K; 2

The theorem is proved.
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Chapter 2

Extended joint universality theorem

for periodic Hurwitz zeta-functions

The aim of this chapter is an extension of Theorem 1.1 for a wider collection of periodic Hurwitz zeta-
functions. Let [;, j = 1,...,r, be positive integers, and, for { = 1,...,1;, let a;; = {amj : m € No} be
a periodic sequence of complex numbers with minimal period k;; € N. Suppose that, for j =1,...,r,
a; is a fixed parameter, 0 < a; < 1, and that ((s,a;;a;;) is the corresponding periodic Hurwitz

zeta-function. In this chapter, we consider the joint universality for the functions

C(S,Oﬂ; (111)7 .. .74(5,01; alll)’ .. 'ac(saa?“; aTl)v .. '7<(Saa7"; a?"lT)'

2.1. Statement of an extended joint

universality theorem

Theorem 1.1 was obtained without any hypotheses on the coefficients of the functions {(s, a1;a4,. ..,
¢(s,ar; a,). However, in the case when a collection of periodic sequences corresponds each parameter
aj, we need a certain rank condition. Let k; be the common multiple of the periods kj1, ..., kj;,

j=1,...,r. Define

aiji aij2 ... a1j1;
@251 a2;2 N agjlj .

Bj - ) ] = 1a 7T
Ak;51  Qk;52 -+ Qk;jl;

Then the main theorem of the chapter is of the form.
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Theorem 2.1. Suppose that the set L(ay,...,q,) is linearly independent over Q, and that
rank(B;) = 1l;, j =1,...,r. Foreveryj =1,....r andl = 1,...,l;, let Kj; be a compact sub-
set of the strip D with connected complement, and let f;;(s) be a continuous function on K, which is
analytic in the interior of K. Then, for every e > 0,

1
lim inf meas{T €[0,T): sup sup sup |[((s+ir,a;5;a5) — f(s)] < 5} > 0.
T—oo T 1<j<r 1<I<l; €K

2.2. Extended joint limit theorem

The proof of Theorem 2.1, as that of Theorem 1.1, is based on a probability joint limit theorems
for the functions ((s,as;a11),...,¢(s, 15011, )y ..., C(S, @ 0r1), ..., C(8, ;0. ). For brevity, let

a= (a1, Oatysee s Oy Opg), and k=30 1, H(D) = H(D) x --- x H(D). We preserve

the notation used in Chapter 1. On the probability space (Q7,B(Q"), m};), define the H*(D)-valued

random element gﬁ (s,a,w;a) by

QK(57Q7&; g) = (C(Sa a1, W15 all)a cey C(Sa Qe y W ar1)7 s 7((57 Qpy Wrj aT‘lr))?
where
ad a Wi
jl .
g(S,ahUJl;ﬂj[ Z (:LJ+JQ ]:1,,lj
m=0

Denote by P . the distribution of the random element ((s,a,w;a), i.e.,

Pep(A) =my(weQ ¢ (s,a,w;a) € A), AeBH"(D)).

In this section, we consider the weak convergence, as T"— oo, for

Pr.(A) = ;meaS{T €10,7]: ¢ (s+im,aza) € A}, AeB(H"(D)),
where

gﬁ(‘g?g; Q) = (C(S7a17 all)v ) C(Sa p; alh)v ey C(Sa (67 arl)’ e C(Sa Q) arlr))-

Theorem 2.2. Suppose that the set L(as, ..., ) is linearly independent over Q. Then Pr

converges weakly to the measure FP; . as T — oo.

We see that the statement of Theorem 2.2 does not contain the hypothesis on the rank of the
matrices Bj, therefore, the proof of Theorem 2.2 remains similar to that of Theorem 1.2. For this

reason, we will present only the principal steps of the proof.
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We define

= AmjlUn (M, O .
Cn(svaﬁajl):ZW, ]:1,...7T7l:1,...,lj,
J

and

Amj1Wj (m)vn (m7 aj)

Cn(s’aﬁwj;ajl) = Z (m+aj)5

m=0

y jzl,...ﬂ",l:l,...,lj.

Since the coefficients a,,j; are bounded, the latter series, as those for the functions (,(s, a;;a;) and
G (s, @j,wj;a5) in Section 1.2, are absolutely convergent for o > % We start with limit theorems in

the space H"(D) for

gn,/{(s7g; g) = (Cn(87 aq; all)a DR Cn(sa (O3 alh)a ey C’n(sa (675 aT1)> ey C’n(87 Qo a’rl,,r))
and
gn’ﬁ(sﬁgag;g) = (Cn(sﬂahwl;all)a'"aC’n(Sval)wl;all])a"'v
C’n(sa Qo y Wy aTl)) LR C’n(sa Qo y Wy} arlr))~

For A € B(H"(D)), define
1 .
Prnx(A) = Tmeas{T €0,1]: ¢, (s+ir,a;a)€ A},
and, for any fixed w, € Q7

1
Qrnx(A) = Tmeas{T €[0,7]: gnvn(s +iT,,wp; 8) € A}.

Lemma 2.3. Suppose that the set L(aq,. .., a,) is linearly independent over Q. Then Pr,, . and
Q1 n,x both converge weakly to the same probability measure P, , on (H*(D),B(H"(D))) as T — oc.

Proof. The lemma uses Lemmas 1.3 and 1.5, and is obtained in the same way as Lemma 1.4.

Let p be the same metric on H(D) as in Section 1.2. For f = (fi1,..., fuy,--» fris- s fr1,),

QZ (9117"'791117"'797‘17"'ag'r‘l,.) S HN(D% define

p.(L>9) = max max p(fji, g;).

Then p_is a ;metric on H (D) which induces the topology of uniform convergence on compacta.

Two next lemmas give an approximation in the mean for gﬁ(s,g; a) by <, N(s,g; a) as well as for
C(s,awia) by ¢ (s, ,w;50).
Lemma 2.4. The equality
1 T
lim limsup T / p.(C (s+ir q; 9)’§n,m(5 +ir,a;a))dr =0

n—=0 T 500 0

holds.
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Proof of the lemma is given in [24], Lemma 2 . Using the estimate [12]
r 1
/ I((0 +it, a3 05) P dt = O(T), o> 3
0
j=1,...,r,l=1,...,1;, first it is proved that, for every compact subset K C D,
1 T
lim limsup —/ sup |§(s +iT, a5 05) — Co(s + 0T, ajl)|d7 =0,
n—0o0 T 550 0 seK
j=1,...,r,1=1,...,1l;. From this and the definition of the metric P the lemma follows.

Lemma 2.5. Suppose that the set L(a,...,q,) is linearly independent over Q. Then, for almost

all w € Q7 the equality

- I . .
lim hmsupf/o L (s +ima,wia), ¢ (s +iTa,wa))dr =0

=00 T 00

holds.

Proof of the lemma is given in [24], Lemma 5 . We note that the linear independence of the set
L(ay, ..., ;) is not exhausted fully, the linear independence of the sets L(«ay),. .., L(c,.) is sufficient.
The ergodicity of group {¢- : 7 € R} defined in the proof of Lemma 1.7 leads, for almost all w; € Q;,

to the estimate
T 1
/ C(o +it, aj, wjs a50)|?dt = O(T), o> 3
0

j=1,...,r,1=1,...,l;. From this estimate, by a standard contour integration method it is derived

that, for every compact subset K C D,
1 /T
lim limsup —/ sup [((s +iT, o, wj; aj;) — Gu(s 407, o, wys ajy)|dT = 0
n—o0 T _yoo 0 seK

for almost all w; € Q;, 7 =1,...,r,1=1,...,l;. Combining the latter relation with the definition of
the metric p  gives the assertion of the lemma.

Define one more probability measure

—K

Pr..(A) = ;meas{T €0,7): ¢ (s+im,a,w;a) € A}, A e B(H"(D)).

Lemma 2.6. Suppose that the set L(ay,...,a,) is linearly independent over Q. Then Pr, and
ﬁT,K both converge weakly to the same probability measure P, on (H*(D),B(H"(D))) as T — oc.

Proof. Let 6 be the same random variable as in the proof of Lemma 1.8. On (€, B($, P), define the
H*"(D)-valued random element Xrnw= KT,n,n(S) = XT,n,/{(S’Q; a) = (Xrn1,108)s -, X1rn1,,(8),

ceey XT,n,r,l(S)a s aXT,TL,T,lT (3)) by
Xpnu(s,a50) =¢ (s +i0T, o;a).

Then, in view of Lemma 2.3, we have that

D
XT,n,m X

=Nn.K’
T—o0 ’

35



where X, , = K,m(s) = (Xn11(8),- s Xn1,(8), s X 1(8), o, X1, (8)) is an H®(D)-valued
random element with the distribution P, ,, where P, , is the limit measure in Lemma 2.3. We have
to show that the family of probability measures {P, . : n € No} is tight.

For j=1,...,r,1=1,...,1l;, the series

oo
Z amﬂvn m, ;)

Cn(s, a;a5)
38 (m+ a;)®

m=0

converges absolutely for o > % Therefore, this, for o > %, implies

1 [T | @m0 (m, o = | a1 |?
im L G an)2dE = M —L 2.2
T1_T>I(1>O T/(; |Cn(o 4+ aajvajl)| n;) (m+ a;)? mZ:O (m+ ;)2 = 22)

foralln € Ng, and j = 1,...,7, 1 =1,...,l;. Let K} be a compact subset from the definitions of
the metric p (we use the notation K} in place of K;). Then, using similar arguments to the proof of

Lemma 1.8, we deduce from (2.2) that, foralln e Ngand j=1,...,r,1=1,...,1;

VR

1
1 T = |am'l|2 2
hmsup—/ sup S+ 1T, ;a4 dTSCk( e 2.3
msup 7 | sup |G 5i050)] %(mw)m (2.3)

with some C, > 0 and o), > 3.
Now we take an arbitrary € > 0, and define
[e%e} 1
|amjl|2 :
R = ( —_— .
! mz::() (m + a;)?x
Moreover, let M, = C’kleka*”s*l. Then, in view of (2.3), we obtain that

limsup]P’( sup | X7 p j1(s)| > My, for some (j,l)) <
T— o0 seEKy,

l;

< Zthsup]P’( sup | Xrn,5.(s) > Mjlk> <

jlllTﬁoo seKy

S5

1 T
sup limsup — / sup |Gn(s + 47, s a5p)|dT
Mlk neNg T—oo T 0

j=11=1 seKy
ro 1y
Cklek € €
ST o P
j=11=1 j=11=1
Combining this with (2.1), we find that, for all n € Ny,
, €
IP( sup | X, ;1(s)| > My, for some (],l)) < ok (2.4)
seEKy
Define a set
HY = {(9117--~7g1zl,-~-,gr1,-~-,grz,«) € H*(D) : sup |9;0(s)| < Mjug,
se Ky,

j—1,...,T,l—17...,lj,]€€N}.
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Then HE is a compact subset of the space H"(D), and, in virtue if (2.4),
. = 1
P( X, .(s) € H] 21—522?:1_5
k=1

for all n € Ny, or, by the definition of the random element X,, .,
P, (H)>1—¢

for all n € Ny. Thus, we proved that the family of probability measures {P, , : n € Ny} is tight.
Therefore, by Lemma 1.9, the family {P, , : n € Ny} is relatively compact. Thus, there exists a
subsequence {P,, .} C {P, } such that P,, , converges weakly to a certain probability measure P,

on (H*(D),B(H"(D))) as k — oo. This is equivalent to the relation

X, ,—25P,. (2.5)

Dng,k
LR "N

Now let
Xrw=Xpu(s,s0) = (s+ib7T, a;0).
Then Lemma 2.4, for € > 0, implies

lim limsup P(p (Xr,.(s,050), X7, (5,05 0)) > €)
n—oo T 00 —K 2 1oy
1
= lim limsup —meas{r € [0,T]:p (( (s+iT,az0a),( (s+ir,oza)) >¢e}
n—00 T_yno T =k =K =1,k
1 (T
< lim limsup — p (¢

n—00 T_ss5o eJg K

(s+ iT,g;g),gn H(s + i1, a;0))dr = 0.
This, (2.1) and (2.5) show that Lemma 1.11 can be applied, and we obtain that
)

Xp,., — P.. (2.6)
7 T—o0

Thus, we have that Pr, converges weakly to the measure P, as T — co. Moreover, (2.6), together

with relative compactness of the family {P, . : n € Ny}, shows that
D
X ——P,. (2.7)

Zn,Kk
’ n—00

Now we consider the weak convergence of the measure 13T7,,V. Define the H*(D)-valued random

elements
Xpne(s@wia) = (s+i0T, a,w;a)
and
X o(s,a,w;0) = ¢ (s+i0T, 0, w;a).

Then, dealing with the latter random elements and using (2.7) and Lemma 2.5, we obtain, similarly
to the case of the measure Pr ., that }3T,H also converges weakly to P, as T' — co. The lemma is

proved.
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Proof of Theorem 2.2. We use the same arguments as in the proof of Theorem 1.2. Let A be an
arbitrary continuity set of the limit measure P, in Lemma 2.6. Then the weak convergence of the

measure ]3T7,{ to P, as T' — oo together with Lemma 1.12 yields the equality

lim ;meaS{T €[0,7]: ¢, (s+im,a,w;a) € A} = P,(A4). (2.8)

T—o0
On the probability space (Q7,B(2"), m%;), define the random variable £, by
1 if ¢ (s,a,w;a) € 4,

§u = E,{(g) =
0 if ¢ (s, wia) ¢ A.

Let {®, : 7 € R} be the same ergodic group as in the proof of Theorem 1.2. Then we have that the

random process &, (P, (w)) is ergodic, and Lemma 1.13, for almost all w € Q", implies the equality

1"
Jim = [ 6w = B (2.9)
However, by the definition of &,
E¢, = Eedmiy =miy(w € Q" (u(s,a,w;a) € A) = P (A). (2.10)

Qr

On the other hand,

I 1
—/ & (P (w))dr = meas{T €0,7]: ¢ (s+im, o w;a) € A}.
T 0 T =k
Therefore, in view of (2.9) and (2.10),
T—o00

lim ;meaS{T €10,7]: ¢ (s+ir,a,w;a) € A} =P, (4),

and we have by (2.8) that P;(A) = P (A) for all continuity sets A of the measure P,. Hence,

P.=F . The theorem is proved.

2.3. Support of the limit measure

In this section, we will prove the following theorem.

Theorem 2.7. Suppose that the set L(a,...,q,) is linearly independent over Q. Then the
support of the measure P; is the whole of H"(D).

For j =1,...,r, define

Pjc(A) =mjp(w; € Q;: (C(S,aj,wj;gjl),...,C(s,aj,wj;gjlj) € A), AcB(HY(D)).

Lemma 2.8. Suppose that rankB; = l;. Then the support of the measure Pjc is the whole of
HY(D),j=1,...,r.

38



For the proof of Lemma 2.8, we need some auxiliary results, and we state them as separate lemmas.

Lemma 2.9. Let the sequence {gm = (Gm1s---,9mn) € H*(D) : m € Ny} satisfy the hypotheses:

1° Suppose that py, ..., un be complez-valued measures on (C,B(C)) with compact supports con-

tained in D such that

< 0.

o
m=0

3= [ )i o

Then

20 The series

is convergent in H™(D);
3% For every compact subset K C D,
o0 n
33 sup gy (9] < x.
m=0 j=1€K
Then the set of all convergent series with a(m) € v, m € Ny

Y almg, (s)

m=0
is dense in H™(D).
The lemma is a particular case of Lemma 6 from [30].
Lemma 2.10. Suppose that p is a complex-valued measure on (C,B(C)) with compact support

contained in the half-plane {s € C: o > o¢},

g9(z) = / e"du(s), zeC,
C
and g(z) #0. Then

1
lim sup M > 0y.
r—o0 T

Proof of the lemma is given in [19], Lemma 6. 4. 10.

Now let A C N be a set having a positive density, i.e.,

1
lim —f{m <z: me A} >0.

T—00 I
Let 0 < 0 < 7. We remind that a function g(s) analytic in the closed angular region |args| < 6

is said to be of exponential type if

10 10
Jim sup 819D
r—oo T
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uniformly in 6, |0] < 6.

Lemma 2.11. Let g(s) be a function of exponential type such that

1
lim sup 28I l9(r) > —1,
r

r—00

and the set A C N has a positive density. Then

Z lg(logm)| = +o0.
meA

The lemma is proved in [28], Lemma 5.

Let
QJ(S7 CYJ,OJJ, a]) = (C(S7 a]7wj7 aj)a DRI C(Saa]aw]a ajlj)>7
where a; = (a;1,...,a;,). For s € D and a(m) € v, consider the series
oo
> a(m 9,0, (5), (2.11)
m=0
where

gmj(s) = (gmj1(8);s - -+, Gmyj1,(s)) = <(ma—r’—njotj)s e (mazjéjj)s ) .

Lemma 2.12. The set of all convergent series (2.11) is dense in H' (D).

Proof. Since ((s, a;,wj; a;;) is an H(D)-valued random element, the series
i Amjiw;(m)
= (mt o)
converges uniformly on compact subsets of the strip D for almost all w; € §2;. Therefore, there exists

a sequence {by, : by, € v,m € Ny} such that the series

o0

> g, (5)

m=0

converges in H' (D). Since a(m)b,, € v, m € Ny, for the proof of the lemma it suffices to show that

the set of all convergent series

Z a(m)bmgmj (s) (2.12)
m=0

with a(m) € « is dense in H'% (D). For this aim, we will check the hypotheses of Lemma 2.9 for the
sequence {bmgmj (s) : m € Ng}. Hypothesis 2° of Lemma 2.9 is satisfied by the choice of the sequence
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{bm : m € Ng}. Let K C D be an arbitrary compact subset. Since, for s € D, the inequality o > %

is true, we have that

ol
Z Z U [gmji()bm| < o0 (2.13)

Thus, it remains to check hypothesis 1° of Lemma 2.9.

Let pi1,...,m; be complex-valued measures on (C,B(C)) with compact supports contained in D
such that
oo
Imji(8)bmdpu(s)| < oco. (2.14)
m=0"[=1
Since k; is the least common multiple of the periods kj1,...,kj;, it is the period of all sequences
aj1,.-.,05,. Therefore, in view of the periodicity of the coefficients a,,; and the definition of g,,;i(s),

(2.14) shows that, for k =1,...,k;,

oo

>

m=0
m=k(modk;)

< o0. (2.15)

We put

lj
s) =D arjuuls)
=1

Then v(s) also is a complex-valued measure on (C,2B(C)) with compact support contained in D,

k=1,...,k;. This together with (2.15) implies, for k = 1,...,k;, that

‘ / dl/k
_0 (m + O‘J

m=k(modk;)

< o0. (2.16)

Now let
Ay ={m e N: m=k(mod k;)}
and

pk(z):/e_szdz/k(s), 2€C, k=1,... k.
c

Then, obviously, the set Ay has a positive density, moreover, py(z) is an entire function of exponential

type, k =1,...,k;. Therefore, by Lemma 2.10, either p;(z) =0, or

1
limsupw >-1, k=1,....k. (2.17)

Tr—r00
Here we have used the definition of the strip D, and the sign minus in the definition of py(z). If
inequality (2.17) takes place, then lemma 2.11 gives

> lpr(logm)| = +oo, k=1,... k;. (2.18)

meAg
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It is well known that, for all s € C,
e =14 0(|slel*h.

Hence, for m > 2,

a;\ "’ a;
NS — -s(1 -] — —s —sl 1 —-J —
(m+ «ay) m ( +m> m~ % exp{ sog( +m>}

_ m—sexp{0(|8|)} — (1 n O(|S|)eo(|s|)) — m—1—00(|8|60(|s))_

m m
Since the compact support of the measures vy, ...y, are contained in D, this and (2.16) show that
S Iprllogm)| < 00, k=1,....k;,
meAy

and this contradicts (2.18). Therefore, pi(z) = 0 for K = 1,...,k;, and, by the definitions of py(2)

and vy, we obtain the system of equations

]
Zakil / e Fdw(s) =0, k=1,...,k;.
1=1 ¢

Since rank(B;) = [}, the latter system has only the solution

/efszd,ul(s)EO, I=1,...,1.
C

Hence, by differentiation, are find that

/C s"dpuy(s) = 0

for n € Ng and [ = 1,...,l;. Thus, hypothesis 1° of Lemma 2.9 is also satisfied by the sequence
{bmgmj (s) : m € No}. Therefore, by Lemma 2.9, the set of all convergent series (2.12) with a(m) € v
is dense in H' (D). The lemma is proved.

For the proof of Lemma 2.8, we will apply one more lemma. Denote by Sx the support of the

random element X.

Lemma 2.13. Let {X,, : m € Ny} be sequence of independent H™(D)-valued random elements

such that the series

S
> Xun
m=0

converges almost surely. then the support of the sum of this series is the closure of the set of g € H"(D)

which can be written as a convergent series

Proof of the lemma is given in [30], Lemma 5.
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Proof of Lemma 2.8. By the definition of Q;, we have that {w;(m) : m € Ny} is a sequence

independent complex-valued random variables defined on the probability space (€2;,B(;), m;m),

j=1,...,7. The support of each random variable w;(m) is the unit circle y. From this we have that
amjle(m)’_”’ i, 05 () :m e Ny
(m+a;)° (m + a)*

is a sequences of independent H' (D)-valued random elements on the probability space (€, B(€2;), m;m),

and the support of each element

( amjiw;(m) Amjl;Wj (m)>

(m+a;)* "7 (m+ay)s
is the set
) Amj1a Amjl; A
e HY(D): g(s) = mj,...,J>,ae },
R O P
m € Ny, j =1,...,7r. Therefore, by Lemma 2.13, the support of the random element Qj(s,aj,wj;gj)
is the closure of the set of all convergent series (2.11), j = 1,...,r. This and Lemma 2.12 prove the

lemma because the support of the element gj(s, aj,wj;gj) coincides with the support of the measure

Pjg,j:].,...,r.

Proof of Theorem 2.7. For A; € B(HY(D)), j=1,...,r, let
A=A x--- x A, (2.19)
Since the space H"(D) is separable, we have [3] that the o-field B(H"(D)) coincides with
B(H" (D)) x -+~ x B(H'" (D)),

that is, it coincides with a o-field generated by sets (2.19). We also remind that the measure mf,; is

the product of the measures m;g on (;,B(1;)), j = 1,...,r. Therefore, we have

a,w;a) € A) =

P (A) = mplweQ : ¢ (s,a
mlH(wl SVE gl(s,al,wl;gl) €A x---X
G (

My (wr € Qp S,y wp; 4,.) € Ap). (2.20)
By Lemma 2.8, the support of the measure
ij(wj S Qj : Cj(s,aj7wj;gj) S AJ)

is the whole of H' (D), j = 1,...,r. Therefore, the theorem follows from (2.20).

2.4. Proof of Theorem 2.1

The proof of Theorem 2.1 is similar to that of Theorem 1.1.
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Proof of Theorem 2.1. By Lemma 1.16, there exist polynomials p;;(s), j =1,...,r, 1 =1,...,1;,
such that

€
sup sup sup |fu(s) —pj(s)| < 7 (2.21)
1<j<r 1<I<l; s€Kyy

Define

£
G:{(9117"'7gll17"'7g7"17"'7g’rlr)EHK(D): sup sup sup |g]l(s)_p]l(8)|<2}
1<5<r 1<I<l; s€eKj;

The set G is open in the space H*(D), and, by Theorem 2.7, (p11,.. ., D1lys-«-sDris---s
pri,) is an element of the support of the measure Py Therefore, Theorem 2.2 and Lemma 1.17 show

that

1 €
lim inf meas{r €1[0,T]: sup sup sup [C(s+iT,a;;a)—pj(s)| < }
T—oo T 1<j<r 1<I<l; s€ K, 2

> PEH(G) > 0.

This and inequality (2.21) complete the proof of Theorem 2.1.
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Chapter 3

Mixed joint universality for periodic
Hurwitz zeta-functions and the

Riemana zeta-function.

We preserve the notation of Chapter 3, and consider the joint universality for the periodic Hurwitz

zeta-functions (s, aq;a11),...,C(s, 15018, ), -+, (S, ar;ar1)y .., C(S, ps apy,)
and the Riemann zeta-function ((s) which is defined, for o > 1, by the series

)=

m=1

and can be analytically continued to the whole complex plane, except for a simple pole at the point
s = 1 with residue 1. The Euler product over primes

) =1] (1 - pls>_1, o>1, (3.1)

p

is a very important object in the theory of the function ((s).

3.1. Statement of a mixed joint universality theorem

The periodic Hurwitz zeta-functions ¢(s,o;;a5), 7 =1,...,r, 1 =1,...,1;, with transcendental pa-
rameter o have not the Euler product over primes while the function {(s) can be defined by equality
(3.1). Thus, the collection ((s), {(s,0q;a11),-..,C(s,a15a1,),--.,C(s,00;0r1), ..., (8, ap;apy,.) con-
sists of zeta-functions of different types, and this is reflected in their joint universality - in so called a
mixed joint universality theorem. We remind that the numbers aq, ..., «, are algebraically indepen-

dent over Q if there is no polynomials p(z1,...,x,) # 0 with rational coeflicients such that

plag,...,a,)=0.
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Theorem 3.1. Suppose that the numbers aq,...,«, are algebraically independent over Q, and
that rank(B;) =1;, j=1,...,r. Foreveryj=1,...,r andl =1,...,1;, let Kj; be a compact subset
of the strip D with connected complement, and let f;(s) be a continuous function on Kj; which is
analytic in the interior of Kj;. Moreover, let K C D be a compact subset with connected complement,
and let f(s) be a continuous non-vanishing function on K which is analytic in the interior of K.
Then, for every e > 0,

1
lim inf meas{r €[0,T]: sup |C(s+iT) — f(9)| <e,
T—oo T scK

sup sup sup [C(s+iT,a;55a5) — fu(s)] < s} > 0.
1<j<r 1<I<l; s€K;

3.2. Joint limit theorem for periodic Hurwitz zeta-functions and

the Riemann zeta-function

We start the proof of Theorem 3.1 with a joint limit theorem in the space of analytic functions for

the functions ((s), ¢(s,a1;011),...,C(s, 015018, ), -+, C(s, ar;ar1), ..., C(8, Qs

a,;,.). In this chapter, we use the notation

R = il] + 1,
Jj=1

and H*(D) = H(D) x --- x H(D). Moreover, we introduce a torus

ﬁ = H'va
p

where v, = {s € C: |s| = 1} for all primes p. By the Tikhonov theorem, with the product topology
and pointwise multiplication, the torus 2 is a compact topological Abelian group. Therefore, on
(ﬁ,%(ﬁ)), the probability Haar measure mpyg can be defined, and we have the probability space
(Q,%(ﬁ),ﬁn{). Denote by @(p) the projection of & € Q to ~vp- We also use the probability space
(©,B(2), mp) defined in Section 1.2.

Now let

Q:QXleu'er,

where Q; = Q) for 7 = 1,...,7. Then, by the Tikhonov theorem again, 2 is a compact topological
Abelian group, and we obtain a new probability space (2, B(2), m ), where my is the probability

Haar measure on (,B(£2)). We preserve the notation of previous sections for @ and a, and denote
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by w = (&, w1, ...,w,) the elements of Q. On the probability space (2, B(Q2), my), define the H*(D)-

valued random element QK(S’ a,w;a) by the formula

QK(‘%gaQ,g) = (C(Saa)a C(Saahwl; a11>7 o ,g(S,O[]_,OJ]_; alll)a RN
€(87 Qs Wy Ol )y -+ G (85 Qy w5 arlr))7
where
~ s\
C(S,OJ) = H 1- s )
p
P
and the H(D)-valued random elements ((s, oj,wj; a;) are the same as in Chapter 2, j = 1,...,r,

Il =1,...,l;. Denote by PSK, the distribution of the random element ¢,.- Moreover, let
¢, (s,a50) = (C(s),C(s, a3 011), -, (s, 015008, ), - -
C(syariapn), ., C(s, s ap,)),
and
Pr,.(A) = ;meas{r €0,7]: ¢ (s+ir,aza) € A}, A e B(H"(D)).

The main result of this section is the following statement.

Theorem 3.2. Suppose that the numbers aq,...,«, are algebraically independent over Q. Then

Pr . converges weakly to the measure P as T — oo.
We start the proof of Theorem 3.2 with a limit theorem on the torus 2. Denote by P the set of
all primes, and define

Qr(A) = ;meas{T €0,T]: (p":peP),(m+a1)™: meNy),...,

(m+a,)"": meNy)) e A}, A€ B(Q).

Lemma 3.3. Suppose that the numbers oy, . .., «, are algebraically independent over Q. Then the

measure Qr converges weakly to the Haar measure my as T — oo.
Proof. The dual group of § is isomorphic to
o~ (@)@ @z
peEP j=1 \méeNy
where Z, = Z and Zj,, = Z for all p € P and m € Ny, j = 1,...,r, respectively. An element
k= (kp,k.n,) €D, kp = (kp : p € P), kyyy, = (kim : m € No,j = 1,...,7), where only a finite
number of integers &, and k;,, are distinct from zero, acts on Q by

wowk=T[a%@ [ II ).

peEP j=1meNg
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Therefore, the Fourier transform gr(k) of the measure Qr is

gr(k) = /Q (Ha’%(mf{ 11 wff"%m))d@TZ

= “peP j=1meNy
1 (T , r .
T/ H p T H H (m+ aj)_’kf””dr, (3.2)
0 pep j=1meNg

where, as above, only a finite number of integers k, and k;,, are distinct from zero. It is well known that
the set {logp: p € P} is linearly independent over Q, and this follows from the unique factorization

of positive integers. Since the numbers aq, ..., a, are algebraically independent over @, hence the set
def .
L= "“ {(logp:pGP), (log(eraj) :m€Np,j= 1,...,r)}
is linearly independent over Q. Really, if there exist integers k, and k;.,, not all zeros, such that

kilogpy + -« -+ knlogpp + kim, log(my +a1) + -+ knym,, (Mn, +a1) + ...

+krm, log(my + ) + - + kpom,,, log(m,, +a,) =0,

then we obtain that

k1 kn

PR (my o) (g, o)

(mr + Oér)krmr v (mnr + O‘r)knrmnr =1,
and this contradicts the algebraic independence of the numbers a1, ..., a,. Here p; denotes a certain

prime number not the j th in the set P.

We find by (3.2) that

1 if k=0,
97(E) = { 1-exp {7 (5, e by log 0437, Sng ki log(mtay)) } it k20
T( Zpep kp log P+Z§'=1 EmeNo kjm lOg(m""aj)) o
Thus,
1 it k=0,
lim gr(k) =
T=o0 0 if kE#0.

This and a continuity theorem for probability measures on compact topological groups [10], Theo-
rem 1.4.2; prove the lemma.

We use the same notation as in previous chapters for v,(m,«;) and (,(s,a;;a;), and define

Un(m) = exp {_(7:)0} , myneN.

Then we have that the series

additionally




is absolutely convergent for o > 3. For m € N, define
am) =[] @),
ptm

where p! || m means that p!|m but p!*! { m, and let

n(5,0) = 3 2o,
m=1

Since |@(m)| = 1, the latter series also is absolutely convergent for o > %. For brevity, let

Coplsaa) = (Cn(8)s Cnls, s a11), - Calss s an, ), oo

C’I’L(S; Q] arl)a sy Cn(svar§ arl,.))
and
gn’n(sagag;g) = (C’I’L(Saa)7 CTL(Sa aq,Wy; a11)7 LR 7C’I’L(S7 aq,Wy; alll)a RS
Cn(s7ar7£r; aT1)7 LR C’n(87 Qo , W5 a'rlr))-

For A € B(h"(D)), now define
1 ;
Pr, .(A) = Tmeas{r €0,7]: ¢, (s+ir,a;a)€ A},
and, for any fixed wy = (@o, w10, - - -,wro) € £,
1
Qrnk(A) = Tmeas{T €0,7]: ¢, (s+ir,a,wya)€ A}-

We note that Pr, . and Qr,, . are different from those of Section 2.2 because ¢ H(s +ir,a;a) and

gn R(s + 47, a, wy; a) are different from similar collections of Section 2.2.

Lemma 3.4. Suppose that the numbers a,...,«a, are algebraically independent over Q. Then
Pr .y, and Qrp. both converge weakly to the same probability measure P, ., on (H*(D),B(H"(D)))
as T — oo.

Proof. Since the series (,(s) and (s, j;a5), j =1,...,7, I =1,...,1;, converge absolutely for

o> %, the function h, . : @ — H"(D) given by the formula

hn,n(ﬂ) = Cn n(s»av&§ Q)

is continuous. Moreover, we have that

hn n((p_iT ‘pe P)7 ((m + al)_iT tm e No), ey

)

(m+a,)™: meNg)) =¢ (s+ir,a;a).

Therefore, we have that P; ,, , = QTh:L’}i. This, the continuity of h,, ,,, Lemmas 3.3 and 1.5 show that

Pr . converges weakly to P, . = myh, 1 as T — co.
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Similarly, we obtain that Qr,y, . converges weakly to mHg;’}i as T' — oo, where g, , : Q@ — H"(D)
is related to Ay, x bY gn k(W) = hnk(ww). Since the Haar measure my; is invariant with respect to the

-1

translations by points from £, this implies the equality mHg;jC =mpyh,, ;;, and the lemma is proved.

Now we define a metric on h*(D). For

f: (f()vfllv"'»fllla"'7f7‘17"'7f’rlr) EHH(D)

and

g = (907911;-"agllp-'-,grly-uagrlr) S HH(D),

define

p, ([ g) = max (P(fo,go), 113]‘;122 Jpax. P(sz,gjl)>,
=J = —"="7

where p is the same metric on H (D) as in previous chapters. Then p_is a metric on H"(D) inducing
its topology.
Now we will approximate the vectors gn(s, a;a) and gﬁ(s, a,w;a) by gnﬁﬁ(&g; a) and gnﬁ(s, a,w;a),

respectively.

Lemma 3.5. The equality

1 /7
lim limsup T/ P, (gﬁ(s +1iT, 04 Q),gn N(5 +17, 0 E))dr =0
o :

n—=00 T 500

holds.

Proof. Tt is known [19] that
1 (T
lim h;n_)s;p 7 /0 p(C(s +147), Cu(s +i7))dT = 0.
This, Lemma 2.4 with remark on the notation by P, of a different metric in Chapter 2, and the

definition of the metric p, prove the lemma.

Lemma 3.6. Suppose that the numbers aq,...,«, are algebraically independent over Q. Then,

for almost all w € Q, the equality

Nn—00 T_ss5o

1 (T
lim lim sup T / P, (gﬁ(s + 47, o, w; 9)’§n K(s + 147, o, w; g))dT =0
0 :
holds.

Proof. In [19], it is obtained that, for almost all & € ﬁ,
1 T
lim limsup — / p(C(s +iT,0), (s + iT,LAU))dT =0.
n—0o0 T 450 T 0
From this, Lemma 2.5 and the definition of the metric P the lemma follows because the algebraic

independence over Q of the numbers aq,...,a, implies the linear independence over QQ of the set

L(ag, ... qp).
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Define one more probability measure

Pr.(A) = ;meas{T €0,7]: ¢ (s+im, o w;a) € A}, A e B(H"D)).

25

Lemma 3.7. Suppose that the numbers a1,...,q, are algebraically independent over Q. Then
Pr.,. and Pr,; both converge weakly to the same probability measure P, on (H*(D),B(H*(D))) as

T — o0.
Proof. We generalize the proof of Lemma 2.6. On the probability space ((~27 %(KN)),]P’), define the

H"(D)-valued random element X, . by

&T,n,n = &T,n,n(s) = XT,n,n(S?Q; Q) = (XT,n(s)v XT,n,Ll(S)ﬂ s 7XT,TL,1A,11 (8)? BREE)

XT,n,r,1(5)7 ceey XT,n,r,lr (8)) = gn,f@(s =+ ZﬂT, Q; g).
Then, by Lemma 3.4,

— X

2T n,k Teyoo TR

where

X =Xnk(s)= (Xn(s), Xn11(8), - s Xn1,,(8)s oo, Xnra(s), ... ,Xmﬂ,lr(s))7

s

isan H"(D)-valued random element with the distribution P, ,; (P, is the limit measure in Lemma 3.4).
Since the series for (,(s) and (. (s, a550a5), 5 =1,...,r, 1 =1,...,1;, converge absolutely for o > %,

we have that, for o > %,

e > — 1
lim ?/O Calo + i) Pt = Y ”zgf) <Y (3.4)

for all n € N, and (2.2) is true for all n € N, and j =1,...,r, 1 =1,...,1;. Then, using the Caushy

integral formula, contour integration and (3.4), we find that, for n € N,

1

e ~ (= 1 \?
limsu —/ sup |Cp(s+i7)|dr < C ( E ~> 3.5
T—)ocp T 0 sefgc ‘C ( )’ F 1 m2k ( )

with some 5’k > 0 and o}, > % Here K is a compact subset from the definition of the metric p. Let

. o 1 3
Rk:(zﬂ%“) 3

m=1

and let other notation remain the same as in the proof of Lemma 2.6. Then, taking Mk = ékﬁﬂkﬂgfl
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and Mj;, = CxR;j,2""e~1, we deduce from (3.5) and (2.3) that

limsup P( sup |Xra(s)| > My or  sup [Xrnju(s)| > My
T—o0 seKy, seEKy,

for some (5,1)) < limsupP( sup |Xr.,(s)| > My,)
T— o0 seKy,

L

+ZZlimsupIP’( sup | Xr,5.0(8)| > Mji)

J=11=1 T—o0 sEKk

1 I
< — suplimsup — / sup |Cn(s +47)|dT
Mj, neN T—oo 0 sEKy

r 1 T
1 . 1 :
+ZZ sup hmsupT/O sup |Gn(s + 47, s a5)|dr

e Mjik neNy T—oo seKy,
CRRk - ? Oklek g 3
I A DM
k j=11=1 J j=11=1
€ e €
k41 + 9k+1 — 9k~

This together with (3.3) leads, for all n € N, to the inequality

3

P( sup |X,(s)| > My or sup |Xnju(s)] > My for some (5,0)) < —,

k e N. (3.6)
seKy SEKy 2

Now we take a set

Hs - {(gO,glla"'7gll1a"'7g7’1a"'7g'rl,.) S HK(D) . Su}? ‘90(5)| < Mka
seEKy

sup |gi(s)| < M, j=1,...,r, l=1,...,1;, kEN}.
seKy,

Then the set HY is uniformly bounded, thus it is compact on the space H"(D). Moreover, in view of

(3-6),
P(X, .(s) € HF) >1 —522% =1-c¢
k=1

for all n € N. Hence,
P, (H)>1—¢

for all n € N. Thus, we obtained that the family of probability measures {P, , : n € N} is tight.
Therefore, by Lemma 1.9, the latter family is relatively compact, and there exists a sequence {P,, x :
k € N} C {P,: n € N} weakly convergent to some probability measure P, on (H"(D),B(H"(D))

as k — oo. Hence

Xy —— P (3.7)

k—o0

Let
Xp = Xri(s) =¢, (s +i0T, a;a)
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be one more H"(D)-valued random element defined on the probability space (ﬁ, ‘B(Q)JP’). Then, by

Lemma 3.5, we have that, for every ¢ > 0,

lim limsup]P’(B (XT,n(S)7XT,n(S)) > 6)

n—o0 T 400 e
T

< lim limsup — p (C (s+ir,a50a),¢ (s+i7,g;g))d7=0.
n—00 T_yog o “HRER 2n,Kk
This, (3.3) and (3.7) together with Lemma 1.11 imply the relation

Xg, = Py (3.8)
7 T—oo

which is equivalent to the weak convergence of Pr , to P, as T — oo. Moreover, it follows from (3.8)

that the measure P, is independent of the choice of the sequence {P,, .. Thus, we have that

X, . —2 P, (3.9)

n,K
’ n—00

Now we consider the measure 13T,K. For this, define
X ls) = ¢, (s +i0T, a, w;a)
and
Xp(s) =, (s +i0T, a,w;a).

Repeating the above arguments for the random elements XT,nﬁ(s) and XT’H(S), and using Lemmas 3.4
and 3.6 as well as relation (3.9), we obtain that the measure Z3T7,Q also converges weakly to P, as
T — o0o. The lemma is proved.

In virtue of Lemma 3.7, for the proof of Theorem 3.2 it suffices to show that the limit measure P
in Lemma 3.7 coincides with PEK' To prove this, we need some results from ergodic theory. Let, for

TeR,

S

= {(piif cpeP),(m+a)) ™ : meNy),...,(m+a,)"": me No)}.

T

Define ®_(w) = a,w, w € Q. Then {®_ : 7 € R} is a one-parameter group of measurable measure

preserving transformations on 2. Moreover, the following statement is true.

Lemma 3.8. Suppose that the numbers o, ..., «, are algebraically independent over Q. Then the
group {®, : T € R} is ergodic.

Proof of the lemma is given in [25], Lemma 7.

Proof of Theorem 3.2. We apply standard arguments. We fix a continuity set A of the limit

measure P, in Lemma 3.7. Then, by Lemmas 3.7 and 1.12

T—o0

lim ;meaS{T €0,7]: ¢ (s+im,a,w;a) € A} = P.(A). (3.10)
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Consider a random variable £, defined on (2, B(22), m) by the formula

5/{(@) _ 1 if gﬂ(s,g7£;g) c A7

0 otherwise.

Clearly, its expectation
B =my(we: ¢ (s,,wja) € A) = P (A). (3.11)

In view of Lemma 3.8, the random process &,(®, (w)) is ergodic. Therefore, by Lemma 1.13, we have

that, for almost all w € Q,

1t B
lim /0 £u(@, (w))dr = EE,. (3.12)

T—oo T

On the other hand, the definitions of &, and @ yield
1 (7 1 ‘
= &x(@, (w))dT = =measq7 € [0,7]: ¢ (s+iT,a,w;a) € As.
T 0 T =K
Thus, by (3.11) and (3.12), for almost all w € Q,
1
lim meas{r €0,T): ¢ (s+ir,a,w;a) € A} = P (A).
T—oco T =k =K

Combining this with (3.10), we obtain that P;(A) = P (A) for all continuity sets A of the measure
P,. Hence, P;(A) = P; (A) for all A € B(H"(D)) because the continuity sets form a determining

class [3]. The theorem is proved.

3.3. Support of the limit measure

In this section, we give explicitly the support of the measure F; . Define
S={geH(D): g(s)#0 or g(s)=0}.
Let k1 = s — 1.

Theorem 3.9. Suppose that the numbers aq,...,«, are algebraically independent over Q, and

that rank(B;) = l;, j = 1,...,r. Then the support of P is the set S x H" (D).

Proof. We write
H"(D) = H(D) x H™ (D).
Since the spaces H(D) and H{ (D) are separable, we have [3] that

B(H"(D)) = B(H(D)) x B(H"(D)).
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Thus, it suffices to consider P (A) with A = Ay x A,,, A € B(H(D)), Ay, € B(H" (D)). Let, as in
Chapter 1, Q" = €y x --- xQ,., where Q; = Q for all j =1,...,r, and let m; be the Haar measure on
(Q7,8(9Q7)). Then we have that the Haar measure my; is the product of the Haar measures my and

mYy. (We recall that Q = Q x ", and 7y is the Haar measure on (€, B((2))). Hence, we find that

P (4) = my(we:¢ (s,a,wa) € A)
=my(weQ: ((s,0) € A1, (((s, a1, wisa11), ..., {(s, 0, w5 a11,), - - -,
C(sy apywri@r1), ., C(s, oy wrs Ay, ) € Agy)
=mp(@eQ: ((s,0) € 4)
xm%((wl,...,wr) e (C(s,al,wl;a11)7...,((s7a17w1;a111)7...,

C(SaaT7w7‘; aT1)7 ctty C(S, OZT,OJT; aTlr)) E AHl)' (313)

In [19], it is obtained that the support of the H(D)-valued random element ((s,&) is the set S, i.e.,

S is a minimal closed set such that
mp(@eQ: ((s,0)€8) =1 (3.14)
Moreover, by Theorem 2.7, the support of the H"**(D)-valued random element
(C(& a1,w1;011), -+, C(s, a1, w1817, )5 -, C(8, QWi 1), -, (8, Qi Wi arlr))
is the whole of H"1(D), i.e., H**(D) is a minimal closed set such that

m;—[((wla s 7(*}7‘) €eQ": (C(S7O[1,W1;Cl11>7. . 7C(S7a17w1;all1)a ERE)

(s, prywr; 1), ..., C(8, ty Wi arlr)) e H™ (D)) =1.

This, (3.13) and (3.14) complete the proof of the theorem.

3.4. Proof of Theorem 3.1

A proof of Theorem 3.1 is based on Theorems 3.2 and 3.9 as well as on Lemma 1.16.

First suppose that the functions f(s) and f;;(s) have analytic continuations to the whole strip D,

and the analytic continuation of f(s) has no zeros. Define

G = {(9079117"'7gll17"-7gr17'~-7grlr)EHK(D)Z
€ €
sup |go(s) = f(s)] < 5, sup sup  sup |gz(s) = fu(s)l < 3 ¢
seK 1<j<r 1<I<l; s€eKj;

The set G is open in the space H*(D). Therefore, Theorem 3.2, together with Lemma 1.17, implies

1
lim inf Tmeas{r €0,7]: ¢ (s+it,a;a) € G} > P (G). (3.15)

T—o0 =K
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However, by Theorem 3.9, (f, fi1,-- s fiiyy -« s fr1s- -+, fr1,) is an element of the support of the measure

P . Thus, P; (G) >0, and the definition of G’ and (3.15) yield

lim inf ;meas{T €10, 7] : sup|¢(s+iT) — f(s)] < E,

T—o00 s€K 2

, 5
sup sup sup |((s+iT, a5 a5) — f(s)] < } > 0. (3.16)
1<5<r 1<I<l; s€ Ky 2

Now let the functions f(s) and fj;(s) satisfy the hypotheses of the theorem. Then, by Lemma 1.16,
there exist polynomials p(s), p(s) # 0 on K, and pj;(s) such that

sup| f(s) — p(s)| < (3.17)

and

sup sup sup |f(s) — p(s)| < (3.18)

1<j<r 1<I<l; se K 2
Since p(s) # 0 on K, we can define a continuous branch of the function log p(s) in K which will be
analytic in the interior of K. By Lemma 1.16 again, we can find a polynomial g(s) such that
sup [p(s) — )| <
sek 4
This, together with (3.17), shows that

sup |f(s) — 1] < = (3.19)
seK 2

However, e2(®) = 0, therefore, the functions e?(*) and pji(s) satisfy all hypotheses under which (3.16)
holds. Thus, we have that

1
lim inf Tmeas{T € (0,7 : sup [¢(s + i) — 2| < ;

T—o0 s€K

) €
sup sup sup [((s+ i, a5;a5) —pu(s)] < } > 0. (3.20)
1<j<r 1<I<l; s€K 2

It is easily seen that, in view of (3.19) and (3.18),

seK

{T € [0,7]: sup [C(s +it) — 1| < %,

. €
sup sup sup [((s+ i, a55a5) —pu(s)] < } -

1<5<r 1<I<l; s€ Ky 2
{r € [0,7] : sup [C(s +i7) — J(5)] < &,
seK

sup sup sup |((s+iT,o5;a5) — f(s)] < 5}.
1<5<r 1<I<l; s€ Ky

This and (3.20) prove the theorem.

56



Chapter 4

Mixed joint universality for periodic
Hurwitz zeta-functions and the

zeta-function of cusp form

Let F'(z) be a normalized Hecke eigen cusp form of weight « for the full modular group

b
SL(Q,Z):{(a ):a,b,c,dEZ, ad—bc:l}.
c d

a b
This means that F(z) is a holomorphic function in the half-plane Imz > 0, for all ( ) €
c d

SL(2,Z) satisfies the functional equation

F (Zig) = (cz + d)*F(2),

and is a simultaneous eigen function of all Hecke operators

d—1
(Tuf)(z) =0 S d Y f (”Z;bd) . neEN.

d|n b=0

In this case, the function F'(z) has at infinity the Fourier series expansion

oo

F(z) =Y e(m)e*™™*, ¢(1) =1.

m=1

The zeta-function ((s, F') attached to F(z) is defined, for o > %1, by the series

(s, F)=>" %

Moreover, (s, F) is analytically continuable to an entire function, and, for o > “F1, has the Euler

product expansion over primes
-1 -1
a(p) B(p)
(&Fz”(l— ) <1— ,
( ) . ps pS

o7




where a(p) and 8(p) are conjugate complex numbers related to ¢(m) by the equality a(p)+8(p) = ¢(p).
In this chapter, we consider the joint universality for a collection of zeta-functions ((s, F'), {(s, aq;

011), .. .,C(s,al; alll), .. .,C(S,OZT; arl), .. .,C(S,Oér; amr).

4.1 Statement of the main theorem

Let D, = {s €eC: $<o< %“} Other notation is the same as in Chapter 3.

Theorem 4.1. Suppose that F is a normalized Hecke eigen cusp form of weight x for the full

modular group, the numbers ai,...,a, are algebraically independent over Q, and rank(B;) = I,
j=1,...,r. Let K C D, be a compact subset with connected complement, and f(s) be a continuous
non-vanishing function on K which is analytic in the interior of K. Moreover, for j = 1,...,7,

l=1,...,1;, let K;; be a compact subset of the strip D with connected complement, and let f;;(s) be

a continuous function on K, which is analytic in the interior of K;;. Then, for every ¢ > 0,

1
lim inf rneas{r € [0,T]: sup|((s+i7, F) — f(s)| <&,
T—oo T seK

sup sup sup [C(s+iT,a55a5) — fu(s)] < E} > 0.
1<j<r 1<j<1; s€K;,

We see that Theorem 4.1 is an analogue of Theorem 3.1 in which the Riemann zeta-function
¢(s) is replaced by the function ((s, F). This change requires some additional arguments because in

Theorem 4.1 we have two different strips D,, and D.

4.2. Joint limit theorem for periodic Hurwitz zeta-functions and

the function ((s, )

In this chapter, let

-
U1:le, v=uv + 1.
j=1

Denote by H(D,) the space of analytic functions on D, endowed with the topology of uniform

convergence on compacta, and let

HY(D,.,D) = H(D,) x H(D) x ... x H(D) .
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Moreover, for brevity, we set

C (‘§787g;g7 F) = (C(S3F)a<(saal;all)7"'a

v

C(S7a1; alll)? . .7C(S,O[T; ar1)7 . 'a<(57a7"; aTlr))

On the probability space (2, B(2), my ), define the HY(D,;, D)-valued random element <, (5,8, a,w;a, F)

by the formula

C (é,S,Q,Q;Q, ) = (C(gvd)aF)aC(svalawl;all)v'~~7

v

C(Svalawl; alll)a R C(Sa Ay Wr3 arl)a cety <(Sa Ay, Wy; arlr))7

where

o F) =] <104(P)Q(P))1 (1W>

S S
» p p
Other notation is the same as in Chapter 3. Denote by P the distribution of the random element

¢, (85, a,wia F), ie., for A€ B(H"(Dy, D)),

Pr (A) =mpy (geQ: ¢, (5,8 aq,wia ) EA).

v

In this section, we consider the weak convergence of
1
Pr,(A) = 7 meas {7‘ €10,7]: ¢ (s+ir,s+ir,a;a,F) € A} , AeB(H"(D.,D))
as T — oo.

Theorem 4.2. Suppose that the numbers aq,...,«, are algebraically independent over Q. Then

Pr, converges weakly to the measure Pr as T — oo.

Proof of Theorem 4.2 is analogical to that of Theorem 3.1. Therefore, we will omit some details.

For n € N, define

(s ) = Y )

mS

and

ta(,0F) = 3 Amelmun(m)

ms

Then we have [15] that the latter series are absolutely convergent for o > §. For brevity, we set

£n7v(§asag;g7F) = (Cﬂ(gaF);Cn(saal;all)a <. 'acn(sval;alh)a R

Cn(57a7“; ar1)7 LRI Cn(sa Qp; a’rlr))
and
gn’v(‘i S, q,wW; a, F) = (CTL(§7(’D’ F)7 Cn(sﬂ ay,Wi; all)a ) Cn(57041)w1; alll)a RS
<n<s>a7“7w7‘; a’rl)a ERS) Cn(saaraw’r; a’rl,,'))-
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Now on the space (HY(Dy, D), B(H"(D,, D))), define two probability measures
1
Prn.(A) = 7 meas {T €0,1]: ¢,  (S+ir,s+ira;aF)e€ A}
and

1
Qrnw(A) = 7 meas {7‘ €0,1]: ¢,  (8+ir,s+ir,a,wya,F)eE A},

)

where w, = (&g, w1o, .., wro) is a fixed element of .

Lemma 4.3. Suppose that the numbers oy, ..., a, are algebraically independent over Q. Then
Pr .o and Qr.n, both converge weakly to the same probability measure P, ., on

(H*(D,, D), B(H"(D,,D))) as T — oo.

Proof. We repeat the arguments used in the proof of Lemma 3.4. The absolute convergence of the
series for (, (8, F') and (n(s,aj;05), 7 =1,...,r, { =1,...,1;, implies the continuity of the function

hnw: Q— HY(Dy, D) defined by the formula
hnow(Ww) = ¢ (5,8, ,w;a, F).
Moreover, we have that

hn,v((p_” : pEeP), ((m—|— 041)_” :mE No), el ((m—i—a,)_” :mE NO)) -
=( (B+irs+ir,aza F).

Hence, Prg,, = QTh;){), where @Qp is the measure from Lemma 3.3. This, the continuity of the

function h,, and Lemma 1.5 together with Lemma 3.3 show that the measure Pr,, converges

-1

n,v

weakly to P, , = mgh,,, as T — oo.

Now let the function g, ., : 2 — HY(Dy,D) be given by the formula g, ,(w) = hpp(ww)-
Then the above arguments show that the measure Qr, , converges weakly to the measure m g, as
T — oco. However, the invariance of the Haar measure mj implies the equality mHh;}U = mHg;},.

This proves the lemma

Let {Kk : k € N} be a sequence of compact subsets of D, such that
Dn = U kkn
k=1

K, C kl+1 for all I € N, and, for every compact K C D,, there exist [ such that K ¢ K;. For

f,g € H(D,), define

o)y e () (o)
) = 2 R =)

Then p( 1, §) is a metric on H(D,) which induces the topology of uniform convergence on compacta.

Forf:(fvfll?"'af1l17"'7f'r17"'7f7’l7~)ag:(gmglla"'7gll17"'7gr17"'7

gri,.) € HY(D,;, D), define

pu(f. g) = max (ﬁ(f,f», max max p(fjl,gm) .

1<j<r 1<I<l;
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Then we have that p, is a metric on H”(D,, D) inducing its topology.
Having the metric on HY(Dy, D), we can approximate gv(é, s,a;a, F) by <, U(é, s,

a,F), and ¢ (8,s,,w;a,F) by ¢ (5,8, a,w;a, F).
Lemma 4.4. The relation

1 (T
lim limsupf/ p (C (84 ir,s+ir,a;a,F), ¢ (§+iT7s+iT,a;a7F)>dT:0.
0 o\ v —n,v

n—00 T_sso

holds.

Proof. In [29], it was obtained that, for every compact subset K C D,
1 (T
lim limsup — / sup [((s +i7, F) — Cu(s +iT, F)|dr = 0.
n—=0 T 00 0 s€EK
Hence, we have that

T
lim limsup%/ p(C(S+im, F), (8 + i, F))dr = 0. (4.1)
0

Nn—00 T_yno

From the assertion of type of Lemma 2.4, it follows that

1 /T
lim limsup—/ max max p(((s+it, o ;a5),Cn(s + i, a5 a5) dr = 0.
0

n—00 T_, 1< <r 1<i<Iy

This, (4.1) and the definition of the metric p, prove the lemma.

Lemma 4.5. Suppose that the numbers aq,...,a, are algebraically independent over Q. Then,

for almost all w € Q,

1 /7
lim limsupf/ P (C (§+im,s+it,a,w;a, F), ¢ (§—|—i7’,s+i7,g,g;g,F)) dr =0.
0 Py \2w v

Nn—0o0 T_yno

Proof. In [15], it was proved that, for every compact subset K C D,,

1 /7
lim limsup—/ sup [C(s +i7,&0, F) — Cu(s + i, 0, F)|dr =0
0

n—=o00 T 300 seK

for almost all @ € Q. From this, we obtain that, for almost all & € Q,

1 /7
lim limsupf/ p(C(8+ir,w, F), (84 it,w, F))dr = 0. (4.2)
0

n—o0 T _ys0

The assertion of type of Lemma 2.5 yields the relation

T
lim li = T, 0, W) 0 i, 0, wj;a5)) dT = 0 4.3
Jim. lénf;pT/o Joax e p(C(s + 7 0, w55 80), Cnls 417, 05, w53 ag0)) A7 (4.3)

for almost all (w1, ...,w,) € Q1 X -+ x Q,. Since the measure my is the product of the Haar measures
on (2, B(Q)), and on (2 x - - x Qy, B(Qy X - -- x Q,.)), relations (4.2), (4.3) and the definition of the

metric p, imply, for almost all w € Q, the equality of the lemma.
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For w € , define one more probability measure

- 1
Pr,(A4) = 7 meas {7‘ €0,7]: ¢ (§+ir,s+im,a,w;a,F) € A} , AeB(H"(D,D)).

v

Lemma 4.6. Suppose that the numbers a1,...,«a, are algebraically independent over Q. Then
Pr., and Pr,, both converge weakly to the same probability measure P, on (H"(D,, D), B(H"(Dy, D)))

as T — oo.

Proof. We follow the proof of Lemma 3.7. On the probability space (ﬁ,%(ﬁ),ﬂ”), define the
H(Dy, D)-valued random element X, , by the formula

XT,n,v = XT,n,v(ga S) = (XT,H(§)7 XT,n71,1(5)7 s ’XT,nyl,h (8)7 RN

XT,n,r,l(S)y e XT,TLJ“JT (5)) = gn v(é + iGT, s + i0T, aa, F)

Then Lemma 4.3 implies the relation

D
XT,TL,’U X

An v
T—o0 ’

where

Kn,v = Kn,v(gv S) = (Xn(g)’ Xﬂ,l,l(s)’ s ’Xml,h (5)’ s 7X717T71<5>7 s 7Xn>T7lr(S))

is an H"(D,, D)-valued random element with the distribution P, , in the notation of Lemma 4.3.
We have mentioned above that the series for ¢, (s, F") converges absolutely for o > %. Therefore, for

K
o> 35

m

1T L2 o~ C(mva(m) _ - ¢A(m)
lim ?/0 [Cn (o +it, F)| dt:ZTSmZZI 5 < 00

m=1

for all n € N, because of the Deligne estimate [11]

c(m) =0 ( hTﬂ) .
Thus, a simple application of the Cauchy integral formula lead to the inequality

1

i sup = [ P < (S EmY) N 45
P ; suP|Cn(s+z7', ) dr < Cy Z ; neN, (4.5)

26
T—o0 sE€EK m

m=1

with some C’k >0 and 6 > 5. We set

- (2 ii’;?)

m=1

and take My = CpRi28t e~ and My, = CxRjx25 e, € > 0, where we preserve the notation of

Section 2.3. Now, from (2.3) and (4.5), we obtain that

limsupP | sup |X7.,(35)] > M, or sup | X7, 5,0(s)] > Mjy, for some (j,1)
T— o0 se Ky sEKy
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ro 1
< limsupP (sup | X710 (8)| > Mk> + ZZlimsupP (sup | X710 51(s)] > Mjlk>

T—o00 se Ky =1 1=1 T— o0 se Ky,

1 /7
—/ sup [Cn(8+ i1, F)|dr
0 !

o Mk, nEN T—o00 seKy,

+ZZ

J=11=1 jlk neNg T—oo

r r l;
CkRk OkR]lk 3 3 3 £ o 3
ZZ My,  2k+ T Srr Zzl S oFrt T oET T ok

j=11=1 j=11=1

1 (T
sup lim sup — / sup [Cn(s +i7, aj;a5)|dr
T 0 sEKy

Using relation (4.4), hence we deduce that, for all n € N,

P | sup | X,(5)| > My or sup | X, ;i(s)| > M for some (j,1) | < % (4.6)
seKy, sEK} 2
Define a set
HEU = {(979117'"7gll17"‘>gr17"‘>grlr)GHU(DnaD): sup |g( )‘<Mk7
SGK;C

sup |gi(s)| < M, j=1,...,r,l=1,...,1;, k GN}.
sEKy

Then H'is a compact subset of the space H*(Dy;, D), and, by (4.6),
=1

P(Xn,v(évs)EHg) 21—622?:1_5

k=1

for all n € N. Thus, by the definition of the random element X, (8, s),
P,,(H)>1—¢

for all n € N. This means that the family of probability measures {P, , : n € N} is tight,and, by
Lemma 1.9, it is relatively compact. Therefore, there exists a subsequence {P,,, , : k € N} C {P,,:
n € N} such that P,, , converges weakly to a certain probability measure P, on
(H"(Dy, D), B(H"(D,,D))) as k — oco. This can be written in the form

X, -2 P, (4.7)

TRV koo

Define one more H"(D,, D)-valued random element X , = X, (3,s) by the formula
XT’U(& 5) = ((8+140T,s +i0T, o a, F).
Then Lemma 4.4 shows that, for every ¢ > 0,

lim hmsup]P’( (KT’H)U(&S),KTW(&S)) > E) =

n— oo T—00

1
lim limsup Tmeas{T €[0,7]: p, (C(3+it,s+iT,a50, F),

n—00 T _yno

1 T
¢, 1)(§+i7’,8+i7’,g;g)) > 5} < lim limsupT—6 p <C (8 + i,
’ 0 —v v

- Nn—0o0 T_sno
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s—|—z'7’,g;g,F),§nv(§ +i7',s—|—i7',oz;a,F))d7 =0.
The latter relation, (4.4), (4.7) and Lemma 1.11 yield
X7, —— P, (4.8)
7 T—oo

thus, Pr, converges weakly to P, as T — oo. The relation (4.8) also shows that the measure P, is

independent of the choice of the sequence {P,, » : k € N}, and this gives the relation

—2.,p, (4.9)

n— oo

X

It remains to show that the measure }ADTyv also converges weakly to P, as T' — oco. We set
XT,mv(é, 5) = gnv(é +1i0T, s + 10T, o, w; a, F)
and
Xop,(8,8) = ¢ (8+1i0T, s +i0T, o, w; a, F).

Then the above arguments, together with Lemmas 4.3 and 4.5, and relation (4.9) applied for the
random elements XT,TL,U(é’ s) and XTyv(é, s) show that the measure JADTJ, also converges weakly to P,

as T'— oo. The lemma is proved.

Proof of Theorem 4.2. In order to prove Theorem 4.2, it suffices to show that the limit measure
P, in Lemma 4.6 is the distribution of the random element gv(é, s, o, w;a, F'). For this, we repeat the
proof of Theorem 3.2. Let A be a fixed continuity set of the limit measure P, in Lemma 4.6. Then
Lemmas 4.6 and 1.12 imply the relation

1
lim Tmeas{r €[0,7]: gv(é +ir,s+it,a,w;a, F) € A} = P,(4). (4.10)

T—o0

On the probability space (Q,B(Q), my), define the random variable &, by the formula

1 if ¢ (5s,qwa F)eA,

fv(@) = -
0 otherwise.
Then we have that
E&, = my (g €Q:( (3sawaF)e€ A) =P (A). (4.11)

Let {®, : 7 € R} be the same group as in the proof of Theorem 3.2. Then Lemma 3.8 implies the
ergodicity of the random process &,(®, (w)). This together with Lemma 1.13 shows that, for almost
all w € Q,

T—oo T

e B
tm 7 [ 6 (@, (@) ar = B, (4.12)
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However, on the other hand, the definitions of &, and ®_ imply the equality
I 1 L ,
T & (2, (w))dr = 7 meas {7’ €0,7]: ¢ (s+ir,s+it,q,w;a, F) € A} .
0
Therefore, in view of (4.11) and (4.12), we have that, for almost all w € Q,
1
lim —meas {T €0,7): ¢ (§+ir,s+ir,a,w;a,F) € A} =P (A).
T—oo T v v
This and (4.10) show that P,(A) = P (A). Since A is an arbitrary continuity set of P,, hence

P,(A) = P (A) for all continuity sets of P,. Since all continuity sets form a determining class, we

obtain that P,(A) = P; (A) for all A € B(H"(Dy,D)). This complete the proof of Theorem 4.2.

4.3. Support of the limit measure

Define

Se={9€ H(Dy): g(s) #0 or g(s) =0}.
We recall that vy = v — 1.
Theorem 4.7. Suppose that the numbers a,...,«a, are algebraically independent over Q, and
that rank(B;) = lj, j = 1...,r. Then the support of the measure P¢ is the set S, x H"' (D).
Proof. By the definition,
H"(D,D) = H(D,) x H*(D).
In virtue of the separability of the spaces H(D,) and H"*(D), the equality
B(H"(Ds, D)) = B(H(Dyx)) x B(H" (D))

holds. Hence, it suffices to consider the measure P for A = B x C, where B € B(H(D,)) and

v

C € B(H"(D)). Therefore, using the same notation as in the proof of Theorem 3.9, we find that, for
A=BxCeB(H"(D,D)),
Pe (A) =my (g €Q: ¢ (55,awaF)e A)
zmH(g €Q: ((5,&,F) € B,(¢(s,a1,wi;a11), ..., ((s,00,wra11,), - - -,
C(s, pywr; 1), -5 C(8, s wyes arlr)) € C’)
=1y (LD eN: C(,w, F) e B) m%((wl, coywp) €EQ7 (C(s,al,wl;an), e
C(s,ar,wisa11, )y C(8, Qprywr; Ar1), - oo, C(8, Qupy wies arlr)) S C’). (4.13)

In [30], it was obtained that the support of the random element ((§, o, F) is the set Sy, i. e., S, is a
minimal closed subset of H(D,) such that

- (w € (3,0, F) e SH) — 1. (4.14)
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As in the proof of Theorem 3.9, we have that the support of the random element (¢(s, a1, w1;a11)
oo C(syar,wisany), -, C(8, am, wes arr),y oo, C(S, ey wies 0, ) is the space HY (D). Thus, from this,

(4.15) and (4.14), the theorem follows.

4.4. Proof of Theorem 4.1

A proof of Theorem 4.1 differs from that of Theorem 3.1 only by details of the notation.
By Lemma 1.16, there exist polynomials p(s) and p;i(s), 7 =1,...,r,1=1,...,1;, such that

sup |f(s) = p(s)| < S (4.15)
seK
and
sup sup sup |fu(s) —pj(s)| < g (4.16)

1<j<r 1<I<l; s€K;
Since f(s) # 0on K, p(s) # 0 on K as well if ¢ is small enough. Thus, on K we can define a continuous
branch of the logarithm log p(s) which will be an analytic function in the interior of K. Therefore, by

Lemma 1.16, there exists a polynomial ¢(s) such that

sup ‘p(s) —et®| < £
seK 4
This together with (4.16) shows that
a(s)| < £
sup |f(s) —e < -. (4.17)
seK 2
Define
G = {(gvglla-"791[15"'ag7‘1;"'ag7‘lqﬂ)EHU(D,‘mD):
5 a(3) < <
sup [g(8) —e”Y| < o, sup sup sup [gji(s) — pu(s)| < 5 -
scK 2 1<j<r1<i<l; seK 2
In view of Theorem 4.7, the collection (e?*), py1(s),...,p11,(s),...,pr1(8), ..., P, (s)) is an element

of the support of the measure P, . Since the set G is open, hence we have that P; (G) > 0. Therefore,

v

Theorem 4.2 and Lemma 1.17 yield

T—o0

1
lim inf Tmeas{T €0,7]: ¢ (s+ir,s+ir,a;a,F) € G} =

T—o0

1
lim inf Tmeas{T € [0,T]: sup|¢(s+ir, F) — e?¥)| < g,

seK
. 5
sup sup sup |((s+i7, a;;a5) —pji(s)| < } > P (G) > 0. (4.18)
1<5<r 1<I<l; s€K 2 v

However, in view of (4.16) and (4.17),

. £ .
{T €10,T] : sup ’((s +ir, F) — eq(s)| < =, sup sup sup ’C(s +iT, 055 a5)—
s€K 27 1<j<r 1<I<l; s€K
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pjl(s)| < ;} C {7’ €[0,T]: sup |C(5—|—i7‘,F) —f(s)| < g,
seK

sup sup sup |§(s+z’7'7aj;ajl) —fjl(s)‘ < 5}
1<j<r 1<I<l; s€Kj,

This and (4.18) lead to the assertion of Theorem 4.1.
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Conclusions

In the thesis, the following approximation properties of periodic Hurwitz zeta-functions were estab-

lished:

1. The periodic Hurwitz zeta-functions {(s, a1;a1),...,{(s, @,; a,) with parameters a1, . .., o, such
that the set L(cv,...,a,) = {log(m+a;) : m €Ny, j=1,...,r} is linearly independent over

field of rational numbers Q are jointly universal.

2. The periodic Hurwitz zeta-functions {(s, a1;a11),...,¢(s,a15 011, ).+, (8, aryar1), ..., C(s, aur;
a.;,) with the set L(aq,...,a,) linearly independent over Q and a rank condition related only

to each fixed aj, j =1,...,r, are jointly universal.

3. The Riemann zeta-function ((s) and periodic Hurwitz zeta-functions ((s, a1;a11),...,¢(s, aq;
a5 C(sya;a01), .., C(8, ap; apg, ) with algebraically independent over Q parameters o, . . .,

o, and a rank condition related only to each fixed «;, j =1,...,r, are jointly universal.

4. The zeta-function ((s, F) attached to a normalized Hecke eigen cusp form F for the full modular

group and periodic Hurwitz zeta-functions (s, a1;a11),...,¢(s,a15011,), .., (s, ;1) ..., C(s,
ay; a., ) with algebraically independent over Q parameters aq,...,a, and a rank condition re-
lated only to each fixed o, j =1,...,r, are jointly universal.
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Notation

jk,l,m,n natural numbers
P prime number
m,n reatest common divisor of natural m and n
g
P set of all prime numbers
N set of all natural numbers
Ny Nu {0}
Z set of all integer numbers
R set of all real numbers
C set of all complex numbers

imaginary unity: ¢ = /—1

.

s=o+it complex variable

Rs=o real part of s

Ss=t imaginary part of s

P An direct sum of sets A,

AXxXB Cartesian product of the sets A and B
A™ Cartesian product of m copies of the set A
meas{A} Lebesgue measure of the set A

H(D) space of analytic functions on D

Z convergence in distribution

B(S) class of Borel sets of the space S

X Dirichlet character

L(s,x) Dirichlet L-function

SL(2,7) full modular group

F(z) cusp form

f(x)=0(g(x)), z el means that |f(z)| < Cg(x), z €T
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((s;a)

(s, )

(s, ;)

Riemann zeta-function defined by

((s)= 3 L, foro>1,

m=1

and by analytic continuation elsewhere
periodic zeta-function defined by

o0
C(s5a) = am for o > 1,
m=1
and by analytic continuation elsewhere
Hurwitz zeta-function defined by

C(s,0) = > ﬁ, for o > 1,

and by analytic continuation elsewhere

periodic Hurwitz zeta-function defined by
&)
C(s,a5a) = > ﬁ, for o > 1,
m=0
and by analytic continuation elsewhere
Euler gamma-function defined by

I'(s)=[e*x* ldxfor o >0
0

and by analytic continuation elsewhere
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