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Abstract

The thesis is devoted to the application of a new class of probability metrics,
N-distances, introduced by Klebanov (Klebanov, 2005; Zinger et al., 1989), to the
problems of verification of the classical statistical hypotheses of goodness of fit,
homogeneity, symmetry and independence.

First of all a construction of statistics based on N-metrics for testing mentioned
hypotheses is proposed. Then the problem of determination of the critical region
of the criteria is investigated. The main results of the thesis are connected with the
asymptotic behavior of test statistics under the null and alternative hypotheses. In
general case the limit null distribution of proposed in the thesis tests statistics is
established in terms of the distribution of infinite quadratic form of random normal
variables with coefficients dependent on eigenvalues and functions of a certain in-
tegral operator. It is proved that under the alternative hypothesis the test statistics
are asymptotically normal. In case of parametric hypothesis of goodness of fit par-
ticular attention is devoted to normality and exponentiality criteria. For hypothesis
of homogeneity a construction of multivariate distribution-free two-sample test is
proposed. Testing the hypothesis of uniformity on hypersphere Sp−1 in more detail
p = 1, 2 cases are investigated.

In conclusion, a comparison of N-distance tests with some classical criteria is
provided. For simple hypothesis of goodness of fit in univariate case as a measure
for comparison an Asymptotic Relative Efficiency (ARE) by Bahadur (Bahadur,
1960; Nikitin, 1995) is considered. In parallel to the theoretical results the empiri-
cal comparison of the power of the tests is examined by means of Monte Karlo sim-
ulations. Besides simple and composite hypotheses of goodness of fit, hypotheses
of uniformity on S1 and S2, we consider two-sample tests in uni- and multivariate
cases. A wide range of alternative hypotheses are investigated.
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Reziumė

Disertacinis darbas yra skirtas N-metrikų teorijos (Klebanov, 2005; Zinger et
al., 1989) pritaikymui klasikinėms statistinėms suderinamumo, homogeniškumo,
simetriškumo bei nepriklausomumo hipotezėms tikrinti.

Darbo pradžioje pasiūlytas minėtų hipotezių testinių statistikų konstravimo bū-
das, naudojant N-metrikas. Toliau nagrinėjama problema susijusi su suformuotų
kriterijų kritinės srities nustatymu. Pagrindiniai darbo rezultatai yra susiję su pa-
siūlytų kriterijaus statistikų asimptotiniu skirstiniu. Bendru atveju N-metrikos sta-
tistikų asimptotinis skirstinys esant nulinei hipotezei sutampa su Gauso atsitiktinių
dydžių begalinės kvadratinės formos skirstiniu. Alternatyvos atveju testinių statis-
tikų ribinis skirstinys yra normalusis. Sudėtinės suderinamumo hipotezės atveju
išsamiau yra analizuojami normalumo ir ekponentiškumo kriterijai. Daugiamačiu
atveju pasiūlyta konstrukcija, nepriklausanti nuo skirstinio homogeniškumo testo.
Tikrinant tolygumo hipersferoje Sp−1 hipotezę detaliau yra nagrinėjami apskritimo
p = 1 ir sferos p = 2 atvejai.

Darbo pabaigoje lyginami pasiūlytos N-metrikos bei kai kurie klasikiniai krite-
rijai. Neparametrinės suderinamumo hipotezės vienamačiu atveju, kaip palyginimo
priemonė, nagrinėjamas Bahaduro asimptotinis santykinis efektyvumas (Bahadur,
1960; Nikitin, 1995). Kartu su teoriniais rezultatais pasiūlytų N-metrikos tipo testų
galingumas ištirtas, naudojant Monte-Karlo metodą. Be paprastos ir sudėtinės su-
derinamumo hipotezių yra analizuojami homogeniškumo testai vienamačiu ir dau-
giamačiu atvejais. Ištirtas platus alternatyvių hipotezių diapazonas.
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Notations

(X, U) measurable space;
N the set of natural numbers;
Rp the set of p-dimensional real vectors;
C the set of complex numbers;
x a real vector (x1, . . . , xp) in Rp;
[0, 1]p the unit square in Rp;
Sp−1 the hypersphere in Rp;
‖ · ‖ the Euclidean norm in Rp;
〈·, ·〉 the scalar product in Rp;
X, Y, Z random vectors in Rp;
X1, ..., Xn the sample of independent observations of X;
Fn(x) the empirical distribution function based on the sample

X1, ..., Xn;
EX the mean of X;
varX the variance of X;
cov(X, Y ) the covariance between X and Y ;
d−→ weak convergence;

vii



P−→ convergence in probability;
x ∧ y min(x, y) for real numbers x and y;
x ∨ y max(x, y) for real numbers x and y;
C([0, 1]p) the set of continuous functions x : [0, 1]p → R.
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Introduction

Scientific problem

In this thesis the problem of verification of classical statistical hypotheses of
goodness of fit, homogeneity, symmetry and independence is investigated.

Actuality

In the classical statistical analysis of observations in various studies researchers
usually begin their investigations by proposing a distribution for their observations.
There are several reasons for that:

• The distribution of the sample data may throw a light on the process that
generate the data, if a suggested model for the process is correct, the sample
data follow a specific distribution.

• Parameters of the distribution may be connected with important parameters
in describing the basic model.

• Knowledge of the distribution of the data allows for application of standard
statistical testing and estimation procedures.
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2 INTRODUCTION

Sometimes such assumptions about the form of the distribution are made by analy-
zing the procedure by which the data was obtained or made arbitrarily, often from
considerations of convenience in the statistical methods used. In any case there
arises a need to check whether the chosen distribution is true.

The researcher may be interested in the question whether the distribution of
observed data has a given fixed form (a simple hypothesis) or belongs to a certain
family of distributions (composite hypothesis). In case of multivariate observa-
tions, in addition to goodness of fit problems, there arises the problem of testing
the hypothesis of the independence of the components of the random vector being
observed without knowing the precise form of the marginal distributions. Another
class of problems is that of comparing two or several samples among themselves.
These are the so-called homogeneity tests, designed for testing the hypothesis that
the samples obtained are identically distributed.

To solve these problems a large number of goodness of fit, homogeneity and
independence procedures have appeared over the years, the choice of which is made
depending on the structure of the observations, the hypothesis being tested, the
efficiency of the test, etc. Choosing the most efficient test of several ones that are
available to the researcher is regarded as one of the basic problems of statistics.
However, it is well known that for a variety of problems arising in statistical theory
and practice the uniformly most powerful tests are unknown. Therefore creation of
new test procedures sensitive to a particular type of hypotheses remains actual and
in our days.

Klebanov in (Klebanov, 2005; Zinger et al., 1989) introduced a new class of
probability metrics - N-distances, which has many useful properties and therefore
could be applied to obtaining new powerful and simply computable statistical te-
sts. The construction of such criteria together with investigation of their properties
become a topical problem after Klebanov’s works.

Research object

This thesis is devoted to statistical criteria based on N-distances for testing
classical statistical hypotheses of goodness of fit, homogeneity, symmetry and in-
dependence.
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Aim and tasks

The main objectives of the thesis are connected with application of N-distance
theory, introduced by Klebanov (Klebanov, 2005; Zinger et al., 1989), to testing
classical statistical hypotheses of goodness of fit, homogeneity, independence and
symmetry. In particularly, we focus on the following tasks:

• Construction of statistics based on N-metrics for testing mentioned hypo-
theses.

• Establishing the critical region of proposed criteria, obtaining the asymp-
totic distribution of test statistics under the null and alternative hypotheses.

• Comparison of proposed N-distance tests with some classical criteria using
Asymptotic Relative Efficiency (ARE) by Bahadur (Bahadur, 1960; Nikitin,
1995).

In parallel to the theoretical results the empirical comparison of the power of pro-
posed N-distance tests is investigated.

Research methods

Methods of mathematical statistics, general probability theory and stochastic
processes are applied. The proofs of the limit behavior of proposed test statistics
are based on the theory of U-statistics (Koroljuk and Borovskich, 1994; Lee, 1990)
and the properties of the weak convergence of stochastic processes (Bulinskii and
Shiryaev, 2005). All the results presented in empirical part of the thesis are pro-
duced by the means of Monte Carlo simulations done with the help of R statistical
package.

Scientific novelty

Novelty of the results is closely related to the formulated aims and problems.
Proposed methods extend, generalize and supplement the results of Klebanov in
(Klebanov, 2005), Baringhaus and Franz in (Baringhaus and Franz, 2004) and Sze-
kely and Rizzo in (Szekely and Rizzo, 2005). In particular, proposed criteria and
established asymptotic distributions of test statistics in the problems of goodness of
fit, uniformity on the hypersphere, independence (in bivariate case) and symmetry
(in univariate case) have not been earlier considered in statistical literature.
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Practical value of the results

Proposed statistical criteria could be applied to the real data analysis problems
connected with verification of the hypotheses about the considered sample of ob-
servations.

Defended propositions

• Propositions on the asymptotic distribution of goodness of fit (simple and
composite hypotheses) test statistics based on N-distances under the null
and alternative hypotheses.

• Construction and asymptotic behavior of the test statistic in the problem of
uniformity on the hypersphere Sp−1.

• Propositions on the asymptotic distribution of two-sample test statistics ba-
sed on N-distances under the null and alternative hypotheses; application
of bootstrap and permutation procedures to determination of critical region
of proposed tests; construction and asymptotic behavior of distribution-free
two-sample test.

• Construction and asymptotic null distribution of tests statistic based on N-
distances for criteria of symmetry about zero in univariate case and inde-
pendence in bivariate case.

• Propositions on the computational form of tests statistics based on N-metrics
with different strongly negative definite kernels.

• Comparison of proposed N-distance and classical nonparametric goodness
of fit tests in univariate case by means of asymptotic relative efficiency by
Bahadur.

History of the problem and main results

Goodness of fit tests

In the course of his Mathematical contributions to the theory of evolution,
Karl Pearson abandoned the assumption that biological populations are normally
distributed. The need to test the fit arose naturally in this context, and in 1900
Pearson invented his chi-squared test. This statistics and others related to it remain
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among the most used statistical procedures.
In this section we propose a brief review of the best-known types of goodness-

of-fit tests applied to the following hypotheses:
• the distribution of a random variable under observation coincides with a

given, completely known distribution G (simple hypothesis),

• the distribution of a random variable under observation belongs to a given
parametric family of distributions Λ = {G(x, θ), x ∈ Rp, θ ∈ Θ ⊂ Rd}
(composite hypothesis).

It is assumed that a sample of independent observations X1, ..., Xn of random va-
riable X with unknown distribution function F (x) is available for the researcher.

We first consider the case of the simple hypothesis and univariate samples.
In case of continuous distributions the most popular tests used to verify the stated
hypotheses are based on the empirical distribution functions

Fn(x) =
1
n

n∑

i=1

1 (Xi ≤ x) .

These tests are based on finding a measure of the difference between the empirical
and theoretical distributions. Goodness of fit tests based on N-distances, introduced
in this thesis, also belongs to this class of tests.

The most famous and well-studied statistics of this type is obviously Kolmo-
gorov statistic (Kolmogorov, 1933)

Dn =
√

n sup
x
|G(x)− Fn(x)|

and its variations, the one sided statistics of Smirnov (Smirnov, 1944)

D+
n =

√
n sup

x
[Fn(x)−G(x)],

D−
n =

√
n sup

x
[G(x)− Fn(x)],

as well as Kuiper statistic (Kuiper, 1960)

Vn =
√

n sup
x

[Fn(x)−G(x)]−√n inf
x

[Fn(x)−G(x)].

Watson (Watson, 1976) and Darling (Darling, 1983a;b) have introduced the cente-
red versions of Kolmogorov-Smirnov statistic:
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Wn =
√

n sup
x
|Fn(x)−G(x)−

∫ +∞

−∞
(Fn(x)−G(x))dG(x)|.

Another group of statistics is based on the integral distance between G and
Fn. The best known among them is Cramer–von Mises statistic (Darling, 1957;
Martynov, 1978)

ω2
n,1 = n

∫ +∞

−∞
(G(x)− Fn(x))2dG(x).

Anderson and Darling (Anderson and Darling, 1952; 1954) proposed to improve
properties of presented statistics by introducing a non-negative weight function
q(x)

Dn =
√

n sup
x

q(G(x))|G(x)− Fn(x)|,

ω2
n,1 = n

∫ +∞

−∞
q(G(x))(G(x)− Fn(x))2dG(x).

The weight functions are used in these statistics in order to vary the contribution of
the deviations of the empirical distribution function from the theoretical distribu-
tion function in different ranges of its argument.

Another generalization is connected with the consideration of arbitrary positi-
ve integer powers k of the empirical process Fn −G, i.e.

ωk
n,q = n

k
2

∫ +∞

−∞
q(G(x))(G(x)− Fn(x))kdG(x).

Obviously, ωk
n,q are not consistent against all alternatives for odd k, however, for

one-sided alternatives these statistics may turn out to be serious competitors to
classical criteria.

The most popular weighted integral statistic is Anderson-Darling statistic (An-
derson and Darling, 1954)

A2
n = n

∫ +∞

−∞

(G(x)− Fn(x))2

G(x)(1−G(x))
dG(x).

Another type of statistics, based on the martingale part of the empirical pro-
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cess, have been studied by Khmaladze (Khmaladze, 1981) and Aki (Aki, 1986)

Kn =
√

n sup
x

∣∣∣∣Fn(x)−
∫ x

−∞

1− Fn(y)
1−G(y)

dG(y)
∣∣∣∣ ,

L2
n = n

∫ +∞

−∞

∣∣∣∣Fn(x)−
∫ x

−∞

1− Fn(y)
1−G(y)

dG(y)
∣∣∣∣
2

dG(x).

All represented statistics can be brought into standard form with the help of
transformation t = G(x). When the null hypothesis is valid, the quantities ti =
G(Xi) will have a uniform distribution on [0, 1]. After that, for instance, Kolmo-
gorov and Cramer-von Mises statistics will have the form

Dn =
√

n sup
0≤t≤1

|Fn(t)− t|,

ω2
n,1 = n

∫ 1

0
(Fn(t)− t)2dt,

where Fn(t) is the empirical distribution function constructed from the quantities
ti, i = 1, 2, ..., n.

This transformation t = G(x) shows, that under the null hypothesis the dist-
ributions of presented statistics are independent of the form of the hypothesized
distribution function G. This property plays an important role and become one of
the reasons of popularity of the tests in practice. The statistics D+

n and D−
n have

the same limit distribution as n →∞,

P (D±
n ≤ x) → 1− e−2x2

, x > 0.

Under the null hypothesis the limit distribution of Kolmogorov statistic Dn has the
form

P (Dn ≤ x) → 1 + 2
∞∑

i=1

(−1)ie−2i2x2
.

Concerning integral type tests, the asymptotic distribution of Cramer-von Mises
ω2

n,1 and Anderson-Darling A2
n statistics coincides with the distribution of infinite

quadratic form

ω2 =
∞∑

i=1

ξ2
i

(πi)2
,
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A2 =
∞∑

i=1

ξ2
i

i(i + 1)
,

where ξi, i = 1, 2, ..., are independent random variables from the standard normal
distribution.

We now consider a generalization of the Kohnogorov-Smirnov and Cramer-
von Mises statistics that is applicable to testing the composite parametric hypothe-
sis that the distribution function F (x) of the random variable under observation
belongs to the family Λ of distribution functions described at the beginning of
this section. Starting form classical work by M. Kac, J. Kiefer, and J. Wolfowitz
(Kac et al., 1955), this problem is well known and have generated plenty of atten-
tion from researchers both in theoretical and applied statistical literature (Durbin,
1973; Khmaladze, 1977; Lilliefors, 1967; Martynov, 1978; Tyurin, 1970; 1984).
All statistics use a preliminary computable estimate θ̂n of the unknown parame-
ter θ. Such an estimate can be taken to be, for exmnple, the maximum likelihood
estimate. The statistics under consideration are then have the form

Dn =
√

n sup
x

q(G(x, θ̂n))|G(x, θ̂n)− Fn(x)|,

ω2
n,1 = n

∫ +∞

−∞
q(G(x, θ̂n))(G(x, θ̂n)− Fn(x))2dG(x, θ̂n).

In contrast to simple hypothesis, considered statistics under the null hypothesis
are not distribution-free since their asymptotic distributions depend on G (Durbin,
1973). Worse, they are not even asymptotically parameter-free since these distri-
butions depends in general on the value of unknown parameter θ. However, there
exists an important class of composite hypotheses under which the limit distribu-
tions of statistics above are independent of the unknown values of the parameters.
These include cases when Λ is a location-scale family of distribution functions,
that is

Λ = {G(
x− θ1

θ2
), θ1 ∈ R, θ2 > 0}.

In the most general case of family Λ the parametric dependence problem of
the distribution of statistics in practice can be overcome by utilization of parametric
bootstrap methods (Stute et al., 1993; Szucs, 2008).

Another group of tests for parametric composite hypotheses is based on the size
of the deviation of order statistics from their mathematical expectations: Shapiro-
Wilk, Shapiro-Francia tests (Shapiro and Wilk, 1965; Shapiro and Francia, 1972)
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and on the comparison of the sample moments with the theoretical moments, for
example, the asymmetry and excess tests for the hypothesis of normality (DAgostino,
1971; DAgostino et al., 1990; Mardia, 1970). This last type of tests is not strictly
speaking a type of goodness-of-fit test, since these tests are not consistent against all
possible alternatives and are applied only to specific types of families Λ, like Gaus-
sian family. Therefore here we omit the details of these tests and refer the reader to
a number of papers proposing numerous tests for normality, as the most widespre-
ad problem among composite goodness of fit tests, based on different approaches
(Best and Rayner, 1985; Bowman and Shenton, 1975; Locke and Spurrier, 1976;
Park, 1999; Prescott, 1976; Spiegelhalter, 1977; Zhang, 1999).

Multivariate goodness of fit tests

Since Pearson criteria, goodness of fit tests have been developed mostly for
univariate distributions and, except for the case of multivariate normality (Csor-
go, 1986; Epps and Pulley, 1983; Henze, 1994; Koziol, 1983; L.Baringhaus and
H.Henze, 1992; 1998; Mardia, 1970; Pettitt, 1979; Szekely and Rizzo, 2005; Zhu
et al., 1995), very few references can be found in the literature about multivariate
tests of fit (DAgostino and Stephens, 1986). The main difficulty here is that ma-
ny tests statistics based on the empirical distribution function of the sample have
the limit distribution dependent on the data’s underlying distribution in a nontrivial
way. Thus, to calculate asymptotic significance points of these statistics may be
difficult. In principle, the chi-square test can be applied for testing the goodness
of fit for arbitrary multivariate distribution. However this procedure also has some
weak points, as it is unknown what is the best way to choose the corresponding cell
limits.

To extend the two most important classes of univariate goodness of fit tests,
the Kolmogorov-Smirnov and Cramer-von Mises statistics, to multivariate case Ro-
senblatt in (Rosenblatt, 1952b) proposed a transformation of an absolutely con-
tinuous p-variate distribution into the uniform distribution on the p-dimensional
cube. The main point of suggested transformation is presented in the next theorem

Theorem 1. Let X = (X1, ..., Xp) be a random vector with joint density

f(x1, ..., xp) = f1(x1)f2(x2|x1)...fp(xp|x1, ..., xp−1).

Then vector Y = (Y1, ..., Yp) is uniformly distributed on the p-dimensional cube,
where

Y1 = F (X1),

Yi = F (Xi|X1, ..., Xi−1), i = 2, .., p.
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After Rosenblatt’s transformation Kolmogorov-Smirnov and omega-square statis-
tics for testing the uniformity on p-dimensional cube will have the form

Dn =
√

n sup
x
|F ∗

n(x)− x1 · · ·xp|,

ω2
n,1 = n

∫ +∞

−∞
(F ∗

n(x)− x1 · · ·xp)2dx1 · · · dxp,

where F ∗
n(x) is the empirical distribution function constructed from the transfor-

med sample Y . However, this approach also have some disadvantages. The main
one is lack of the uniqueness, mentioned statistics are not invariant because a re-
labelling of the components of p-dimensional vector would give a different Ro-
senblatt transformation and, therefore, a different values of statistics. In more de-
tail the asymptotic behavior of represented statistics were studied in (Durbin, 1970;
Justel et al., 1997; Krivyakova et al., 1977; Martynov, 1978).

One more approach to multivariate goodness of fit problem, also based on
comparisons with to uniform distribution was introduced in (Bickel and Breiman,
1983) . It was proved that the variables

Ui = exp

[
−n

∫

‖x−Xi‖<Ri

f(x)dx

]
, i = 1, ..., n,

where f(x) is the hypothesized density function, X1, ..., Xn are n points sampled
independently from f(x) and Ri is the distance from Xi to its nearest neighbor,
have a univariate distribution that does not depend on f(x) and is approximately
uniform. However the computations involved in integrating even a very simple
density over p-dimensional spheres are usually hardly feasible.

In practice for arbitrary dimension (usually p > 3) it can be rather difficult from
the computation point of view to establish the percentiles of the limit distribution
of tests statistics. In this case the bootstrap methods could be applied to obtain the
critical region of the tests, for example, (Burke, 2000).

Homogeneity tests

One of the classical problems of the theory of nonparametric inference is tes-
ting whether two samples come from the same or different populations. Let X1, . . . ,
Xn and Y1, . . . , Ym be two independent samples with unknown continuous distri-
bution functions F (x) and G(x). A formal statement of the two-sample problem
is to test the hypothesis about the equality of these functions: H0 : F ≡ G.

Denote by Fn and Gm the empirical distribution functions based on the initial



INTRODUCTION 11

samples. For the problem of testing H0 there exist many statistics based on the
difference between Fn and Gm extended from goodness of fit statistics considered
above. In univariate case the most prominent of them are analogs of Kolmogorov-
Smirnov and Cramer-von Mises type tests proposed in (Lehmann, 1951; Maag and
Stephens, 1968; Pettitt, 1976; 1979; Smirnov, 1939; Wald and Wolfowitz, 1940)

Dn,m =
√

mn

m + n
sup

x
|Fn(x)−Gm(x)|,

ω2
n,m =

mn

m + n

∫ +∞

−∞
(Fn(x)−Gm(x))2dHn,m,

where Hn,m is an empirical distribution function of the pooled sample.
The limit distribution of the statistics Dn,m and ω2

n,m coincides with their ana-
logs among goodness of fit statistics.

A natural and very popular competitor of the mentioned statistics is the class
of linear rank statistics introduced in (Hajek and Sidak, 1967). Denote N = n+m,
then a simple linear rank statistics has the form

SN = N−1
m∑

i=1

aN (Ri/(N + 1)),

where Ri, i = 1, ..,m is the rank of an observation Yi in the ordered pooled sample
and function aN (x) is constant on all the intervals of the form [(i − 1)/N, i/N),
i = 1, ..., N . It is assumed, moreover, that when N →∞

aN (x) L2−→ J(x),

where J(x) is a nonconstant function on [0, 1]. In case J(x) =
√

12(x− 1/2) we
obtain the famous Wilcoxon rank statistics.

A common feature of all above mentioned procedures is that they only use the
information provided by the ranks of observations within the sorted list of pooled
sample. Consequently, the respective test statistics are distribution free under H0.

Classical approaches to the two-sample problem in the univariate case based on
comparing empirical distribution functions do not have a natural distribution-free
extension to the multivariate case. The situation here is very similar to analogous
goodness of fit problem with the limit distribution of test statistics to be depen-
dent on unknown distribution of initial samples. This fact was one of the reasons
of applying bootstrap and permutation techniques to verification of homogeneity
hypotheses, for example, (Burke, 2000; van der Vaart and Wellner, 1996).
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Bikel in (Bickel, 1969), by applying Fisher’s permutation principle, construc-
ted a consistent distribution free multivariate extension of the univariate Kolmogo-
rov-Smirnov test by conditioning on the pooled sample. Friedman and Rafsky in
(Friedman and Rafsky, 1979) proposed a two-sample test based on the minimal
spanning tree of the sample points as a multivariate generalization of the univaria-
te Wald-Wolfowitz runs test.

Another class of consistent, asymptotically distribution free tests is based on
the nearest neighbors in Euclidean distance metric (Bickel and Breiman, 1983;
Henze, 1988) . Let Z be the pooled sample of length N = n + m and define
the function Ii(r) as Ii(r) = 1, if Zi and Nr(Zi) belongs to the same sample and
Ii(r) = 0 otherwise, where Nr(Zi) is the rth nearest neighbor to Zi. Then the
hypothesis should be rejected in case of large values of the statistics:

TN,k =
N∑

i=1

k∑

r=1

Ii(r).

Tests of uniformity on Sp−1

Let X1, ..., Xn be the sample of independent observations of random variab-
le X with continuous distribution function F (x), where Xi = (xi1, .., xip) and
‖Xi‖ = 1, i = 1, ..., n.

First, we present some wide spread universal tests for uniformity on Sp−1 for
arbitrary p like Rayleigh (Figueiredo and Gomes, 2003), Ajne (Ajne, 1968; Beran,
1968) and Gine (Gine, 1975) tests. At the end of this subsection we also provide a
short review of some popular criteria for testing the uniformity in the special case
of p = 2 (circle).

Rayleigh test

Let R be the length of the resultant vector defined by

R = ‖
n∑

i=1

Xi‖.

Denote R̄ = R
n the mean resultant length. When X has uniform distribution on

Sp−1, EX = 0, then it is intuitive to reject the hypothesis of uniformity when the
sample vector mean 1

n

∑n
i=1 Xi is far from 0, i.e. for large values of R. It is usual

to take the statistic pnR̄2. Under uniformity, the asymptotic distribution of pnR̄2

is χ2(p).
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Gine test

The Gine statistic is defined by

G =
n

2
− p− 1

2n

(
Γ(p− 1)/2

Γ(p/2)

)2 ∑

i<j

sinψij ,

where ψij is the smaller of two angles between Xi and Xj .
We reject uniformity for large values of G. Under the null hypothesis, G is

asymptotically distributed as an infinite linear combination of independent χ2 va-
riables.

Ajne test

The Ajne statistic is defined by

A =
n

4
− 1

πn

∑

i<j

ψij ,

where ψij has the same meaning as in Gine test.
We reject uniformity for large values of A. Under uniformity, A is asymptoti-

cally distributed as an infinite linear combination of χ2 variables.

Some uniformity tests for S1

We parameterize S1 with the variable x ranging from 0 to 1, where the zero
point and the direction around the circle have been chosen arbitrary.

A modification of Kolmogorov-Smirnov test for S1 was presented by Kuiper
in (Kuiper, 1960)

Vn = sup
x∈[0,1)

{Fn(x)− F (x)} − inf
x∈[0,1)

{Fn(x)− F (x)},

where F (x) and Fn(x) are cumulative and empirical distribution functions respec-
tively.

Watson adapted Cramer-von Mises test for S1 (Watson, 1961; 1967)

U2
n = n

∫ 1

0

[
Fn(x)− F (x)−

∫ 1

0
[Fn(y)− F (y)]dF (y)

]2

dF (x).

The tests proposed by Watson and Kuiper are all distribution-free, consistent against
all alternatives and rotation invariant.
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Ajne studied a rotation-invariant test for uniformity on S1 based on semicircles
(Ajne, 1968), using the statistics

An =
1
n

∫ 1

0
(N(x)− n

2
)2dx, (1)

where N(x) is the number of data points falling in the semicircle interval [x, x+ 1
2).

Ajne also considered the rotation-invariant statistics, which can be considered as
an adaptation to S1 of Kolmogorov-Smirnov statistics

N = sup
x∈[0,1)

N(x).

The main disadvantage of Ajne tests that they are not consistent against all
alternatives. Rothman in (Rothman, 1972) developed a more general form of (1)
using arcs of arbitrary length, having the property of consistency.

AH(t)
n =

∫ 1

0

∫ 1

0
(N(t, x)− nt)2dxdH(t),

where H(t) is a distribution function and N(t, x) is the number of observations in
the arc (x, x + t].

N-distance tests

In this thesis we consider the problems of verification of classical statistical hy-
potheses of goodness of fit, homogeneity, symmetry and independence. Proposed
tests statistics are based on a class of probability metrics N-distances, introduced
in (Klebanov, 2005; Zinger et al., 1989). If (X, U) is a measurable space, then the
structure of N-distance between two probability measures µ and ν on it has the
form

N(µ, ν) := 2
∫

X

∫

X
L(x, y)dµ(x)dν(y)−

∫

X

∫

X
L(x, y)dµ(x)dµ(y)−

−
∫

X

∫

X
L(x, y)dν(x)dν(y), (2)

where L(x, y) is a strongly negative definite kernel (see section 1.1).
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Earlier results

Some applications of N-distance theory to testing of statistical hypotheses were
first proposed by Klebanov in (Klebanov, 2005). Klebanov gave a construction of
multivariate free- of-distribution two-sample test based on the division of initial
sample into three equal parts.

The idea is as follows. Suppose that X and Y are two independent random
vectors in Rp, and define one dimensional independent random variables U and V
by the relation:

U = L(X, Y )− L(X,X ′),

V = L(Y ′, Y ′′)− L(X ′′, Y ′′),

where X =d X ′ =d X ′′ and all vectors X, X ′, X ′′, Y, Y ′, Y ′′ are mutually inde-
pendent.
Under conditions

EL(X, X ′) < ∞, EL(Y, Y ′) < ∞,

Klebanov showed that
X =d Y ⇔ U =d V.

Thus, instead of testing the homogeneity of multivariate random vectors we can test
the homogeneity of one-dimensional variables using a vide range of free of dist-
ribution tests. This method leads to essential loss of information, however allows
testing the homogeneity hypothesis in high-dimensional cases.

In case of strongly negative definite kernel L(x, y) = ‖x− y‖, where ‖ · ‖ is
a Euclidean norm in Rp, the statistics of the form (2) were studied by Szekely and
Rizzo in (Szekely and Rizzo, 2005) and Baringhaus and Franz in (Baringhaus and
Franz, 2004), where they were applied for testing the hypothesis of multivariate
normality and homogeneity respectively. The critical values of Szekely and Rizzo
test are obtained by means of Monte Carlo simulations. The asymptotic null dist-
ribution of the test statistic in (Baringhaus and Franz, 2004) is derived using the
projection method and shown to be the limit of the bootstrap distribution.

In case of L(x, y) = 1−exp(−‖x−y‖2) N-distance statistics are very similar
to well-known BHEP tests Bn,p(β) of multivariate normality defined in the follo-
wing way (Epps and Pulley, 1983; Henze and Wagner, 1997; Henze and Zirkler,
1990; L.Baringhaus and H.Henze, 1998). Assume that the sample covariance mat-
rix Σ̂ is nonsingular and Yi = Σ̂−1/2(Xi − X̄), i = 1, ..., n, is the standardized
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sample. The statistic Bn,p(β) is the weighted integral of the squared difference
between the multivariate normal characteristic function and the empirical charac-
teristic function Ψn(t) = 1

n

∑n
k=1 eitT Yk . The test statistic is defined

Bn,p(β) =
∫

Rp

‖Ψn(t)− e−
‖t‖2

2 ‖2ϕβ(t)dt,

where ϕβ(t) is a weighting function. When the weighting function is

ϕβ(t) = (2πβ2)−p/2e
− ‖t‖2

2β2

and β =
√

2 one can see that Bn,p(β) absolutely coincides with N-distance statis-
tics with L(x, y) = 1− exp(−‖x− y‖2) (proposition 8).

Main results of the thesis

A natural way for testing the null hypotheses mentioned above is to consider
N-metrics between the empirical and hypothesized distributions is case of good-
ness of fit criterion or between two empirical distributions in case of homogeneity,
symmetry and independence tests. The corresponding test statistics proposed in
this thesis have the form:

• Goodness of fit test (simple hypothesis)

Tn = −n

∫

R2p

L(x, y) d(Fn(x)−G(x)) d(Fn(y)−G(y)),

where Fn(x) is the empirical distribution function of initial sample and
G(x) is the hypothesized distribution function (section 2.1).
As a special case of goodness of fit tests we consider tests of uniformity on
the hypersphere Sp−1 (section 3.2) with test statistics of the form

Tn = n


 2

n

n∑

i=1

EL(Xi, Y )− 1
n2

n∑

i,j=1

L(Xi, Xj)−EL(Y, Y ′)


 ,

where Y, Y ′ are independent random variables from the uniform distribu-
tion on Sp−1.

• Goodness of fit test (composite hypothesis)
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Tn = −n

∫

Rp

∫

Rp

L(x, y) d(Fn(x)−G(x, θ̂n)) d(Fn(y)−G(y, θ̂n)),

where θ̂n is the estimate of unknown parameter θ under the assumption that
X has the distribution from family Λ = {G(x, θ), x ∈ Rp, θ ∈ Θ ⊂ Rd}
(see section 2.2).

• Two-sample test

Tn,m = − nm

n + m

∫

R2p

L(x, y) d(Fn(x)−Gm(x)) d(Fn(y)−Gm(y)),

where Fn(x), Gm(x) are empirical distribution functions based on the gi-
ven samples X1, . . . , Xn and Y1, . . . , Ym (section 3.1).

• Symmetry test (about zero in univariate case)

Tn = −n

∫ +∞

−∞

∫ +∞

−∞
L(x, y) d∆n(x) d∆n(y),

where ∆n(x) = Fn(x) + Fn(−x)− 1 and Fn(x) is empirical distribution
function, constructed from the sample X1, . . . , Xn (section 3.3).

• Independence test (bivariate case)

Tn = −n

∫

R4

L(x, y)d∆n(x) d∆n(y),

where x, y ∈ R2, ∆n(x) = Fn(x)− Fn1(x1)Fn2(x2),
Fn(x) = 1

n

∑n
i=1 I(Xi1 < x1)I(Xi2 < x2) is a bivariate empirical distri-

bution function and Fni(xi), i = 1, 2 are univariate empirical distribution
functions, based on the i-th coordinate of the sample (section 3.3).

We should reject the null hypothesis in case of large values of test statistics.
The consistency of proposed tests against all fixed alternatives is ensured by the
property of N-distances stated in Theorem 3.

The asymptotic distribution of tests statistics under the null hypothesis is estab-
lished in Theorems:

• Goodness of fit test (simple hypothesis) – Theorems 7, 9, 10
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• Tests of uniformity on Sp−1 – Theorems 17, 18, 20, 21

• Goodness of fit test (composite hypothesis) - Theorems 11

• Homogeneity test – Theorems 12, 14, 15, 16

• Symmetry test – Theorems 22

• Independence test – Theorems 23

In all the cases it coincides with the distribution of a certain infinite quadratic form

∞∑

i=1

λiζ
2
i ,

where ζi, i = 1, 2, ... are independent random variables with standard norm distri-
bution.

Under the alternative hypothesis the normality of some goodness of fit and
homogeneity tests statistics is established in Theorems 8, 13.

The results of the power comparison study proposed at the end on this thesis
show that N-metrics tests are powerful competitors to existing classical criteria, in
the sense that they are consistent against all alternatives and have relatively good
power against general alternatives compared with other tests. The possibility in
the selection of the kernel for N-distance allows to create the test more sensitive to
particular type of alternatives.

Approbation of the thesis

The result of this thesis were presented at the Conferences of Lithuanian Mat-
hematical Society (2008, 2009), The 8th Tartu Conference on Multivariate statistics
(Tartu, Estonia, June 26–29, 2007) and 22nd Nordic Conference on Mathematical
Statistics (NORDSTAT) (Vilnius, Lithuania, June 16–19, 2008).

Moreover, the results of the thesis were presented at the seminar on Probability
Theory and Mathematical Statistics of Institute of Mathematics and Informatics
and at the seminar "Nonparametric statistics and time series" of Department of
Mathematics and Mechanics of Moscow State University (Moscow, Russia, April,
2007)
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Mathematical Journal 48(4): 368–379. ISSN 0363-1672 (ISI Master Jour-
nal List).

2. Bakshaev, A. 2009. Goodness of fit and homogeneity tests on the basis of
N-distances, Journal of Statistical Planning and Inference 139 (11): 3750–
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Structure of the thesis

The thesis consists of an introduction, four chapters and the bibliography.

• Chapter 1 provides a review of auxiliary results for further research. The
first part is devoted to some general aspects and notions of N-distance theo-
ry, used as a basis for construction of proposed in this thesis statistical tests.
In the second part we shortly describe methods of calculation of the distri-
bution functions of quadratic forms of normal variables that are needed to
compute the limit distribution functions of proposed test statistics.

• Chapter 2 is dedicated to goodness of fit tests. Both simple and composite
hypothesis are considered. Particular attention is devoted to establishing
the asymptotic distribution of test statistics, based on N-metrics.

• Chapter 3 provides an application of N-distances for testing the hypotheses
of homogeneity, uniformity on the hypersphere, independence and sym-
metry about zero.

• Chapter 4 is devoted to a comparison of proposed N-distance tests with
some classical criteria. In the first part as a measure for comparison of cri-
teria Asymptotic Relative Efficiency (ARE) by Bahadur (Bahadur, 1960;
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Nikitin, 1995) is considered. In the second part a comparative Monte Carlo
power study is proposed. Besides simple and composite hypothesis of go-
odness of fit, we consider two-sample tests in uni- and multivariate cases.
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1
Auxiliary results

1.1. N-distances

The statistical tests proposed in this thesis are based on a new class of proba-
bility metrics N-distances, introduced by Klebanov (Klebanov, 2005; Zinger et al.,
1989). Besides verification of statistical hypotheses, Klebanov suggested some ad-
ditional applications of these metrics to the problems of recovering measures from
a potential, finding new characterizations of probability distributions and investiga-
ting their stability, derivation of a new estimation methods. In this section a short
review of N-metrics theory will be given.

Let (X, U) be a measurable space and B the set of all probability measures µ
on it. Suppose that L is real continuous function, and denote by BL the set of all
probability measures µ ∈ B on (X, U) under condition of existence of the integral

∫

X

∫

X
L(x, y) dµ(x) dµ(y) < ∞. (1.1)

We shall say, that function L is a negative definite kernel if for arbitrary n ∈ N, any
arbitrary points ∀x1, . . . , xn and any complex numbers c1, . . . , cn under condition

21
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∑n
i=1 ci = 0 the following inequality holds

n∑

i=1

n∑

j=1

L(xi, xj)cic̄j ≤ 0.

Negative definite kernel L is strictly negative definite if the equality above is
true ∀x1, . . . , xn only for c1 = . . . = cn = 0.

In the next theorem the structure of N-distances in the set of probability me-
asures BL is introduced.

Theorem 2. Let L be real continuous function on X2 under condition L(x, y) =
L(y, x) ∀x, y ∈ X. The inequality

N(µ, ν) := 2
∫

X

∫

X
L(x, y)dµ(x)dν(y)−

∫

X

∫

X
L(x, y)dµ(x)dµ(y)−

−
∫

X

∫

X
L(x, y)dν(x)dν(y) ≥ 0 (1.2)

holds for all ∀µ, ν ∈ BL if and only if L is negative definite kernel.

One of the main notions in the theory of N-distances is that of strong negative
definiteness. This additional condition for the kernel L(x, y) will help us to avoid
N(µ, ν) = 0 in case µ 6= ν and, as a result, obtain consistent tests against all fixed
alternatives.

Let Q be a measure on (X, U), and h(x) be a function integrable with respect
to Q and such that

∫
X h(x) dQ(x) = 0. We shall say that L is strongly negative

definite kernel if L is negative definite and equality
∫

X

∫

X
L(x, y)h(x)h(y) dQ(x) dQ(y) = 0

implies that h(x) = 0 Q-almost everywhere for any measure Q.

Theorem 3. Let L be a real continuous function on X2 satisfying all the conditions
of the Theorem 2. The inequality (1.2)

N(µ, ν) ≥ 0

holds for all measures µ, ν ∈ BL with equality in the case µ = ν only, if and only
if L is a strongly negative definite kernel.
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Let us give some examples of strongly negative definite kernels which will be
widely used in the following constructions of statistical tests.
Univariate case:

1. L(x, y) = |x − y|r, where 0 < r < 2 . For r = 2 L(x, y) is a negative
definite kernel, but not strongly negative definite.

2. L(x, y) = |x−y|
1+|x−y| .

3. Let L(x) =
∫ +∞
−∞ (1− I(x > a)) dσ(a), then L(x∧ y) is strongly negative

definite kernel if and only if σ(x) is a suitable strictly monotone distribution
function.

4. Let U(z) =
∫∞
0 (1−cos 2x)1+x2

x2 dθ(x), where θ(x) is is real non-decreasing
function, θ(−0) = 0. Then L(x, y) = U(x− y) is a strongly negative de-
finite kernel if suppθ = [0,∞).

Multivariate case:
1. L(x, y) = ‖x− y‖r, where 0 < r < 2.

2. L(x, y) = 1− exp(−‖x− y‖2).
Some more examples of strongly negative definite kernels can be found in section
4 or in (Klebanov, 2005).

The definition of N-distances as a probability metric comes from the following
theorem.

Theorem 4. (L.B. Klebanov) Let L be a strongly negative definite kernel on X2

under condition L(x, y) = L(y, x) and L(x, x) = 0 ∀x, y ∈ X. Then N(µ, ν)
1
2 is

a distance on BL.

Another possible expression of N(µ, ν) can be given in terms of random va-
riables. Let X and Y be two independent random variables with cumulative dist-
ribution functions µ and ν correspondingly. Denote by X ′ and Y ′- independent
copies of X and Y . Now we can rewrite N(µ, ν) in the form

N(µ, ν) = 2EL(X,Y )−EL(X,X ′)−EL(Y, Y ′). (1.3)

Let us give an example and express the N-distance based on the strongly ne-
gative definite kernel L(x, y) = ‖x− y‖r, (x, y ∈ Rp and 0 < r < 2) in terms of
characteristic functions of µ and ν.

Denote by f(x) and g(x) the characteristic functions of random variables X
and Y with probability distributions µ and ν respectively. Using a well-known
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Zolotarev’s formula

E|X|r = cr

∫ ∞

0
(1−Re(f(t)))t−1−rdt

in univariate case Klebanov got the result

N(µ, ν) = cr

∫ ∞

0
|f(x)− g(x)|2x−1−rdx,

where cr - is a constant depending only on r.

In p-variate case the required expression of N-distance can be derived from univa-
riate case using the formula

‖x‖r =
∫

Sp−1

|〈x, τ〉|rdρ(τ),

where ρ(τ) is a measure on the unit sphere Sp−1 in Rp.

Then

N(µ, ν) =
∫

R2p

‖x− y‖rd∆(x) d∆(y) =

=
∫

Sp−1

dρ(τ)
[∫

R2p

|〈x− y, τ〉|rd∆(x) d∆(y)
]

=

= cr

∫

Sp−1

dρ(τ)
∫

R1

du

|u|r+1

∫

R2p

[
1− ei〈x−y,τ〉u

]
d∆(x) d∆(y) =

= cr

∫

R1

du

|u|r+1

∫

Sp−1

|δ(uτ)|2dρ(τ),

where ∆(x) = µ(x)−ν(x), δ(t) is the difference between characteristic functions
of X and Y , uτ = (uτ1, ..., uτp) and constant cr depends only on r.

1.2. The distribution functions of quadratic forms

In this thesis the asymptotic distributions of proposed N-distance statistics un-
der the null hypothesis are established in terms of distribution of a certain infinite
quadratic form
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Q =
∞∑

i=1

αiζ
2
i , (1.4)

where 0 < α1 ≤ α2 ≤ ..., and ζi, i = 1, 2, ... are independent random variables
from the standard normal distribution. In this section a short review of methods for
computing the distribution function of quadratic forms (1.4) is provided.

In general case let us consider the quadratic form

Q∗ = XT AX, (1.5)

where A is a symmetric matrix and X is a random vector from the Gaussian distri-
bution with zero mean vector and unit correlation matrix. As A is a real symmetric
matrix, then there exists a real orthogonal matrix C, such that D = CT AC is a
diagonal matrix. In this case the distribution function of Q∗ coincides with the
distribution function of quadratic form

N∑

i=1

αiζ
2
i , (1.6)

where ζi, i = 1, 2, ..., are independent random variables from the standard normal
distribution and αi are the eigenvalues of matrix A.

Let us further combine all the members with equal coefficients in (1.4) and
consider the quadratic form

QN =
N∑

i=1

αiχ
2
si

, (1.7)

where N ∈ N and can be infinite, αi > 0, ∀i = 1, 2, ...; αi 6= αj , if i 6= j; si ≥ 0
and χ2

si
are independent random variables from the χ2 distribution with si degrees

of freedom. The characteristic function of QN has the form

φN (t) =
N∏

k=1

(1− 2itαk)−sk/2. (1.8)

The methods of computing the distribution functions of considered quadratic forms
are usually based on various methods of inverting the characteristic functions (1.8).

First results were obtained by Smirnov (1937) and then generalized by Marty-
nov, Sukhatme and Imhoff (Imhof, 1961; Martynov, 1975; Sukhatme, 1972).
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First consider the case when all αi in (1.4) are different. The formula of inver-
sion of characteristic function (1.8) has the form

FN (x)− FN (0) =
1

2πi

∫ ∞i

−∞i

(1− e−ux/2)
u
√

DN (2iu)
du, (1.9)

where DN (u) =
∏N

k=1(1 − αku). If N is uneven, let us add a zero member to
(1.4), so that αN+1 = 0. After integration Smirnov received the following formula
for distribution function of Q (1.4)

FN (x) = 1 +
1
pi

N/2∑

k=1

(−1)k

∫ 1/α2k

1/α2k−1

e−ux/2

√
−DN (u)

du

u
, x ≥ 0. (1.10)

The Smirnov’s formula (1.10) can be generalized to the case N = ∞.
Ibragimov and Rozanov proved that infinite quadratic form (1.4) converges

with probability 1 if and only if

∞∑

i=1

|αi| < ∞. (1.11)

However, even when the condition (1.11) on αk is satisfied the series in the right
part of (1.10) can be divergent.

Let us formulate some additional conditions on αk, k = 1, 2, ..., to ensure the
convergence of series in (1.10). Denote by

Tk1 =
α2kα2k+1

α2k − α2k+1
ln

( α2k−1−α2k+2

α2k−1α2k+2

α2k−α2k+1

α2k+1α2k

α2
2k+1

α2
2k

)
,

Tk2 =
α2k−1−α2k+2

α2k−1α2k+2

α2k−α2k+1

α2k+1α2k

∞∑

m=2k+3

α2k+2 − αm

α2k+2αm
,

Tk = Tk1 + Tk2.

Theorem 5. If the condition (1.11) is fulfilled and the following series

∞∑

k=1

(
1

α2k+1
− 1

α2k
)
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is divergent, then the series (1.10) converges when x > supkTk.

The next theorem establishes the conditions then (1.10) convergence ∀x ≥ 0.

Theorem 6. If the condition 1.11 is fulfilled and the members of the series δk =
1

αk+1
− 1

αk
, k = 1, 2, ... are growing, starting from a certain K and

lim
k

δk+1

δk
< ∞,

then supkTk = 0.

In case 1
αk

= (ckβ) + o(kβ−2), where 1 < β < ∞ and constant c > 0, the
conditions of Theorem (6) are satisfied and supkTk = 0.

In the most general case the distribution function of quadratic form (1.7) was
derived by Martynov (Martynov, 1975) and has the form

FN (x) = 1 +
1
π

arctan
1
a
− 1

π

∫ ∞

0

e−atx/2 sin(θ(t, x))
%(t)

dt, x ≥ 0,

where

θ(t, x) =
N∑

k=1

sk

2
ωk(t)− tx

2
,

%(t) = t
N∏

k=1

(
(1− aαkt)2 + (αkt)2

)sk/4
,

ωk(t) = arctan
1/αk − at

t
,

where a is a arbitrary parameter. This formula generalizes a known formula of
Imhof, which can be obtained from the given formula with a = 0. The choice
of the value of a 6= 0 leads to the appearance of a factor exp(−atx/2) in the
numerator of the integrand, guaranteeing a more rapid decrease in the amplitude of
the oscillations of the integrand. This makes the process of numerical integration
easier.





2
Goodness of fit test

2.1. Simple hypothesis

Let X1, . . . , Xn, Xi = (Xi,1, ..., Xi,p) be a p-dimensional sample of inde-
pendent observations of random variables X with unknown continuous probability
distribution functions F (x), x ∈ Rp.

The nonparametric null hypothesis in the problem of testing goodness of fit
is H0 : F (x) = G(x), where G(x), x ∈ Rp, is a known continuous cumulative
distribution function.

A natural way for testing the null hypothesis is to consider a certain metrics
ρ(·, ·) between the empirical and hypothesized distributions. In this thesis we pro-
pose to use N-distance defined in (1.2) with test statistic of the form

Tn = nNL(µFn , νG), (2.1)

where L is a strongly negative definite kernel, µFn is the empirical distribution
based on the sample X1, . . . , Xn and νG is the probability distribution with distri-
bution function G(x).

We should reject the null hypothesis in case of large values of test statistic, that

29
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is if Tn > cα, where cα can be found from the equation

P0(Tn > cα) = α,

here P0 is probability distribution corresponding to the null hypothesis and α – size
of the test.

In case of p-variate sample test statistic Tn will have the form

Tn = −n

∫

R2p

L(x, y) d(Fn(x)−G(x)) d(Fn(y)−G(y)), (2.2)

or in terms of mathematical expectations of random variables

Tn = n


 2

n

n∑

i=1

EL(Xi, X)− 1
n2

n∑

i,j=1

L(Xi, Xj)−EL(X, Y )


 , (2.3)

where X , Y are independent random variables with cumulative distribution func-
tion G(x), x ∈ Rp, and Fn(x) is the empirical distribution based on the sample
X1, . . . , Xn.

2.1.1. Asymptotic distribution of test statistic

To determine the critical region of our test {Tn > cα} let us consider the
asymptotic distribution of Tn (2.2).
Denote

H(x, y) := EL(x,X) + EL(X, y)− L(x, y)−EL(X,X
′
),

where L(x, y) is the strongly negative definite kernel of N-distance (2.1) and X ,
X
′ are independent random variables with cumulative distribution function G(x).

Theorem 7. If G(x) satisfies the condition EH2(X, X
′
) < ∞, then under the

null hypothesis the asymptotic distribution of Tn coincides with the distribution of
infinite quadratic form

Q = E[L(X,X
′
)− L(X,X)] +

∞∑

j=1

λj(ζ2
j − 1), (2.4)

where ζj , j = 1, 2, ..., are independent random variables from the standard normal
distribution and λj are the eigenvalues of integral operator
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Af(y) = EH(X, y)f(X), (2.5)

Proof. Let us rewrite Tn in the form of V -statistic (Koroljuk and Borovskich, 1994;
Lee, 1990) with symmetric kernel H(x, y)

Tn =
1
n

n∑

i=i

n∑

j=1

H(Xi, Xj). (2.6)

The proof of the theorem is based on the following lemma establishing the
limit distribution of von Mises’ functionals of type (2.6) with degenerate kernels
(see Theorem 4.3.2 in (Koroljuk and Borovskich, 1994)).

Lemma 1. Consider a von Mises’ functional

Vn =
1
n2

n∑

i,j=1

W (Xi, Xj),

with a symmetric kernel W (x, y) under conditions:
• EW (x,X) = 0 a.s. (property of degeneracy),
• EW (X, X

′
) = 0,

• E|W (X, X)| < ∞,
• EW (X, X

′
)2 < ∞.

Then

nVn
d−→ EW (X, X) +

∞∑

j=1

λj(ζ2
j − 1),

where ζj , j = 1, 2, ..., are independent random variables from the standard normal
distribution and λj are the eigenvalues of integral operator

Af(y) = EW (X, y)f(X),

In case
∑∞

j=1 |λj | < ∞ then

EW (X, X) =
∞∑

j=1

λj .

The first three conditions on the kernel of V-statistic (2.6) in lemma follows
directly from the definition and properties of N-distances. Denote by X , Y and Z
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the independent random variables with probability function G(x), then

• EH(x,Z) = EL(x,X) + EL(X, Z)−EL(x,Z)−EL(X, Y ) = 0
(property of degeneracy),

• EH(Y,Z) = NL(µY , νZ)) = 0,

where µY and νZ are the probability distributions of random variables Y and Z
correspondingly.
Note that if NL(·, ·) is a distance in the space of probability measures under condi-
tion (1.1), then

H(a, a) = EL(a,X) + EL(X, a)− L(a, a)−EL(X,Y ) ≥ 0, ∀a ∈ Rp.

Thus, taking into account (1.1)
• E|H(Z, Z)| = EH(Z,Z) = EL(X, Z)−EL(Z,Z) < ∞.

The forth condition in lemma coincides with the only condition of theorem and this
ends the proof of the theorem.

Let us further consider the asymptotic distribution of test statistic Tn (2.2)
under alternative hypothesis with fixed alternatives. In this case the probability to
reject the null hypothesis with a given size of the test α tends to 1 when n → ∞.
Therefore we consider our statistic Tn normalized in a special way.

Let F (x) does not equal identically to G(x) and consider the statistic

T ∗n =
Tn√

n
− a, (2.7)

where

a = NL(µF , νG) = EH(Y, Y
′
) = 2EL(X, Y )−EL(X, X

′
)−EL(Y, Y

′
),

where X , X
′ and Y , Y

′ are independent random variables with probability distri-
butions X ,X ′ ∼ µF and Y ,Y ′ ∼ νG and corresponding cumulative distribution
functions F (x) and G(x).

Theorem 8. Denote H∗(x) := [EH(x, Y )−a]2, if EH∗(Y ′
) > 0 and EH(Y, Y

′
) <

∞ then T ∗n asymptotically has the normal distribution with zero mean and variance
σ2:

σ2 =
2

n(n− 1)
[2(n− 2)C1 + C2], (2.8)

where C1 = EH∗(Y ′
) and C2 = E[H(Y, Y

′
)− a]2.
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Proof. First note that under the alternative hypothesis the kernel of V-statistic (2.6)
is nondegenerate. After that the statement of the theorem follows immediately from
the Theorem 4.2.5 in (Koroljuk and Borovskich, 1994) establishing the asymptotic
normality of von Mises’ functionals in this case.

In practice it is usually rather difficult to establish the limit null distribution of
test statistic Tn in the form (2.4). The main problem here is connected with cal-
culation of eigenvalues of integral operator (2.5). In sections 2.1.2, 2.1.3 we tried
to solve this problem and establish the analytical formulas for the coefficients of
quadratic form in some special cases of strongly negative definite kernels L(x, y).
First, the proposed methods will be considered in univariate case and then general-
ized to arbitrary dimension, in particular, the two-dimensional case will be exam-
ined.

Remark. An alternative method to the determination of the critical region {Tn >
cα} of proposed statistics can be as follows. In case of simple hypothesis when
G(x) is a know distribution function the percentiles of the finite sample null distri-
bution of Tn can be established with the help of Monte Carlo simulations:

1. Generate repeatedly i.i.d. random samples X1, . . . , Xn from the distribu-
tion G(x), x ∈ Rp.

2. For each sample evaluate Tn using the formula (2.3).

3. Calculate the empirical distribution function F ∗
n(x) on the basis of com-

puted Tn values.

4. For a chosen significance level α > 0 find cα from the equation:

cα = inf{cα : F ∗
n(cα) ≥ 1− α}.

2.1.2. Univariate case

The asymptotic distribution of test statistic Tn (2.2) established in (2.4) de-
pends on the initial distribution G(x). To avoid this we propose a special form of
strongly negative definite kernel in (2.1) and discuss another approach in determi-
nation of the coefficients of quadratic form (2.4).

Consider the statistic Tn in the form

Tn = −n

∫ +∞

−∞

∫ +∞

−∞
L(G(x), G(y)) d(Fn(x)−G(x)) d(Fn(y)−G(y)), (2.9)
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where Fn(x) is the empirical distribution function based on the sample X1, . . . , Xn.
Note that if L(x, y) is a strongly negative definite kernel, then L(G(x), G(y)) also
satisfies the conditions of strongly negative definiteness. One can see, that in this
case

Tn = −n

∫ 1

0

∫ 1

0
L(x, y) d(F ∗

n(x)− x) d(F ∗
n(y)− y), (2.10)

where F ∗
n(x) is the empirical distribution function based on transformed sample

t1, . . . , tn, ti = G(Xi), i = 1, 2, ..., n. Under the null hypothesis the new sample
will have the uniform distribution on [0, 1] and the following theorem will help us
to establish the limit distribution of (2.10).

Theorem 9. Under the null hypothesis statistic Tn will have the same asymptotic
distribution as quadratic form

Q =
∞∑

k=1

∞∑

j=1

akj

π2kj
ζkζj , (2.11)

where ζk are independent random variables from the standard normal distribution
and

akj = −2
∫ 1

0

∫ 1

0
L(x, y) d sin(πkx) d sin(πjy).

Proof. Let us consider the random process Zn(x) =
√

n(F ∗
n −x), where F ∗

n is the
empirical distribution function based on the sample t1, . . . , tn. The natural way to
prove the statement of the theorem is to find the weak limit of Zn(x) and then use
the theorem of continuity for the sequence of random processes.

The next lemma implies the continuity of the functional (2.10).

Lemma 2. Assume that L(x, y) is a strongly negative definite kernel with bounded
variation on [0, 1]2 (Towghi, 2002) and L(x, 0), L(x, 1) also have bounded varia-
tion on [0, 1] then

B(f(x)) =
∫ 1

0

∫ 1

0
L(x, y) df(x) df(y) (2.12)

is a continuous functional in the space of continuous functions on [0, 1] with uni-
form metrics.

Proof of lemma 2. The integrals (2.12) for all f(x) ∈ C[0, 1] are considered after
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formal integration by parts with the help of the formula
∫ 1

0

∫ 1

0
L(x, y)dF (x, y) =

∫ 1

0

∫ 1

0
F (x, y) dL(x, y)−

−
∫ 1

0
F (1, y) dL(1, y)−

∫ 1

0
F (x, 1) dL(x, 1) +

+
∫ 1

0
F (x, 0) dL(x, 0) +

∫ 1

0
F (0, y) dL(0, y) +

+F (0, 0)L(0, 0)− F (1, 0)L(1, 0)− F (0, 1)L(0, 1) + F (1, 1)L(1, 1).

The continuity and bounded variation of L(x, y), L(x, 0) and L(x, 1) guarantee us
the existence of all the integrals in the right part of equality above in the meaning
of Stieltjes integrals (Towghi, 2002).

Assume that fn(x) are continuous functions on [0, 1], such that

sup
0≤x≤1

|fn(x)| → 0.

After integration by parts, taking into account that L(x, y) = L(y, x), B(f(x))
(2.12) will have the form

B(f(x)) =
∫ 1

0

∫ 1

0
f(x)f(y) dL(x, y)−

−2f(1)
∫ 1

0
f(y) dL(1, y) + 2f(0)

∫ 1

0
f(x) dL(x, 0)−

−2f(0)f(1)L(0, 1) + f2(0))L(0, 0) + f2(1)L(1, 1).

Bounded variation of L(x, y) on [0, 1]2 and L(0, x), L(1, x) on [0, 1] together with
condition that sup0≤x≤1 |fn(x)| → 0 implies that B(fn(x)) → 0, when n →∞.

Theorem 13.1 in (Billingsley, 1968) establishes the weak limit of Zn(z) in C[0, 1],
when n →∞.

Zn(x) d→ W0(x),

where W0(x) is the Brownian bridge. Thus, we have that the asymptotic distribu-
tion of Tn will coincide with the distribution of random variable

T = −
∫ 1

0

∫ 1

0
L(x, y) dW0(x) dW0(y). (2.13)
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Remark. The trajectories of the empirical random process Zn(x) are not continu-
ous, we could circumvent the discontinuity problems by adopting a different defi-
nition of empirical distribution function. Let Hn(x) be, as a function of x ranging
over [0, 1], the distribution function corresponding to the uniform distribution of
mass (n + 1)−1 over each of the n + 1 intervals [X(i+1), X(i)], where X0 = 0,
Xn+1 = 1 and X(1), ..., X(n) are the values X1, ..., Xn ranged in increasing order.
The functions F ∗

n(x) and Hn(x) are close and the following inequality holds

sup
0<x<1

|F ∗
n(x)−Hn(x)| ≤ 1

n
. (2.14)

Now let Z∗n(x) be an element of C[0, 1] with value

Z∗n(x) =
√

n(Hn(x)− x).

Since each Z∗n(t) is a random variable, Z∗n is a random element of C[0, 1]. By
(2.14), we have

sup
0<x<1

|Zn(x)− Z∗n(x)| ≤ 1√
n

and the asymptotic distribution of B(Zn(x)) will be the same as the asymptotic
distribution of B(Z∗n(x)) for any continuous functional B.

Random process W0(x) with zero mean and correlation function K(x, y) =
min(x, y)− xy with probability 1 can be presented in the form

W0(x) =
∞∑

k=1

ζkφk(x), (2.15)

where ζk are independent random variables from the Gaussian distribution with
mean zero and variance λk, where φk(x) and λk are eigenfunctions and eigenvalues
of the linear symmetric integral operator A with the kernel K(x, y)

A(f(x)) =
∫ 1

0
K(x, y)f(y) dx.

In case of K(x, y) = min(x, y)− xy, it is easy to derive, that

λk = (πk)−2,

φk(x) =
√

2 sin(πkx).

Finally we obtain the representation (2.11) by substituting the expression (2.15)
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into (2.13) and complete the proof.

Proposition 3. Statistics Tn (2.10) with different kernels can be calculated using
the formulas:

• L(x, y) = max(x, y),

Tn = 2
n∑

i=1

1 + t2i
2

− 1
n

n∑

i,j=1

max(ti, tj)− 2n

3
.

• L(x, y) = 1− e−(x−y)2 ,

Tn = 2
n∑

i=1

(1−√π(Φ(
√

2(1− ti)))− Φ(−
√

2ti))−

− 1
n

n∑

i,j=1

(1− e−(ti−tj)
2
)− Cn,

where C = 1 − √
π

(∫ 1
0 Φ(

√
2x)dx− ∫ 0

−1 Φ(
√

2x)dx
)

and Φ(x) is a
distribution function of standard normal distribution.

• L(x, y) = |x−y|
1+|x−y| ,

Tn = 2
n∑

i=1

(1− ln(1 + ti)− ln(2− ti))−

− 1
n

n∑

i,j=1

|ti − tj |
1 + |ti − tj | − (3− 4 ln 2)n.

• L(x, y) = |x− y|α, 0 < α < 2,

Tn =
2

α + 1

n∑

i=1

(tα+1
i + (1− ti)α+1)−

− 1
n

n∑

i=1

n∑

j=1

|ti − tj |α − 2n

(α + 1)(α + 2)
.

Proof. All formulas are obtained from representation (2.10) of statistics Tn by cal-
culating corresponding integrals. Let F ∗

n(x) be an empirical distribution function
based on transformed sample t1, . . . , tn, ti = G(Xi), i = 1, 2, ..., n, then
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• L(x, y) = max(x, y),

∫ 1

0

∫ 1

0
max(x, y)dxdF ∗

n(y) =
1
n

n∑

i=1

∫ 1

0
max(x, ti)dx =

1
n

n∑

i=1

1 + t2i
2

,

∫ 1

0

∫ 1

0
max(x, y)dxdy =

∫ 1

0

1 + x2

2
dx =

2
3
.

• L(x, y) = 1− e−(x−y)2 ,

∫ 1

0

∫ 1

0
(1− e−(x−y)2)dxdF ∗

n(y) =
1
n

n∑

i=1

∫ 1

0
(1− e−(x−ti)

2
)dx =

=
1
n

n∑

i=1

(1−√π(Φ(
√

2(1− ti))− Φ(
√

2ti))),

∫ 1

0

∫ 1

0
(1− e−(x−y)2)dxdy = 1−√π(

∫ 1

0
Φ(
√

2x)dx−
∫ 0

−1
Φ(
√

2x)dx),

where Φ(x) is a standard normal distribution function.

• L(x, y) = |x−y|
1+|x−y| ,

∫ 1

0

∫ 1

0

|x− y|
1 + |x− y|dxdF ∗

n(y) =
1
n

n∑

i=1

∫ 1

0

|x− ti|
1 + |x− ti|dx =

=
1
n

n∑

i=1

(∫ ti

0

x

1 + x
dx +

∫ 1−ti

0

x

1 + x
dx

)
=

=
1
n

n∑

i=1

(1− ln(1 + ti)− ln(2− ti)),

∫ 1

0

∫ 1

0

|x− y|
1 + |x− y|dxdy =

∫ 1

0
(1− ln(1 + x)− ln(2− x))dx = 3− 4 ln 2.

• L(x, y) = |x− y|α, 0 < α < 2,
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∫ 1

0

∫ 1

0
|x− y|αdxdF ∗

n(y) =
1
n

n∑

i=1

∫ 1

0
|x− ti|αdx =

1
n

n∑

i=1

(∫ ti

0
xαdx +

∫ 1−ti

0
xαdx

)
=

1
n

n∑

i=1

tα+1
i + (1− ti)α+1

α + 1
,

∫ 1

0

∫ 1

0
|x− y|αdxdy =

∫ 1

0

xα+1 + (1− x)α+1

α + 1
dx =

2
(α + 1)(α + 2)

.

Let us note, that in case L(x, y) = |x−y| and L(x, y) = x∨y we obtain very
similar statistics. After formal integration by parts of

Tn = −n

∫ 1

0

∫ 1

0
L(x, y)d(F ∗

n(x)− x)d(F ∗
n(y)− y)

test statistic Tn can be written as

• L(x, y) = |x− y|,

Tn = 2n

∫ 1

0
(F ∗(x)− x)2dx;

• L(x, y) = x ∨ y,

Tn = n

∫ 1

0
(F ∗(x)− x)2dx,

and coincides with the well-know Cramer-von Mises statistic, where F ∗
n(x) is the

empirical distribution function of t1, . . . , tn, ti = G(Xi).

The asymptotic distribution of Tn with L(x, y) = |x − y| is the same as the
distribution of quadratic form

Q = 2
∞∑

k=1

(πk)−2ζ2
k ,

where ζk are independent random variables from the standard normal distribution.
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This follows directly from (2.11), where

akj = −2
∫ 1

0

∫ 1

0
|x− y| d sin(πkx) d sin(πjy) = 2δkj .

Applying Smirnov formula (1.10) we derive the probability distribution func-
tion of Q

FQ(x) = 1 +
1
π

∞∑

k=1

(−1)k

∫ (2kπ)2

((2k−1)π)2

exp−xu
4(

− sin
√

u√
u

) 1
2

du

u
, x ≥ 0.

Remark. As it was shown in (2.9), (2.10), taking a special form of strongly negative
definite kernel L(G(x), G(y)) in (2.1) allows us to obtain a distribution – free test.
However, in general case the asymptotic null distribution of statistic Tn also can
be established. In case G(x) is a strictly monotone distribution function, the limit
distribution of Tn will coincide with the distribution of quadratic form (2.11), where
the coefficients are expressed by the formula

akj = −2
∫ 1

0

∫ 1

0
L(G−1(x), G−1(y)) d sin(πkx) d sin(πjy).

2.1.3. Multivariate case

In multivariate case to avoid the dependence of the distribution of Tn (2.2)
on G(x), first transform our sample X1, . . . , Xn, where Xi = (Xi,1, ..., Xi,p),
i = 1, .., n, to the sample t1, . . . , tn, where ti = (ti,1, ..., ti,p), i = 1, .., n, using
Rosenblatt transformation

ti,1 = G(xi,1),

ti,2 = G(xi,2|xi,1),

................

ti,p = G(xi,p|xi,1, ..., xi,p−1).

Under the null hypothesis the transformed sample will have the uniform distri-
bution on the unit hypercube Cp = [0, 1]p and statistic Tn for testing the uniformity
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on Cp has the form

Tn = −n

∫

[0,1]2p

L(x, y) d(Fn(x)− x1 · · · xp) d(Fn(y)− y1 · · · yp), (2.16)

where Fn(x), x = (x1, ..., xp) is a p-dimensional empirical distribution function
based on sample t1, . . . , tn

Fn(x) =
1
n

n∑

i=1

p∏

j=1

1 (tij ≤ xj) .

The asymptotic distribution of Tn (2.16) is established by the next theorem.

Theorem 10. Under the null hypothesis the limit distribution of Tn will coincide
with the distribution of quadratic form

Q =
∞∑

i,j=1

aij
√

αiαjζiζj , (2.17)

where ζi are independent random variables from the standard normal distribution,

aij = −
∫

[0,1]2p

L(x, y) dψi(x) dψj(y), x, y ∈ Rp, (2.18)

αi and ψi(x) are eigenvalues and eigenfunctions of the integral operator A

Af(x) =
∫

[0,1]p
K(x, y)f(y)dy (2.19)

with the kernel

K(x, y) =
p∏

i=1

min(xi, yi)−
p∏

i=1

xiyi,

where x = (x1, ..., xp), y = (y1, ..., yp).

Proof. The outline of the proof including the statement of Lemma 2 is absolutely
the same as for one-dimensional case.

Consider the random process

Zn(x) =
√

n(Fn(x)− x1 · · · xp), x = (x1, ..., xp).
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The properties of this empirical process were in detail studied by Rosenblatt (Rosen-
blatt, 1952a), Durbin (Durbin, 1970), Krivyakova, Martynov, Turin (Krivyakova
et al., 1977).
Zn(x), x ∈ Rp, weakly converges to the Gaussian random field W0(x), x ∈ Rp,
(a certain analogue of p-dimensional Brownian bridge) with zero mean vector and
correlation function

K(x, y) =
p∏

i=1

min(xi, yi)−
p∏

i=1

xiyi. (2.20)

Remark. In accordance with univariate case we can circumvent the discontinu-
ity problems of the trajectories of Zn(x) by smoothing the empirical distribution
function Fn(x). One of the possible variants is based on kernel estimation of the cu-
mulative distribution functions in detail discussed in (Liu and Yang, 2008; Yamato,
1973)

Hn(x) =
1
n

n∑

i=1

∫ x

−∞
Kh(Xi − u)du, ∀x ∈ Rp,

where h = (h1, ..., hp) are positive numbers depending on the sample size n, called
bandwidths.
The functions Fn(x) and Hn(x) are close and the following inequality holds

sup
x∈Cp

|Fn(x)−Hn(x)| ≤ 1
n

. (2.21)

Now denote by Z∗n(x) an element of C[0, 1]p

Z∗n(x) :=
√

n(Hn(x)− x).

By (2.21), we have
sup

0<x<1
|Zn(x)− Z∗n(x)| ≤ 1√

n

and the asymptotic distribution of B(Zn(x)) will be the same as the asymptotic
distribution of B(Z∗n(x)) for any continuous functional B.

Thus, the asymptotic distribution of Tn (2.16) will be the same as the distribution
of random variable

T = −
∫

[0,1]2p

L(x, y) dW0(x)W0(y), x, y ∈ Rp. (2.22)
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With probability 1 random process W0(x) with zero mean vector and correla-
tion function (2.20) can be presented in the form

W0(x) =
∞∑

k=1

ζkφk(x), x ∈ Rp, (2.23)

where ζk are independent random variables from the Gaussian distribution with
mean zero and variance λk, where φk(x) and λk are eigenfunctions and eigenvalues
of the integral operator A

A(f(x)) =
∫ 1

0
K(x, y)f(y) dx.

The substitution of (2.23) into (2.22) completes the proof of the theorem.

Krivyakova, Martynov, and Tyurin in (Krivyakova et al., 1977) proposed a
method for calculating the eigenvalues of covariation operator (2.19), which leads
to the following results. First, the eigenvalues are

λkp = (
2
π

)2p(2k + 1)−2, k = 1, 2, ..., (2.24)

with multiplicities qkp such that the quantities qkp−1 equal the numbers of distinct
representations of 2k +1 as a product of p ordered factors. All the rest eigenvalues
λ have multiplicity one and can be found as the solutions of the equation

∞∑

k=1

(qkp + 1)λ2
kp

λkp − λ
=

1
2p

. (2.25)

In some high dimensional cases it can be rather difficult from the computa-
tional point of view to establish the distribution of statistic Tn analytically. The
main problems in application of the Theorem 10 are connected with calculations
of eigenfunctions of the integral operator (2.19). In this case the critical region can
be determined using Monte-Carlo simulations and the procedure discussed in the
Remark in section 2.1.1.

Further we consider the statistics Tn (2.16) for some special cases of strongly
negative definite kernels L(x, y). Some largest coefficients of diagonalized quadratic
form (2.17) are established numerically, for simplicity only two-dimensional case
is discussed.

In case p = 2 the solutions of equation (2.25) were calculated numerically
in (Krivyakova et al., 1977). The inverse values to the largest roots are presented
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below.

15.8 88.0 203.6 359.7 604.9
843.3 1125.2 1578.2 1929.0 2237.0

After computation of eigenvalues of operator (2.19), let us pass over directly
to corresponding eigenfunctions. Denote

K0(x, y) := min(x1, y1)min(x2, y2)

and K1(x) = x1x2, then the kernel K(x, y) of integral operator (2.19) can be
written in the form:

K(x, y) = K0(x, y)−K1(x)K1(y).

Thus, the integral equation on eigenfunctions ψ(x) and eigenvalue λ of operator
(2.19) in bivariate case has the form

∫

C2

K0(x, y)ψ(y)dy −K1(x)
∫

C2

K1(y)ψ(y)dy = λψ(x), (2.26)

where C2 is the unit square.
Note, that eigenfunctions and corresponding eigenvalues of the integral operator
with the kernel K0(x, y) are

υij(x, y) = 2 sin(π(i− 1
2
)x) sin(π(j − 1

2
)y),

µij = (π2(i− 1
2
)(j − 1

2
))−2.

Denote z =
∫
C2 K1(y)ψ(y)dy and let us first look for eigenfunctions in (2.26)

under condition z = 0. These can be only the eigenfunctions of operator with the
kernel K0. Since ∫

C2

υij(x)K1(x)dx 6= 0 ∀i, j,

then µii ∀i ∈ N is not a solution of (2.26). If in the set {µij} a number λ can be
found q ≥ 2 times, than the intersection of subspace based on corresponding to
λ eigenfunctions in (2.26) with hyperplane {ψ : 〈K1, ψ〉 = 0} is not empty and
has the dimension q − 1. This means that for each eigenvalue λ (2.24) appropriate
q − 1 eigenfunctions can be found as linear combinations of relevant functions
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υij(x), where µij = λ. For example,

λ12 =
1
9

[
2
π

]4

and

ψλ12 =
1√
2
(υ12(x) + υ21(x)) =

=
2√
2
[sin

πx1

2
sin

3πx2

2
− sin

3πx1

2
sin

πx2

2
].

Now consider the case z 6= 0, then all the eigenvalues λ in (2.26) are found
from the equation (2.25). Taking into account the completeness on the unit square
of the family of functions {υij(x)}, i, j ∈ N the eigenfunctions ψλ(x) can be found
in form of decomposition to the series

ψλ(x) =
∑

ij

aijυij(x).

In practice however the eigenfunctions ψλ(x) can be approximated by a finite
sequence

ψλ(x) ≈
N∑

i,j=1

aijυij(x) (2.27)

using only the functions φij(x) with the largest eigenvalues µij .
Further we propose some numerical results and compute several largest coef-

ficients of the diagonalized quadratic form (2.17)

Q =
∞∑

i=1

aiζ
2
i , (2.28)

where ζi are independent random variables from the standard normal distribution.
In our calculations we consider 30 largest eigenvalues of operator (2.19). For

all eigenvalues (2.25) we used approximation (2.27) with N = 50, after that the
coefficients of quadratic form (2.17) were evaluated using the formula (2.18). As a
result, the coefficients ai in (2.28) were computed as eigenvalues of the matrix of
quadratic form (2.17).

First consider test statistic Tn (2.16) with the kernel L(x, y) = 1− e−‖x−y‖2 ,
x, y ∈ R2. The inverse values to the largest coefficients ai of quadratic form (2.28)
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are presented below.

9.6 10.5 47.0 141.7 156.1
331.2 487.4 702.8 1042.2 1546.9

4774.8 5897.0 10524.0 15504.0 48801.0

Proposition 4. In case of bivariate sample X1, ..., Xn statistic Tn with the kernel
L(x, y) = 1− e−‖x−y‖2 can be calculated using the formula

Tn = n


 2

n
(1− πΥ(Xi1)Υ(Xi2))− 1

n2

n∑

ij=1

L(Xi, Xj)− C


 , (2.29)

where C ≈ 0.25777 and Υ(z) = Φ(
√

2(1− z))− Φ(−√2z).

Proof. Consider statistic Tn in the form (2.3) with L(x, y) = 1− e−‖x−y‖2 , x, y ∈
[0, 1]2. Let Φ(z), z ∈ R be the cumulative distribution function of standard normal
distribution and X X

′ - independent random variables with the uniform distribution
on [0, 1]2.
Each summand in the first sum in (2.3) has the form

EL(X, Xi) =
∫ 1

0

∫ 1

0
(1− e−(x1−Xi1)2−(x2−Xi2)2)dx1dx2 =

= 1− πΥ(Xi1)Υ(Xi2),

where Υ(z) = Φ(
√

2(1− z))− Φ(−√2z).
We complete the proof with evaluation of the last summand in (2.3)

EL(X, X
′
) =

∫ 1

0

∫ 1

0
(1− πΥ(x1)Υ(x2))dx1dx2 =

= 1− π

(∫ 1

0
Φ(
√

2x1)dx1 −
∫ 0

−1
Φ(
√

2x1)dx1

)2

=: C ≈ 0.25777.

In case L(x, y) = max(x1, y1)+max(x2, y2)−max(x1, y1) max(x2, y2) the
inverse values to the largest coefficients ai of quadratic form (2.28) are presented
below.

16.3 55.6 91.5 99.7 123.4
147.6 208.1 287.0 434.9 496.6
663.9 759.7 1343.5 1632.0 1717.3



2. GOODNESS OF FIT TEST 47

Proposition 5. In case of bivariate sample X1, ..., Xn, Xi = (Xi1, Xi2) statistic
Tn with the kernel

L(x, y) = max(x1, y1) + max(x2, y2)−max(x1, y1)max(x2, y2)

can be calculated using the formula

Tn = n


 2

n

n∑

i=1

(Ai + Bi −AiBi)− 1
n2

n∑

ij=1

L(Xi, Xj)− 8
9


 , (2.30)

where Ai = X2
i1+1
2 and Bi = X2

i2+1
2 .

Proof. Consider statistic Tn in the form (2.3) with L(x, y) = max(x1, y1) +
max(x2, y2) − max(x1, y1)max(x2, y2), x, y ∈ [0, 1]2. Let X and X

′ be in-
dependent random variables with the uniform distribution on [0, 1]2.
Each summand in the first sum in (2.3) has the form

EL(X, Xi) =
∫ 1

0

∫ 1

0
(max(x1, Xi1) + max(x2, Xi2)−

−max(x1, Xi1)max(x2, Xi2))dx1dx2 =

=
X2

i1 + 1
2

+
X2

i2 + 1
2

− (X2
i1 + 1)(X2

i2 + 1)
4

=: S(Xi1, Xi2).

Then the last summand in (2.3) equals to

EL(X, X
′
) =

∫ 1

0

∫ 1

0
S(x1, x2)dx1dx2 =

8
9

and this ends the proof of the proposition.

Further consider statistic Tn with the kernel L(x, y) = ‖x − y‖, x, y ∈ R2.
Let us start from one helpful lemma.

Lemma 6. Let X be a random variable with the uniform distribution on the rect-
angle based on the vectors (a, 0) and (0, b), where a, b are fixed positive constants,
then

H(a, b) := abE‖X‖ =
a3

6

(
sinβ

cos2 β
+ ln | tan(

π

4
+

β

2
)|

)
+

+
b3

6

(
sin γ

cos2 γ
+ ln | tan(

π

4
+

γ

2
)|

)
,
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where β = arccos a√
a2+b2

and γ = π
2 − β.

Proof. The mathematical expectation of X equals to

E‖X‖ =
1
ab

∫ a

0

∫ b

0

√
x2 + y2dxdy.

After conversion to polar coordinates we get

E‖X‖ =
1
ab

[∫ β

0

∫ a
cos α

0
r2drdα +

∫ γ

0

∫ a
cos α

0
r2drdα

]
=

=
1
ab

[∫ β

0

a

3 cos3 α
dα +

∫ γ

0

b

3 cos3 α
dα

]
=

=
a2

6b

(
sinβ

cos2 β
+ ln | tan (

π

4
+

β

2
)|

)
+

+
b2

6a

(
sin γ

cos2 γ
+ ln | tan (

π

4
+

γ

2
)|

)
,

where β = arccos a√
a2+b2

and γ = π
2 − β.

Proposition 7. In case of bivariate sample X1, ..., Xn statistic Tn (2.16) with
L(x, y) = ‖x− y‖ can be calculated using the formula

Tn = n ∗

 2

n

n∑

i=1

Λ(Xi)− 1
n2

n∑

i,j=1

‖Xi −Xj‖ − C


 , (2.31)

where C ≈ 0.5214054,

Λ(Xi) = H(1−Xi1, 1−Xi2) + H(Xi1, 1−Xi2) +
+H(Xi1, Xi2) + H(1−Xi1, Xi2),

and function H(·, ·) is defined in Lemma 6.

Proof. Let us consider statistic Tn in the form (2.3) with L(x, y) = ‖x − y‖,
x, y ∈ R2,

E‖X −X
′‖ =

∫

[0,1]4
‖x− y‖dxdy = C ≈ 0.5214054,
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where X and X
′ are independent random variables from the uniform distribution

on unit square.

E‖X −Xi‖ =
∫

[0,1]2
‖x−Xi‖dx =

∫ 1−Xi1

−Xi1

∫ 1−Xi2

−Xi2

‖x‖dx =

=
∫ 1−Xi1

0

∫ 1−Xi2

0
‖x‖dx +

∫ 0

−Xi1

∫ 1−Xi2

0
‖x‖dx +

+
∫ 0

−Xi1

∫ 0

−Xi2

‖x‖dx +
∫ 1−Xi1

0

∫ 0

−Xi2

‖x‖dx =

= H(1−Xi1, 1−Xi2) + H(Xi1, 1−Xi2) +
+H(Xi1, Xi2) + H(1−Xi1, Xi2),

where function H(·, ·) is defined in the previous Lemma.

In case L(x, y) = ‖x − y‖ the inverse values to the largest coefficients ai of
quadratic form (2.28) are presented below.

6.6 7.6 9.2 19.3 39.7
54.1 98.5 119.0 126.9 151.5
174.3 274.8 320.5 407.0 611.6
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Figure 2.1. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = 1− e−‖x−y‖2 , n = 100.

A comparison of empirical distribution function of statistics Tn (2.16) and
the distribution function of quadratic forms (2.28) is shown in Fig. 2.1–2.3. The
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Figure 2.2. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = max(x1, y1) + max(x2, y2)−max(x1, y1)max(x2, y2), n = 100.
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Figure 2.3. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = ‖x− y‖, n = 100.

empirical distribution of Tn with considered kernels was calculated by simulation
of 400 samples of size 100 form the uniform distribution on the unit square.
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2.2. Composite hypothesis

Let X1, . . . , Xn be the sample of independent observations of random variable
X with continuous probability distribution functions F (x), assumed unknown.
The null composite hypothesis in the problem of testing goodness of fit is

H0 : F (x) ∈ Λ = {G(x, θ), x ∈ Rp, θ ∈ Θ ⊂ Rd},

where Λ - is a parametric family of distribution functions.
In comparison with simple hypothesis this problem is more interesting from

practical point of view, because in reality exact distributions in goodness of fit prob-
lems are unknown.

The statistic for testing H0, based on N-distance with the kernel L(x, y), has
the form

Tn = −n

∫

Rp

∫

Rp

L(x, y) d(Fn(x)−G(x, θ̂n)) d(Fn(y)−G(y, θ̂n)), (2.32)

where θ̂n is the estimate of unknown parameter θ under the assumption that X has
the distribution from family Λ, Fn(x) - empirical distribution function.

We should reject H0 in case of large values of test statistic, that is if Tn > cα.
Where cα can be found from the equation

P0(Tn > cα) = α,

here P0 is a probability distribution corresponding to the null hypothesis and α -
size of the test.

We will follow the outline of presentation determined in the previous section
and first consider the asymptotic distribution of statistics Tn (2.32).

2.2.1. Asymptotic distribution of test statistic

In more detail, the problem of asymptotic distribution of Tn will be discussed
in univariate case. In the first subsection the general procedure to determine the
limit distribution of test statistics is presented. After that some practical results for
normality and exponetiality tests are provided.

In case of arbitrary dimension the normality test is only considered. Though,
the asymptotic distribution of test statistics is not established, the critical region of
proposed criteria is determined using Monte Carlo simulations.
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Univariate case

By analogy with simple hypothesis problem in the previous section let us con-
sider statistic Tn with a special form of strongly negative definite kernel

Tn = −n

∫ +∞

−∞

∫ +∞

−∞
L(G(x, θ̂n), G(y, θ̂n)) d∆n(x, θ̂n) d∆n(y, θ̂n), (2.33)

where ∆n(x, θ̂n) = Fn(x)−G(x, θ̂n) Fn(x) is the empirical distribution function
based on the sample X1, . . . , Xn. Statistic (2.33) can be rewritten in the form

Tn = −n

∫ 1

0

∫ 1

0
L(x, y) d(F ∗

n(x)− x) d(F ∗
n(y)− y), (2.34)

where F ∗
n(x) is the empirical distribution function based on transformed sample

t1, . . . , tn, ti = G(Xi, θ̂n), i = 1, 2, ..., n.
Further we assume that an estimate θ̂n of the vector-parameter θ ∈ Θ ⊂ Rd can be
represented in the form

√
n(θ̂n − θ) =

1√
n

n∑

i=1

l(Xi, θ) + Rn, (2.35)

where |Rn| P−→ 0, l(x, θ) = (l1(x, θ), ..., ld(x, θ))t,

El(x, θ) = 0,

El(x, θ)l(x, θ)t = B(θ),

where B(θ) - is a positive-definite matrix. Such property, under some regularity
conditions (Durbin, 1973) is satisfied, for example, by the maximum likelihood
estimate. In this case

l(x, θ) = I−1(θ)S(x, θ),

where S(x, θ) = ( ∂
∂θ1

ln g(x, θ), ..., ∂
∂θd

ln g(x, θ)), g(x, θ) = G′
x(x, θ) and I(θ)

is Fisher information matrix.
The following assumptions will be made in addition to (2.35). Let U denotes

the closure of a given neighborhood of θ.
1. G(x, θ) is continuous in x for all θ ∈ U .

2. The vector-valued function q(t, θ) = ∂G(x,θ)
∂θ , t = G(x, θ) exists and is
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continuous in (t, θ) for all θ ∈ U and all 0 ≤ t ≤ 1.

Theorem 11. Let θ̂n be the maximum likelihood estimate of θ. On assumptions
stated above, the null asymptotic distribution of statistic Tn (2.34) will coincide
with distribution of quadratic form

Q =
∞∑

k=1

∞∑

j=1

akjζkζj , (2.36)

where ζk are independent random variables from the standard normal distribution
and

aij = −
√

λiλj

∫ 1

0

∫ 1

0
L(x, y)dψi(x)dψj(y), (2.37)

where λk and ψk(x) are eigenvalues and functions of integral operator A

Af(x) =
∫ 1

0
K(x, y)f(y)dy, (2.38)

where

K(x, y) = min(x, y)− xy − q(x, θ)I−1(θ)q(y, θ), (2.39)

where q(x, θ) = G
′
θ(z, θ), x = G(z, θ), z ∈ R and I(θ) - Fisher information

matrix.

Proof. The outline of the proof coincides with the proof of Theorem 9. The weak
limit of random process Zn(x, θ) = F ∗

n(x)− x, where F ∗
n(x) is the empirical dis-

tribution function based on the sample t1, . . . , tn, ti = G(Xi, θ̂n), i = 1, 2, ..., n,
was obtained in Theorem 1 in (Durbin, 1973)

Zn(x, θ) D−→ ξ(x, θ), (2.40)

ξ(x, θ) is a Gaussian process with mean zero and correlation function

K(x, y) = min(x, y)− xy − q(x, θ)I−1(θ)q(y, θ),

where q(x, θ) = G
′
θ(z, θ), x = G(z, θ) and

I(θ) = E
∥∥∥∥

∂

∂θi
ln g(x, θ)

∂

∂θj
ln g(x, θ)

∥∥∥∥ .
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After that the statement of the theorem follows immediately from the continuity
of functional (2.34), established in Lemma 2.

It is obvious from the form of the correlation function (2.39) that under H0, Tn

is not distribution-free since its asymptotic distribution depends on G. Worse, it is
not even asymptotically parameter-free since this distribution depends in general
on the value of unknown parameter θ. However, in some cases we can avoid this
parametric dependence. These include cases when Λ is a location-scale family of
distribution functions, that is

Λ = {G(
x− θ1

θ2
), θ1 ∈ R, θ2 > 0}.

The properties of random processes ξ(x) (2.40) in this case were in detail stud-
ied in (Martynov, 1978). If both parameters are unknown, the correlation function
of ξ(x) has the form

K(x, y) = min(x, y)− xy − 1
a
K1(x, y), (2.41)

where

K1(x, y) = c2w1(x)w2(y) + c1w2(x)w2(y)−
−c3(w1(x)w2(y) + w2(x)w1(y)),

w1(x) = g(G−1(x)), w2(x) = G−1(x)g(G−1(x)),

c1 =
∫ +∞

−∞

(g
′
(x))2

g(x)
dx, c2 =

∫ +∞

−∞
x2 (g

′
(x))2

g(x)
dx− 1,

c3 =
∫ +∞

−∞
x

(g
′
(x))2

g(x)
dx, a = c1c2 − c2

3.

As an implication from location-scale family for one more family Λ K(x, y)
also does not depend on unknown parameters. This is a set of distribution functions
with scale and shape parameters of the form

Λ = {G((
x

θ1
)θ2), θ1 > 0, θ2 > 0},

which includes such well-known distributions as Weibull, Log-logistic and others.
In this case the kernel K(x, y) will have the same form (2.41), where
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w1(x) = G−1(x)g(G−1(x)), w2(x) = G−1(x)g(G−1(x)) ln G−1(x),

c1 =
∫ +∞

−∞

(
1 +

g′(x)
g(x)

x

)2

g(x)dx,

c2 =
∫ +∞

−∞

(
1 +

g′(x)
g(x)

x lnx + lnx

)2

g(x)dx,

c3 =
∫ +∞

−∞

(
1 +

g′(x)
g(x)

x

)(
1 +

g′(x)
g(x)

x lnx + lnx

)
g(x)dx,

a = c1c2 − c2
3.

The eigenvalues of integral operator (2.38) with the kernel (2.39) consists of
two parts (Martynov, 1978). Firstly, these are the set of numbers

{(πk)−2 : |bk| = 0, k = 1, 2...}, (2.42)

where bk =
√

2
∫ 1
0 β(x) sin(πkx)dx, β(x) = I−1/2(θ)q(x, θ). And secondly - the

solutions λ of the following equation

det

(
E −

∞∑

k=1

bkb
t
k

(πk)−2 − λ

)
= 0. (2.43)

Further we discuss the above mentioned procedure in more detail on the basis
of normality and exponentiality tests. Numerical results for the largest coefficients
of diagonalized quadratic form (2.36) are proposed.

Remark

In the most general case of family Λ the parametric dependence problem of the
distribution of statistic Tn can be overcome by utilization of parametric bootstrap
methods (Stute et al., 1993; Szucs, 2008).

Consider statistic Tn based on the empirical process

Zn(x) =
√

n(Fn(x)−G(x, θ̂n))

and let T ∗n be the corresponding statistic based on the bootstrapped estimated em-
pirical process
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Z∗n(x) =
√

n(F ∗
n(x)−G(x, θ̂∗n)),

where F ∗
n(x) is the empirical distribution function constructed from the sample

X∗
1 , ..., X∗

n independently generated having distribution function G(x, θ̂n) and θ̂∗n
be an estimator of θ̂n based on the generated sample. If Tn has a continuous asymp-
totic distribution function, then we can test H0 by the following algorithm

1. Calculate the estimator θ̂n based on X1, ..., Xn.

2. Calculate Tn.

3. Generate random values X∗
1 , ..., X∗

n having distribution function G(x, θ̂n).

4. Calculate the estimator θ̂∗n of θ̂n based on bootstrap sample.

5. Calculate T ∗n .

6. Repeat steps 3-5 N times, let T ∗n,1 ≤ ... ≤ T ∗n,N be the order statistic of the
resulting N values of T ∗n and let cα be (1− α) empirical quantile of T ∗n .

7. Reject H0 if Tn is greater than cα.

The validity of this procedure under very general conditions on the distribution
function G(x, θ̂) and parameter estimation methods is ensured by Theorem 1 in
(Szucs, 2008). However in this thesis we omit the details and refer the reader to the
mentioned references.

Normality test

Denote by Φ(x) and ϕ(x) the cumulative distribution and probability density
functions of standard normal distribution. Consider the case when both location
and scale parameters of hypothesized distribution are unknown.

First, transform initial sample X1, . . . , Xn to the sample t1, . . . , tn, where
ti = Φ(Xi, X̄, Ŝ2) and X̄ , Ŝ2 are maximum likelihood estimates of unknown
parameters of mean and variation. And then test the null hypothesis using statistic
(2.34).

After described transformation statistic Tn with different kernels can be calcu-
lated using the formulas in proposition 3.

The asymptotic distribution of statistic Tn coincides with distribution of quad-
ratic form (2.36), where the kernel (2.39) of the integral operator A (2.38) has the
form
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K(x, y) = min(x, y)− xy − ϕ(Φ−1(x))ϕ(Φ−1(y))

−1
2
Φ−1(x)Φ−1(y)ϕ(Φ−1(x))ϕ(Φ−1(y)).

To obtain the expressions of the coefficients of quadratic form (2.36) let us pass
over directly to calculation of eigenvalues and functions of operator A (2.38).
Since bk = (bk,1, bk,2) 6= 0 (2.42), ∀k = 1, 2..., where

bk =
√

2
∫ 1

0
β(x) sin(πkx)dx,

β(x) =
(

ϕ(Φ−1(x)),
1√
2
Φ−1(x)ϕ(Φ−1(x))

)
,

the eigenvalues of operator A are only the solutions of equation (2.43). Note, that
the coefficients bk,1 with even numbers and bk,2 with odd numbers are equal to zero.
Thus, all eigenvalues λk, k = 1, 2..., of A are the combination of the solutions of
the following equations:

∞∑

k=1

b2
2k−1,1

((2k − 1)π)−2 − λ
= 1, (2.44)

∞∑

k=1

b2
2k,2

(2kπ)−2 − λ
= 1. (2.45)

The left part of all equations is strictly monotone in each of the corresponding
intervals

(
((2k − 1)π)−2, ((2k + 1)π)−2

)
,
(
(2kπ)−2, ((2k + 2)π)−2

)
and has in

it only one solution. This fact allows us to use simple numerical methods to find
the sufficient number of eigenvalues and gives us an estimate of their convergence
to zero.

The inverse values to the largest solutions λk, k = 1, 2..., of equations are
presented below.

54.5 186.7 396.6 684.7 1051.2
1496.1 2019.6 2621.7 3302.7 4062.3

74.4 229.1 463.3 776.8 1169.4
1641.1 2192.1 2821.7 3530.7 4319.1

After computation of eigenvalues of operator (2.38), let us pass over directly
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to corresponding eigenfunctions. By analogy with bivariate simple hypothesis (see
section 2.1.3) the eigenfunctions ψλk

(x) can be found in the form of decomposition
to the series

ψλk
(x) =

∞∑

i=1

αi sin(πix). (2.46)

The choice of the family {sin(πix), i = 1, 2...} is justified by two facts:
firstly, this family is complete on the interval [0, 1] and secondly, functions√

2 sin(πix) are the eigenfunctions of integral operator (2.38) with the kernel
K0(x, y) = min(x, y)− xy, which is a part of the kernel K(x, y).

As it was noticed in section 2.1.2 for some of the kernels L(x, y) the following
equalities are fulfilled ∀k, j ∈ N

− 2
∫ 1

0

∫ 1

0
|x− y| d sin(πkx) d sin(πjy) = 2δkj , (2.47)

− 2
∫ 1

0

∫ 1

0
max(x, y) d sin(πkx) d sin(πjy) = δkj . (2.48)

These properties help us to avoid the calculation of the coefficients of the series
(2.46) and leads to the result

• In case L(x, y) = max(x, y) the coefficients akj of quadratic form (2.36)
equals to

akj =
√

λkλjδkj ,

• In case L(x, y) = |x− y|

akj = 2
√

λkλjδkj ,

where λk are the solutions of the equations (2.44) and (2.45).
For other kernels L(x, y), in practice, the eigenfunctions ψλk

(x) can be ap-
proximated by a finite sequence

ψλk
(x) =

N∑

i

αi sin(πix) (2.49)

using only the functions sin(πix) with i < K, K ∈ N.
Further we propose some numerical results and compute several largest coef-
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ficients of the diagonalized quadratic form (2.36)

Q =
∞∑

i=1

aiζ
2
i , (2.50)

where ζi are independent random variables from the standard normal distribution.
In our calculations we consider 20 largest eigenvalues of operator (2.38), pre-

sented in the table above. For all eigenvalues we used approximation (2.49) with
N = 50, after that the coefficients of quadratic form (2.36) were evaluated us-
ing the formula (2.37). As a result, the coefficients ai in (2.50) were computed as
eigenvalues of obtained matrix of quadratic form (2.36).

First consider test statistic Tn (2.34) with the kernel L(x, y) = |x− y| 32 . The
inverse values to the largest coefficients ai of quadratic form (2.50) are presented
below.

55.3 100.6 281.2 428.2 795.9
1045.5 1628.9 2029.1 2852.0 3438.8
4507.5 5257.0 6619.5 7600.7 9378.2

10387.0 10682.0 12765.0 13231.0 16319.0

In case L(x, y) = |x−y|
1+|x−y| the inverse values to the largest coefficients ai of

quadratic form (2.50) are presented below.

33.5 42.3 103.6 120.6 149.1
194.5 259.6 264.8 388.1 441.2
588.3 656.3 847.7 921.6 1125.6

1236.5 1450.5 1496.6 1797.8 2320.0

A comparison of empirical distribution function of statistic Tn (2.34) and the
distribution function of quadratic forms (2.50) is shown in Fig. 2.4–2.6. The em-
pirical distribution of Tn with considered kernels was calculated by simulation of
600 samples of size 100 form the normal distribution with mean 1 and variance 2.

Exponentiality test

The second example is devoted to the hypothesis of exponentiality with un-
known mean parameter, that is

G(x, θ) = 1− e
x
θ , θ > 0.
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Figure 2.4. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = max(x, y), n = 100.
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Figure 2.5. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = |x− y| 32 , n = 100.
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Figure 2.6. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = |x−y|

1+|x−y| , n = 100.

After transformation of initial sample X1, . . . , Xn to the sample t1, . . . , tn,
where ti = G(Xi, X̄) and X̄ is a maximum likelihood estimate of unknown mean,
the null hypothesis is tested using statistic (2.34). Proposition 3 provides the for-
mulas for calculation of tests statistic Tn after described transformation.

The asymptotic distribution of statistic Tn coincides with distribution of quadra-
tic form (2.36), where the kernel (2.39) of the integral operator A (2.38) has the
form

K(x, y) = min(x, y)− xy − (1− x) log(1− x)(1− y) log(1− y). (2.51)

The set of eigenvalues λk, k = 1, 2, ..., of the integral operator A with the
kernel (2.51) coincides with the set of the solutions λ of equation (2.43), which in
this case has the form

∞∑

k=1

2c2
k

(πk)4
1

(πk)−2 − λ
= 1, (2.52)

where ck =
∫ 1
0

sin(πkx)
x dx, k = 1, 2, ...

The left part of the equation (2.52) is monotonically increasing in each of the inter-
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vals
(
(kπ)−2, ((k + 1)π)−2

)
and has only one solution in it. This helps us to find

the sufficient number of eigenvalues numerically.
The inverse values to the largest solutions λk, k = 1, 2..., of equation (2.52)

are presented below.

23.8 58.4 122.6 196.5 300.3
413.7 556.9 709.7 892.5 1084.8

1307.0 1538.8 1800.5 2071.8 2373.0
2683.7 3024.4 3374.7 3754.8 4144.6

By analogy with normality hypothesis corresponding eigenfunctions ψλk
(x)

can be found in form of expansion to the series (2.46).
Taking into account the properties (2.47), (2.48) of the kernels L(x, y) = |x−

y| and L(x, y) = max(x, y), these is no need to calculate the coefficients of the
series (2.46) and the limit distribution of Tn will coincide with the distribution of
quadratic forms

• L(x, y) = max(x, y),
∞∑

k=1

λ2
kξ

2
k;

• L(x, y) = |x− y|,
2
∞∑

k=1

λ2
kξ

2
k,

where ξk are independent random variables from the standard normal distribution.
For all the other kernels L(x, y) the eigenfunctions ψλk

(x), in practice, can
be approximated by a finite sequence (2.49). Further we propose some numerical
results and compute several largest coefficients of the diagonalized quadratic form
(2.50).

In our calculations we consider 20 largest solutions of equation (2.52), pre-
sented in the table above. For all eigenvalues we used approximation (2.49) with
N = 50, after that the coefficients of quadratic form (2.36) were evaluated us-
ing the formula (2.37). As a result, the coefficients ai in (2.50) were computed as
eigenvalues of obtained matrix of quadratic form (2.36).

First consider test statistic Tn (2.34) with the kernel L(x, y) = |x− y| 32 . The
inverse values to the largest coefficients ai of quadratic form (2.50) are presented
in the table below.
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Figure 2.7. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = max(x, y), n = 100.

16.6 73.7 177.5 351.5 594.5
921.8 1324.7 1840.2 2420.0 3153.1

3975.2 4912.9 5956.0 7173.3 8490.9
9985.1 11172.0 12731.0 13441.0 18271.0

In case L(x, y) = |x−y|
1+|x−y| the inverse values to the largest coefficients ai of

quadratic form (2.50) are presented in the table below.

17.8 34.1 70.7 105.0 154.8
190.9 227.7 305.1 386.4 487.6
610.3 703.5 812.9 1020.1 1099.2

1256.1 1615.0 1861.4 2621.6 4560.8

A comparison of empirical distribution function of statistic Tn (2.34) and the
distribution function of quadratic forms (2.50) is shown in Fig. 2.7–2.9. The em-
pirical distribution of Tn with considered kernels was calculated by simulation of
600 samples of size 100 form the exponential distribution with mean 2.

Remark

Both for normality and exponentiality tests another procedure for testing the
null hypothesis can be suggested. Instead of transformation of initial sample to the
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Figure 2.8. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = |x− y| 32 , n = 100.
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Figure 2.9. Empirical and asymptotic distribution of statistic Tn with the kernel
L(x, y) = |x−y|

1+|x−y| , n = 100.
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interval [0, 1] we can first standardize our sample X1, . . . , Xn using the formula
below, without loss of generality only normality case is discussed:

Yi = σ̂−1/2(Xi − X̄), i = 1, ..., n,

where X̄ and σ̂ are maximum likelihood estimates of mean and variance.
The null hypothesis can be tested using statistic

Tn = −n

∫ +∞

−∞

∫ +∞

−∞
L(x, y) d(Fn(x)− Φ(x)) d(Fn(y)− Φ(y)), (2.53)

where Fn(x) is the empirical distribution function, based on the sample Y1, ..., Yn

and Φ(x) is standard normal distribution function.
One can see, that the joint distribution of Y1, ..., Yn does not depend of unknown
parameters, therefore the distribution of (2.53) can be modeled with the help of
simulations.

2.2.2. Multivariate normality test

In general case of arbitrary dimension to obtain the limit distribution of test
statistic (2.32) in the form of distribution of infinite quadratic form becomes a
rather complicated task. The main difficulties here are connected with calculation
of eigenvalues and functions of a certain integral operator. However, for specific
families Λ (see section 2.2), some alternative procedures to determine the critical
region of the test can be proposed. In this section we consider normality criterion,
as the most widespread problem among multivariate goodness of fit tests.

Let X1, . . . , Xn be a p-variate sample of independent observations of random
variable X with distribution function F (x). Consider the problem of testing the
hypothesis

H0 : F (x) ∈ Np(a,Σ),

where a and Σ are mathematical expectation vector and covariance matrix of nor-
mal distribution, assumed unknown.

The distribution of test statistic Tn (2.2), applied for testing H0, is dependent
on unknown parameters of hypothesized normal distribution. To avoid this, first
standardize the initial sample using the formula:

Yk = Ŝ−1/2(Xk − X̄), k = 1, ..., n, (2.54)

where X̄ and Ŝ are maximum likelihood estimates for a and Σ.
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Transformed sample will asymptotically have the p-variate standard normal
distribution. And let us reject the hypothesis H0 in case of large values of statistic

Tn = −n

∫

R2p

L(x, y) d(Fn(x)− Φ(x)) d(Fn(y)− Φ(y)), (2.55)

where Fn(x) is the empirical distribution function, base on the sample Y1, . . . , Yn

and Φ(x) - distribution function of p-variate standard Gaussian distribution.
In bivariate case Pettitt in (Pettitt, 1979) studies the properties of empirical

process
√

n(Fn(x)− Φ(x)) after its transformation to the unit square, that is

Zn(t) =
√

n(F ∗
n(t)− t1t2),

where F ∗
n(t) is a bivariate empirical distribution function, i.e. F ∗

n(t) is the fraction
of the Yi for which the inequalities Φ(Yi1) ≤ t1 and Φ(Yi2 ≤ t2) both hold, here Φ
is the standard normal distribution function. The covariance function of the process
Zn(t) is

K(s, t) = min(t1, s1)min(t2, s2)− t1t2s1s2 −
−φ(Φ(t1))φ(Φ(s1))t2s2 − φ(Φ(t2))φ(Φ(s2))t1s1 −
−1

2
(Φ(t1)Φ(s1)φ(Φ(t1))φ(Φ(s1))t2s2 +

+Φ(t2)Φ(s2)φ(Φ(t2))φ(Φ(s2))t1s1)−
−φ(Φ(t1))φ(Φ(t2))φ(Φ(s1))φ(Φ(s2)),

where φ(x) = Φ
′
(x).

However the calculation of the eigenvalues and functions of integral operator
with the kernel K(s, t) is rather complicated. To avoid this, let us note, that the joint
distribution of Y1, . . . , Yn asymptotically does not depend on unknown parameters
a and Σ. This fact allows us to estimate the percentiles of the null distribution of
Tn by means of Monte Carlo simulations.

Statistics Tn with different strongly negative definite kernels can be calculated
using the following proposition.

Proposition 8. In case of bivariate sample Y1, ..., Yn, Yi = (Yi1, Yi2) statistics Tn

(2.56) can be calculated using the formulas

• L(x, y) = ‖x− y‖,
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Tn = 2
n∑

i=1

Υ(Yi)− 1
n

n∑

i,j=1

‖Yi − Yj‖ − 2nΓ(3/2),

where

Υ(z) =
√

2Γ(
3
2
) +

√
2
π

∞∑

k=0

(−1)k

k!2k

‖z‖2k+2

(2k + 1)(2k + 2)
Γ(3/2)Γ(k + 3

2)
Γ(k + 2)

,

z ∈ R2.
• L(x, y) = 1− e−‖x−y‖2 ,

Tn = 2
n∑

i=1

(1− 1
3
e−

Y 2
i1
3 ∗ e−

Y 2
i2
3 )− 1

n

n∑

i,j=1

L(Yi, Yj)− 4n

5
.

• L(x, y) = Φ(x1 ∨ y1) + Φ(x2 ∨ y2)− Φ(x1 ∨ y1)Φ(x2 ∨ y2),

Tn = 2
n∑

i=1

Υ(Yi1) + Υ(Yi2)−Υ(Yi1)Υ(Yi2)− 1
n

n∑

i,j=1

L(Yi, Yj)− 8n

9
,

where Υ(z) = 1+Φ2(y)
2 and Φ(z) - distribution function of univariate standard

normal distribution.
Proof. Statistic Tn with the kernel L(x, y) = ‖x − y‖ was obtained by Szekely
and Rizzo in (Szekely and Rizzo, 2005). For two other kernels the formulas were
derived from representation (2.3) by calculating corresponding mathematical ex-
pectations. Let Yi = (Yi1, Yi2), i = 1, ..., n, be an element from the standardized
sample (2.54) and X,X ′ two independent random variables from the bivariate stan-
dard normal distribution, then

• L(x, y) = 1− e−‖x−y‖2 , x, y ∈ R2,

EL(X,Yi) =
1
2π

∫ ∫ (
1− e−(x−Yi1)2−(y−Yi2)2

)
e−

x2

2
− y2

2 dxdy =

= 1− 1
3
e−

Y 2
i1
3
−Y 2

i2
3 ,

EL(X,X ′) = 1− 1
6π

∫ ∫
e−

x2

3
− y2

3 e−
x2

2
− y2

2 dxdy =
4
5
.
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• L(x, y) = Φ(x1 ∨ y1) + Φ(x2 ∨ y2)− Φ(x1 ∨ y1)Φ(x2 ∨ y2),

where x = (x1, x2) and y = (y1, y2),
From equality ∫

Φ(max(x, y))dΦ(x) =
1 + Φ2(y)

2

follows that

EL(X, Yi) =
1 + Φ2(Yi1)

2
+

1 + Φ2(Yi2)
2

−

−1 + Φ2(Yi1)
2

1 + Φ2(Yi2)
2

As ∫ (
1 + Φ2(x)

2

)
dΦ(x) =

2
3
,

then
EL(X, X ′) =

8
9
.

Remark. Another possible variant for testing H0 can be obtained from using in-
stead of standardization (2.54) Mahalanobis transformation:

Yk = (Xk − X̄)Ŝ−1/2(Xk − X̄), k = 1, ..., n.

Transformed sample will asymptotically have χ2
p distribution with p degrees of

freedom. The null hypothesis should be rejected for large values of statistic

Tn = −n

∫

R2p
+

L(x, y) d(Fn(x)−Gχ2
p
(x)) d(Fn(y)−Gχ2

p
), (2.56)

where Fn(x) is the empirical distribution function, constructed from the quantities
{Yi} and Gχ2

p
is a χ2

p distribution function with p degrees of freedom.
Koziol in (Koziol, 1983) investigates the properties of empirical process√

n(Fn(x) − Gχ2
p
(x)), which converges weakly to a Gaussian process with zero

mathematical expectation and covariation function

K(s, t) = Gχ2
p
(min(s, t)))−Gχ2

p
(s))Gχ2

p
(t))− 2st

p
gχ2

p
(t))gχ2

p
(s)),

where gχ2
p
(t)) is the density function of the distribution Gχ2

p
(t)). The critical region

of the test in this case can be also determined using Monte Carlo simulations.
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2.3. Conclusions of Chapter 2

1. Based on N-distances, the construction of statistical tests of goodness of fit
(simple and composite hypothesis) were proposed.

2. In the general case the limit null distribution of proposed N-metrics statis-
tics coincides with the distribution of infinite quadratic form of Gaussian
random variables. Under the alternative hypothesis, considered tests statis-
tics are asymptotically normal.

3. In the general case proposed goodness of fit test statistics are not distribution-
free.

4. For normality and nonparametric hypotheses of goodness of fit in high di-
mensional cases, when it is difficult from computational point of view to
determine the limit null distribution of N-distance statistic analytically, the
critical region of the test can be established by means of Monte Karlo sim-
ulations.





3
Nonparametric tests based on

N-distances

3.1. Homogeneity test

Let X1, . . . , Xn and Y1, . . . , Ym be two samples of independent observations
of random variables X and Y with unknown continuous distribution functions
F (x) and G(x). The null hypothesis in the problem of testing homogeneity is
H0 : F (x) = G(x).

The statistic for testing H0 on the basis of N-distance between the empirical
distributions constructed from corresponding samples has the form

Tn,m = − nm

n + m

∫

R2p

L(x, y) d(Fn(x)−Gm(x)) d(Fn(y)−Gm(y)), (3.1)

where Fn(x), Gm(x) - are empirical distribution functions based on the samples
X1, . . . , Xn and Y1, . . . , Ym.

71
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In practice statistic (3.1) can be computed using the formula

Tn,m =
2

n + m

∑

i,j

L(Xi, Yj)− m

n(n + m)

∑

i,j

L(Xi, Xj)−

− n

m(n + m)

∑

i,j

L(Yi, Yj). (3.2)

We should reject the null hypothesis in case of large values of our test statis-
tic. Following the outline of presentation determined in the previous sections, first
consider the asymptotic distribution of statistic Tn,m (3.1) in the most general case.

3.1.1. Asymptotic distribution of test statistic

Denote

H(x1, y1, x2, y2) = L(x1, y2) + L(x2, y1)− L(x1, x2)− L(y1, y2). (3.3)

One can see that test statistic Tn,m (3.2) can be rewritten in the form of two-sample
U-statistic (Koroljuk and Borovskich, 1994)

Tn,m =
nm

n + m

∫
H(x1, y1, x2, y2)dFn(x1)dGm(y1)dFn(x2)dGm(y2), (3.4)

where L(x, y) is the strongly negative definite kernel of N-distance and
x1, x2, y1, y2 ∈ Rp.
Note, that H(x1, y1, x2, y2) satisfies the conditions ∀x1, x2, y1, y2:

• H(x1, y1, x2, y2) = H(x2, y2, x1, y1) symmetry on
(x1, y1) ↔ (x2, y2),

• H(x1, y1, x2, y2) = −H(y1, x1, x2, y2) anti-symmetry on x1 ↔ y1.
Under the null hypothesis, when X and Y has the same distribution function

F (x), the kernel of U-statistic (3.4) satisfies the property of degeneracy, that is

EH(X, Y, x2, y2) = EL(X, y2) + EL(x2, Y )−
−EL(X, x2)−EL(Y, y2) = 0.

Let X
′ and Y

′ be independent copies of random variables X and Y respec-
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tively. Assume that EH2(X,Y,X
′
, Y

′
) < ∞. Then, according to the spec-

tral theorem there exist the orthogonal sequence of functions ψ1, ψ2, ... in L2,
Eψj(X,Y ) = 0, j ≥ 1, and the sequence of numbers λ1, λ2, ... in R,

∞∑

j=1

λ2
j = EH2(X,Y, X

′
, Y

′
) < ∞,

such that lims→∞ ‖H −Hs‖2
L2

= 0 for

Hs(x1, y1, x2, y2) =
s∑

j=1

λjψj(x1, y1)ψj(x2, y2).

Theorem 12. Let min(n,m) → ∞, under H0 and assumptions stated above the
limit distribution of Tn,m coincides with the distribution of random variable

T =
∞∑

j=1

λjσ
2
j ζ

2
j , (3.5)

where
σ2

j =
∫

Rp

(Eψj(x1,Y))2dF (x1), j = 1, 2, ...,

and ζj , j = 1, 2, ..., are independent standard normal random variables.

Proof. From Theorem 5.6.1 in (Koroljuk and Borovskich, 1994) and properties
of weak convergence of random processes it follows that the weak limit of Tn,m

coincides with the weak limit of random variable

U =
∞∑

i=1

λi(aiW1i(1) + biW2i(1))2,

where W1i(·), W2i(·), i = 1, 2, ..., are independent Wiener processes on [0, 1] and

a2
i = β

∫

Rp

(Eψi(x, Y ))2dF (x),

b2
i = α

∫

Rp

(Eψi(X, y))2dF (x),

where 0 < α, β < 1 and m/(n + m) → α, n/(n + m) → β.
By virtue of the property of the anti-symmetry of H(x1, y1, x2, y2),
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ψi(x1, y1) is also anti-symmetric. Thus

a2
i + b2

i = σ2
i =

∫

Rp

(Eψi(x,Y))2dF (x)

and
[aiW1i(1) + biW2i(1)] ∼ N(0, σ2

i ).

Let us further consider the asymptotic distribution of test statistic Tn,m (3.2)
under alternative hypothesis. In this case the probability to reject the null hypoth-
esis with a given size of the test α tends to 1 when n,m → ∞. Therefore we
consider our statistic Tn,m normalized in a special way.

Let F (x) does not equal identically to G(x) and denote

H(x1, y1, x2, y2) :=
1
2
H0(x1, y1, x2, y2)− L(x1, x2)− L(y1, y2), (3.6)

where

H0(x1, y1, x2, y2) = L(x1, y2) + L(x2, y1) + L(x1, y1) + L(x2, y2)

Note, that H(x1, y1, x2, y2) satisfies the property of symmetry by x1 ↔ x2 and
y1 ↔ y2, so statistic Tn,m can be represented in the form V-statistic

Tn,m =
∫

H(x1, y1, x2, y2)dFn(x1)dGm(y1)dFn(x2)dGm(y2). (3.7)

Let X , X
′ and Y ,Y ′ be independent random variables with probability distri-

bution functions F (x) and G(x) respectively. Denote

a :=
∫

H(x1, y1, x2, y2)dF (x1)dG(y1)dF (x2)dG(y2) (3.8)

and define the functions

g1(x) = E(H(X, Y,X
′
, Y

′
)|X = x)− a,

g2(x) = E(H(X, Y, X
′
, Y

′
)|Y = x)− a.

Assume that σ2
1 = Eg2

1(X) and σ2
2 = Eg2

1(Y ).
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Theorem 13. If EH2 < ∞ and σ2
1 6= 0, σ2

2 6= 0, then

(4σ)−1(Tn,m − a) d−→ ζ,

as min(n,m) →∞, n
m → const. 6= 0, where σ2 = E(Tn,m−a)2 = 2

nσ2
1 + 2

mσ2
2

and ζ is a random variable form the standard normal distribution.

Proof. Under alternative hypothesis the kernel H(x1, y1, x2, y2) of V-statistic (3.7)
is nondegenerate.

Let us rewrite Tn,m in the form

n2m2Tn,m = 4
∑

i<j,k<l

H(Xi, Yk, Xj , Yl) + 2
∑

i<j,k

H(Xi, Yk, Xj , Yk) +

+2
∑

i,k<l

H(Xi, Yk, Xi, Yl) +
∑

i,k

H(Xi, Yk, Xi, Yk) =

= ξ1 + ξ2 + ξ3 + ξ4.

Note, that for i = 2, 3, 4,
1

n2m2
σ−1ξi

P−→ 0.

Thus the limit distribution of Tn,m is defined by the asymptotic behavior of ξ1.
Random variable ξ1 corresponds to a two-sample U-statistic with the kernel

H(·). The asymptotic normality of ξ1 immediately follows from Theorem 4.5.1
in (Koroljuk and Borovskich, 1994) establishing the limit distribution of multi-
sample U-statistics.

Under the null hypothesis the limit distribution of test statistic Tn,m (3.2) de-
pends on the common distribution F of random variables X and Y , which is un-
known. Although one can estimate the null distribution in the case of a completely
specified F , it is of much greater practical interest to develop a test procedure for
the case where the only information available about the sampled populations is con-
tained in the observed samples. In the next subsections we propose some ways for
solving this problem. We suggest a bit different approaches in uni- and multivariate
cases, so further they are considered separately.

3.1.2. Univariate case

Consider test statistic Tn,m in univariate case
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Tn,m = − nm

n + m

∫ +∞

−∞

∫ +∞

−∞
L(x, y) d∆n,m(x) d∆n,m(y), (3.9)

where ∆n,m(x) = Fn(x)−Gm(x) and Fn(x), Gm(x) - are empirical distribution
functions constructed from the samples X1, . . . , Xn and Y1, . . . , Ym.

To avoid the dependence of the distribution of Tn,m on the distribution of vari-
ables X and Y let us first transform initial samples to the samples t1, . . . , tn and
s1, . . . , sm, using the formulas

ti = Hn,m(Xi), i = 1, ..., n,

sj = Hn,m(Yj), j = 1, ..., m,

where Hn,m(x) is the empirical distribution function based on combined sample
X1, . . . , Xn, Y1, . . . , Ym. Under the null hypothesis the transformed samples will
asymptotically have the uniform distribution on [0, 1] and the statistic Tn,m for test-
ing the homogeneity of t1, . . . , tn and s1, . . . , sm will have for following form

Tn,m = − nm

n + m

∫ 1

0

∫ 1

0
L(s, t) d∆∗

n,m(x) d∆∗
n,m(y), (3.10)

where ∆∗
n,m(x) = F ∗

n(x)−G∗
m(x) and F ∗

n(t) and G∗
m(t) are the empirical distri-

bution functions based on transformed samples t1, . . . , tn and s1, . . . , sm respec-
tively.

The asymptotic distribution of Tn,m can be found in the same way as it was
done for goodness of fit tests (see Theorem 9) and brings to the following result.

Theorem 14. Under the null hypothesis statistic Tn,m will have the same asymp-
totic distribution as quadratic form

T =
∞∑

k=1

∞∑

j=1

akj

π2kj
ζkζj , (3.11)

where ζk are independent random variables from the standard normal distribution
and

akj = −2
∫ 1

0

∫ 1

0
L(s, t) d sin(πks) d sin(πjt).

Proof. Denote
ξ1(t) :=

√
n(F ∗

n(t)− t),
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ξ2(t) :=
√

n(G∗
m(t)− t).

Empirical processes ξ1(t) and ξ2(t) converges jointly in distribution to inde-
pendent Brownian bridges W1(t) and W2(t) (Billingsley, 1968; van der Vaart and
Wellner, 1996). Note that,

ξn,m(t) :=
√

nm

n + m
(F ∗

n(t)−G∗
m(t)) =

√
m

n + m
ξ1(t)−

√
n

n + m
ξ2(t).

If n,m → ∞ such that m
n+m → α 6= 0 ξn,m(t) weakly converges to random pro-

cess
√

1− αW1(t)−
√

αW2(t), which possesses the same distribution as Brownian
bridge W (t), t ∈ [0, 1].

After establishing the weak limit of ξn,m(t) the statement of the theorem fol-
lows directly form Lemma 2 and the proof of Theorem 9.

3.1.3. Multivariate case

An attempt to establish the asymptotic distribution of Tn,m (3.1) in multivariate
case

Tn,m = − nm

n + m

∫

R2p

L(x, y) d(Fn(x)−Gm(x)) d(Fn(y)−Gm(y)), (3.12)

leads to the same problem of its dependence on unknown distribution functions of
X and Y .

Theorem 15. Under the null hypothesis statistic Tn,m converge in distribution to

T = −
∫

Rp

∫

Rp

L(x, y)dWF (x)dWF (y), (3.13)

where WF (x) is a Brownian bridge process corresponding to the distribution F (x),
that is a zero-mean Gaussian process with covariance function

K(x, y) = F (min(x, y))− F (x)F (y),

where min(x, y) = (min(x1, y1), ...,min(xp, yp).

Proof. The outline of the proof practically coincides with the proof of Theorem 2.2
in (Baringhaus and Franz, 2004).
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To avoid complicated calculations, without loss of generality, consider the case
p = 1.

Denote
ξn,m(x) :=

√
nm

n + m
(Fn(x)−Gm(x)).

Statistic Tn,m can be rewritten in the form

Tn,m = −
∫ +∞

−∞

∫ +∞

−∞
L(x, y)dξn,m(x)dξn,m(y).

Under the null hypothesis, as min(n,m) → ∞, ξn,m weakly converges to Brow-
nian bridge process WF (x) corresponding to the distribution F (x) (van der Vaart
and Wellner, 1996) . If L(x, y) satisfies the conditions of Lemma 2 on each finite
square [−C, C]2, the continuous mapping theorem applies to get that for each real
C > 0

Tn,m,C = −
∫ C

−C

∫ C

−C
L(x, y)dξn,m(x)dξn,m(y)

converge in distribution to

TC = −
∫ C

−C

∫ C

−C
L(x, y)dWF (x)dWF (y),

where the integral is considered as a Stieltjes integral after formal integration by
parts using the formula in Lemma 2

−
∫ C

−C

∫ C

−C
L(x, y)dWF (x)dWF (y) =

= −
∫ C

−C

∫ C

−C
WF (x)WF (y) dL(x, y)−

−
∫ C

−C
WF (C)WF (y) dL(C, y)−

−
∫ C

−C
WF (x)WF (C) dL(x,C) +

+
∫ C

−C
WF (x)WF (−C) dL(x,−C) +

+
∫ C

−C
WF (−C)WF (y) dL(−C, y)+



3. NONPARAMETRIC TESTS BASED ON N-DISTANCES 79

+WF (−C)WF (−C)L(−C,−C)−
−WF (C)WF (−C)L(C,−C)−
−WF (−C)WF (C)L(−C, C) +
+WF (C)WF (C)L(C,C).

Clearly, T is the almost sure limit of TC , as C →∞. Taking into account, that
∫ +∞

−∞

∫ +∞

−∞
L(x, y) dF (x) dF (y) < ∞

and

EWF (x)WF (y) = F (min(x, y))− F (x)F (y) → 0, min(x, y) →∞,

the mathematical expectation of T equals to

ET = −
∫ ∞

−∞

∫ ∞

−∞
F (min(x, y))− F (x)F (y) dL(x, y)

and is almost surely finite. Therefore, for each ε > 0 and δ > 0, we can choose
C > 0 such that

−
∫

R\[−C,C]2
F (min(x, y))− F (x)F (y) dL(x, y) < εδ.

Since
Eξn,m(x)ξn,m(y) = F (min(x, y))− F (x)F (y),

using Markov’s inequality we obtain

lim sup
n,m→∞

P (|Tn,m − Tn,m,C | > ε) ≤

≤ −1
ε

∫

R\[−C,C]2
F (min(x, y))− F (x)F (y) dL(x, y) < δ.

Applying Theorem 3.2 in (Billingsley, 1968) the statement of the theorem follows.

The way of transformation of initial samples to [0, 1]p, discussed in univari-
ate case, can be rather complicated due to discrete nature of empirical distribu-
tion functions. To get the critical values in practice we suggest to use a permu-
tation or a bootstrap approaches. These procedures amount to sampling with-
out and with replacement, respectively, from the pooled data (ZN,1, ..., ZN,N ) =
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(X1, ..., Xn, Y1, ..., Ym), where N = n + m.
Denote by Hn,m(x), x ∈ Rp the empirical distribution function constructed

from the combined sample ZN,1, ..., ZN,N .

Permutation approach

Sampling without replacement from a pooled data ZN,1, ..., ZN,N can be pre-
sented in terms of random permutation. Let r = (r1, ..., rN ) be a random vector
with uniform distribution of the set of all permutations of
{1, 2, ..., N} independent from X and Y . The two-sample permutation empirical
distribution functions are

Fn,N (x) =
1
n

n∑

i=1

1 (ZN,ri ≤ x) , (3.14)

Gm,N (x) =
1
m

N∑

i=n+1

1 (ZN,ri ≤ x) , (3.15)

where x = (x1, ..., xp) ∈ Rp, ZN,i = (Z(1)
N,i, ..., Z

(p)
N,i) and

1 (ZN,i ≤ x) :=
p∏

j=1

1
(
Z

(j)
N,i ≤ xj

)
.

Consider permutation empirical process

ξ(per)
n,m (x) =

√
nm

n + m
(Fn,N (x)−Gm,N (x)). (3.16)

The proof that permutation approach works can be done in nearly the same way as
in Theorem 15.

Assume that m
n+m → γ ∈ (0, 1), applying Theorems 3.7.1–2 in (van der

Vaart and Wellner, 1996) we get that permutation process ξ
(per)
n,m (x) converges in

distribution to Brownian bridge process WH(x) corresponding to the distribution
H(x) = γF (x)+(1−γ)G(x) given almost every sequence X1, X2, ..., Y1, Y2, ....
Thus, under the null hypothesis permutation statistic,

T (per)
n,m := −

∫

Rp

∫

Rp

L(x, y)dξ(per)
n,m (x)dξ(per)

n,m (y)

converges in distribution to random variable T (3.13).
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The distribution of random variable T coincides with the distribution of quadra-
tic form of independent standard normal random variables (see Theorem 12). This
implies that the distribution function of T is absolutely continuous and strictly in-
creasing in [0, +∞).

Defining the upper α-quantile of T
(per)
n,m by

c(per)
n,m = inf{x : P (T (per)

n,m > x) ≤ α}

if follows that c
(per)
n,m tends to the unique upper α-quantile of T almost surely as

n,m → ∞. Thus, the test rejecting the hypothesis if Tn,m > c
(per)
n,m is asymptoti-

cally a test of level α for any F = G.

In practice the distribution of Tn,m can be obtained by dividing the pooled data
into two samples of sizes n and m by all possible Cn

n+m ways. Each time the value
of statistic Tn,m are calculated using the formula (3.1) and c

(per)
n,m is established as

an upper α-quantile of obtained empirical distribution.

Bootstrap approach

Instead of sampling without replacement from the pooled sample
ZN,1, ..., ZN,N , we can sample with replacement. This leads to two-sample boot-
strap empirical distribution functions

Fn,N (x) =
1
n

n∑

i=1

1
(
ẐN,i ≤ x

)
, (3.17)

Gm,N (x) =
1
m

m∑

i=1

1
(
ẐN,n+i ≤ x

)
, (3.18)

where ẐN,1, ..., ẐN,N is a sample randomly taken one by one from pooled sample
ZN,1, ..., ZN,N with replacement.

Consider bootstrap empirical process

ξ(bp)
n,m(x) =

√
nm

n + m
(Fn,N (x)−Gm,N (x)). (3.19)

Using Theorems 3.7.6–7 in (van der Vaart and Wellner, 1996) the assertion on the
limiting distribution of permutation process ξ

(per)
n,m can be carried over to ξ

(bp)
n,m. That
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implies that bootstrap statistic

T (bs)
n,m := −

∫

Rp

∫

Rp

L(x, y)dξ(bs)
n,m(x)dξ(bs)

n,m(y)

weakly converges to random variable T (3.13). Consequently, the upper α-quantiles

c(bs)
n,m = inf{x : P (T (bs)

n,m > x) ≤ α}

of the distribution T
(bs)
n,m can be used as critical values for our test Tn,m > c

(bs)
n,m.

The critical values set by bootstrap method possess exactly the same behavior as
in permutation approach as n,m → ∞. Thus, the test rejecting the hypothesis if
Tn,m > c

(bs)
n,m is asymptotically a test of level α. Because of computational dif-

ficulties, usually c
(bs)
n,m will be approximated by the empirical upper α-quantile of

independent observations of T
(bs)
n,m obtained by Monte-Carlo simulations.

3.1.4. Distribution-free two-sample test

In this section a construction of multivariate distribution-free homogeneity test
is proposed. An approach is based on the representation (1.3) of N-distance in terms
of mathematical expectations of random variables X and Y

N(µX , νY ) = 2EL(X, Y )−EL(X,X ′)−EL(Y, Y ′), (3.20)

where µX , νY are probability distributions of independent random variables X, X
′

and Y, Y
′ respectively.

Let us randomly split each of two samples X ∼ X1, . . . , Xn and Y ∼ Y1, . . . ,
Ym into two equal parts and consider each of the parts as a separate independent
sample X,X ′ and Y, Y ′. Then on the basis of these new samples calculate the
corresponding sample quantities in the expression (3.20) of N-metrics. The test
statistic for the hypothesis of homogeneity of two samples X and Y will have the
form

Tn,m =
2

mn

∑

i,j

L(Xi, Yj)− 1
n2

∑

i,j

L(Xi, Xj
′)− 1

m2

∑

i,j

L(Yi, Y
′
j ) (3.21)

with the asymptotic behavior established by the theorem
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Theorem 16. Under the null hypothesis

Tn,m√
DTn,m

d−→ ζ,

as min(n,m) → ∞, n
m → const. 6= 0, where ζ is a standard normal random

variable.

Proof. Let us first calculate the variance of statistic Tn,m under the null hypothesis.
If X

d= Y , then

ETn,m = 2EL(X,Y )−EL(X,X ′)−EL(Y, Y ′) = 0.

After some simple calculations we have

VarTn,m = A(n,m)EL(X1, Y1) + B(n,m)E(L(X1, Y1)L(X1, Y2)) +
+C(n,m)E(L(X1, Y1)L(X1, Y1)), (3.22)

where
A(n,m) =

4
nm

+
1
n2

+
1

m2
− 10

n
− 10

m
,

B(n,m) =
2m + 2n− 8

mn
,

C(n, m) =
1
n2

+
1

m2
+

4
mn

,

Thus, in case n,m →∞ and n
m → ρ 6= 0

VarTn,m = O(
1
n

+
1
m

).

To prove the asymptotic normality of Tn,m let us show that all the cumulants
Γk of the orders k ≥ 3 of random variables Tn,m√

DTn,m
asymptotically converge to

zero. The proof is based on a well known equality of the cumulant of the sum of
random variables ξ1 + . . . + ξn

Γk(ξ1 + . . . + ξn) =
∑

i1,...,jk

Γk(ξi1 , . . . , ξik)

and the property for mixed cumulant Γk(ξi1 , . . . , ξik) to be zero if the group of
variables ξi1 , . . . , ξik can be divided into two independent parts.
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After the application of the above mentioned properties and some easy calcu-
lations we have

Γk

(
Tn,m√
DTn,m

)
= cn,m

∑

i1,...,ik

Γk(ξi1 , . . . , ξik), (3.23)

where ξij denotes the random variables from the set

{L(Xi, Yj), L(Xi, X
′
j), L(Yi, Y

′
j )}, i = 1, . . . , n, j = 1, . . . , m,

cn,m depends only on n and m, and the following equality holds

cn,m = O(nαmβ), α + β = −3
2
k.

Since samples X,X ′, Y, Y ′ are independent, the number of nonzero mixed
cumulants in the right part of (3.23) has the order O(nγmν), where γ +ν = k +1.
Thus, all the cumulants with k ≥ 3 converge to zero and Tn,m√

DTn,m
∼ N(0, 1)

asymptotically, when n,m →∞.
The expression in (3.22) can be used for numerical estimation of dispersion

of statistic Tn,m with replacement of corresponding mathematical expectations by
their sample estimates.

Of course, this method leads to essential loss of information, but is correct
from the theoretical point of view, as it leads to a distribution-free criterion and
allows testing the homogeneity hypothesis in high-dimensional cases.

3.2. Tests of uniformity on the hypersphere

In this section we propose an application of N-distance theory for testing the
hypothesis of uniformity of spherical data. The proposed procedures have a number
of advantages, consistency against all alternatives, computational simplicity and
ease of application even in high-dimensional cases. Particular attention is devoted
to p = 2 (circular data) and p = 3 (spherical data).

Consider the sample X1, ..., Xn of independent observations of random vari-
able X , where Xi ∈ Rp and ‖Xi‖ = 1, i = 1, ..., n. Let us test the hypothesis H0

that X has a uniform distribution on Sp−1.
The statistic for testing H0 based on N-distance with the kernel L(x, y) has the

form
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Tn = n


 2

n

n∑

i=1

EYL(Xi, Y )− 1
n2

n∑

i,j=1

L(Xi, Xj)−EL(Y, Y ′)


 , (3.24)

where X, Y, Y ′ are independent random variables from the uniform distribution
on Sp−1 and EYL(Xi, Y ) =

∫
L(Xi, y)dFY d(y) is a mathematical expectation

calculated by Y with fixed Xi, i = 1, ..., n.
We should reject the null hypothesis in case of large values of our test statistic.
For our further research let us consider a strongly negative definite kernel

L(x, y) = L(‖x− y‖), where ‖ · ‖ is the Euclidean norm. In other words, L(x, y)
depends on the length of the chord between two points on hypersphere. As an
example of such kernels we propose the following ones

L(x, y) = ‖x− y‖α, 0 < α < 2,

L(x, y) =
‖x− y‖

1 + ‖x− y‖ ,

L(x, y) = log(1 + ‖x− y‖2).

Note, that considered kernels are rotation-invariant. This property implies that
the mathematical expectation of the length of the chord between two independent
uniformly distributed random variables Y and Y ′ on Sp−1 is equal to the mean
length of the chord between a fixed point and a uniformly distributed random vari-
able Y on Sp−1. Thus, we can rewrite (3.24) in the form

Tn = n


EL(‖Y − Y ′‖)− 1

n2

n∑

i,j=1

L(‖Xi −Xj‖)

 . (3.25)

In practice statistic Tn with the kernel L(x, y) = ‖x− y‖α, 0 < α < 2 can be
calculated using the proposition.

Proposition 9. In cases of p = 2, 3 statistics Tn will have the form

Tn =
(2R)αΓ(α+1

2 )Γ(1
2)

πΓ(α+2
2 )

n− 1
n

n∑

i,j=1

‖Xi −Xj‖α (p = 2),
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Tn = (2R)α 2n

α + 2
− 1

n

n∑

i,j=1

‖Xi −Xj‖α (p = 3),

where R is the radius of hypersphere and α ∈ (0, 2).

Proof. The stated above formulas follows directly from (3.25) and the property

E‖Y − Y ′‖α = E‖Y − a‖α,

where Y, Y ′ are independent random variables from the uniform distribution on
Sp−1 and a is a fixed point on Sp−1.

In two-dimensional case, let us calculate the mathematical expectation of the
length of the chord between fixed point a = (0, R) and a uniformly distributed
random variable Y

E‖a− Y ‖α =
1

2πR

∫ 2π

0
R(R2 cos2 φ + (R sin2 φ−R)2)

α
2 dφ =

=
2

α
2
−1Rα

π

∫ 2π

0
(1− cosφ)

α
2 dφ =

2α+1Rα

π

∫ π
2

0
sinα φdφ =

=
(2R)αΓ(α+1

2 )Γ(1
2)

πΓ(α+2
2 )

.

In case p = 3 let us fix point a = (0, 0, R) and calculate the average length of
the chord

E‖a− Y ‖α =
1

4πR2

∫ π

−π

∫ π

0
R2 sin θ(R2(sin2 θ cos2 φ +

+sin2 θ sin2 φ + (cos θ − 1)2))
α
2 dθdφ =

=
2

α
2 Rα

4π

∫ π

−π

∫ π

0
(1− cos θ)

α
2 sin θdθdφ =

= 2α+1Rα

∫ π
2

0
sinα+1 θd sin θ = (2R)α 2

α + 2
.

In case of L(x, y) = ‖x − y‖, test statistic (3.25) is very similar to Ajne’s
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statistic A, where instead of chord is taken the length of the smaller arc.

A =
n

4
− 1

πn

n∑

i,j=1

ψij ,

where ψij is the smaller of two angles between Xi and Xj .
One can see, that Ajne’s test is not consistent against all alternatives, as an

example consider the distribution on the circle concentrated in two diametrically
opposite points with equal probabilities. Taking instead of arc the length of the
chord lead to a consistency of the N-distance test against all fixed alternatives.

Tn

n

P−→ N(X, Y ), n →∞,

where N(X, Y ) is N-distance (1.3) between probability distributions of random
variables X and Y . If X 6=d Y , then N(X, Y ) > 0 and Tn →∞, as n →∞.

Further we consider the asymptotic distribution of statistic Tn (3.24) under
the null hypothesis. Particular attention is devoted to circular and spherical data
(p=2,3). In these cases the asymptotic behavior of proposed tests under the null
hypothesis is established using two approaches. First is based on an adaptation
of methods of uniformity tests described in section 2.1.1, and second using Gine
theory based on Sobolev norms (Gine, 1975; Hermans and Rasson, 1985). For
arbitrary dimension it is rather difficult from the computational point of view to
establish the distribution of test statistic Tn analytically, in this case the critical
region of our criteria can be determined with the help of simulations of independent
samples from the uniform distribution on Sp−1.

3.2.1. Asymptotic distribution of test statistic

Uniformity on the circle S1

For our further research, without loss of generality, we consider the circle S1

with unit length, that is R = 1
2π . Let us transform our circle, and therefore our

initial sample X1, ..., Xn, Xi = (Xi1, Xi2), X2
i1 + X2

i2 = R2 to the interval [0, 1)
by making a cut in arbitrary point of the circle

x ↔ x∗, x ∈ S1, x∗ ∈ [0, 1).

It is easy to see, that if X has a uniform distribution on S1, after described
transformation we will get the random variable X∗ with uniform distribution on
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[0, 1).
Let L(x, y) be a strongly negative definite kernel in R2, then function

H(x∗, y∗) on [0, 1)
H(x∗, y∗) := L(x, y) (3.26)

is a strongly negative definite kernel on [0, 1). In this case N-distance statistic T ∗n ,
based on H(x∗, y∗), for testing the uniformity on [0, 1) has the form

T ∗n = −n

∫ 1

0

∫ 1

0
H(x∗, y∗)d(Fn(x∗)− x∗)d(F (y∗)− y),

where Fn(x∗) is the empirical distribution function, based on the sample X∗
1 , ..., X∗

n,
X∗

i ∈ [0, 1), i = 1, ..., n.
Due to (3.26) the following equality holds

Tn = T ∗n , (3.27)

where Tn is defined by (3.24).
Thus, instead of testing the initial hypothesis on S1 using Tn, we can test the uni-
formity on [0, 1) for X∗ on the basis of statistic T ∗n with the same asymptotic dis-
tribution. The limit distribution of T ∗n is established in Theorem 9 and leads to the
result.

Theorem 17. Under the null hypothesis statistic Tn will have the same asymptotic
distribution as quadratic form:

T =
∞∑

k=1

∞∑

j=1

akj

π2kj
ζkζj , (3.28)

where ζk are independent random variables from the standard normal distribution
and

akj = −2
∫ 1

0

∫ 1

0
H(x∗, y∗) d sin(πkx∗) d sin(πjy∗).

It is easy to see, that in case L(x, y) is a rotation-invariant function on the
circle the considered transformation of S1 to [0, 1) does not depend on the choice
of point of cut.

Proposition 10. If strongly negative definite kernel L(x, y) = ‖x − y‖α, where
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0 < α < 2, x, y ∈ S2, then

H(x∗, y∗) =
[
sinπd

π

]α

,

where
d = min(|x∗ − y∗|, 1− |x∗ − y∗|), x∗, y∗ ∈ [0, 1).

Proof. Kernel L(x, y) equals to the length of the chord in the circle between two
points x = (x1, x2) and y = (y1, y2) in α power. After proposed transformation,
the length of the smaller arc between x and y equals to d = min(|x∗ − y∗|, 1 −
|x∗ − y∗|). And the length of the chord in the circle with R = 1

2π based on the
angle 2πd equals to sin πd

π .

Uniformity on the sphere S2

In case of a sphere we also try to substitute the initial hypothesis of uniformity
on S2 by testing the uniformity on the unit square. Consider sphere S2 with unit
surface area, that is R2 = 1

4π .
Note, that if X∗ = (X∗

1 , X∗
2 ) has the uniform distribution on [0, 1)2 then ran-

dom variable X = (X1, X2, X3):

X1 = R cos θ1, X2 = R sin θ1 cos θ0, X3 = R sin θ1 sin θ0, (3.29)

where
θ0 = 2πX∗

1 , θ1 = arccos(1− 2X∗
2 )

has the uniform distribution on S2.
Consider the strongly negative definite kernel H(x∗, y∗) on [0, 1)2 defined by

H(x∗, y∗) := L(x, y), (3.30)

where L(x, y) is a strongly negative definite kernel in R3, x∗, y∗ ∈ [0, 1)2, x, y ∈
S3 and the correspondence between x and x∗ follows from (3.29).

N-distance statistic, based on H(x∗, y∗), for testing the uniformity on [0, 1)2

T ∗n = −n

∫

[0,1)2

∫

[0,1)2
H(x∗, y∗)d(Fn(x∗)− x∗1x

∗
2)d(F (y)− y∗1y

∗
2),

where Fn(x∗), x∗ ∈ R2 is the empirical distribution function based on the trans-
formed sample X∗.
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The equations (3.29) and (3.30) implies that:

Tn = T ∗n . (3.31)

Thus, the asymptotic distribution of Tn coincides with the limit distribution of T ∗n ,
established in Theorem 10.

Theorem 18. Under the null hypothesis statistic Tn will have the same asymptotic
distribution as quadratic form

T =
∞∑

i,j,k,l=1

aijkl
√

αijαklζijζkl, (3.32)

where ζij - independent random variables from the standard normal distribution,

aijkl = −
∫

[0,1]4
H(x, y) dψij(x) dψkl(y), x, y ∈ R2,

αij and ψij(x, y) are eigenvalues and eigenfunctions of the integral operator A

Af(x) =
∫

[0,1]
K(x, y)f(y)dy (3.33)

with the kernel

K(x, y) =
2∏

i=1

min(xi, yi)−
2∏

i=1

xiyi.

Note, that if L(x, y) is a rotation-invariant function on the sphere then the
values of statistic Tn and T ∗n does not depend on the choice of coordinate system
on S2.

The main difficulties in application of the Theorem 18 are connected with cal-
culations of eigenfunctions of the integral operator A. One of the possible solutions
of these problems is in detail discussed in section 2.1.3 and is based on numerical
approximation of eigenfunctions by a finite sequence (2.27). Another approach is
considered in the next subsection, where the asymptotic distribution of proposed
statistics for some strongly negative definite kernels is established with the help of
Gine theory based on Sobolev tests.
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Alternative approach to limit distribution of Tn

In this section we propose an application of Gine theory of Sobolev invariant
tests for uniformity on compact Riemannian manifolds to establishing the null limit
distribution of some N-distance statistics on the circle and sphere. We start from a
brief review of Sobolev tests, for more details see (Gine, 1975; Jupp, 2005).

Let M be a compact Riemannian manifold. The Riemannian metric deter-
mines the uniform probability measure µ on M . The intuitive idea of the Sobolev
tests of uniformity is to map the manifold M into the Hilbert space L2(M, µ) of
square-integrable functions on M by a function t : M → L2(M, µ) such that, if
X is uniformly distributed, then the mean of t(X) is 0.

The standard way of constructing such mappings t is based on the eigenfunc-
tions of the Laplacian operator on M . For k ≥ 1, let Ek denote the space of
eigenfunctions corresponding to the kth eigenvalue, and put d(k) = dimEk. Then
there is a map tk of M into Ek given by

tk(x) =
d(k)∑

i=1

fi(x)fi,

where fi, 1 ≤ i ≤ d(k), is any orthonormal basis of Ek. If a1, a2, ... is a sequence
of real numbers such that ∞∑

i=1

a2
kd(k) < ∞,

then

x 7→ t(x) =
∞∑

i=1

aktk(x)

defines a mapping t of M into L2(M,µ). The resulting Sobolev statistic evaluated
on observations X1, ..., XN on M is

Sn({ak}) =
1
n

n∑

i=1

n∑

j=1

〈t(Xi), t(Xj)〉,

where 〈·, ·〉 denotes the inner product on L2(M,µ).
The asymptotic null distribution of statistic Sn is established by the following

theorem (see Theorem 3.4 in (Gine, 1975)).
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Theorem 19. Let X1, .., Xn be a sequence of independent random variables with
uniform distribution on M , then

Sn({ak}) d−→
∞∑

k=1

a2
kχk,

where {χk}∞k=1 is a sequence of independent random variables, such that, for each
k, χk has a chi-square distribution with d(k) degrees of freedom.

Further consider N-distance and Sobolev tests for two special cases of the circle
and the sphere.

Let M be the circle x2
1 + x2

2 = 1 in R2. Gine showed that in this case Sobolev
tests Sn({ak}) has the form

Sn({ak}) = 2n−1
∞∑

k=1

a2
k

n∑

i,j=1

cos k(Xi −Xj) (3.34)

with the limit null distribution established by Theorem 19, where χk are indepen-
dent random variables with chi-square distribution with d(k) = 2 degrees of free-
dom.

Consider statistic Tn on M with strongly negative definite kernel L(x, y) =
‖x− y‖, x, y ∈ R2. From proposition 9 we have

Tn =
4n

π
− 1

n

n∑

i,j=1

‖Xi −Xj‖ =
4n

π
− 2

n

n∑

i,j=1

sin
Xi −Xj

2
, (3.35)

where Xi − Xj and ‖Xi − Xj‖ denotes the length of the arc and chord between
Xi and Xj respectively.

Under the null hypothesis the limit distribution of Tn is established by the
theorem

Theorem 20. If X1, ..., Xn is a sample of independent observations from the uni-
form distribution on the circle with unit radius, then

π

4
Tn

d−→
∞∑

k=1

a2
kχ

2
k, (3.36)

where χ2
k are independent random variables with chi-square distribution with two
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degrees of freedom and

a2
k =

1
2π

∫ 2π

0
(1− π

2
sin

x

2
) cos kxdx.

Proof. Let us express statistic Tn (3.35) in the form

Tn =
4
π

n−1
n∑

i,j=1

h(Xi −Xj),

where h(x) = 1− π
2 sin x

2 .
Function h(x) can be represented in the form of a series by complete orthonormal
sequence of functions {√2 cos kx} on [0, 2π]

h(x) =
√

2
∞∑

k=1

αk cos kx,

where αk =
√

2
2π

∫ 2π
0 (1 − π

2 sin x
2 ) cos kxdx. Note, that αk > 0, ∀k = 1, 2, ...,

really after some simple calculations we have

∫ 2π

0
(1− π

2
sin

x

2
) cos kxdx = 4

∫ π

0
sinx sin2 kxdx− 4,

∫ π

0
sinx sin2 kxdx = −k2

∫ πk

0
sin(

1
k
− 2)xdx−

− k2

2k + 1

∫ πk

0
sin

x

k
dx =

4k3

(2k − 1)(2k + 1)
> 1 ∀k = 1, 2, ...

Thus statistic Tn can be rewritten in the form of Sobolev statistic (3.34)

4
π

Tn = 2n−1
∞∑

k=1

a2
k

n∑

i,j=1

cos k(Xi −Xj),

where
√

2a2
k = αk. After that the statement of the theorem follows directly from

Theorem 19.

A comparison of empirical distribution function of statistic 4
πTn and the dis-
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tribution function of random variable (3.36) is shown in Fig. 3.1. The empirical
distribution of 4

πTn was calculated by simulation of 600 samples of size 100 form
the uniform distribution on the circle S1.
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Figure 3.1. Empirical and asymptotic distribution of statistic 4
π Tn with the ker-

nel L(x, y) = ‖x− y‖, x, y ∈ S1, n = 100.

We now pass over to N-distance and Sobolev tests on the sphere. If M = S2

is the unit sphere x2
1 + x2

2 + x2
3 = 1 on R3, then dµ = (4π)−1 sin θdθdφ, where

µ is the uniform distribution on S2 and (θ, φ) are usual spherical coordinates. The
general expression of Sobolev test statistics on the sphere has the form

Sn({ak}) = n−1
∞∑

k=1

(2k + 1)a2
k

n∑

i,j=1

Pk(cos X̂i, Xj), (3.37)

where X̂i, Xj is an smaller angle between Xi and Xj , Pk are Legendre polynomials

Pk(x) = (k!2k)−1(dk/dxk)(x2 − 1)k.

Under the null hypothesis the limit distribution of Sn({ak}) coincides with the
distribution of random variable

∞∑

k=1

a2
kχ

2
2k+1, (3.38)



3. NONPARAMETRIC TESTS BASED ON N-DISTANCES 95

where χ2
2k+1 are independent random variables with chi-square distribution with

2k + 1 degrees of freedom.
Consider statistic Tn on S2 with strongly negative definite kernel L(x, y) =

‖x− y‖, x, y ∈ R3. From proposition 9 we have

Tn =
4n

3
− 1

n

n∑

i,j=1

‖Xi −Xj‖ =
4n

3
− 2

n

n∑

i,j=1

sin
X̂i, Xj

2
, (3.39)

where X̂i, Xj and ‖Xi−Xj‖ denotes the smaller angle and chord between Xi and
Xj respectively.

The asymptotic distribution of Tn is established by the next theorem.

Theorem 21. If X1, ..., Xn is a sample of independent observations from the uni-
form distribution on S2, then

3
4
Tn

d−→
∞∑

k=1

a2
kχ

2
2k+1, (3.40)

where χ2
2k+1 are independent random variables with chi-square distribution with

2k + 1 degrees of freedom and

a2
k =

1
2

∫ π

0
(1− 3

2
sin

x

2
) sinxPk(cos x)dx, (3.41)

where Pk(x) are Legendre polynomials.

Proof. The proof of the theorem can be done in nearly the same way as that of
Theorem 20. Let us first rewrite statistic Tn in the form

Tn =
4
3
n−1

n∑

i,j=1

h(X̂i, Xj),

where h(x) = 1− 3
2 sin x

2 . And then decompose h(x) to the series by orthonormal
sequence of functions {√2k + 1Pk(cosx)} for x ∈ [0, π]

h(x) =
∞∑

k=1

√
2k + 1αkPk(cosx),
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where

αk =
√

2k + 1
4π

∫ 2π

0

∫ π

0
(1− 3

2
sin

θ

2
) sin θPk(cos θ)dθdφ.

As a result statistic Tn can be expressed in the form of Sobolev statistic (3.37)

4
3
Tn = n−1

∞∑

k=1

(2k + 1)a2
k

n∑

i,j=1

Pk(cos X̂i, Xj),

where
√

2k + 1a2
k = αk. Applying Theorem 19 the assertion of the theorem fol-

lows.
The inverse values to the largest coefficients a2

k (3.41) are presented below.

5 35 105 231 429
715 1105 1615 2261 3059

4025 5175 6525 8091 9889

A comparison of empirical distribution function of statistic 3
4Tn and the dis-

tribution function of random variable (3.40) is shown in Fig. 3.2. The empirical
distribution of 3

4Tn was calculated by simulation of 600 samples of size 100 form
the uniform distribution on the sphere S2.

3.3. Symmetry and independence tests

In this section we consider an application of N-distance statistics for testing the
hypothesis of symmetry about zero in univariate case and independence in bivariate
case. Under the null hypothesis the asymptotic distribution of proposed statistics is
established and coincides with the distribution of infinite quadratic form of standard
normal random variables. In essence the method of obtaining the limit distribution
of test statistics is much the same considered in sections 2.1.2, 2.2.1, therefore
here in the proofs of theorems we avoid some details and refer the reader to the
mentioned sections.

3.3.1. Symmetry test

Let X1, . . . , Xn be a sample of independent observations of random variable
X with continuous distribution function F (x), x ∈ R, assumed unknown. Let us
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Figure 3.2. Empirical and asymptotic distribution of statistic 3
4Tn with the ker-

nel L(x, y) = ‖x− y‖, x, y ∈ S2, n = 100.

test the hypothesis, that X has a symmetric distribution with respect to x = 0, that
is H0 : X =d −X or in terms of distribution functions H0 : F (x) = 1− F (−x).

As a statistic, based on N-metrics, for testing this hypothesis we propose

Tn = −n

∫ +∞

−∞

∫ +∞

−∞
L(x, y) d∆n(x) d∆n(y), (3.42)

where ∆n(x) = Fn(x) + Fn(−x)− 1, Fn(x) - is empirical distribution function,
constructed from the sample X1, . . . , Xn.

The asymptotic distribution of test statistic Tn depends on unknown distribu-
tion function F (x). To avoid this let us transform our sample X1, . . . , Xn to the
sample t1, . . . , tn, where ti = 1− Fn(−Xi). Under the null hypothesis the trans-
formed sample will asymptotically have the uniform distribution on [0, 1] and the
statistic Tn for testing the uniformity of t1, . . . , tn will have the form

Tn = −n

∫ 1

0

∫ 1

0
L(t, s) d(F ∗

n(t)− t) d(F ∗
n(s)− s), (3.43)

where F ∗
n(t) is the empirical distribution function, based on the sample t1, . . . , tn.

In practice statistics (3.43) for different strongly negative definite kernels L(t, s)
can be calculated using the formulas in proposition 3.
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Let us further consider the asymptotic distribution of Tn, which helps us to de-
termine the critical region of our test. In accordance with symmetry test discussed
in (Martynov, 1978), the limit distribution of Tn coincide with the distribution of
random variable

ξ = −
∫ 1

0

∫ 1

0
L(t, s) d(ζ(t) + ζ(1− t)) d(ζ(s) + ζ(1− s)), (3.44)

where ζ(t) is a gaussian random process with zero mean and correlation function
K(x, y) = min(x, y)− xy.

Taking into account the symmetry of ζ(t)+ζ(1−t) about t = 1
2 and symmetry

by arguments of L(x, y), the random variable ξ can be expressed in the form

ξ = −
∫ 1

2

0

∫ 1
2

0
H(t, s) d(ζ(t) + ζ(1− t)) d(ζ(s) + ζ(1− s)), (3.45)

where H(t, s) = L(t, s) + L(1− t, 1− s)− L(t, 1− s)− L(1− t, s).
Note, that when max(t, s) < 1

2 , the correlation function of the random process
ζ(t)+ζ(1− t) is equal to K(t, s) = 2 min(t, s). The eigenvalues λk and functions
ψλk

(t) of integral operator A with the kernel K(t, s)

Af(t) =
∫ 1

0
K(t, s)f(s)ds

are equal to
λk = 2(π(k − 1

2
))−2,

ψλk
(t) =

√
2 sin(π(k − 1

2
)t).

Consequently, the process ζ(t) + ζ(1 − t) with probability 1 can be presented in
the form:

ζ(t) + ζ(1− t) =
∞∑

k=1

ζkψλk
(t), (3.46)

where ζk are independent random variables from the Gaussian distribution with
mean zero and variance 2(π(k − 1

2))−2.
As a result, the asymptotic distribution of Tn is summarized in the following

theorem:

Theorem 22. Under the null hypothesis statistic Tn will have the same asymptotic
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distribution as quadratic form

T =
∞∑

k=1

∞∑

j=1

akj

√
λkλjζkζj , (3.47)

where ζk are independent random variables from the standard normal distribution,
λk = 2(π(k − 1

2))−2 and

akj = −2
∫ 1

2

0

∫ 1
2

0
H(t, s) d sin(π(k − 1

2
)t) d sin(π(j − 1

2
)s),

where

H(t, s) = L(t, s) + L(1− t, 1− s)− L(t, 1− s)− L(1− t, s).

3.3.2. Independence test

Let X1, . . . , Xn, Xi = (Xi1, Xi2) be the sample of independent observations
of random vector X with unknown continuous distribution function F (x), x ∈ R2.
Consider the hypothesis of independence of the coordinates of X , which can be
expressed as follows

H0 : F (x1, x2) = F1(x1)F2(x2),

where Fi(xi), i = 1, 2 - continuous univariate distribution functions.
N-distance statistics Tn for testing H0 in this case have the form

Tn = −n

∫

R4

L(x, y)d∆n(x) d∆n(y),

where x, y ∈ R2, ∆n(x) = Fn(x)− Fn1(x1)Fn2(x2),
Fn(x) = 1

n

∑n
i=1 I(Xi1 < x1)I(Xi2 < x2) is a bivariate empirical distribution

function and Fni(xi), i = 1, 2 are univariate empirical distribution functions, based
on the i-th coordinate of the sample.

Following the procedure used for symmetry tests, first transform our sample
X1, . . . , Xn to the sample Y1, . . . , Yn, using the formula

Yi = (Yi1, Yi2) = (Fn1(Xi1), Fn2(Xi2)).

Under H0 the transformed sample will asymptotically have the uniform distribution
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on the unit square and the statistic for testing uniformity of Y1, . . . , Yn will have the
form

Tn = −n

∫

[0,1]4
L(t, s)d(F ∗

n(t)− t1t2)d(F ∗
n(s)− s1s2), (3.48)

where t = (t1, t2), s = (s1, s2) and F ∗
n(t) is empirical distribution function con-

structed from transformed sample Y1, . . . , Yn.
In practice statistics (3.48) for different strongly negative definite kernels L(t, s)

can be calculated using the formulas in propositions 4–7.
Pass over to determination of the null asymptotic distribution of Tn. If n →∞,

the distribution of Tn coincides with the distribution of random variable

ξ = −
∫

[0,1]4
L(s, t)d(ζ(s))d(ζ(t)),

where ζ(t), t ∈ R2 is a gaussian random process with mean zero and correlation
function

K(t, s) = (min(t1, s1)− t1s1)(min(t2, s2)− t2s2).

After calculation of the eigenvalues and functions of corresponding integral
operator with the kernel K(t, s), the random process ζ(t), t ∈ R2, with probability
1 can be presented in the form

ζ(t) =
∞∑

ij=1

ζijϕij(t),

where ϕij(t) = 2 sin(πit1) sin(πjt2) and ζij are independent random variables
from the normal distribution with mean zero and variance (π2ij)−2.

Finally, the following theorem determines the asymptotic distribution of Tn.

Theorem 23. Under the null hypothesis statistic Tn will have the same asymptotic
distribution as quadratic form

T =
∞∑

ijkl=1

aijkl

√
λijλklζijζkl, (3.49)

aijkl = −
∫

[0,1]4
L(t, s) dϕij(t) dϕkl(s),

where ζij are independent random variables from the standard normal distribution,
λij = (π2ij)−2 and ϕij(t) = 2 sin(πit1) sin(πjt2).
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3.4. Conclusions of Chapter 3

1. Based on N-distances, the construction of statistical tests of uniformity
of the hypersphere, homogeneity, symmetry and independence were pro-
posed.

2. In the general case the limit null distribution of proposed N-metrics statis-
tics coincides with the distribution of infinite quadratic form of Gaussian
random variables. Under the alternative hypothesis, proposed tests statis-
tics are asymptotically normal.

3. In the general case proposed N-metrics statistics are not distribution-free.
In case of homogeneity hypothesis to avoid this problem bootstrap and per-
mutation approaches are suggested to be used.

4. A construction of multivariate distribution-free two sample test, based on
N-distances is proposed.





4
Power comparison

In this section we compare proposed N-distance tests with some classical criteria.
In the first part as a measure for comparison of criteria we consider Asymptotic Rel-
ative Efficiency (ARE) by Bahadur (Bahadur, 1960; Nikitin, 1995). For simplicity,
we deal solely with nonparametric goodness of fit tests in univariate case. In the
second part a comparative Monte Carlo power study is proposed. Besides simple
and composite hypothesis of goodness of fit, we consider two-sample tests in uni-
and multivariate cases. A wide range of alternative hypotheses are investigated.

4.1. Asymptotic relative efficiency of criteria

The problem of comparing of nonparametric tests on the basis of some quan-
titative characteristic that will make it possible to order these tests and recommend
the proper test one should use in a given problem is extremely important. The
asymptotic efficiency is just the most known and useful characteristic of such kind
(Nikitin, 1995).

Let Un and Vn be two sequences of statistics based on a given sample of size n
and assigned for testing the null hypothesis H0 against the alternative H1. Assume
that H1 is characterized by a certain parameter θ and for θ = θ0 turns into H0.
Denote by NU (α, β, θ) the sample size necessary for the sequence Un in order to

103
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attain the power β under the level α and the alternative value of parameter θ. The
relative efficiency of the sequences Un with respect to the sequence Vn is specified
as the quantity

eU,V (α, β, θ) =
NV (α, β, θ)
NU (α, β, θ)

. (4.1)

The value of eU,V (α, β, θ) greater than 1 says that for given α, β and θ the
sequence of Vn is preferable to Un since for this sequence of statistics we need
less observations at the given level of α and the alternative θ to reach the power
β. Unfortunately it is extremaly difficult to explicitly calculate NU (α, β, θ) even
for rather simple sequences of statistics Un. There are several ways to avoid this
problem, one of which was proposed by Bahadur in (Bahadur, 1960).

The Bahadur approach prescribes to fix the power of criterion β and compare
the speed of decreasing of their levels α once the sample size n increases. That is
if for fixed β ∈ (0, 1) and θ there exist a limit

eU,V (β, θ) = lim
α→0

eU,V (α, β, θ),

then it is called relative asymptotic efficiency of the sequence Un with respect to
Vn by Bahadur.

Denote for any θ and t and any sequence of statistics Un

Fn(t, θ) = Pθ(ω : Un(ω) < t)

and
Gn(t) = Fn(t, θ0),

where θ = θ0 corresponds to null hypothesis. The value of

Ln(ω) = 1−Gn(Un(ω)) (4.2)

is called the attained level or P-value. In case θ = θ0 and Fn(t, θ0) is a continuous
function, Ln is uniformly distributed on [0, 1]. Under the alternative hypothesis,
when θ 6= θ0 there exists convergence by Pθ-probability

lim
n→∞n−1 lnLn = −1

2
cU (θ), (4.3)

where cU (θ) is a nonrandom positive function of parameter θ, that is called Bahadur
exact slope of the sequence Un. According to Bahadur if (4.3) is valid for the
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sequence of statistics Un with cU (θ) > 0, then

NU (α, β, θ) ∼ 2 ln 1/α

cU (θ)
, α → 0.

Therefore the calculation of ARE by Bahadur would be reduced to the ratio of
exact slopes of the sequences Un and Vn. One of the simplest methods for calculat-
ing Bahadur exact slopes can be derived from the following theorem (see Theorem
1.2.2 in (Nikitin, 1995)).

Theorem 24. Let the sequence of statistics Un satisfy the conditions:
• Un√

n
→ b(θ) in Pθ-probability,

• limn→∞ n−1 ln[1 − Gn(t)] = −f(t) for all t from the open interval I ,
where f(t) is continuous on I and {b(θ)} ⊂ I .

Then (4.3) holds and
cU (θ) = 2f(b(θ)).

In some cases it is rather difficult to establish the function f(t), because of the
complexity of calculation of probability of large-deviations. To avoid this prob-
lem it was proposed by Bahadur that the exact distribution of statistics Un in (4.2)
be replaced by its limiting distribution. Suppose that for all t ∈ R there exists
continuous distribution function F such that

Fn(t, θ0) → F (t), n →∞,

then (4.2) can be represented in the form

L∗n(ω) = 1− F (Un(ω)).

In case there exist a limit in Pθ-probability

lim
n→∞n−1 lnL∗n = −1

2
c∗U (θ) > 0 (4.4)

function c∗U (θ) is called the approximate slope of the sequence Un and the ratio of
approximate slopes of two sequences of statistics Un and Vn is called their approx-
imate Bahadur ARE. The method for calculating the approximate slopes is much
the same described in Theorem 24. If in Pθ-probability

Un√
n
→ b(θ)
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and for some constant a, 0 < a < ∞, limiting function F (t) satisfies the condition

ln(1− F (t)) ∼ −1
2
at2, t →∞,

then (4.4) holds and
c∗U = ab2(θ). (4.5)

The approximate and exact slopes are often locally equivalent as θ → θ0, so
the approximate ARE gives the notion of the local exact ARE.

Consider now N-distance tests for simple hypothesis of goodness of fit with a
strongly negative definite kernel L(x, y) (see section 2.1.2)

Tn = −n

∫ +∞

−∞

∫ +∞

−∞
L(x, y) d(Fn(x)−G(x)) d(Fn(y)−G(y)),

where Fn(x) is the empirical distribution function based on a given sample
X1, . . . , Xn of observations of random variable X with continuous distribution
function F (x) and G(x) is continuous distribution function corresponding to the
null hypothesis. Let us first standardize our sequence of statistics {[Tn]1/2} so, that
Theorem 24 becomes applicable. After that the expression for function b(θ) can be
obtained with the help of Glivenko-Cantelli theorem

b(θ) =
[
−

∫ +∞

−∞

∫ +∞

−∞
L(x, y) d(F (x)−G(x)) d(F (y)−G(y))

]1/2

.

By using the same arguments as for Cramer-von Mises type statistics, see e.g.
(Koziol, 1986; Nikitin, 1995) one can see, that {[Tn]1/2} is sequence with the ap-
proximate slope

c∗Tn
(F, G) =

b2(θ)
λ(L,F )

, (4.6)

where λ(L,F ) is the largest eigenvalue of integral operator (2.5) with the kernel

H(x, y) = EL(x, X) + EL(X, y)− L(x, y)−EL(X, X
′
),

where X , X
′ are independent random variables with cumulative distribution func-

tion F (x). In other words λ(L,F ) is the largest coefficient of diagonalized quadratic
form (2.11) of independent standard normal random variables (the distribution of
this quadratic form coincides with the limit null distribution of Tn).
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Let us in more detail consider the case of location alternative and compare pro-
posed N-distance tests with classical criteria presented in Table 3 in (Nikitin, 1995)
for two hypothesized distribution functions G(x): normal (with density function
φ(x) = 1√

2π
exp−x2/2) and logistic (with density function g(x) = expx(1 +

expx)−2). In this case H1 is characterized by a shift parameter θ with F (x) =
G(x + θ) and for θ = 0 turns into H0.

In case of N-distance statistics Tn functions b(θ) can be presented in the form

b(θ) =
[
−

∫ +∞

−∞

∫ +∞

−∞
L(x, y) M g(x, θ) M g(y, θ) dx dy

]1/2

, (4.7)

where M g(x, θ) = g(x + θ)− g(x) and g(x) = G
′
(x).

In the most important case of close alternatives, approximate Bahadur slopes
(4.5) can be replaced by local slopes, when θ → 0, and therefore exact ARE ap-
proximated by local ARE.
From (4.6) and (4.7) we have that the principal part of the local approximate Ba-
hadur slopes, as θ → 0, of the sequence {[Tn]1/2} have the form

c∗Tn
(θ) ∼ − θ2

λ(L, F )

∫ +∞

−∞

∫ +∞

−∞
L(x, y)g

′
(x)g

′
(y) dx dy.

All the classical tests considered in (Nikitin, 1995) also have principal parts
of the form const ∗ θ2, when θ → 0, thus for our study it is sufficient to compare
only coefficients of θ2, which are called the local indices. In the table below we
present the local indices for classical and N-distance statistics. N-metric tests were
considered with the following strongly negative definite kernels:

L1(x, y) = |x− y|, L2(x, y) = |x− y| 12 , L3(x, y) = |x− y| 32 ,

L4(x, y) =
|x− y|

1 + |x− y| , L5(x, y) = 1− exp−(x−y)2 ,

L6(x, y) = |G(x)−G(y)|,

L7(x, y) = G(x) ∨G(y), L8(x, y) = G(x ∨ y),

L9(x, y) = log(1 + (x− y)2), L10(x, y) =
(x− y)2

1 + (x− y)2
.

The local indices for N-distance test were calculated numerically, by comput-
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Table 4.1. Bahadur Local Indices for the location alternatives

Statistics Gaussian distribution Logistic distribution
Likelihood ratio statistic 1.000 0.333

Kolmogorov-Smirnov Dn 0.640 0.250
Anderson-Darling A2

n 0.960 0.333
Omega-square ω1

n 0.955 0.333
Omega-square ω2

n 0.906 0.329
Omega-square ω3

n 0.870 0.320
Omega-square ω4

n 0.560 0.300
Watson U2

n 0.490 0.220
Khmaladze-Aki Kn 0.814 0.250
Khmaladze-Aki L2

n 0.940 0.329
N-distance Tn(L1) 0.949 0.324
N-distance Tn(L2) 0.878 0.321
N-distance Tn(L3) 0.991 0.327
N-distance Tn(L4) 0.825 0.291
N-distance Tn(L5) 0.758 0.230
N-distance Tn(L6) 0.906 0.329
N-distance Tn(L7) 0.906 0.329
N-distance Tn(L8) 0.915 0.332
N-distance Tn(L9) 0.918 0.324
N-distance Tn(L10) 0.782 0.267

ing the largest coefficients of limiting diagonalized quadratic forms from Theorem
9. The first row refers to the likelihood ratio statistics, which in Bahadur theory is
asymptotically optimal and has the largest exact slope and local index. As it was
mentioned in section 2.1.2, N-distance statistics with the kernels L6,7 are very sim-
ilar to classical Cramer-von Mises statistics ω2

n, therefore is was quite natural to get
equal local indices for all of them.

4.2. Empirical power comparison

Let us switch to a comparative Monte Carlo power study of goodness of fit
(simple and composite hypothesis) and homogeneity tests in uni- and bivariate
cases. N-distance tests with several strongly negative definite kernels are compared
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with some classical criteria using a wide range of alternative hypotheses. Proposed
alternatives gave us a variety of types of departure from null hypothesis and allowed
to test the sensitivity of criteria to each of them. Results of simulations show that
proposed tests are powerful competitors to existing classical ones, in the sense that
they are consistent against all alternatives and have relatively good power against
general alternatives compared with other tests. The possibility in the selection of
the kernel for N-distance allows to create the test more sensitive to particular type
of alternatives.

4.2.1. Simple hypothesis of goodness of fit

We start from the simple hypothesis of goodness of fit. For the comparative
analysis we have chosen N-distance statistics based on strongly negative kernels
represented in section 4.1 and three classical nonparametric criteria: Kolmogorov-
Smirnov (KS), Cramer-von Mises (CvM) and Anderson-Darling (AD).

Simulation design

In all the cases we investigate the behavior of above mentioned tests for sam-
ple sizes n = 25, 50, 100, 200 and significance level α = 0.05. The first part of
simulations (Tables 4.2–4.3) is devoted to univariate simple hypotheses of normal-
ity with N(0, 1) as a hypothesized distribution. In the second part we consider
hypothesis of exponentiality with Exp(1) as null distribution.

The power of the tests was estimated from a simulation of 200 samples of
alternative distributions: Logistic, Gamma, Lognormal, mixtures of Normal and
Exponential distributions with different location and scale parameters.

Simulation results

Empirical results summarized in Tables 4.2–4.3 illustrate that none of the tests
are universally superior. Against the traditional location alternative all N-distance
tests have rather similar results in comparison with classical ones. Tn(L2, 4) tests,
being less sensitive to the differences in the tails of distribution, showed really good
results against the contamination of normal distribution N(0, 1) with N(0, 0.1).
But in the similar case of exponential distribution their performance was not so
powerful. Tn(L1,2,3,9) tests were more sensitive against normal location/scale mix-
tures than Kolmogorov-Smirnov and Cramer-von Mises criteria, but less powerful
in this comparison than Anderson-Darling test. On the other hand, Tn(L2,3,4,9)
were comparable to or better than Anderson-Darling statistics against the similar
alternatives for hypothesis of exponentiality. Practically all proposed N-distance
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tests were better than classical criteria against mixtures of null distributions with
uniform distributions both with 0.1 and 0.2 mixing probabilities.

4.2.2. Composite hypothesis of goodness of fit

We continue with comparative Monte Carlo power study of parametric hypoth-
esis of goodness of fit, where in particular consider normality and exponential-
ity tests. N-distance tests with several strongly negative definite kernels are com-
pared with classical criteria: D’Agostino (A), Cramer-von Mises (CvM), Anderson-
Darling (AD), Lilliefors (KS), Pearson (P), Shapiro-Wilk (SW), Shapiro-Francia
(SF) in univariate case; and Mardia, Henze-Zirkler (HZ), Mahalanobis1 in bivari-
ate case.

Simulation design

In all the cases we investigate the behavior of above mentioned tests for sam-
ple sizes n = 25, 50, 100, 200 and significance level α = 0.05. The first part of
simulations (Tables 4.4–4.5) is devoted to univariate normality and exponentiality
tests with hypothesized distributions N(0, 1) and Exp(1) correspondingly. In the
second part of our study (Table 4.6) we consider bivariate normality test with nor-

mal distribution with zero mean vector and covariance matrix Σ =
(

1 0.5
0.5 1

)

as a null cumulative distribution function.
The power of the tests was estimated from a simulation of 200 samples from

alternative distributions: Logistic, Student, Gamma, Weibull, Lognormal and mix-
tures of Normal and Exponential with different location and scale parameters.

For comparative analysis we have chosen N-distance statistics based on six
strongly negative kernels L1,2,3,4,5,8 in univariate case (see section 4.1) and three
kernels in bivariate case:

L11(x, y) = Φ(x1 ∨ y1) + Φ(x2 ∨ y2)− Φ(x1 ∨ y1)Φ(x2 ∨ y2),

L12(x, y) = ‖x− y‖,
L13(x, y) = 1− exp(−‖x− y‖2),

where x, y ∈ R2.

1After Mahalanibis transformation one-sample Kolmogorov-Smirnov test is applied
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Simulation results

Empirical results summarized in Tables 4.4–4.6 illustrate that none of the tests
are universally superior, but some general aspects of power performance are evi-
dent. Practically all proposed N-distance tests showed better results against equal
mixtures of normal or exponential distributions with different location and scale
parameters both in uni- and bivariate cases (see Fig. 4.1–4.2).
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Em
pi
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K3
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SW
KS

Figure 4.1. Empirical power of tests of univariate normality against location
mixture 0.5N(0, 1) + 0.5N(3, 1)

Similarly to simple goodness of fit test Tn(L4) test, being less sensitive to
the differences in the tails of distribution, performs well against the contamina-
tion of hypothesized distribution N(0, 1) with N(0, 0.1). The same results against
such alternative are shown by Tn(L2) test and are comparable only to Kolmogorov-
Smirnov (KS) and Cramer-von Mises (CvM) tests among classical ones. In all the
other cases, D’Agostino (A), Shapiro-Wilk (SW) and Shapiro-Francia (SF) tests
were the most powerful with really impressive results against some non-normal al-
ternatives. Their behavior was quite predictable, because mentioned tests are speci-
fied for testing normality only. However, in comparison with similar universal GoF
tests like: Cramer-von Mises, Anderson-Darling and Kolmogorov-Smirnov (Lil-
liefors test) proposed N-distance criteria showed really competitive performance
against all alternatives in case of normality test.

As for exponentiality criterion, N-distance tests were good against different
mixtures of exponential distributions, but less sensitive to Lognormal, Weibull or
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Figure 4.2. Empirical power of tests of exponentiality against location mixture
0.5Exp(1) + 0.5Exp(0.5)
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Figure 4.3. Empirical power of tests of bivariate normality against location mix-
ture 0.5N(0,Σ) + 0.5N(2, I)
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Gamma alternatives than Anderson-Darling test.
In case of bivariate normality, one of the best results were shown by proposed

Tn(L11,12,13) tests against mixtures of normal distributions with different location
parameters (see Fig 4.3). Tn(L12,13) tests were also good against equal mixtures
of Normal distributions with different covariance matrixes.

All N-distance tests showed really impressive results in comparison with Mar-
dia criterion against contamination of null distribution with N(0, 0.1I)). How-
ever, Mardia was the most powerful test against contamination of N(0, Σ) with
N(0, 3I)). Henze-Zirkler and Tn(L13) tests, being very similar in their struc-
ture (Epps and Pulley, 1983; Henze and Zirkler, 1990; L.Baringhaus and H.Henze,
1998), predictably, showed comparable results against all considered alternatives.

4.2.3. Two-sample test

This section is devoted to a simulation power study of homogeneity tests in uni-
and bivariate cases. N-distance tests with several strongly negative definite kernels
are compared with four classical criteria: Kolmogorov-Smirnov (KS), Cramer-von
Mises (CvM), Anderson-Darling (AD), Wilcoxon-Mann-Whitney (WMN).

Simulation design

In all the cases we investigate the behavior of above mentioned tests for sample
sizes n = 25, 50, 100, 200 and significance level α = 0.05.

We consider two-sample tests on the basis of standard normal distribution in
univariate case (Table 4.7) and normal distribution with zero mean vector and co-

variance matrix Σ =
(

1 0.5
0.5 1

)
in bivariate case (Table 4.8).

The power of the tests was estimated from a simulation of 200 samples from al-
ternative distributions: Logistic, Gaussian, a mixture of Normal distributions with
different location and scale parameters.

For comparative analysis we have chosen N-distance statistics based on six
strongly negative kernels L1,2,3,4,8,9 in univariate case (see section 4.1) and four
kernels in bivariate case:

L12(x, y) = ‖x− y‖, L13(x, y) = 1− exp(−‖x− y‖2),

L14(x, y) = log(1 + ‖x− y‖2), L15(x, y) =
‖x− y‖

1 + ‖x− y‖ ,

where x, y ∈ R2.
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Simulation results

The empirical results for homogeneity tests are summarized in Tables 4.7–
4.8. In comparison with goodness of fit tests (simple hypothesis), where all the
statistics showed more or less similar results, the performance of N-distance tests
was impressive against normal location/scale mixtures. Especially it concerns the
statistics, based on the kernels L12,14,15 in bivariate case, which showed more than
twice better results against such alternatives for all sample sizes. Tn(L4) test was
also the most sensitive against the alternatives when the variance of contaminating
distribution was smaller than the variance of the main distribution.

4.2.4. Test of uniformity on hypersphere Sp−1

In conclusion of our empirical power study we proposed a brief comparison
of several criteria of uniformity on hypersphere. N-distance tests with strongly
negative definite kernel L(x, y) = ‖x − y‖ are compared with classical crite-
ria: Rayleigh (R) (Figueiredo, 2007), Watson (W) (Watson, 1961; 1967), Gine (G)
(Gine, 1975) and Ajne (A) (Ajne, 1968; Beran, 1968) for circular S1 and spherical
S2 cases.

Simulation design

In all the cases we investigate the behavior of above mentioned tests for sample
sizes n = 50, 100 and significance level α = 0.05. The first part of simulations
(Table 4.9) is devoted to the circular case. In the second part of our study (Table
4.10) we consider uniformity test on the sphere S2.

The power of the tests was estimated from a simulation of 200 samples Z of
alternative distributions on the circle and sphere, which were modeled using the
formulas:

• Circular data

Z = (cos 2πX, sin 2πX),

where X is a random variable with distributions from the first column of
Table 4.9.

• Spherical data

Z = (cos(2πX), sin(2πX)(1− 2Y ), sin(2πX) sin(arccos(1− 2Y ))),
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where X, Y are independent random variables with distributions from the
first column of Table 4.10.

Simulation results

Empirical results summarized in Tables 4.9–4.10 illustrate that none of the
tests are universally superior. In S1 case proposed N-distance criteria, together
with Watson test, showed one of the best results against all considered alternatives
for moderate sample sizes.

The empirical results for spherical data are summarized in Table 4.10. In com-
parison with circular case, where all the criteria, except possibly Gine test, showed
more or less similar results, the performance of N-distance test was really good for
all sample sizes against truncated uniform and von Mises distributions. Gine test,
which was not so powerful against considered alternatives in S1 case, was really
sensitive to contamination of hypothesized distribution with truncated uniform in
case of spherical data.
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4.3. Conclusions of Chapter 4

1. The results of the theoretical and empirical power comparison study show
that N-metrics tests are powerful competitors to existing classical criteria,
in the sense that they are consistent against all alternatives and have rela-
tively good power against general alternatives compared with other tests.

2. The possibility in the selection of the strongly negative definite kernel for
N-distance allows to create the test more sensitive to particular type of al-
ternative hypothesis.





General conclusions

1. Based on N-distances, the construction of statistical tests of goodness of
fit, homogeneity, symmetry and independence were proposed.

2. In the general case the limit null distribution of N-metrics statistics coin-
cides with the distribution of infinite quadratic form of Gaussian random
variables. Under the alternative hypothesis, proposed tests statistics are
asymptotically normal.

3. The results of the theoretical and empirical power comparison study show
that N-metrics tests are powerful competitors to existing classical criteria,
in the sense that they are consistent against all alternatives and have rela-
tively good power against general alternatives compared with other tests.
The possibility in the selection of the strongly negative definite kernel for
N-distance allows to create the test more sensitive to particular type of al-
ternative hypothesis.

4. In the general case proposed N-metrics statistics are not distribution-free.
In case of homogeneity hypothesis to avoid this problem bootstrap and per-
mutation approaches are suggested to be used.

5. For normality and nonparametric hypotheses of goodness of fit in high di-
mensional cases, when it is difficult from computational point of view to
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determine the limit null distribution of N-distance statistic analytically, the
critical region of the test can be established by means of Monte Karlo sim-
ulations.

Even in such classical statistical problems like testing the homogeneity or
goodness of fit a lot of questions are still open. Most of them are related to these
tests in multi dimensional cases. For now it is not absolutely clear, how to estab-
lish the null limit distribution of the test statistic in case of composite hypotheses
of goodness of fit, when initial parametric family is not Gaussian; is it possible to
avoid the dependency of the distribution of the two-sample test statistic on the un-
known distribution of the samples; is there a strict way for selection of the kernel
of N-distance statistic to make the test the most powerful? These and many other
empirical and theoretical questions are the subject for the further research in this
field.



Bibliography

Ajne, B. 1968. A simple test for uniformity of a circular distribution, Biometrika,
55: 343–354.

Aki, S. 1986. Some test statistics based on the martingale term of the empirical
distribution function, Annals of the Institute of Statistical Mathematics, 38(1):
1–21.

Anderson, T.; Darling, D. 1952. Asymptotic theory of certain goodness-of-fit
criteria based on stochastic processes, Annals of Mathematical Statistics, 23(2):
193–212.

Anderson, T.; Darling, D. 1954. A test of goodness of fit, Journal of The American
Statistical Association, 49(268): 765–769.

Bahadur, R. 1960. Stochastic comparison of tests, The Annals of Statistics, 31(2):
276–295.

Baringhaus, L.; Franz, C. 2004. On a new multivariate two-sample test, Journal
of Multivariate Analysis, (88): 190–206.

Beran, R. 1968. Testing for uniformity on a compact homogeneous space, Journal
of Applied Probability, 5: 177–195.

Best, D. J.; Rayner, J. C. W. 1985. Lancaster’s test of normality, Journal of Statis-

129



130 BIBLIOGRAPHY

tical Planning and Inference, 12(3): 395–400.

Bickel, P. 1969. A distribution free version of the smirnov two-sample test in the
multivariate case, Annals of Mathematical Statistics, 40: 1–23.

Bickel, P.; Breiman, L. 1983. Sums of functions of nearest neighbor distances,
moment bounds, limit theorems and a goodness of fit test, Annals of Probability,
11: 185–214.

Billingsley, P. 1968. Convergence of probability measures. Wiley, New York.

Bowman, K.; Shenton, L. R. 1975. Omnibus contours for departures from normal-
ity based on b1 and b2, Biometrica, 62: 243–250.

Bulinskii, A.; Shiryaev, A. 2005. Theory of random processes. Fizmatlit, Moscow.

Burke, M. 2000. Multivariate tests-of-fit and uniform confidence bands using a
weighted bootstrap, Statistics and probability letters, 46: 13–20.

Csorgo, S. 1986. Testing for normality in arbitrary dimension, Annals of Mathe-
matical statistics, 14(2): 708–723.

DAgostino, R. 1971. An omnibus test of normality for moderate and large size
samples, Biometrika, 58: 341–348.

DAgostino, R.; Belanger, A.; Jr, R. D. 1990. An omnibus test of normality for
moderate and large size samples, The American Statistician, 44: 316–322.

DAgostino, R. B.; Stephens, M. A. 1986. Goodness-of-Fit Techniques. Marcel
Dekker, New York/ Basel.

Darling, D. 1957. The kolmogorov-smirnov, cramer-von mises test, Annals of
Mathematical Statistics, 28(3): 823–838.

Darling, D. 1983a. On the asymptotic distribution of watson’s statistics, Annals of
Statistics, 11(6): 1263–1266.

Darling, D. 1983b. On the supremum of a certain gaussian process, Annals of
Statistics, 11(4): 803–806.

Durbin, J. 1970. Asymptotic distirbutions of some statistics based on the bivariate
sample distribution function, Non-parametric techniques in the statistical infer-
ence 435–449.

Durbin, J. 1973. Weak convergence of the sample distribution function when
parameters are estimated, Annals of Mathematical Statistics, 1(2): 279–290.



BIBLIOGRAPHY 131

Epps, T.; Pulley, L. 1983. A test for normality based on the empirical characteristic
function, Biometrika, 70: 723–726.

Figueiredo, A. 2007. Comparison of tests of uniformity defined on the hypersphere,
Statistics and Probability Letters, 77(3): 329–334.

Figueiredo, A.; Gomes, P. 2003. Power of tests of uniformity defined on the hy-
persphere, Communication in Statistics: Simulation and Computation, 32(1):
87–94.

Friedman, J.; Rafsky, L. 1979. Multivariate generalizations of the wolfowitz and
smirnov two-sample tests, Annals of Mathematical Statistics, 7: 697–717.

Gine, E. 1975. Invariant tests for uniformity on compact riemannian manifolds
based on sobolev norms, Annals of Statistics, 3: 1243–1266.

Hajek, J.; Sidak, Z. 1967. Theory of rank tests. Academic Press, New York.

Henze, N. 1988. A multivariate two-sample test based on the number of nearest
neighbor type coincidences, Annals of Mathematical Statistics, 16(2): 772–783.

Henze, N. 1994. On mardias kurtosis test for multivariate normality, Communica-
tions in Statistics - Theory and Methods, 23: 1031–1045.

Henze, N.; Wagner, T. 1997. A new approach to the bhep tests for multivariate
normality, Journal of Multivariate Analysis, 62: 1–23.

Henze, N.; Zirkler, B. 1990. A class of invariant and consistent tests for multivariate
normality, Journal of Multivariate Analysis, 19: 3595–3617.

Hermans, M.; Rasson, J. P. 1985. A new sobolev test for uniformity on the circle,
Biometrika, 72(3): 698–702.

Imhof, J. P. 1961. Computing the distribution of quadratic forms in normal vari-
ables, Biometrika, 48(3).

Jupp, P. 2005. Sobolev tests of goodness of fit of distributions on compact rieman-
nian manifolds, The Annals of Statistics, 33(6): 2957–2966.

Justel, A.; Pena, D.; Zamar, R. 1997. A multivariate kolmogorov-smirnov test of
goodness of fit, Statistics and Probability Letters, 35: 251–259.

Kac, M.; Kiefer, J.; ; Wolfowitz, J. 1955. On tests of normality and other tests
of goodness of fit based on distance methods, Annals of Mathematical statistics,
26(2): 189–211.



132 BIBLIOGRAPHY

Khmaladze, E. 1977. On omega-square tests for parametric hypotheses, Theory
Probab. Appl., 22(3): 627–629.

Khmaladze, E. 1981. Martingale approach in the theory of goodness-of-fit tests,
Theory of Probability and its Applications, 26(2): 246–265.

Klebanov, L. 2005. N-distances and their applications. Karolinum, Prague.

Kolmogorov, A. 1933. Sulla determinazione empririca di una legge di dis-
tribuzione, Giorn. dell’Inst. Ital. degli Att., 4: 1–11.

Koroljuk, V.; Borovskich, Y. 1994. Theory of U-statistics. Kluwer Academic
Publishers.

Koziol, J. 1986. Relative effciencies of goodness of fit procedures for assessing
univariate normality, Annals of the Institute of Statistical Mathematics, 38: 121–
132.

Koziol, J. A. 1983. On assessing multivariate normality, J. Roy. Stat. Assoc., (3):
358–361.

Krivyakova, E.; Martynov, G.; Tyurin, Y. 1977. The distribution of the omega
square statistics in the multivariate case, Theory of Probability and its Applica-
tions, 22(2): 415–420.

Kuiper, N. 1960. Tests concerning random points on the circle, Proc. Kon. Ned.
Akad. van Wet, 63: 38–47.

L.Baringhaus, ; H.Henze, . 1992. Limit distributions for mardias measure of mul-
tivariate skewness, Annals of Mathematical Statistics, 20: 1889–1902.

L.Baringhaus, ; H.Henze, . 1998. A consistent test for multivariate normality based
on the empirical characteristic function, Metrika, 35: 339–348.

Lee, A. 1990. U-statistics: Theory and Practice. Marcel Dekker, New York.

Lehmann, E. 1951. Consistency and unbiasedness of certain nonparametric tests,
Annals of Mathematical Statistics, 22(2): 165–179.

Lilliefors, H. W. 1967. On the kolmogorov-smirnov test for normality with
mean and variance unknown, Journal of The American Statistical Association,
62(318): 399–402.

Liu, R.; Yang, L. 2008. Kernel estimation of multivariate cumulative distribution
function, Journal of Nonparametric Statistics, 0(0): 1–18.



BIBLIOGRAPHY 133

Locke, C.; Spurrier, J. D. 1976. The use of u-statistics for testing normality against
nonsymmetric alternatives, Biometrika, 63(1): 143–147.

Maag, U.; Stephens, M. 1968. The v(n,m) two-sample test, Annals of Mathematical
Statistics, 39(3): 923–935.

Mardia, K. 1970. Measures of multivariate skewness and kurtosis with applica-
tions, Biometrika, 57: 519–530.

Martynov, G. 1978. Omega-Square criteria. Nauka, Moscow.

Martynov, G. V. 1975. Computation of the distribution functions of quadratic
forms in normal random variables, Theory of Probability and its Applications,
20(4): 797–809.

Nikitin, Y. 1995. Asymptotic Efficiency of Nonparametric Tests. Cambridge Uni-
versity Press, New York.

Park, S. 1999. A goodness-of fit test for normality based on the sample entropy of
order statistics, Statistics and Probability Letters, 44: 359–363.

Pettitt, A. 1976. Two-sample anderson-darling rank statistics, Biometrica, 63(1):
161–168.

Pettitt, A. 1979. Two-sample cramer-von mises type rank statistics, Journal of the
Royal Statistical Society, (1): 46–53.

Prescott, P. 1976. On test for normality based on sample entropy, Journal of the
Royal Statistical Society, 38(3): 254–256.

Rosenblatt, M. 1952a. Limit theorems associated with variants of the von mises
statistics, Annals of Mathematical Statistics, 23(4): 617–623.

Rosenblatt, M. 1952b. Remarks on a multivariate transformation, Annals of Math-
ematical Statistics, 23: 470–472.

Rothman, E. 1972. Tests for uniformity of a circular distribution, Sankhya Ser. A,
34: 23–32.

Shapiro, S.; Wilk, M. B. 1965. An analysis of variance test for normality,
Biometrika, 52: 591–611.

Shapiro, S. S.; Francia, R. S. 1972. An approximate analysis of variance test for
normality, Journal of The American Statistical Association, 67(337): 215–216.

Smirnov, N. 1939. On the estimation of the discrepancy between empirical curves



134 BIBLIOGRAPHY

of the distribution for two independent samples, Bull. Moscow Univ., 2: 3–6.

Smirnov, N. V. 1944. Approximate laws of distribution of random variables from
empirical data, UMN, 10: 179–206.

Spiegelhalter, O. J. 1977. A test for normality against symmetric alternatives,
Biometrika, 64(2): 415–418.

Stute, W.; Gonzales-Manteiga, W.; Presedo-Quindimil, M. 1993. Bootstrap based
goodness-of-fit-tests, Metrika, 40: 243–256.

Sukhatme, S. 1972. Fredholm determinant of a positive definite kernel of a special
type and its application, Annals of Mathematical Statistics, 43(20): 1914–1926.

Szekely, G.; Rizzo, M. 2005. A new test for multivariate normality, Journal of
Multivariate Analysis, 93: 58–80.

Szucs, G. 2008. Parametric bootstrap tests for continuous and discrete distributions,
Metrika, 67: 63–81.

Towghi, N. 2002. Multidimensional extension of l.c. young’s inequality, Journal
of Inequalities in Pure and Applied Mathematics, 3(2). Prieiga per internetą:
<http://jipam.vu.edu.au>.

Tyurin, Y. N. 1970. On testing parametric hypotheses by nonparametric methods,
Theory of Probability and its Applications, 25(4): 745–749.

Tyurin, Y. N. 1984. On the limit distribution of kolmogorov-smirnov statistics for
a composite hypothesis, Izv. Akad. Nauk SSSR, 48(6): 1314–1343.

Vaart, A. van der; Wellner, J. 1996. Weak convergence and empirical processes.
Springer, New York.

Wald, A.; Wolfowitz, J. 1940. On the test whether two samples are from the same
population, Annals of Mathematical Statistics, 11: 147–162.

Watson, G. 1961. Goodness-of-fit tests on the circle, Biometrica, 48: 109–114.

Watson, G. 1967. Another test for the uniformity of a circular distribution, Bio-
metrica, 54: 675–677.

Watson, G. 1976. Optimal invariant tests for uniformity, Studies in probability and
statistics. Paper in honour of E.J.G. Pitman 121–127.

Yamato, H. 1973. Uniform convergence of an estimator of a distribution function,
Bull. Math. Statist., (15): 69–78.



BIBLIOGRAPHY 135

Zhang, P. 1999. Omnibus test of normality using the q statistic, Journal of Applied
Statistics, 26: 519–528.

Zhu, L.-X.; Wong, H.; Fang, K.-T. 1995. A test for multivariate normality based
on sample entropy and projection pursuit, Journal of Statistical Planning and
Inference, 45: 373–385.

Zinger, A.; Klebanov, L.; Kakosyan, A. 1989. Characterization of distributions by
mean values of statistics in connection with some probability metrics, Stability
Problems for Stochastic Models 47–55.





List of Publications on the Topic of
the Thesis

In the reviewed scientific periodical publications

Bakshaev, A. 2008. Nonparametric tests based on N-distances, Lithuanian Math-
ematical Journal 48(4): 368–379. ISSN 0363-1672 (ISI Master Journal List).

Bakshaev, A. 2009. Goodness of fit and homogeneity tests on the basis of N-
distances, Journal of Statistical Planning and Inference 139(11): 3750–3758. ISSN
0378-3758 (ISI Master Journal List).

Bakshaev, A. 2010. N-distance tests for composite hypothesis of goodness of
fit, Lithuanian Mathematical Journal 50(1): 14–34. ISSN 0363-1672 (ISI Master
Journal List).

Bakshaev, A. 2010. N-distance tests for uniformity on the hypersphere, accepted
for publication in Nonlinear Analysis, Modelling and Control. ISSN 1392-5113.

137



Aleksej BAKŠAJEV

STATISTICAL TESTS
BASED ON N-DISTANCES

Doctoral Dissertation
Physical Sciences, Mathematics (01P)

Aleksej BAKŠAJEV

STATISTINIŲ HIPOTEZIŲ TIKRINIMAS,
NAUDOJANT N-METRIKAS

Daktaro disertacija
Fiziniai mokslai, matematika (01P)

2010 01 13. 12,0 sp. l. Tiražas 20 egz.
Vilniaus Gedimino technikos universiteto
leidykla „Technika“, Saulėtekio al. 11, 10223 Vilnius,
http://leidykla.vgtu.lt
Spausdino UAB „Baltijos kopija“,
Kareivių g. 13B, 09109 Vilnius, http://www.kopija.lt


