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Introduction

1.1 The actuality of the thesis

Long memory, or long-range dependence, is a well-established empirical fact,
which appears in various scienti�c �elds (�nance, astronomy, chemistry, hydrol-
ogy, telecommunications, statistical physics etc.); see e.g. monographs Beran [8],
Doukhan et al. [28], Palma [46] and the numerous references therein. Statistical
inference under long memory is more di�cult since observations are strongly de-
pendent and their limit laws may be di�erent from the classical i.i.d. r.v. set-up.
Most of the studies in the area of long memory focus on the stationary situation.
It is clear that in the case of a long (and sometimes very long) sample, the sta-
tionarity assumption might be often violated and not realistic. Therefore the study
of nonstationary long memory is important to theory and applications. In particu-
larly, parametric and semiparametric models of time series with nonstationary long
memory should be developed together with inferential procedures for analyzing such
series.

A natural class and most studied class of time series form � linear models. The
parametric class FARIMA(p, d, q) is probably the most important class of stationary
long memory processes. Therefore nonstationary and time-varying generalizations
of this class present considerable interest.

It is well-known that the asymptotic properties of various tests and statistics
rely on the limit distribution of partial sums process of observations, through the
invariance principle. The study of the limit distribution of partial sums process of
linear models with nonstationary long memory is an essential step towards their
applications.

1.2 The aims and the problems of the thesis

The main object of the thesis is the study of the limit distribution of partial sums
of certain linear time series models with nonstationary long memory and certain
statistics which involve partial sums processes. In particularly, we focus on the
following problems:
1. The description of the limit distribution of partial sums processes of in�nite
variance time-varying fractionally integrated (tv-FARIMA) �lters. These �lters were
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introduced in Philippe, Surgailis, Viano [53], [51], who studied this problem under
�nite variance set-up.

More speci�cally, we assume that the innovations belong to the domain of at-
traction of an α-stable law (1 < α < 2) and show that the partial sums process of
�ltered tv-FARIMA series converges to some α-stable self-similar process.
2. The limit of the Increment Ratio (IR) statistic for Gaussian observations super-
imposed on a slowly varying deterministic trend. The IR statistic was introduced
in Surgailis, Teyssière, Vai£iulis [61] and its limit distribution was studied under the
assumption of stationarity of observations. The IR statistic can be used for test-
ing nonparametric hypotheses about d-integrated (−1/2 < d < 3/2) behavior of the
time series which can be confused with deterministic trends and change-points. This
statistic is written in terms of partial sums process and its limit is closely related
to the limit of partial sums. In particularly, the consistency of the IR statistic uses
asymptotic independence of distant partial sums, the fact is established in the thesis
for a wide class of linear processes.

1.3 The methods of the thesis

The proofs of the limit behavior of partial sums are based on the so-called
"scheme of discrete stochastic integrals" (introduced in [59]), and the properties
of the weak convergence of probability measures. The asymptotic behavior of the
IR statistic uses the method of Hermite expansions and the so-called Arcones' in-
equality (see [1]).

1.4 The novelty of the thesis

All results of the thesis are new.

1.5 The history of the problem and the main results

De�nition 1. A covariance-stationary time series (Xt) = (Xt, t ∈ Z) is said to
be covariance long memory (or covariance long�range dependent) if the sum of its
covariances absolutely diverges:

∑

t∈Z
|cov(X0, Xt)| = ∞; (1)

otherwise the process (Xt) is called covariance short memory.

A related de�nition of long memory is given in terms of spectral density
f(λ), λ ∈ [−π, π], see e.g. Beran [8], p. 42. While these de�nitions are simple and
intuitive, they are limited to stationary processes with �nite second moment. More-
over, condition (1) is not very constructive and further assumptions on the decay
of the covariances are necessary to show the limit distribution of simplest nonlinear
statistics of observations (Xt, 1 ≤ t ≤ N) even if (Xt) is a Gaussian process.
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A di�erent notion of long memory (called distributional long memory) is given
in Cox [21], Dehling and Philipp [23] and other works.

De�nition 2. A strictly stationary time series (Xt) is called distributional long
memory if its partial sums process, when suitably normalized, weakly converges to
some random process with stationary dependent increments. More precisely, this
means that there exist some constants AN →∞ (N →∞) and BN and a stochastic
stationary increment process (J(τ), τ ≥ 0) 6≡ 0 with dependent increments, such
that

A−1
N

[Nτ ]∑
t=1

(Xt −BN) →FDD J(τ), (2)

as N → ∞, where [a] stands for the integer part of a real number a, and →FDD

denotes the weak convergence of �nite dimensional distributions.

Lamperti [40] showed that under mild additional assumptions the normalizing
constants in (2) grow as NH (with some H > 0), more precisely,

AN = L(N)NH (3)

where L(N)) is a slowly at in�nity varying function, and the limit process (J(τ), τ ≥
0) is self-similar with index H. The last property means that for any a > 0, �nite
dimensional distributions of processes (J(τ), τ ≥ 0) and (a−HJ(aτ), τ ≥ 0) coincide:

(J(τ), τ ≥ 0) =FDD (a−HJ(aτ), τ ≥ 0),

where =FDD denotes equality of �nite dimensional distributions. The exponent H in
(3) is called the Hurst index of time series (Xt). In the �nite variance case EX2

t < ∞,
usually A2

N = N2var(X̄) = E
(∑N

t=1(Xt − EXt)
)2

and the variance var(X̄) of the
sample mean is called the Allen variance (see Heyde and Yang [35]).

De�nition 3. (Heyde and Yang [35]) A time series (Xt) with �nite variance is
called LRD(AV) (Long-Range Dependence (Allen Variance)) if

lim
N→∞

Nvar(X̄) = lim
N→∞

N−1E

(
N∑

t=1

(Xt − EXt)

)2

= ∞, (4)

otherwise (Xt) is called SRD(AV) (Short-Range Dependence (Allen Variance)).

Heyde and Yang [35] note that the LRD(AV) de�nition allows for departure
from stationarity. For nonstationary processes with �nite variance, the Hurst index
is de�ned by

H = inf

{
lim sup

N→∞
N−2hvar

( N∑
t=1

Xt

)
= 0

}
, (5)
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see Philippe et al. [52]. Heyde and Yang [35] extended the characterization prop-
erty (4) to in�nite variance (nonstationary) processes. Accordingly, (Xt) is called
LRD(SAV) (Long-Range Dependence (Sample Allen Variance)) if

( ∑N
t=1 Xt

)2

∑N
t=1 X2

t

→P ∞. (6)

For stationary processes, (6) essentially amounts to the observation that a central
limit theorem does not hold for partial sums of (Xt) ([35], p. 883).

The above de�nitions (4)-(6) present a theoretical interest but they are not
very useful for modeling and statistical analysis of time series with nonstationary
long memory. In fact, there are few �genuinely nonstationary� times series models
with long memory discussed in the literature. Philippe et al. [52] discuss several
classes of almost periodically correlated processes constructed from the well-known
FARIMA (Fractional Autoregressive Moving Average) class by amplitude modu-
lation (AM), phase modulation (PM), memory modulation (MM) and coe�cient
modulation (CM). The most interesting from these classes is CM, also called time-
varying FARIMA (tv-FARIMA). This model was introduced in [51] and [53]. It is
the main object of the �rst part of the thesis.

We recall that the most important class of long memory models form fractionally
integrated autoregressive processes FARIMA(p, d, q), de�ned as stationary solutions
of the di�erence equation

ϕ(L)(I − L)dXt = ϑ(L)εt, (7)

where L is the backward shift operator, ϕ(L), ϑ(L) are polynomials in L of degree
p, q, respectively, and the operator (I − L)d is de�ned by the binomial expansion

(I − L)d :=
∞∑

j=0

ψj(d)Lj,

where ψ0(d) := 1 and

ψj(d) :=
Γ(−d + j)

j!Γ(−d)
(j ≥ 1).

For properties of FARIMA(p, d, q) processes we refer to Brockwell and Davis
[15]. It is well-known that in the case 0 < d < 1/2 and under suitable condi-
tions on the polynomial ϕ(·) and the i.i.d. noise (εt, t ∈ Z), the autocovariance
function of the FARIMA(p, d, q) process decays as t2d−1 and its partial sum process
converges in distribution to a fractional Brownian motion (fBm) WH(τ) with Hurst
parameter H = d + (1/2). The last result is a particular case of a more general
result due to Davydov (1970, [22]) for partial sums of general second order linear
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processes. Several authors (Astrauskas (1983, [3]), Kasahara and Maejima (1986,
[37]), Avram and Taqqu (1992, [5]), Vai£iulis (2003, [64])) discussed partial sums
limits of linear processes with in�nite variance, in particular, stationary solutions
of FARIMA(p, d, q) in (7) with i.i.d. noise εt belonging to the domain of attraction
of α-stable law (1 < α < 2). In the latter case, a stationary solution of (7) exists
for 0 < d < 1 − 1/α and the corresponding limit process of N−d−1/α

∑[Nτ ]
t=1 Xt is a

so-called fractional stable motion.
Recently, Philippe et al. [51, 53] (hereafter: PSV) introduced time-varying frac-

tionally di�erentiating �lters

A(d)xt :=
∞∑

j=0

aj(t)xt−j, B(d)xt :=
∞∑

j=0

bj(t)xt−j, (8)

where d = (dt, t ∈ Z) is a given function of t ∈ Z,

aj(t) :=
(dt−1

1

)(dt−2 + 1

2

)(dt−3 + 2

3

)
· · ·

(dt−j + j − 1

j

)
, (9)

bj(t) :=
(dt−1

1

)(dt−j + 1

2

)(dt−j+1 + 2

3

)
· · ·

(dt−2 + j − 1

j

)
, j ≥ 1, (10)

a0(t) = b0(t) := 1. If dt = d is constant, then

aj(t) = bj(t) =
(d

1

)(d + 1

2

)(d + 2

3

)
· · ·

(d + j − 1

j

)
= ψj(−d)

and (8) coincide with FARIMA �lter (I−L)−d. The operators A(d), B(d) are related
by B(−d)A(d) = A(−d)B(d) = I, where −d := (−dt, t ∈ Z).

PSV [51, 53] (see also PSV [52]) studied partial sums limits of time-varying
fractionally integrated processes Xt and Yt de�ned by

Xt = A(−d)−1Gεt = B(d)Gεt =
∞∑

j=0

(b ? g)j(t)εt−j, (11)

Yt = B(−d)−1Gεt = A(d)Gεt =
∞∑

j=0

(a ? g)j(t)εt−j, (12)

where (εt, t ∈ Z) is an i.i.d. (or martingale di�erence) sequence, with zero mean and
unit variance,

(b ? g)j(t) :=

j∑
i=0

bi(t)gj−i, (a ? g)j(t) :=

j∑
i=0

ai(t)gj−i

are the impulse responses of the product operators B(d)G, A(d)G, respectively,
and G is a short-memory �lter with absolutely summable coe�cients:

Gxt =
∞∑

j=0

gjxt−j, with
∞∑

j=0

|gj| < ∞ and
∞∑

j=0

gj 6= 0.
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PSV [51, 53] discussed two classes of sequences d, namely: (I) the class of almost
periodic sequences d having a mean value d̄ ∈ (0, 1/2), and (II) the class of (asymp-
totic) sequences d = (dt, t ∈ Z) having limits d± = limt→±∞ dt ∈ (0, 1/2). They
showed that the case (I), "averaging of long memory" of nonstationary processes
(Xt) and (Yt) occurs and their partial sums converge to a usual fBm with Hurst pa-
rameter H = d̄ + (1/2). In the case (II), the partial sums of (Xt) and (Yt) converge
to two di�erent Gaussian self-similar processes depending essentially on the asymp-
totic parameters d± only and having asymptotically stationary or asymptotically
vanishing increments (see Chapter 1, De�nition 1.3).

In Chapter 1 we extend the results of PSV [51, 53] in two directions. Firstly,
we consider the class of time-varying processes (Xt) and (Yt) in (11), (12) with
in�nite variance, by assuming that innovations (εt, t ∈ Z) are i.i.d. r.v. belonging
to the domain of attraction of α-stable law (1 < α ≤ 2). We show that in this
case, partial sums of (Xt) and (Yt) converge to some α-stable self-similar processes
which are α-stable counterparts of the Gaussian process introduced in PSV [51].
Secondly, we combine the classes of almost periodic and asymptotic sequences d =
(dt, t ∈ Z) (which were discussed separately in PSV [51, 53]) into a more general
class of sequences d = (dt, t ∈ Z) admitting possibly di�erent Cesaro limits d̄± ∈
(0, 1− (1/α)) at ±∞:

d̄+ := lim
n→∞

n−1

n∑
i=1

di, d̄− := lim
n→∞

n−1

n∑
i=1

d−i, (13)

and satisfying some additional conditions (see Chapter 1, De�nition 1.1 and 1.2 for
precise formulation). Clearly, the existence of d± = limt→±∞ dt implies the existence
of the limits in (13), with d̄± = d±. On the other hand, if (dt, t ∈ Z) is almost
periodic with mean value d̄, then (13) hold with d̄+ = d̄− = d̄.

The main results (Theorems 1.1 and 1.2) are given in Sec. 1.2, together with
main auxiliary Lemmas 1.1 and 1.2. Since the formulations of these theorems are
rather involved, here we present a corollary from Theorems 1.1 and 1.2 (Corollary
1 below), which does not require complex notation.

Consider the case of tv-FARIMA �lter corresponding to "change-point in mem-
ory", i.e.

dt =

{
d+, if t ≥ t0,
d−, if t < t0,

(14)

where t0 ∈ Z is a �xed integer, and d± ∈ (0, 1/2) are some values. Note (14) satis�es
(13) with d̄± = d±. According to the de�nitions (9)-(10),

at−s(t) =





∏
s≤k<t

t−k−1+d−
t−k

, if s < t ≤ t0,
∏

s≤k<t0

t−k−1+d−
t−k

∏
t0≤k<t

t−k−1+d+

t−k
, if s < t0 < t,

∏
s≤k<t

t−k−1+d+

t−k
, if t0 ≤ s < t
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and

bt−s(t) =





d−
∏

s−1<k≤t−2

k−s+1+d−
k−s+2

, if s < t ≤ t0,

d+

∏
s−1<k<t0

k−s+1+d−
k−s+2

∏
t0≤k≤t−2

k−s+1+d+

k−s+2
, if s < t0 < t,

d+

∏
s−1<k≤t−2

k−s+1+d+

k−s+2
, if t0 ≤ s < t.

From these equations, one easily obtains the asymptotics

at−s(t) ∼
{

ψt−s(−d+) ∼ 1
Γ(d+)

(t− s)d+−1, s ≥ 0, t →∞,
ψt−s(−d−)ψt(−d+)

ψt(−d−)
∼ 1

Γ(d+)
(t− s)d−−1td+−d− , s ≤ 0, t →∞,

and

bt−s(t) ∼
{

ψt−s(−d+) ∼ 1
Γ(d+)

(t− s)d+−1, s ≥ 0, t →∞,
ψt−s(−d+)−d+ψt(−d−)

−d−ψt(−d+)
∼ −d+

−d−Γ(d−)
(t− s)d+−1td−−d+ , s ≤ 0, t →∞.

Corollary 1. Let
Yt = A(d)εt =

∑
s≤t

at−s(t)εs

and
Xt = B(d)εt =

∑
s≤t

bt−s(t)εs

be time-varying fractionally integrated �lters in (11) and (12), respectively, corre-
sponding to d as in (14), with symmetric α-stable innovations (εt). Let

1 < α ≤ 2, d± ∈ (0, 1− (1/α)).

Then

N−d+−(1/α)

[Nτ ]∑
t=1

Yt →FDD cA(J(τ) + U(τ)), (15)

N−d+−(1/α)

[Nτ ]∑
t=1

Xt →FDD c+
BJ(τ), if d+ > d−, (16)

N−d−−(1/α)

[Nτ ]∑
t=1

Xt →FDD c−BV (τ), if d+ < d−, (17)

N−d−(1/α)

[Nτ ]∑
t=1

Xt →FDD cB(J(τ) + V (τ)), if d+ = d− = d. (18)
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Here, cA, c±B are some constants, and the limiting processes J, U, V are de�ned below,
as stochastic integrals with respect to a symmetric α-stable Lévy process Z on the
real line:

J(τ) =

∫ τ

0

Z( dx)

∫ τ

x

(y − x)d+−1 dy,

U(τ) =

∫ 0

−∞
Z( dx)

∫ τ

0

(y − x)d−−1yd+−d− dy,

V (τ) =

∫ 0

−∞
(−x)d−−d+Z( dx)

∫ τ

0

(y − x)d+−1 dy.

Some comments about Corollary 1 are in order. In the absence of "jump d+−d−
in memory" (i.e., in the case d+ = d− = d), the processes (Xt) and (Yt) are the
classical FARIMA(0, d, 0) and Corollary 1 is well-known; see [3], [5], [37], [64] and
other papers which discuss weak convergence of partial sums of in�nite variance sta-
tionary processes. We note that in this case, the limit process in (15) and (18) is a
fractional stable motion (see [54]). On the other hand, the corollary exhibits a rather
simple parametric class of time series models with nonstationary distributional long
memory (c.f. De�nition 2): not only the processes (Xt) and (Yt) are nonstationary,
but the nonstationarity persists in the distributional limit, since for d+ 6= d−, all
three limit processes in J + U, J and V have nonstationary (and dependent) incre-
ments. A surprising limit process is V in (26), which is a.s. in�nitely di�erentiable
on (0,∞) and so very unusual from the point of view of limit theorems for partial
sums processes. Further properties of these limit processes are listed in Chapter 1
below.

The Increment Ratio (IR) statistic was introduced by Surgailis, Vai£iulis,
Teyssière [61]. It is de�ned for given observations X1, . . . , XN as the sum of ra-
tios of partial sums

IR :=
1

N − 3m

N−3m−1∑

k=0

∣∣∣∑k+m
t=k+1(Xt+m −Xt) +

∑k+2m
t=k+m+1(Xt+m −Xt)

∣∣∣
∣∣∣∑k+m

t=k+1(Xt+m −Xt)
∣∣∣ +

∣∣∣ ∑k+2m
t=k+m+1(Xt+m −Xt)

∣∣∣
(19)

with the convention 0/0 = 1; here m = 1, 2, . . . is bandwidth parameter (see [17]
for generalization of the IR statistic). The IR statistic can be used for testing
nonparametric hypotheses for d-integrated (−1/2 < d < 5/4) behavior of time
series (Xt, 1 ≤ t ≤ N), including short memory (d = 0), (stationary) long memory
(0 < d < 1/2) and unit roots (d = 1). If partial sums process of Xt's asymptotically
behaves as an (integrated) fractional Brownian motion with parameter H = d+1/2,
the IR statistic converges (as N, m, N/m →∞) to the expectation

Λ(d) := E

[ |Z1 + Z2|
|Z1|+ |Z2|

]
, (20)
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where (Z1, Z2) have a jointly Gaussian distribution with zero mean, unit variances,
and the covariance

%(d) := cov(Z1, Z2) =
−9d+.5 + 4d+1.5 − 7

2(4− 4d+.5)
.

The function Λ(d) in (20) is strictly monotone increasing on the interval
(−1/2, 3/2) and is explicitly written in [61]. For Gaussian observations {Xt}, in
[61], a rate of decay of the bias EIR−Λ(d) and a central limit theorem (see below)
in the region −1/2 < d < 5/4 are obtained. The corresponding IR test rejecting the
null hypothesis H0 : d = d0 in favor of H1 : d 6= d0 has the critical region

|IR− Λ(d0)| > zα/2σ(d0)

√
m

N − 3m
, (21)

where zα is a standard normal quantile, and the function σ(d) is numerically tab-
ulated in Stoncelis and Vai£iulis [57] (see also the graph in [61]). A simulation
study in [61] shows that the IR test for short memory (d = 0) against stationary
long memory alternatives (0 < d < 1/2) has good size and power properties and is
robust against changes in mean, slowly varying trends, and nonstationarities.

In the thesis (Chapter 2), we assume that the observed sample comes from the
model

Xt = gN,t + X0
t (1 ≤ t ≤ N), (22)

where gN,t is a slowly varying deterministic trend, and {X0
t } is a stationry/stationary

increment Gaussian process. We want to study the impact of the trend on the limit
distribution of the IR statistic. In particular, we obtain conditions on the trend and
stationary component guaranteeing that the limit distribution of the IR statistic
under the model (22) follows the same central limit theorem as in the absence of
trend.

Let us recall the main result of [61]. For brevity, we formulate it under slightly
stronger assumptions than in [61].

Assumption A. {X0
t } is a zero mean stationary Gaussian sequence with spectral

density f(x), x ∈ [−π, π], of the form

f(x) = |x|−2d
(
c0 + O(|x|β)

)
(x → 0),

where c0 > 0, 0 < β < 2d + 1, and d ∈ (−1/2, 1/2) are some constants. Moreover,
f(x) is di�erentiable on (0, π) and |f ′(x)| ≤ C|x|−1−2d, where C > 0 is some positive
constant.
Assumption B. The di�erences {X0

t −X0
t−1} form a zero-mean stationary Gaussian

sequence whose spectral density satis�es

f(x) = |x|2−2d
(
c0 + O(|x|β)

)
(x → 0)

10



for some constants c0 > 0, 0 < β < 2d − 1, 1/2 < d < 5/4. Moreover, f(x)
is di�erentiable on (0, π) and |f ′(x)| ≤ C|x|1−2d, where C > 0 is some positive
constant.

Let IR0 denote the IR statistic in (19) with Xt = X0
t .

Theorem 1 [see [61]] . Suppose that {X0
t } satis�es Assumption A or Assumption

B. Then, as N, m, N/m →∞,

EIR0 − Λ(d) = O(m−β), (23)
E

(
IR0 − Λ(d)

)2
= o(1), (24)

(N/m)1/2(IR0 − EIR0) ⇒ N (0, σ2(d)), (25)

where σ2(d) > 0 is de�ned in [61], and ⇒ denotes the convergence in distribution.

Introduce the following notation

Gm(k) := V −1
m

∣∣∣
k+m∑

t=k+1

(gN(t + m)− gN(t))
∣∣∣,

Gi
m :=

1

N − 2m

N−2m−1∑

k=0

Gi
m(k) (i = 1, 2),

V 2
m := E

( m∑
t=1

(X0
t+m −X0

t )
)2

.

Under Assumptions A or B, for any d ∈ (−1/2, 5/4), d 6= 1/2,

V 2
m ∼ c(d)m1+2d (m →∞), (26)

where c(d) > 0 is a constant which is explicitly written in [61] (Eqs. (2.20) and
(2.22)).

The main result of Chapter 2 is Theorem 2, which gives a bound of the bias of
the IR statistic and a central limit theorem for the centered IR statistic for trended
observations as in (22).

Theorem 2. Suppose that observations Xt, t = 1, . . . , N , follow the model as in
(22). Let N and m = m(N) both tend to ∞ so that m = o(N).

(i) Let {X0
t } satisfy Assumption A or Assumption B. Then

EIR− Λ(d) = O
(
max

(
m−β, G2

m

))
.

In addition, if G1
m → 0, then

E (IR− Λ(d))2 → 0.
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(ii) Let {X0
t } satisfy Assumption A or Assumption B. If

Gi
m = o

(
(m/N)1/2

)
(i = 1, 2), (27)

then

(N/m)1/2 (IR − EIR) ⇒ N (
0, σ2(d)

)
,

where σ2(d) is the same as in Theorem 1.

Corollary 2. Let {X0
t } satisfy conditions of Theorem 1, m−β = o((m/N)1/2)

and gN(t) satisfy (27). Then the IR test of the hypothesis H0 : d = d0, d0 ∈
(−1/2, 5/4), d0 6= 1/2 under the model (22) follows the same asymptotic con�dence
intervals in (21) as in the absence of trend.

It is well-known that various tests and graphical methods often confuse trends
with long memory. This phenomenon is known as "spurious long memory" (see e.g.
Lobato and Savin [43]). Two natural questions in this context are (I) "how small
a trend must be to be no longer asymptotically detectable (by a given test)?" and
(II) "how large a trend must be to be distinguished from stationary observations?".
Bhattacharya et al. [10] studied these questions for the R/S statistic and weakly
dependent observations. Shimotsu [56] provided a test to distinguish between a true
and spurious FARIMA(0,d,0) processes. See also Künsch [39], Teverovsky and Taqqu
[63], Diebold and Inoue [26], Giraitis et al. [30], Leipus and Viano [41], Giraitis et al.
[32], and the references therein. In particular, Giraitis et al. [30] studied questions
(I) and (II) for the V/S and related R/S-type statistics and a (general) weakly
dependent stationary process {X0} (case d = 0). They showed "small trends"
(corresponding to case (I)) can be roughly characterized by the requirement

‖gN‖2 :=

(
N∑

t=1

g2
N(t)

)1/2

= O(1). (28)

On the other hand, if the trend gN satis�es ‖gN‖2 → ∞ and some additional
conditions, the V/S statistic converges to a di�erent limit than in the absence of
trend, and so it is fooled by the trend. For hyperbolic trend

gN(t) = c1|t + c2N |γ, (29)

the two cases (I) and (II) correspond to γ < −1/2 and γ > −1/2, respectively (see
Giraitis et al. [30] for details). Another important example is the case of change
point in mean:

gN(t) =

{
0, 1 ≤ t ≤ [τN ],
µN , [τN ] < t ≤ N , (30)

for some 0 < τ < 1. Clearly, condition (28) for gN in (30) is equivalent to |µN | =
O(N−1/2). On the other hand, if |µN |N1/2 →∞, then Assumption 2.3 of Giraitis

12



et al. [30] is satis�ed, and so the V/S test for short memory is again fooled by the
trend.
Example 1. Consider regression-type trend gN(t) = g(t/N), where g is
a continuously di�erentiable function in the interval [0, 1]. Then ‖gN‖2 ∼
N1/2

∫ 1

0
g2(τ) dτ → ∞ and so condition (28) is violated. On the other hand,

G1
m ≤ supτ∈[0,1] |g′(τ)|(m2/NVm) = O(m2/NVm) = O(m3/2/N) for d = 0 (see (26))

and so condition (27) for i = 1 becomes m = o(N1/2). In a similar way, condition
(27) for i = 2 follows from m = o(N3/5). Since m−β(N/m)1/2 = o(1) is needed for
(21) in the absence of trend (see Theorem 1, (23), (25), or Corollary 2), we obtain
that the IR test for testing the short memory hypothesis H0 : d = 0 is not a�ected
by any regression-type trend for bandwidths m ∼ Nλ, 1/(1 + 2β) < λ < 1/2.
Example 2. Consider the hyperbolic trend depending on N as in (29). Let −1/2 <
γ < 1/2 and ci > 0 (i = 1, 2). Then

|gN(t + m)− gN(t)| = c1|t + m + c2N |γ
∣∣∣∣∣
∣∣∣∣1 +

m

t + c2N

∣∣∣∣
β

− 1

∣∣∣∣∣
= O

(
m|t + c2N |γ−1

)
= O(mNγ−1),

implying G1
m = O(m2Nγ−1/Vm) = O(m3/2Nγ−1) and, similarly, G2

m = O(m3N2γ−2)
for Vm ∼ const.m1/2. Therefore a similar conclusion about this trend being asymp-
totically ignored by the IR test in (21) (with d0 = 0) as in the previous example
applies for bandwidths m ∼ Nλ, 1/(1 + 2β) < λ < (1/2)− γ.
Example 3. Consider the change-point trend (30) with µN arbitrary. Since

|IR− IR0| ≤ 4m/N (31)

by the de�nition (19) of the IR statistic, together with Theorem 1, (23), and (25),
this immediately implies that the IR test is asymptotically insensitive to such change
points (and also to any �nite number of such change points). The last observation
can be applied to a couple of important trends. The �rst of them is so-called local
trend de�ned by

gN(t) = L(t)

{
1, τ ∈ [τ ′, τ ′′],
0, τ /∈ [τ ′, τ ′′],

where L(t) is a function slowly varying at in�nity, and the di�erence τ ′′ − τ ′ does
not depend on N . Then

|IR− IR0| ≤ 4m + (τ ′′ − τ ′)
N

,

and thus the local trend is asymptotically ignored by the IR test. The second one
is the change-point trend in the scale (volatility) model. One obtains (31) for this
model by using the scale invariance of the IR statistic.
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We do not study problem (II) "how large a trend must be to be detected by
the IR statistic?", since our empirical simulations and the above discussion con�rm
that the IR statistic is insensitive to trends and hence not good for detecting trends.
Certainly, some other statistics (e.g., the V/S statistic) are better �tted for such
purpose.

The main result is given in Chapter 2. The proof of Theorem 2 is given in Section
2.3. Monte Carlo simulations are given in Section 2.2.

In Chapter 3 of the thesis we discuss the joint weak convergence (f.d.d. and func-
tional) of the vector-valued process (U

(1)
n (τ), U

(2)
n (τ)), τ ∈ [0, 1], where U

(1)
n (τ) :=

A−1
n

∑[nτ ]
t=1 Xt, U

(2)
n (τ) := A−1

n

∑[nτ ]
t=1 Xt+m are the normalized partial sums processes

separated by a large lag (m, m/n → ∞) and (Xt, t ∈ Z) is stationary moving
average process in i.i.d. (or martingale di�erence) innovations with �nite variance.
The cases of long memory, short memory and negative memory moving average
(Xt) are discussed. We show that in each cases the bivariate partial sums process
(U

(1)
n (τ), U

(2)
n (τ)) tends to bivariate fractional Brownian motion with mutually inde-

pendent components. This result is applied to prove consistency of certain increment
type statistics in moving averages observations.

1.6 Approbation of the thesis

The result of this thesis were presented at the Conferences of Lithuanian Math-
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Chapter 1

Time-varying fractionally integrated
processes with �nite or in�nite
variance and nonstationary long
memory

1.1 Some preliminaries
Fractionally integrated autoregressive processes FARIMA(p, d, q) are de�ned as sta-
tionary solutions of the di�erence equation

ϕ(L)(I − L)dXt = ϑ(L)εt, (1)

where L is the backward shift operator, ϕ(L), ϑ(L) are polynomials in L of degree
p, q, respectively, and the operator (I − L)d is de�ned by the binomial expansion

(I − L)d :=
∞∑

j=0

ψj(d)Lj,

where ψ0(d) := 1 and

ψj(d) :=
Γ(−d + j)

j!Γ(−d)
(j ≥ 1). (2)

For properties of FARIMA(p, d, q) processes we refer to Brockwell and Davis [15].
It is well-known that in the case 0 < d < 1/2 and under suitable conditions on the
polynomial ϕ(·) and the i.i.d. noise (εt, t ∈ Z), the autocovariance function EX0Xt

of the FARIMA(p, d, q) process in (1) decays as t2d−1 with t → ∞ and its partial
sum process converges in distribution to a fractional Brownian motion (fBm) WH(τ)
with Hurst parameter H = d + (1/2).
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Time-varying fractionally di�erentiating �lters, introduced in Philippe et al. [51,
53] (hereafter PSV), are de�ned as

A(d)xt :=
∞∑

j=0

aj(t)xt−j, B(d)xt :=
∞∑

j=0

bj(t)xt−j, (3)

where d = (dt, t ∈ Z) is a given function of t ∈ Z,

aj(t) :=
(dt−1

1

)(dt−2 + 1

2

)(dt−3 + 2

3

)
· · ·

(dt−j + j − 1

j

)
, (4)

bj(t) :=
(dt−1

1

)(dt−j + 1

2

)(dt−j+1 + 2

3

)
· · ·

(dt−2 + j − 1

j

)
, j ≥ 1, (5)

a0(t) = b0(t) := 1. If dt = d is constant, then

aj(t) = bj(t) =
(d

1

)(d + 1

2

)(d + 2

3

)
· · ·

(d + j − 1

j

)
= ψj(−d)

and (3) coincide with FARIMA �lter (I−L)−d. The operators A(d), B(d) are related
by B(−d)A(d) = A(−d)B(d) = I, where −d := (−dt, t ∈ Z).

Finally, let us de�ne time-varying fractionally integrated processes Xt and Yt

(see PSV [51, 53], also PSV [52]) by:

Xt = A(−d)−1Gεt = B(d)Gεt =
∞∑

j=0

(b ? g)j(t)εt−j, (6)

Yt = B(−d)−1Gεt = A(d)Gεt =
∞∑

j=0

(a ? g)j(t)εt−j, (7)

where (εt, t ∈ Z) is an i.i.d. (or martingale di�erence) sequence, with zero mean and
unit variance,

(b ? g)j(t) :=

j∑
i=0

bi(t)gj−i, (a ? g)j(t) :=

j∑
i=0

ai(t)gj−i (8)

are the impulse responses of the product operators B(d)G, A(d)G, respectively,
and G is a short memory �lter with absolutely summable coe�cients:

Gxt =
∞∑

j=0

gjxt−j, with
∞∑

j=0

|gj| < ∞ and
∞∑

j=0

gj 6= 0.
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De�nition 1.1 A bounded sequence d = (dt, t ∈ Z) will be called

(i) Averageable at +∞ if the following limit exists

d̄+ = lim
n→∞

n−1
∑s+n

k=s
dk uniformly in s ≥ 0; (9)

(ii) Averageable at −∞ if the following limit exists

d̄− = lim
n→∞

n−1
∑s

k=s−n
dk uniformly in s ≤ 0; (10)

(iii) Averageable if the following limit exists

d̄ = lim
n→∞

n−1
∑s+n

k=s
dk uniformly in s ∈ Z. (11)

We call the limits d̄+ in (9)-(10) the mean value of d at ±∞, respectively, and d̄ in
(11) the mean value of d.

De�nition 1.2 A bounded sequence d = (dt, t ∈ Z) will be called

(i) Almost periodic at +∞ if for each ε > 0 there exist kε > 0 and a periodic
sequence dε = (dε

t , t ∈ Z) such that supt>kε
|dt − dε

t | < ε,

(ii) Almost periodic at −∞ if the sequence d = (−dt, t ∈ Z) is almost periodical
at +∞,

(iii) Almost periodic if for each ε > 0 there exists a periodic sequence dε =
(dε

t , t ∈ Z) such that sup
t∈Z |dt − dε

t | < ε.

Denote AP (respectively, AP (+∞) and AP (−∞)) the class of all almost pe-
riodic sequences which are almost periodic (respectively, almost periodic at +∞
and almost periodic at −∞). Denote A (respectively, A(+∞) and A(−∞)) the
class of all sequences which are averageable (respectively, averageable at +∞ and
averageable at −∞).

Proposition 1.1 [see [16]] AP ⊂ A, AP (+∞) ⊂ A(+∞), AP (−∞) ⊂ A(−∞).
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Proof. The �rst inclusion well known. Let us prove part (i). Let d be almost periodic
at +∞. For any p ≥ 1, there exist kp ≥ 1 and a periodic sequence d(p) = (d

(p)
t , t ∈ Z)

such that supt>kp
|dt − d

(p)
t | < 2−p. This implies supt>kp∨kq

|d(p)
t − d

(q)
t | < 2−p + 2−q

and therefore sup
t∈Z |d

(p)
t − d

(q)
t | < 2−p + 2−q by periodicity. The same inequality

holds for the mean values of the periodic functions:

|d(p) − d(p)| < 2−p + 2−q (p, q ≥ 1)

and therefore
lim
p→∞

d(p) =: d̄+ (12)

exists. Let us show that this limit d̄+ satis�es (9), in other words, that for any ε > 0
there exists nε > 0 such that

n−1
∣∣∣
∑s+n

k=s
(dk − d̄+)

∣∣∣ < ε (∀s > 0, ∀n > nε). (13)

By de�nition (12), there exists pε ≥ 1 such that |d(pε) − d̄+| < ε/4, 2−pε < ε/4 and
therefore

n−1
∣∣∣

s+n∑

k=s

(dk − d̄+)
∣∣∣ ≤ n−1

∣∣∣
s+n∑

k=s

(dk − d
(pε)
t )

∣∣∣ + n−1
∣∣∣

s+n∑

k=s

(d
(pε)
t − d(pε))

∣∣∣ + |d(pε) − d̄+|.

Here, the last term is less than ε/4. and sup
s∈Z n−1

∣∣∣ ∑s+n
k=s(d

(pε)
t − d(pε))

∣∣∣ < ε/4 for

n > n′ε and some n′ε by periodicity. Let τs := n−1
∣∣∣∑s+n

k=s(dk−d
(pε)
t )

∣∣∣, then τs < 2−pε <

ε/4 for s > kpε , while for 0 < s ≤ kpε , we have τs ≤ n−1
∑kpε

k=s(|dk|+ |d(pε)
t |) + (ε/4),

where the last sum does not exceed (2‖d‖ + 2−pε)kpε/n, ‖d‖ := sup
t∈Z |dt|, and

therefore this sum is less than ε/4 provided n > n′′ε := 4(2‖d‖+1)kpε/ε. Hence (13)
holds with nε := n′ε ∨ n′′ε . ¤

Remark 1.1 If d = (dt, t ∈ Z) is bounded and the limit d+ = limt→∞ dt exists,
then d ∈ AP (+∞) and d̄+ = d+ (the approximating periodic sequence dε in this
case is the constant sequence (dε

t = d+, t ∈ Z), for each ε > 0).

Remark 1.2 (i) The inverse inclusions in Proposition 1.1 are not true. Indeed, let
dt = 1 if t = 2k, k = 1, 2, ..., dt = 0 eslewhere on Z. Then d = (dt, t ∈ Z) ∈ A(+∞)
but d 6∈ AP(+∞).

To check the �rst relation, write n−1
∑n+s

k=s dk = n−1(L(n + s)−L(s− 1)), s > 0,
where L(t) = #{1 ≤ k ≤ t : k = 2i (∃i = 1, 2, ...))}. Then L(t) = i for 2i ≤ t < 2i+1

and therefore
logt

log2
≤ L(t) <

logt

log2
+ 1 =

log2t

log2
, t = 1, 2, ...,
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implying n−1
∑n+s

k=s dk ≤ (nlog2)−1(log(2(n + s)) − log(s − 1)) ≤ n−1(1 + log(n +
1)/log2) = o(1) uniformly in s ≥ 2. Therefore d ∈ A(+∞) with d̄+ = 0 as mean
value at +∞.

To check the second relation, assume ad absurdum, that there exist k̃ > 0 and
periodic sequence (d̃t, t ∈ Z) such that supt>k̃|dt − d̃t| < 1/2. Then sup

t∈Zd̃t > 1/2

and d̃t < 1/2 for all 2i < t < 2i+1 and any i > 0 large enough, which is a
contradiction since 2i exceeds the period starting with some i > i0 > 0.

(ii) Let dt = sgn(t), t ∈ Z. Then (dt, t ∈ Z) ∈ AP (+∞) with mean value d̄+ = 1
at +∞ but (dt, t ∈ Z) 6∈ A. Indeed, (2n)−1

∑s+2n
k=s dt → 1 uniformly in s ∈ Z does

not exist.

Remark 1.3 Each of the classes AP ,AP (+∞),AP (−∞) is closed under algebraic
operations, shifts and uniform limits. Moreover, these classes are also closed under
compositions with continuous functions. In particular, if (dt, t ∈ Z) ∈ AP (+∞),
then (|dt|α, t ∈ Z) ∈ AP (+∞) for any α ≥ 0.

De�nition 1.3 Let W = (W (τ), τ ≥ 0) be a stochastic process. We say that

(i) W has asymptotically stationary increments if as T goes to +∞

(W (T + τ)−W (T ), τ ≥ 0) →FDD (W̃ (τ), τ ≥ 0)

where W̃ is a nontrivial stochastic process and →FDD for weak convergence of �nite
dimensional distributions only.

(ii) W has asymptotically vanishing increments if the conevrgence (i) holds with
W̃ (τ) ≡ 0.

Let (Z̃(x), x ∈ R), Z̃(0) = 0 be an α-stable process with homogeneous and
independent increments, 1 < α ≤ 2, EZ̃(x) = 0 (see e.g. Sato [55], Samorodnitsky
and Taqqu (1996) for de�nition). In particular, for α = 2, Z̃(x) is a Brownian
motion. Introduce the following stochastic processes

Jd(τ) :=

∫ τ

0

Z̃( dx)

∫ τ

x

(y − x)d−1 dy, (14)

Ud+,d−(τ) :=

∫ 0

−∞
Z̃( dx)

∫ τ

0

yd+−d−(y − x)d−−1 dy, (15)

Vd+,d−(τ) :=

∫ 0

−∞
(−x)d−−d+Z̃( dx)

∫ τ

0

(y − x)d+−1 dy, (16)

20



Note that Jd is independent of Ud+,d− and Vd+,d− , that Ud,d ≡ Vd,d, and that

Jd(τ) + Ud,d(τ) = Wd(τ) τ ≥ 0, (17)

is a fractional α-stable process with stationary increments, with self-similarity index
H = d + (1/α). In particular, for α = 2, the process in Wd in (17) is a fractional
Brownian motion with Hurst parameter H = d + 1/2 ∈ (1/2, 1). The processes
Jd, Ud+,d− , Vd+,d− were introduced in PSV [53] for α = 2. The following proposition
generalizes the corresponding result in PSV [53] for 1 < α < 2.

Proposition 1.2 [see [16]] Let d, d+, d− ∈ (0, 1− (1/α)), α ∈ (1, 2]. Then:

(i) The processes Jd, Ud+,d− , Vd+,d− are well-de�ned. They are self-similar with
respective indices d + (1/α), d+ + (1/α) and d− + (1/α) and have a.s. continuous
trajectories. Moreover, �nite dimensional distributions of Jd, Ud+,d− , Vd+,d− are
α-stable.

(ii) The processes Ud+,d− and Vd+,d− have asymptotically vanishing increments,
while Jd has asymptotically stationary increments tending to those of a fractional
stable process Wd in (17).

(iii) Trajectories of Ud+,d− and Vd+,d− are a.s. in�nitely di�erentiable on (0,∞).

Proof. We restrict the proof to the case 1 < α < 2, the case α = 2 was proved
in PSV [53]. Note all processes in (14-11) can be written as stochastic integrals of
the form

∫
f(x; τ)Z̃(dx) with a corresponding integrand f(·; τ)),

∫
=

∫
R. It is well-

known that
∫

f(x)Z̃(dx) is well-de�ned and has α-stable distribution if f ∈ Lα(R),
moreover, for any ε > 0 there exists a constant C = Cε > 0 such that

E
∣∣∣
∫

f(x)Z̃(dx)
∣∣∣
α−ε

≤ C(max(‖f‖α−ε, ‖f‖α+ε))
α−ε, (18)

where ‖ · ‖α is the norm in Lα(R); see e.g. Surgailis [58]. Using (18) (where ε > 0
should be chosen small enough), all facts in (i)-(ii) can be proved similary as in
the case α = 2 in PSV [53]. To prove (iii) for Ud+,d− in (15), note the integrand
f(x; τ) =

∫ τ

0
yd+−d−(y−x)d−−1dyI]−∞,0](x) is in�nitely di�erentiable with respect to

τ > 0 and ‖f (n)
τ (·; τ)‖α±ε < C is uniformly bounded for ε > 0 su�ciently small on

any compact interval [τ1, τ2] ⊂ (0,∞) (the constant C depends on τ1 > 0, n ≥ 0,
ε > 0). This implies that Ud+,d−(τ) is n-times di�erentiable in Lα−ε(Ω) on τ ∈ (0,∞)

and the derivative U
(n)
d+,d−(τ) =

∫ 0

−∞ f
(n)
τ (x; τ)Z̃(dx); moreover, one can easily check

that U
(n)
d+,d−(τ) is a.s. continuous on (0,∞) and therefore it coincided with the nth

pathwise derivative of Ud+,d−(τ). The proof of (iii) for Vd+,d− in (11) is analogous.
Proposition 1.2 is proved. ¤
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1.2 Main results
Recall the de�nition of time-varying fractionally integrated �lters A(d)G,B(d)G
in (3)-(5), (8). In order to study partial sums limits of the integrated processes
Yt = A(d)Gεt, Xt = A(d)Gεt, we introduce the following conditions on the sequence
d and the short memory �lter G.

Assumption A1. Let M be a class of sequences d averageable at +∞ and −∞
and closed under algebraic operations, shifts, and uniform limits.

Examples of such M are: (1) M = AP , (2) M = {d : limt→±∞ dt = d± ∈
R exist}, (3) M = AP(+∞) ∩ AP(−∞).

Assumption A2. Assume d ∈ M, dt 6∈ Z− := {0,−1,−2, . . .} for any t ∈ Z,
d̄± ∈ (0, 1− 1/α). Moreover, let there exist C and 0 < δ < 1 such that for all s < t

∣∣∣(t− s)−1

t∑
i=s+1

(di − d̄+)
∣∣∣ ≤ C|t− s|−δ (0 ≤ s < t), (19)

∣∣∣(t− s)−1

t∑
i=s+1

(di − d̄−)
∣∣∣ ≤ C|t− s|−δ (s < t ≤ 0). (20)

Assumption A3. Assume that ḡ :=
∑∞

j=0 gj 6= 0 and there exist some C, δ1 > 0
such that

|gj| ≤ Cj−1−δ1 (j ≥ 1). (21)

Let be given a sequence d = (dt, t ∈ Z) ∈ M having mean values d̄± at ±∞ as
in (9)-(10). De�ne a new sequence (d̄t, t ∈ Z) having a single jump at t = 0 as

d̄t :=

{
d̄+, if t ≥ 0,
d̄−, if t < 0.

Denote

qA(t) :=
∏

k<t

(
1 +

dk − d̄t

d̄t + t− k − 1

)
, qB(t) :=

∏

k≥t

(
1 +

dk − d̄t

d̄t + k − t + 1

)
(22)

Introduce also
QB(s) :=

∞∑
i=0

giqB(s + i), s ∈ Z. (23)
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De�nition 1.4 Write ε ∈ D(α) (1 < α ≤ 2) if

(i) α = 2 and Eε = 0, Eε2 < ∞,

(ii) 1 < α < 2, Eε = 0 and there exist some constants ci ≥ 0, c1 + c2 6= 0 such that

P(ε > x) ∼ c1x
−α (x →∞), P(ε ≤ x) ∼ c2|x|−α (x → −∞).

Let εt, t ∈ Z be a sequence of i.i.d. rv's, with zero mean, whose generic distri-
bution ε ∈ D(α), 1 < α ≤ 2. The last assumption implies that the εt's belong to
the domain attraction of α-stable law (Ibrahimov and Linnik [36], Theorem 2.6.7),
in other words

n−1/α

n∑
t=1

εt ⇒ Z, (24)

where ⇒ denotes convergence in distribution and Z is an α-stable r.v. with the
characteristic function

EeiθZ =

{
e−ωα(θ; c1, c2), if 1 < α < 2,
e−σ2θ2/2, if α = 2

(25)

where σ2 := Eε2 and

ωα(θ; c1, c2) :=
|θ|αΓ(2− α)

1− α

(
(c1 + c2) cos(

πα

2
)− i(c1 − c2)sign(θ) sin(

πα

2
)
)
. (26)

The following Lemma 1.1 describes limit behavior of weighted sums of ε's. In
this lemma, we do not use the special form of weights QB(t) in (23). The notation
in (27)-(28) is convenient in the formulation of Theorem 1.2.

Lemma 1.1 [see [16]] Let εt, t ∈ Z be i.i.d. rv's, ε ∈ D(α), 1 < α ≤ 2.

(i) Let 1 < α < 2 and (QB(t)) ∈ AP (+∞). Then

n−1/α

n∑
t=1

QB(t)εt ⇒ Z+, (27)

where Z+ is α-stable r.v. whose characteristic function is given in (54-56);

(ii) Let 1 < α < 2 and (QB(t)) ∈ AP (−∞). Then

n−1/α

−1∑
t=−n

QB(t)εt ⇒ Z−, (28)

23



where Z− is α-stable r.v. whose characteristic function is given in (54-56);

(iii) Let α = 2 and let (Q2
B(t)) be averageable at +∞. Then (27) holds, with

Z+ ∼ N(0, σ2
+), σ2

+ = σ2Q2
B+.

(iv) Let α = 2 and let (Q2
B(t)) be averageable at −∞. Then (28) holds, with

Z− ∼ N(0, σ2
−), σ2

− = σ2Q2
B−.

Let (Z(x), x ∈ R), (Z+(x), x ∈ R), (Z−(x), x ∈ R) be α-stable processes, Z(0) =
Z+(0) = Z−(0) := 0, whose distribution is completely determined by the distribution
at time x = 1:

Z(1) =law Z, Z+(1) =law Z+, Z−(1) =law Z−,

where Z,Z+, Z− are de�ned in (24), (27), (28), respectively, and =law stands
for equality of distributions. We shall also assume that (Z+(x), x ∈ R) and
(Z−(x), x ∈ R) are mutually independent.

Let α-stable self-similar processes

Jd, J+
d , J−d , Ud+,d− , U+

d+,d− , U−
d+,d− , Vd+,d− , V +

d+,d− , V −
d+,d− , Wd,W

+
d ,W−

d

be de�ned as in (14)-(17), with the random measure Z̃( dx) replaced by
Z( dx) = dZ(x), Z+( dx) = dZ+(x), Z−( dx) = dZ−(x), respectively.

Let →D[0,1] denote weak convergence of random elements in the Skorohod space
D[0, 1] endowed with the sup-topology. Introduce (asymptotic) constants cA, c±B by

cA :=
qA+ḡ

Γ(d̄+)
, c+

B :=
1

Γ(d̄+)
, c−B :=

d̄+

d̄−Γ(d̄−)
,

where qA± is the mean values at ±∞ of qA = (qA(t)). Our main results are the
following theorems.

Theorem 1.1 [see [16]] Let Yt = A(d)Gεt as de�ned in (7), where (εt, t ∈ Z) are
i.i.d. rv's, ε ∈ D(α), 1 < α ≤ 2. Assume that d, M and G satisfy Assumptions
A1-A3, respectively, and that

d̄± ∈ (0, 1− (1/α)). (29)

Then

N−d̄+−(1/α)

[Nτ ]∑
t=1

Yt →D[0,1] cA

(
Jd̄+

(τ) + Ud̄+,d̄−(τ)
)
. (30)
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Theorem 1.2 [see [16]] Let Xt = B(d)Gεt as de�ned in (6), where (εt, t ∈ Z),d, G
satisfy the same conditions as in Theorem 1.1, including (29).

(i) Let d̄+ > d̄−. Moreover, in the case 1 < α < 2, assume d ∈ AP (+∞). Then

N−d̄+−(1/α)

[Nτ ]∑
t=1

Xt →D[0,1] c+
BJ+

d̄+
(τ). (31)

(ii) Let d̄+ < d̄−. Moreover, in the case 1 < α < 2 assume d ∈ AP (−∞). Then

N−d̄−−(1/α)

[Nτ ]∑
t=1

Xt →D[0,1] c−BV −
d̄+,d̄−

(τ).

(iii) Let d̄+ = d̄− =: d̄. Moreover, assume that for 1 < α < 2, the sequence d is
almost periodic at +∞ and −∞ (i.e., d ∈ AP (+∞) ∩ AP (−∞)). Then

N−d̄−(1/α)

[Nτ ]∑
t=1

Xt →D[0,1] cBW+
d̄

(τ),

where cB := c+
B = c−B for d̄+ = d̄− = d̄.

Theorems 1.1 and 1.2 essentially follow from Lemma 1.2 below combined with
Lemma 1.1, see the proofs in Sect. 1.3. Lemma 1.2 relates the asymptotic behavior
of coe�cients of time-varying �lters A(d), B(d) and their "short memory perturba-
tions" A(d)G,B(d)G, to the asymptotic behavior of FARIMA coe�cients ψj(−d̄±).
The proofs of Lemmas 1.1 and 1.2 are given in Sect. 1.3.

Lemma 1.2 [see [16]] Let d, M and G satisfy Assumptions (A1)-(A3). Then there
exist C, δ2 > 0 independent of s, t and such that

(a ? g)t−s(t) =

{
ḡqA(t)ψt−s(−d̄+) + ΘA(t, s), 0 ≤ s ≤ t,
ḡqA(t)ψt−s(−d̄−)ψt(−d̄+)

ψt(−d̄−)
+ ΘA(t, s), s < 0 ≤ t, (32)

(b ? g)t−s(t) =

{
dt−1

d̄+
QB(s)ψt−s(−d̄+) + ΘB(t, s), 0 ≤ s ≤ t,

dt−1ψt(−d̄−)

d̄−ψt(−d̄+)
QB(s)ψt−s(−d̄+) + ΘB(t, s), s < 0 ≤ t,

(33)

where

|ΘA(t, s)| ≤ C(|t− s|−δ2 + |s|−δ2 + |t|−δ2)

{
(t− s)d̄+−1, 0 ≤ s < t,
td̄+−d̄−(t− s)d̄−−1, s < 0 ≤ t, (34)

|ΘB(t, s)| ≤ C(|t− s|−δ2 + |s|−δ2 + |t|−δ2)

{
(t− s)d̄+−1, 0 ≤ s < t,
|s|(d̄−−d̄+)∨0(t− s)d̄+−1, s < 0 ≤ t. (35)

25



The sequences qA = (qA(t)), qB = (qB(t)), QB = (QB(t)) in (22)-(23) are well-
de�ned and belong to the class M. Moreover, if d ∈ AP (+∞) (respectively, d ∈
AP (−∞), then QB ∈ AP (+∞) (respectively, QB ∈ AP (−∞)).

1.3 Proofs
Before turning to the formal proofs of Theorems 1.1-1.2 and Lemmas 1.1, 1.2, let us
clarify the meaning of the introduced in�nite products in (22). Let �rst 0 ≤ s < t.
Then from (4), (2) one has

at−s(t) = ψt−s(−d̄+)
at−s(t)

ψt−s(−d̄+)

= ψt−s(−d̄+)
∏

s≤k<t

(
1 +

dk − d̄+

d̄+ + t− k − 1

)

= ψt−s(−d̄+)qA(t)θA(t, s), (36)

where

θA(t, s) :=
∏

0≤k<s

(
1 +

dk − d̄+

d̄+ + t− k − 1

)−1 ∏
p<0

(
1 +

dp − d̄−
d̄− + t− p− 1

)−1

=
∏

k<s

(
1 +

dk − d̄k

d̄k + t− k − 1

)−1

(37)

tends to 1 as t →∞ and t− s →∞; see Lemma 1.1 below. The resulting relation
at−s(t) ∼ ψt−s(−d̄+)qA(t) in (36) gives the behavior of the fractionally integrated
�lter at−s(t) as t →∞, t− s →∞. Next, let s ≤ 0 < t. Then

at−s(t) = ψt−s(−d̄−)
ψt(−d̄+)

ψt(−d̄−)

at−s(t)ψt(−d̄−)

ψt−s(−d̄−)ψt(−d̄+)

= ψt−s(−d̄−)
ψt(−d̄+)

ψt(−d̄−)

∏
s≤p<0

(
1 +

dp − d̄−
d̄− + t− p− 1

) ∏

0≤k<t

(
1 +

dk − d̄+

d̄+ + t− k − 1

)

= ψt−s(−d̄−)
ψt(−d̄+)

ψt(−d̄−)
qA(t)θA(t, s),

where

θA(t, s) :=
∏

k<s

(
1 +

dk − d̄−
d̄− + t− k − 1

)−1

=
∏

k<s

(
1 +

dk − d̄k

d̄k + t− k − 1

)−1

(38)

tends to 1 and therefore at−s(t) ∼ ψt−s(−d̄−)ψt(−d̄+)

ψt(−d̄−)
qA(t) as s → −∞ and t > 0;

see Lemma 1.4. Lemma 1.4 also gives related asymptotics of the �lter coe�cients
bt−s(t) in terms of the FARIMA (0, d̄±, 0) coe�cients and the function qB(t) in (22).
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In the sequel, C will stand for a generic constant C which may change from line
to line.

Lemma 1.3 [see [16]] Let d, M satisfy Assumption (A1)-(A2). Then the in�nite
products in (22) converge uniformly in t ∈ Z. Both sequences qA = (qA(t)) and
qB = (qB(t)) belong to M.

Proof follows that in PSV([51], Lemma 2.2), with appropriate modi�cations. To
prove the uniform convergence of qA(t), it is enough to show that, as n,m →∞

sup
t∈Z

|qA(t− n, t)− qA(t−m, t)| → 0,

where
qA(s, t) :=

∏

s≤k<t

(
1 +

dk − d̄k

d̄k + t− k − 1

)
=:

∏

s≤k<t

(1 + βk(t)).

The sequence (dt, t ∈ Z) is bounded, thus there exists n0 such that |βt−p(t)| < 1/2
for all p ≥ n0, t ∈ Z. Since, the uniform convergence of qA(t− n, t) is equivalent to
the uniform convergence of qA(t−n, t)/qA(t−n0, t). Therefore, we can suppose that
n0 = 1. Then qA(t− n, t) > 0 ∀n ≥ 1 and

|qA(t− n, t)− qA(t−m, t)| ≤ qA(t−n, t)

∣∣∣∣∣
t−n−1∏

k=t−m

(1 + βk(t))− 1

∣∣∣∣∣ (n < m). (39)

For |x| < 1/2, we have ex−x2 ≤ 1 + x ≤ ex. Thus we obtain qA(t − n, t) ≤
exp

{∑t−1
k=t−n βk(t)

}
and

exp
{ t−n−1∑

k=t−m

βk(t)−
t−n−1∑

k=t−m

β2
k(t)

}
≤

t−n−1∏

k=t−m

(1 + βk(t)) ≤ exp
{ t−n−1∑

k=t−m

βk(t)
}

.(40)

We claim that there exists a constant C such that inequality
t−n−1∑

k=t−m

|βk(t)| ≤ Cn−δ, (41)

holds for any t ∈ Z and any m > n ≥ 1. Whence,
∑t−1

k=t−n |βk(t)| < C and
qA(t − n, t) ≤ exp

{∑t−1
k=t−n βk(t)

}
< C are bounded uniformly in t ∈ Z, n ≥ 1.

From (39), (41) we also obtain

|qA(t− n, t)− qA(t−m, t)| ≤ C(|e−Cn−δ − 1|+ |eCn−δ − 1|) ≤ Cn−δ (n < m),

proving the statement of the lemma about the uniform convergence of the products
qA(t) in (22). As the class M is closed under algebraic operations, shifts and
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uniform limits, therefore qA,n = (qA(t − n, t)) and qA = (qA(t)) belong to M. The
proof for qB = (qB(t)) follows similarly.

It remains to prove the claim (41). We shall separately consider three cases:
Case (1): 0 ≤ t −m < t − n − 1, Case (2): t −m < 0 ≤ t − n − 1, and Case (3):
t−m < t− n− 1 ≤ 0.

Consider �rst Case (1). Then βk(t) = dk−d̄+

d̄++t−k−1
(t−m ≤ k < t) by the de�nition

of d̄+. Using summation by parts,
t−n−1∑

k=t−m

βk(t) =
D+(t−m, t− n)

d̄+ + m− 1
+

t−n−2∑

k=t−m

D+(k + 1, t− n)

(d̄+ + t− k − 1)(d̄+ + t− k)
, (42)

with D+(k, t− n) :=
∑t−n−1

i=k (di − d̄+). The hypothesis (19) implies that |D+(k, t−
n)| ≤ C|k − (t − n)|1−δ for 0 ≤ t −m ≤ k < t − n, where C does not depend on
k, t, n, m. In particular, |D+(t−m, t− n)| ≤ C|m− n|1−δ and

∣∣∣D+(t−m, t− n)

d̄+ + m− 1

∣∣∣ ≤ C|m− n|1−δ/m ≤ Cn−δ,

for m > n. Similarly,
t−n−2∑

k=t−m

|D+(k + 1, t− n)|
(d̄+ + t− k − 1)(d̄+ + t− k)

≤ C

t−n−2∑

k=t−m

|k − (t− n)|1−δ

(t− k)2
≤ C

∞∑

`=1

`1−δ

(n + `)2
≤ Cn−δ

proving (41).

Next, consider Case (2). Split
∑t−n−1

k=t−m βk(t) =
∑t−n−1

k=0 βk(t) +
∑−1

k=t−m βk(t) =:
Σ1 + Σ2. Then |Σ1| ≤ Cn−δ according to (41) above. Consider Σ2. Note βk(t) =

dk−d̄−
d̄−+t−k−1

(t−m ≤ k < 0). Similarly as (42),

Σ2 =
−1∑

k=t−m

βk(t) =
D−(t−m)

d̄− + m− 1
+

−2∑

k=t−m

D−(k + 1)

(d̄− + t− k − 1)(d̄− + t− k)

with D−(k) :=
∑−1

i=k(di − d̄−). The hypothesis (20) implies that |D−(k)| ≤ C|k|1−δ

for k < 0. Therefore |D−(t−m)/(d̄−+m−1)| ≤ C(m−t)1−δ/m ≤ Cm−δ ≤ Cn−δ and∑−2
k=t−m |D−(k+1)/(d̄−+t−k−1)(d̄−+t−k)| ≤ C

∑∞
`=1 `1−δ/(t+`)2 ≤ Ct−δ ≤ Cn−δ

as t > n. This proves (41) in Case (2).

Finally, consider Case (3). Similarly as (42), with βk(t) = dk−d̄−
d̄−+t−k−1

we obtain

t−n−1∑

k=t−m

βk(t) =
D−(t−m, t− n)

d̄− + m− 1
+

t−n−2∑

k=t−m

D−(k + 1, t− n)

(d̄− + t− k − 1)(d̄− + t− k)
,
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with D−(k, t− n) :=
∑t−n−1

i=k (di − d̄−) satisfying |D−(k, t− n)| ≤ C|k − (t− n)|1−δ

in view of the hypothesis (20). The remaining details of the proof are the same as
Cases (1) and (2) above. This proves the claim (41) and the lemma, too. ¤

Lemma 1.4 [see [16]] Under the hypotheses of Lemma 1.3,

at−s(t) = qA(t)

{
ψt−s(−d̄+)θA(t, s), if 0 ≤ s < t,
ψt−s(−d̄−)ψt(−d̄+)

ψt(−d̄−)
θA(t, s), if s < 0 < t, (43)

where qA(t), θA(t, s) are de�ned in (22), (37), (38), respectively. Moreover,

|θA(t, s)− 1| ≤ C|t− s|−δ (s < t) (44)

for some constant C independent of t, s. Also,

bt−s(t) = qB(s)dt−1ψt−s(−d̄+)θB(t, s)

{
(1/d̄+), if 0 ≤ s < t,
(1/d̄−)ψ1−s(−d̄−)

ψ1−s(−d̄+)
, if s < 0 < t, (45)

where qB(t) is de�ned in (22) and

θB(t, s) :=
∞∏

k=t−1

(
1 +

dk − d̄k

k − s + 1 + d̄− k

)−1

(46)

satis�es
|θB(t, s)− 1| ≤ C|s− t|−δ (s < t), (47)

with some constant C < ∞ independent of s, t.

Proof. Let us prove (44). Let 0 ≤ s < t. According to (37) and using the same
notation as in the proof of the previous lemma, θA(t, s) =

∏s−1
k=−∞ (1 + βk(t))

−1.
Using (40)-(41), it is easy to infer that

θA(t, s) ≤ exp
{ s−1∑

k=0

|βk(t)|+
−1∑

p=−∞
|βp(t)|

}
≤ eC(t−s)−δ

and, similarly, θA(t, s) ≥ e−C(t−s)−δ , implying (44) for 0 ≤ s < t. In the case
s < 0 < t, use (38). Then, similarly as above, θA(t, s) =

∏s−1
p=∞

(
1 + βp(t)

)−1

≤
exp

{ ∑s−1
p=−∞ |βp(t)|

}
≤ eC(t−s)−δ , θA(t, s) ≥ e−C(t−s)−δ , thereby proving (43)-(44).

The proof of (45)-(47) follows similarly. ¤

Proof of Lemma 1.2. Consider (32). Let 0 ≤ s < t. According to (43),

(a ? g)t−s(t)− ḡqA(t)ψt−s(−d̄+) = qA(t)
(
Θ̃1(t, s) + Θ̃2(t, s)

)
,
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where

Θ̃1(t, s) :=
t−s∑
i=0

giψt−s−i(−d̄+)− ḡψt−s(−d̄+),

Θ̃2(t, s) :=
t−s∑
i=0

giψt−s−i(−d̄+)(θA(t, s + i)− 1).

Using Lemma 1.4, the terms Θ̃i(t, s), i = 1, 2 are estimated exactly as in
PSV([53], proof Lemma 5.1) and satisfy (34). Hence (32), (34) follow in the case
0 ≤ s < t, noting that qA(t) are bounded uniformly in t, see Lemma 1.3. For
s < 0 < t, (32), (34) follow similarly, by using our Lemma 1.4 and the estimates in
PSV([53], proof of Lemma 5.1).

Next, consider (33), (35). Again, the case 0 ≤ s < t is similar to PSV ([53],
proof of Lemma 5.1). Let s < 0 < t. According to (45),

(b ? g)t−s(t)− dt−1ψ1−s(−d̄−)

d̄−ψ1−s(−d̄+)
ψt−s(−d̄+)QB(s) =

dt−1

d̄−

5∑
i=3

Θ̃i(t, s) + Θ̃6(t, s),

where

Θ̃3(t, s) :=
−s−1∑
i=0

giqB(s + i)
(
ψt−s−i(−d̄+)

ψ1−s−i(−d̄−)

ψ1−s−i(−d̄+)
− ψt−s(−d̄+)

ψ1−s(−d̄−)

ψ1−s(−d̄+)

)
,

Θ̃4(t, s) :=
−s−1∑
i=0

giqB(s + i)ψt−s−i(−d̄+)
ψ1−s−i(−d̄−)

ψ1−s−i(−d̄+)
(θB(t, s + i)− 1),

Θ̃5(t, s) := −ψt−s(−d̄+)
ψ1−s(−d̄−)

ψ1−s(−d̄+)

∞∑
i=−s+

giqB(s + i),

Θ̃6(t, s) := (dt−1/d̄+)
t−s∑

i=−s

giqB(s + i)ψt−s−i(−d̄+)θB(t, s + 1).

Noting that |giqB(s + i)| ≤ Ci−1−δ1 in view of (21) and boundedness qB, the
proof of the fact that Θ̃i(t, s), i = 3, ..., 5 satisfy (35) (with factor |s|(d̄−−d̄+)∨0

replaced by |s|d̄−−d̄+), is completely analogous as in PSV([53], proof of Lemma
5.1). Consider |Θ̃6(t, s)| ≤ C

∑t+|s|
i=|s| i

−1−δ1(t + |s|+ 1− i)d̄+−1. By splitting the last
sum into two sums

∑
1 :=

∑
|s|≤i<(t+|s|)/2,

∑
2 :=

∑
(t+|s|)/2≤i≤t+|s| (the �rst sum

may be empty), we obtain
∑

1 ≤ C(t + |s|)d̄+−1
∑∞

i=|s| i
−1−δ1 ≤ C(t − s)d̄+−1|s|−δ1 ,∑

2 ≤ C(t + |s|)−1−δ1
∑(t+|s|)/2

i=1 id̄+−1 ≤ C(t − s)d̄+−1−δ1 , thus proving the bound
(35) for Θ̃6(t, s) and the representation (33), (35) as well.
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Relation qA, qB ∈M was proved in Lemma 1.3. Whence and from the fact that
M is closed under translations, linear operations and uniform limits, it follows that
QB ∈M.

Let d ∈ AP (+∞). Then qB ∈ AP (+∞), as the class AP (+∞) is closed under
shifts, products and uniform limits; see Remark 1.2. Consequently, QB ∈ AP (+∞)
as the series in (23) converges uniformly in s ∈ Z. The proof for d ∈ AP (−∞) is
analogous. Lemma 1.2 is proved. ¤

Proof of Lemma 1.1. Parts (iii)-(iv) follow by the classical Lindeberg central limit
theorem. Let us prove part (i); the proof of part (ii) is analogous. As QB ∈
AP (+∞), for any δ > 0 there exist a kδ > 0 and a periodic sequence (`t,δ, t ∈ Z)
such that

sup
t>kδ

|QB(t)− `t,δ| < δ. (48)

Write
n∑

t=1

QB(t)εt =
n∑

t=1

`t,δεt +
n∑

t=1

(QB(t)− `t,δ)εt =: Sn,δ + Rn,δ.

We need to show

E|Rn,δ|α′ ≤ γ(δ)nα′/α (49)

for some α′ < α, all n ≥ 1 and some γ(δ) independent of n and tending to 0 as
δ → 0; and, moreover, that

n−1/αSn,δ ⇒ Zδ (∀δ > 0, n →∞) (50)
Zδ ⇒ Z+ (δ → 0), (51)

where Z+ is α-stable r.v. de�ned in (54-56) below.

To show (49), we use the inequality

E
∣∣∣

n∑
i=1

ciεi

∣∣∣
α−ε

≤ C
{

n−ε/α

n∑
i=1

|ci|α−ε +
(
nε/α

n∑
i=1

|ci|α+ε
)(α−ε)/(α+ε)}

, (52)

see Astrauskas [3], which is true for any numbers c1, ..., cn and any ε > 0 such that
α + ε ≤ 2. Inequality (52) follows by writing εi = (ε′i,n − Eε′i,n) + (ε′′i,n − Eε′′i,n),
ε′i,n := εsI(|εs| ≤ n1/α), ε′′s,n := εsI(|εs| > n1/α), and using E|ε′i,n−Eε′i,n|α+ε ≤ Cnε/α,
E|ε′′i,n − Eε′′i,n|α−ε ≤ Cn−ε/α, together with independence of εi, i ≥ 1. Relation (49)
follows from (52), (48) and boundedness of (Qb(t)), with γ(δ) = C|δ|α′ → 0 (δ → 0).
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Let (`t,δ, t ∈ Z) be periodic with period m < ∞. Then (50) holds with Zδ is
α-stable having the characteristic function EeiθZδ = exp{−ωα(θ; c1,δ, c2,δ)}, where
ωα(θ; c1, c2) is given in (25-26) and c1,δ ≥ 0, c2,δ ≥ 0, c1,δ + c2,δ > 0 are uniquely
determined by equations

|`δ|α(c1 + c2) = c1,δ + c2,δ, |`δ|αsgn(`δ)(c2 − c1) = c2,δ − c1,δ, (53)

where |`δ|α, |`δ|αsgn(`δ) are mean values of the periodic sequences (|`t,δ|α),
(|`t,δ|αsgn(`t,δ)), respectively. Clearly, (|QB(t)|α) and (|QB(t)|αsgn(QB(t))) can be
aproximated at +∞, in the sence of (48), by (|`t,δ|α), (|`t,δ|αsgn(`t,δ)), respectively,
and therefore one can pass to the limit δ → 0 in (53) and in EeiθZδ , thereby proving
(51) and Lemma 1.1, with

Eexp{iθZ±} = exp{−ωα(θ; c1,±, c2,±)}, (54)
c1,± := |QB|αI{QB>0}±c1 + |QB|αI{QB<0}±c2, (55)
c2,± := |QB|αI{QB>0}±c2 + |QB|αI{QB<0}±c1. (56)

¤

Proof of Theorem 1.1. We shall use the scheme of discrete stochastic integrals as in
PSV [51, 53] or Astrauskas [3], with appropriate modi�cations. Accordingly, relation
(30) is written as

∫
fN(τ, x)ZN( dx) →D[0,1]

∫
f(τ, x)Z( dx) (57)

where Z( dx) is the α-stable random measure in the stochastic integral representa-
tions (14)-(11) of the limit process in (30), and ZN is a discrete random measure
de�ned by

ZN(x′, x′′] := N−1/α
∑

x′N<s≤x′′N

εs.

Let 1 < α < 2 (the case α = 2 is simpler and omitted). Fix a su�ciently
small ε > 0, 1 ≤ α − ε < α < α + ε ≤ 2, and consider the Banach space
Lα,ε(R) of all measurable real functions f = f(x), x ∈ R with �nite norm ‖f‖α,δ :=
max (‖f‖α−ε, ‖f‖α+ε). The α-stable stochastic integral

∫
f(x) dZ(x) ≡ ∫

f dZ is
well-de�ned for any f ∈ Lα,ε(R) and satis�es

E
∣∣∣
∫

f dZ
∣∣∣
α−ε

≤ C‖f‖α−ε
α,δ ,

see (18). Let Lα,ε
N (R) ⊂ Lα,ε(R) consist of functions f taking constant values

fs on intervals ∆s = (s/N, (s + 1)/N ], s ∈ Z. The discrete stochastic inte-
gral

∫
R f(x)ZN( dx) ≡ ∫

f dZN is de�ned for any f ∈ Lα,ε
N (R) by

∫
f dZN :=∑

s fsZN(∆s) for each function f ∈ Lα,ε(R), and satis�es a similar bound

E
∣∣∣
∫

f dZN

∣∣∣
α−ε

≤ C‖f‖α−ε
α,δ , (58)
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with some constant C independent of f (see (52), also Astrauskas [3]). Convergence
in distribution ∫

fN dZN ⇒
∫

f dZ (59)

of a sequence of discrete stochastic integrals
∫

fN dZN (fN ∈ Lα,ε
N (R)), N = 1, 2, . . .

to an α-stable stochastic integral
∫

f dZ (f ∈ Lα,ε(R)), follows from
(ZN(x′1, x

′′
1], . . . , ZN(x′m, x′′m]) ⇒ (Z(x′1, x

′′], . . . , Z(x′m, x′′m]) (60)
for any m < ∞ and any disjoint intervals (x′i, x

′′
i ], i = 1, . . . , m; and

‖fN − f‖α,ε → 0; (61)
see Astrauskas [3], also PSV [51, 53].

Consider the convergence of �nite dimensional distributions in (57). For sim-
plicity, we shall restrict ourselves to the convergence of one-dimensional integrals at
τ = 1. The integrands fN(x) = fN(1, x), f(x) = f(1, x) in (57) are given by

fN(x) := N−d̄+

N∑
t=1

(a ? g)t−s(t), x ∈ ((s− 1)/N, s/N ], s ∈ Z,

f(x) := cA

(∫ 1

0

(y − x)
d̄+−1
+ dy I]0,1](x) +

∫ 1

0

yd̄+−d̄−(y − x)d̄−−1 dy I]−∞,0](x)

)
,

respectively (for s > t, we put at−s(t) = bt−s(t) := 0). Convergence (60) is immediate
by the central limit theorem (24) and independence of εs, s ∈ Z. To prove (61), from
Lemma 1.2, (32), (34), it su�ces to show the convergences

‖f ′N − f‖α,ε → 0, ‖f ′′N‖α,ε → 0, (62)
where

f ′N(x) := ḡqA+N−d̄+I] s−1
N

, s
N

](x)

{ ∑N
t=1 ψ+

t−s, x > 0,∑N
t=1 ψ−t−sψ

+
t /ψ−t , x ≤ 0,

f ′′N(x) := ḡN−d̄+I] s−1
N

, s
N

](x)

{∑N
t=1(qA(t)− qA+)ψ+

t−s, x > 0,∑N
t=1(qA(t)− qA+)ψ−t−sψ

+
t /ψ−t , x ≤ 0,

s ∈ Z, and where ψ±t−s := ψt−s(−d̄±) if s ≤ t, := 0 otherwise. The proof of the
�rst relation in (62) is analogous as in PSV([53], proof of Theorem 5.1), taking into
account condition d̄± ∈ (0, 1− (1/α)) (29) of Theorem 1.1 and choosing ε > 0 small
enough (the choice of ε > 0 depends on d̄±).

Consider the second relation of (62), or ‖f ′′NI]0,1]‖α,ε + ‖f ′′NI]−∞,0]‖α,ε → 0. For
brevity, we shall restrict to the proof of ‖f ′′NI]−∞,0]‖α,ε → 0, which is equivalent to

RN :=
∞∑

s=0

∣∣∣
N∑

t=1

(qA(t)− qA+)ψ−t+sψ
+
t /ψ−t

∣∣∣
α′

= o(N1+α′d̄+), (63)
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for α′ taking values α′ = α + ε and α′ = α− ε.

Let G(t) :=
∑t

u=1(qA(u) − qA+), then γt := |G(t)/t| → 0 (t → ∞) since
(qA(t) − qA+, t ∈ Z) is averaging at +∞ with mean value 0 at +∞. Denote
ϕt,s := ψ−t+sψ

+
t /ψ−t . Using summation by parts, for s ≥ 0 we obtain
N∑

t=1

(qA(t)− qA+)ϕt,s = G(N)ϕN,s +
N−1∑
t=1

G(t)(ϕt+1,s − ϕt,s).

From de�nition (2) easily follow the bounds
|ψt(−d)| ≤ Ctd−1, |ψt+1(−d)− ψt(−d))| ≤ Ctd−2, (64)
|ψ−1

t (−d)| ≤ Ct1−d, |ψ−1
t+1(−d)− ψ−1

t (−d))| ≤ Ct−d, (65)
implying

|ϕN,s| ≤ C(N + s)d̄−−1N d̄+−d̄− ,

|ϕt+1,s − ϕt,s| ≤ C
(
(t + s)d̄−−2td̄+−d̄− + (t + s)d̄−−1td̄+−d̄−−1

)

≤ C(t + s)d̄−−1td̄+−d̄−−1 (t, s ≥ 1).

We thus obtain

RN ≤ Cγα′
N Nα′(1+d̄+−d̄−)

∞∑
s=0

(N + s)α′(d̄−−1) + C

∞∑
s=0

( N∑
t=1

γtt
d̄+−d̄−(t + s)d̄−−1

)α′

= o(N1+α′d̄+),

where we used γt = o(1) and (1− d̄−)α′ > 1 (the last inequality is satis�ed in view
of d̄− < 1 − (1/α), since ε > 0 can be chosen arbitrarily small). This proves (63),
(61) and the convergence of �nite dimensional distributions in (57) and in Theorem
1.1.

The proof of tightness in the space D[0, 1] with the sup-topology follows by
Kolmogorov's criterion. Namely, it su�ces to show that there exist C, γ > 0 such
that for any N ≥ 1 and any 0 ≤ τ < τ + h ≤ 1

E
∣∣∣
∑[N(τ+h)]

t=[Nτ ]
Yt

∣∣∣
α−ε

≤ Ch1+γN (d̄++(1/α))(α−ε). (66)

Using the representation of the sum in the l.h.s. of (66) as a discrete stochastic
integral, together with (58) and Lemma 1.2, (32), (34), boundedness of (qA(t)), the
proof of (66) reduces to

N∑
s=1

( [N(τ+h)]∑

t=[Nτ ]

|ψ+
t−s|

)α′

≤ Ch1+γN1+d̄+α′ , (67)

∞∑
s=0

( [N(τ+h)]∑

t=[Nτ ]

|ψ−t+sψ
+
t /ψ−t |

)α′

≤ Ch1+γN1+d̄+α′ , (68)
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where we use the same notation as in (63).

Let us check (68); the proof of (67) follows similarly and is omitted. By using
(64)-(65), integral approximation to the sums on the l.h.s. of (68) and a change of
variables, (68) follows from

I(τ, h) :=

∫ ∞

0

( ∫ τ+h

τ

(t + s)d̄−−1td̄+−d̄− dt
)α′

ds ≤ Ch1+γ.

If d̄+ ≥ d̄−, then I(τ, h) ≤ ∫∞
0

( ∫ τ+h

τ
(t + s)d̄−−1 dt

)α′

ds ≤ ∫∞
0

( ∫ h

0
(t +

s)d̄−−1 dt
)α′

ds = O(h1+α′d̄−) and (68) holds with γ = α′d̄− > 0. Let d̄+ ≥ d̄−,
then I(τ, h) ≤ I(0, h) = O(h1+α′d̄+) and (68) again holds with γ = α′d̄+ > 0. This
proves (66) and concludes the proof of Theorem 1.1. ¤

Proof of Theorem 1.2. We shall prove part (i) only; the proof of (ii) and (iii) is
similar and will be omitted. Similary as in the proof of Theorem 1.1, we restrict
ourselves to the proof of one-dimensional convergence (at τ = 1) in (31), for 1 <
α < 2. With Lemma 1.2 (33) in mind, write SN :=

∑N
i=1 =

∑3
i=1 Si,N , where

S1,N :=
N∑

s=1

εsQB(s)
N∑

t=s

ψt−s(−d̄+),

S2,N :=
N∑

s=1

εsQB(s)
N∑

t=s

ψt−s(−d̄+)
(dt−1

d̄+

− 1
)
,

S3,N :=
N∑

s=1

εs

N∑
t=s

ΘB(t, s),

S4,N :=
∑
s≤0

εs

N∑
t=1

(b ? g)t−s(t).

It su�ces to show

N−d̄+−(1/α)S1,N ⇒ c+
BJ+

d̄+
(1), (69)

E|Si,N |α−ε = o(N (α−ε)(d̄++(1/α))), i = 2, 3, 4, (70)

for some ε > 0. Consider (70) for i = 2. Using (52) and boundedness of QB(s), this
follows from

N±ε/α

N∑
s=1

∣∣∣
N∑

t=s

ψ+
t−s(dt−1 − d̄+)

∣∣∣
α±ε

= o(N (α±ε)(d̄++(1/α))).

The proof of the last relation uses the fact that (dt−1 − d̄+, t ∈ Z) is averaging
at +∞, with zero mean value, and is similar to the proof of (63) above (see also
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PSV [51],proof of Theorem 3.1). We omit the details for brevity. Relation (70) for
i = 3, 4 follows similarly from Lemma 1.2 (33 - 35).

Relation (69) can be proved using the scheme of discrete stochastic integrals
as in proof of Theorem 1.1. To that end, write N−d̄+−(1/α)S1,N =

∫
hNdZ+,N ,

c+
BJ+

d̄+
(1) =

∫
hdZ+, where Z+ is de�ned in Lemma 1.1 (27), h(x) := c+

B

∫ 1

x
(y −

x)
d̄+−1
+ dy, hN(x) := N−d̄+

∑N
t=s ψt−s(−d̄+) (x ∈ ((s− 1)/N, s/N ], s = 1, 2, ..., N), :=

0 elsewhere, and the discrete random measure

Z+,N(x′, x′′] := N−1/α
∑

x′N<s≤x′′N

QB(s)εs

coverges to Z+ in the sense of (60) (see Lemma 1.1, (27)). The remaining details
of the proof of (69) are analogous as in the proof of Theorem 1.1. Theorem 1.2 is
proved. ¤
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Chapter 2

The Increment Ratio statistic under
deterministic trends

2.1 Main result
The Increment Ratio (IR) statistic was introduced by Surgailis et al. [61]. It is
de�ned for given observations X1, . . . , XN as the sum of ratios of partial sums

IR :=
1

N − 3m

N−3m−1∑

k=0

∣∣∣∑k+m
t=k+1(Xt+m −Xt) +

∑k+2m
t=k+m+1(Xt+m −Xt)

∣∣∣
∣∣∣∑k+m

t=k+1(Xt+m −Xt)
∣∣∣ +

∣∣∣ ∑k+2m
t=k+m+1(Xt+m −Xt)

∣∣∣
, (1)

with the convention 0/0 = 1; here m = 1, 2, . . . is bandwidth parameter (see [17]
generalization of the IR statistics). The IR statistic can be used for testing non-
parametric hypotheses for d-integrated (−1/2 < d < 5/4) behavior of time se-
ries (Xt, 1 ≤ t ≤ N), including short memory (d = 0), (stationary) long memory
(0 < d < 1/2) and unit roots (d = 1). If partial sums process of Xt's behaves asymp-
totically as an (integrated) fractional Brownian motion with parameter H = d+1/2,
the IR statistic converges (as N, m, N/m →∞) to the expectation

Λ(d) := E

[ |Z1 + Z2|
|Z1|+ |Z2|

]
, (2)

where (Z1, Z2) have a jointly Gaussian distribution with zero mean, unit variances,
and the covariance

%(d) := cov(Z1, Z2) =
−9d+.5 + 4d+1.5 − 7

2(4− 4d+.5)
(3)

The function Λ(d) in (2) is strictly increasing in the interval (−1/2, 3/2) and is
explicitly written in [61]. For Gaussian observations {Xt}, in [61], a rate of decay
of the bias EIR− Λ(d) and a central limit theorem (see below) in the region
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−1/2 < d < 5/4 are obtained. The corresponding IR test rejecting the null hypoth-
esis H0 : d = d0 in favor of H1 : d 6= d0 has the critical region

|IR− Λ(d0)| > zα/2σ(d0)

√
m

N − 3m
, (4)

where zα is a standard normal quantile, and the function σ(d) is numerically
tabulated in Stoncelis and Vai£iulis [57] (see also the graph in [61]). A simulation
study in [61] shows that the IR test for short memory (d = 0) against stationary
long�memory alternatives (0 < d < 1/2) has good size and power properties and is
robust against changes in mean, slowly varying trends, and nonstationarities.

We assume that the observed sample comes from the model

Xt = gN,t + X0
t (1 ≤ t ≤ N), (5)

where gN,t is a slowly varying deterministic trend, and {X0
t } is a station-

ary/stationary increment Gaussian process. We want to study the impact of
the trend on the limit distribution of the IR statistic. In particular, we obtain
conditions on the trend and the stationary component guaranteeing that the limit
distribution of the IR statistic under the model (5) follows the same central limit
theorem as in the absence of the trend.

Let us recall the main result of [61]. For brevity, we formulate it under slightly
stronger assumptions than in [61].

Assumption A {X0
t } is a zero mean stationary Gaussian sequence with spectral

density f(x), x ∈ [−π, π] of the form

f(x) = |x|−2d
(
c0 + O(|x|β)

)
(x → 0), (6)

where c0 > 0, 0 < β < 2d + 1, d ∈ (−1/2, 1/2) are some constants. Moreover, f(x)
is di�erentiable on (0, π) and |f ′(x)| ≤ C|x|−1−2d, where C > 0 is some positive
constant.
Assumption B The di�erences {X0

t −X0
t−1} form a zero mean stationary Gaussian

sequence whose spectral density satis�es

f(x) = |x|2−2d
(
c0 + O(|x|β)

)
(x → 0) (7)

for some constants c0 > 0, 0 < β < 2d − 1, 1/2 < d < 5/4. Moreover, f(x)
is di�erentiable on (0, π) and |f ′(x)| ≤ C|x|1−2d, where C > 0 is some positive
constant.

Let IR0 denote the IR statistic in (1) with Xt = X0
t .
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Theorem 2.1 [see [61]] Suppose that {X0
t } satis�es Assumption A or Assumption

B. Then, as N, m, N/m →∞,

EIR0 − Λ(d) = O(m−β), (8)
E

(
IR0 − Λ(d)

)2
= o(1), (9)

(N/m)1/2(IR0 − EIR0) ⇒ N (0, σ2(d)), (10)

where σ(d) > 0 is de�ned in [61], and ⇒ denotes the convergence in distribution.

Introduce the following notation:

Gm(k) := V −1
m

∣∣∣
k+m∑

t=k+1

(gN(t + m)− gN(t))
∣∣∣,

Gi
m :=

1

N − 2m

N−2m−1∑

k=0

Gi
m(k) (i = 1, 2),

V 2
m := E

( m∑
t=1

(X0
t+m −X0

t )
)2

.

Under Assumptions A or B, for any d ∈ (−1/2, 5/4), d 6= 1/2

V 2
m ∼ c(d)m1+2d (m →∞), (11)

where c(d) > 0 is a constant which is explicitly written in [61], (Eqs. (2.20), (2.22)).

The main result of the Chapter is Theorem 2.2, which gives a bound of the bias of
the IR statistic and a central limit theorem for the centered IR statistic for trended
observations as in (5).

Theorem 2.2 [see [18]] Suppose that observations Xt, t = 1, . . . , N , follow the
model (5). Let N and m = m(N) both tend to ∞ so that m = o(N).

(i) Let {X0
t } satisfy Assumption A or Assumption B. Then

EIR− Λ(d) = O
(
max

(
m−β, G2

m

))
. (12)

In addition, if G1
m → 0, then

E (IR− Λ(d))2 → 0. (13)
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(ii) Let {X0
t } satisfy Assumption A or Assumption B. If

Gi
m = o

(
(m/N)1/2

)
(i = 1, 2), (14)

then
(N/m)1/2 (IR − EIR) ⇒ N (

0, σ2(d)
)
, (15)

where σ2(d) is the same as in Theorem 2.1.

Corollary 2.1 Let {X0
t } satisfy conditions of Theorem 2.1, m−β = o((m/N)1/2)

and gN(t) satisfy (14). Then the IR test of the hypothesis H0 : d = d0, d0 ∈
(−1/2, 5/4), d0 6= 1/2 under the model (5) follows the same asymptotic con�dence
intervals in (4) as in the absence of trend.

2.2 Monte Carlo simulations
In this section, we examine the �nite sample performance of the IR and V/S tests
by means of a sample Monte Carlo study. We consider testing

H0 : Xt satisfies Assumption A with d = 0 (16)

versus

H1 : Xt satisfies Assumption A with d ∈ (0, 1/2). (17)

Applying the IR test, we reject H0 if IR− Λ(0) > zασ(0)
√

m/(N − 3m).
Now we describe the testing procedure proposed by Giraitis et al. [31]. The V/S

statistic is de�ned as VN/ŝ2
N,q, where

VN =
1

N2

{ N∑

k=1

( k∑
j=1

(Xj − X̄N)
)2

− 1

N

( N∑

k=1

k∑
j=1

(Xj − X̄N)
)2}

(18)

is the estimator of the variance of the partial sum process S∗k =
∑k

j=1(Xj−X̄N), k =

1, ..., N , and ŝ2
N,q is the estimator of σ2 =

∑∞
j=−∞ cov(X0, Xj) de�ned by

ŝ2
N,q = γ̂0 + 2

q∑
j=1

(
1− j

q + 1

)
γ̂j, γ̂j =

1

N

N−j∑

k=1

(Xk − X̄N)(Xk+j − X̄N), 0 ≤ j ≤ n.

The V/S test rejects the null hypothesis (16) of short memory in favor of long-
memory alternative (17) if VN/ŝ2

N,q > Kα, where Kα is α critical value of the distri-
bution

F (x) = 1 + 2
∞∑

k=1

(−1)ke−2k2π2x.
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The data generating process is assumed to be (5), where X0
t has one of the forms

WN : X0
t = ξt, ξt ∼ i.i.d. N(0, 1),

AR : X0
t = 0.5X0

t−1 + ξt, ξt ∼ i.i.d. N(0, 1),

F I : X0
t = (1− L)−1/4ξt, ξt ∼ i.i.d. N(0, 1),

with L being the backward shift. The standart normal random variables are gener-
ated by the acceptance-complement method [24]. The realizations of the �rst-order
AR process are generated recursively from the autoregressive equation with initial
value X0

0 = 0. The FI(1/4) processes are simulated using the truncated moving-
average expansion [6]. For Monte Carlo simulations, we choose the deterministic
trends gN (discussed in Introduction Examples 1-3):

T1 : gN(t) =
1

4
(t + N)1/4,

T2 : gN(t) =
1

4
sin(

2πt

N
),

T3 : gN(t) =
1

10
I
{N

4
< t ≤ N

2

}
+

2

10
I
{N

2
< t ≤ 3N

4

}
+

3

10
I
{3N

4
< t ≤ N

}
,

where I{A} is the indicator of a set A.

We have simulated 10000 replications of each series of length N = 1000. Tables
1-3 show the percentage of replications in which the rejection of the short-memory
null hypothesis (d = 0) was observed. The choice of bandwidths m and q in the
range [N1/3] ≤ m, q ≤ [N1/2], as a reasonable compromise between size and power
distortions for the V/S and IR tests, were suggested in [31] and [61], respectively.

Table 1. Frequency of rejection of the null hypothesis of short memory for "pure stochastic"
processes. Test size 5%.

WN AR FI
IR, m=10 4.7 19.0 55.4
IR, m=30 4.8 7.6 29.2
V/S, q=10 4.2 7.0 62.0
V/S, q=30 3.6 4.4 38.8

Table 2. Frequency of rejection of the null hypothesis of short memory for short-memory
processes perturbed by deterministic trends. Test size 5%.

WN + T1 WN + T2 WN + T3 AR + T1 AR + T2 AR + T3

IR, m=10 4.7 5.0 4.7 19.1 19.1 19.0
IR, m=30 4.8 7.1 5.5 7.6 8.3 7.6
V/S, q=10 4.2 99.9 71.0 14.3 74.5 26.4
V/S, q=30 3.6 99.8 61.1 9.5 65.2 18.1
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Table 3. Frequency of rejection of the null hypothesis of short memory for long-memory
processes perturbed by deterministic trends. Test size 5%.

FI + T1 FI + T2 FI + T3

IR, m=10 55.4 55.7 55.8
IR, m=30 29.3 31.0 29.4
V/S, q=10 65.6 81.7 69.0
V/S, q=30 42.2 66.6 46.9

Table 1 (see also Tables 1 and 6 in [61]) indicates that the IR and V/S tests have
similar good sizes when X1, ..., XN is a sample from i.i.d. Gaussian sequence. The
results in Table 1 (see also Tables 1 and 5 in [61]) also indicate that, in the absence
of a trend, the V/S test has better size and power than the IR test when X1, ..., XN

is the observed sample from a stationary weakly/strongly dependent Gaussian se-
quence.

Finally, from Tables 2-3 (see also Tables 2 and 3 in [61]) we may conclude that
the IR test is far more robust to deterministic trends than the V/S test. We want to
note once more, that this property is ambivalent. It is useful for testing hypothesis
about the unknown memory parameter d. On the other hand, the robustness of the
IR statistic to the trends restricts its usage for testing hypotheses about trends.

2.3 Proof of the Theorem 2.2
De�ne

ψ(x, y) :=
|x + y|
|x|+ |y| , x, y ∈ R. (19)

Lemma 2.1 [see [18]] Suppose that (U, V ) is a zero mean Gaussian vector with
EU2 = EV 2 = 1 and % = Cov (U, V ) , |%| < 1. Then, for any reals a and b,

|E [ψ(a + U, b + V )− ψ(U, V )]| ≤ C1(%)
(
a2 + b2

)
, (20)

E [ψ(a + U, b + V )− ψ(U, V )]2 ≤ C2(%)
(
a2 + b2

)
, (21)

|E [Uψ(a + U, b + V )]| ≤ C3(%) (|a|+ |b|) , (22)
|E [V ψ(a + U, b + V )]| ≤ C3(%) (|a|+ |b|) , (23)

where the constants Ci(%) > 0, i = 1, 2, 3 depend only on |%| < 1.

Proof. Let us prove (20). For a2 + b2 > 1, the inequality in (20) is trivial, since the
l.h.s. in (20) does not exceed 1. Let a2 + b2 ≤ 1. Then

E [ψ(a + U, b + V )− ψ(U, V )] = E
[
ψ(U, V )

(
e−h(U,V,a,b) − 1

)]
(24)

= W1(a, b) + W2(a, b), (25)
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where

h(x, y, a, b) :=
[
2(1− %2)

]−1 (
2x(%b− a) + 2y(%a− b) + (a2 − 2%ab + b2)

)
,

W1(a, b) := −E [ψ(U, V )h(U, V, a, b)] ,

W2(a, b) := E
[
ψ(U, V )

(
e−h(U,V,a,b) − 1 + h(U, V, a, b)

)]
.

Some of these expectations can be explicitly calculated:

E [ψ(U, V )] = 2P% + Q%, (26)
E [Uψ(U, V )] = E [V ψ(U, V )] = 0, (27)
E [UV ψ(U, V )] = 2%P% + (1 + %)Q%, (28)
E

[
U2ψ(U, V )

]
= E

[
V 2ψ(U, V )

]
= 2P% + (1 + %)Q%, (29)

where

P% := (1/π) arctan
√

(1 + %)/(1− %),

Q% := (1/π)
√

(1 + %)/(1− %) log
√

(1 + %)/(1− %).

The proof of (26) is given in [61], the remaining relations (27)-(29) can be proved
similarly. Using (26) and (27), we obtain

|W1(a, b)| =
a2 − 2%ab + b2

2(1− %2)
E [ψ(U, V )] ≤ a2 + b2

1− %2
. (30)

Next, we have

|W2(a, b)| ≤ (1/2)E
[
ψ(U, V )h2(U, V, a, b)I (h(U, V, a, b) ≥ 0)

]

+(1/2)E
[
ψ(U, V )h2(U, V, a, b)e−h(U,V,a,b)I (h(U, V, a, b) < 0)

]

=: W ′
2(a, b) + W ′′

2 (a, b),

where we used inequality

|ez − 1− z| =
∣∣∣∣
∫ z

0

(eu − 1) du

∣∣∣∣ ≤
z2

2
max (ez, 1) , z ∈ R.

Using (26)-(28), we get

W ′
2(a, b) ≤ (1/2)E

[
h2(U, V, a, b)

] ≤ 9(a2 + b2)

4(1− %2)2
. (31)

Next, we have

W ′′
2 (a, b) ≤ (1/2)E

[
h2(U, V, a, b)e−h(U,V,a,b)

]

= (1/2)E
[
h2(U + a, V + b, a, b)

] ≤ 7(a2 + b2)

2(1− %2)2
. (32)
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Now (20) follows from (25)-(32), with C1(%) = 7/(1− %2)2.
Since the proofs of the inequalities in (22) and (23) are similar, we consider the

inequality (22) only. For |a|+ |b| > 1, (22) is trivial, since the l.h.s. does not exceed
E|U | ≤ 1. Let |a|+ |b| ≤ 1. We have

E [Uψ(U + a, V + b)] = −aE
[
ψ(U, V )e−h(U,V,a,b)

]
+ E

[
Uψ(U, V )e−h(U,V,a,b)

]
.(33)

The absolute value of the �rst term on the r.h.s. in (33) does
not exceed |a|E [

e−h(U,V,a,b)
] ≤ (|a|+ |b|). Next, E

[
Uψ(U, V )e−h(U,V,a,b)

]
=

E
[
Uψ(U, V )

(
e−h(U,V,a,b) − 1

)]
by (27). The last expectation is equal to the sum

−E [Uh(U, V, a, b)ψ(U, V )] + E
[
Uψ(U, V )

(
e−h(U,V,a,b) − 1 + h(U, V, a, b)

)]

=: W̃1(a, b) + W̃2(a, b).

Equalities (26)-(29) imply
∣∣∣W̃1(a, b)

∣∣∣ = |2aP% + (a + b)Q%| ≤ 2(|P%|+ |Q%|)(|a|+ |b|).

The term W̃2(a, b) is estimated similarly to W2(a, b) above. Write
∣∣∣W̃2(a, b)

∣∣∣ ≤ 1

2
E

[|U |h2(U, V, a, b)
]
+

1

2
E

[|U + a|h2(a + U, b + V, a, b)
]

≤ 1

2

(
EU2

)1/2 (
Eh4(U, V, a, b)

)1/2

+
1

2

(
E(U + a)2

)1/2 (
Eh4(U + a, V + b, a, b)

)1/2
.

One can easily verify that

Eh4(U, V, a, b) ≤ 69 (|a|+ |b|)4

(1− %2)4
,

Eh4(U + a, V + b, a, b) ≤ 69 (|a|+ |b|)4

(1− %2)4
.

Hence
∣∣∣W̃2(a, b)

∣∣∣ ≤ (11/((1− %2)2))(|a|+ |b|), thereby proving (22).
Finally, let us to prove (21). For 2(|a| + |b|) > 1, the desired inequality holds

with C2(r) = 1/(π(1 − %2)). Consider the case 2(|a| + |b|) ≤ 1. Let Sν = {(x, y) :
x2 + y2 ≤ ν}, where ν := {2(|a|+ |b|)}1/2. Write

E [ψ(a + U, b + V )− ψ(U, V )]2 = E [{ψ(a + U, b + V )− ψ(U, V )} I{(U, V ) ∈ Sν}]2
+ E [{ψ(a + U, b + V )− ψ(U, V )} I{(U, V ) 6∈ Sν}]2
=: J1(a, b) + J2(a, b).
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The bound of J1(a, b) is trivial:

J1(a, b) ≤ mes (Sν)

2π(1− %2)
=
|a|+ |b|
1− %2

,

where mes(Sν) denotes the area of Sν . To evaluate J2(a, b), we use the inequality

|ψ(a + x, b + y)− ψ(x, y)| ≤ 4(|a|+ |b|)
max{|x|, |y|} , (x, y) ∈ R2 \ Sν , (34)

which will be proved later. Then

J2(a, b) ≤ 8(|a|+ |b|)2

π(1− %2)

∫ 2π

0

dϕ

max{sin2 ϕ, cos2 ϕ}
∫ ∞

ν

R−1e
−R2(1−% sin(2ϕ))

2(1−%2) dR

≤ 4(|a|+ |b|)2

π(1− %2)

∫ 2π

0

ln (1 + (1/ν̃)) dϕ

max{sin2 ϕ, cos2 ϕ} ,

where ν̃ := (1/2)ν2(1− % sin(2ϕ)/(1− %2). Hence, using inequality ln(1 + x) < x for
any x > 0, one obtains J2(a, b) ≤ 32(|a|+ |b|)/(π(1− |%|)), and thus (21) holds with
C2(%) = 12/(1− |%|).

It remains to prove (34). Assume for simplicity a > 0 and b > 0. The left-hand
side of (34) is equal to zero in the region

(x, y) ∈ {(0, +∞)× (0, +∞) ∪ (−∞,−a)× (−∞,−b) ∪ (−a, 0)× (−b, 0)} .

If (x, y) ∈ (−∞, 0) × (0, +∞) \ Sν , it is convenient to split the last re-
gion into four disjoint parts. Let �rst (x, y) ∈ (−a, 0) × (0, +∞) \ Sν . Then
|ψ(a + x, b + y)− ψ(x, y)| = (−2x)/(y − x) ≤ 2(a + b)/y. Next, let the inequal-
ities x < −a and y + x > 0 be satis�ed. Then

|ψ(a + x, b + y)− ψ(x, y)| = 2(a(y + b)− b(x + a))

((y + b)− (x + a)) (y − x)
≤ 2 max{a, b}

y
≤ 2(a + b)

y
.

If x + a < 0, −(a + b) < y + x < 0 and x2 + y2 > ν, then y − a + b > 0. Using
this, we get

|ψ(a + x, b + y)− ψ(x, y)| =
2 |(y2 − x2) + (yb− xa)|

((y + b)− (x + a))(y − x)

≤ 2 |y + x|
(y + b)− (x + a)

+
2 |max{a, b}|

(y + b)− (x + a)
≤ 4(a + b)

−x
.

In the case x < −(a + b) and 0 < y < −x− a− b, we have

|ψ(a + x, b + y)− ψ(x, y)| = 2a(y + b)− 2b(x + a)

((y + b)− (x + a))(y − x)
≤ 2(a + b)

−x
.
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Using a similar argument, one can prove (34) for (x, y) ∈ (0, +∞)×(−∞, 0)\Sν .
Assume now that −b < y < 0, −∞ < x < −y − a− b and (x, y) 6∈ Sν . Then

|ψ(a + x, b + y)− ψ(x, y)| = 2(y + b)

(y + b)− (x + a)
≤ 2(a + b)

−x
,

where one can check the last inequality directly. Finally, in the case −a < x < 0,
y < −x− a− b, and (x, y) 6∈ Sν , we have |ψ(a + x, b + y)− ψ(x, y)| ≤ −2(a + b)/y.
Lemma 2.1 is proved. ¤

Proof of Theorem 2.2. Note that, for �xed m ∈ N, random variables

Ym(j) := V −1
m

j+m∑
t=j+1

(X0
t+m −X0

t ), j ∈ Z, (35)

form a stationary Gaussian sequence with zero mean and unit variance.

(i). Let us prove (12). With (8) in mind, it su�ces to show that
∣∣EIR− EIR0

∣∣ = O
(
G2

m

)
. (36)

Applying inequality (20) with U = Ym(j), V = Ym(j), a = Gm(j), and b =
Gm(j + m), one obtains

∣∣EIR− EIR0
∣∣ ≤ 1

N − 3m

N−3m−1∑
j=0

|Eψ (Ym(j) + Gm(j), Ym(j + m) + Gm(j + m))

−Eψ (Ym(j), Ym(j + m)) |

≤ C1(%m)

N − 3m

N−3m−1∑
j=0

(
G2

m(j) + G2
m(j + m)

) ≤ CG2
m,

for some constant C < ∞ independent of m for all m large enough. Here, %m :=
E [Ym(j)Ym(j + m)] does not depend on j and limm→∞ %m = %(d) ∈ (−1, 1) depends
only on d (see [61]).

The proof of (13) follows from

E
(
IR− EIR0

)2
= O

(
G1

m

)
(37)

and (9). Similarly as in the proof of (36) above, we apply inequality (21). The
left-hand side of (37) does not exceed

1

N − 3m

N−3m−1∑
j=0

E
[
ψ (Ym(j) + Gm(j), Ym(j + m) + Gm(j + m))−

− ψ (Ym(j), Ym(j + m))
]2

≤ C2(%m)

N − 3m

N−3m−1∑
j=0

(|Gm(j)|+ |Gm(j + m)|) ≤ CG1
m.
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(ii) We follow the proofs in [61] and [7]. Rewrite IR and IR0 as

IR =
1

N − 3m

N−3m−1∑
j=0

ηm(j), IR0 =
1

N − 3m

N−3m−1∑
j=0

η0
m(j),

where

ηm(j) := ψ (Ym(j) + Gm(j), Ym(j + m) + Gm(j + m)) ,

η0
m(j) := ψ (Ym(j), Ym(j + m)) .

Clearly, relation (15) follows from (10) and

var

(
N∑

j=0

(ηm(j)− η0
m(j))

)
= o(Nm). (38)

Introduce random variables

ξ1m(j) := Ym(j), ξ2m(j) := (1− %2
m)−1/2(Ym(j + m)− %mYm(j)). (39)

For any given j = 0, 1, 2, . . . , m ∈ N, random vector (ξ1m(j), ξ2m(j)) has a stan-
dard Gaussian distribution in R2, i.e. ξ1m(j) and ξ2m(j) are independent standard
normal random variables. De�ne

g0
m(x, y) := ψ

(
x, %mx + (1− %2

m)−1/2y
)
, (40)

gj,m(x, y) := ψ
(
x + Gm(j), %mx + (1− %2

m)−1/2y + Gm(j + m)
)
. (41)

Then

ηm(j) = gj,m(ξ1m(j), ξ2m(j)), η0
m(j) = g0

m(ξ1m(j), ξ2m(j)).

Let Hn(x), n = 0, 1, 2, . . . denote the standard Hermite polynomials with leading
coe�cient 1. Write the Hermite expansion:

ηm(j) =
∑

k,` ≥0

c
(m)
k,` (j)

k!`!
Hk(ξ0m(j))H`(ξ1m(j)),

where
c
(m)
k,` (j) := E[gj,m(ξ1m(j), ξ2m(j))Hk(ξ1m(j))H`(ξ2m(j))].

Write
ηm(j)− Eηm(j) = η′m(j) + η′′m(j),
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where

η′m(j) := c
(m)
1,0 (j)ξ1m(j) + c

(m)
0,1 (j)ξ2m(j),

η′′m(j) :=
∑

k+` ≥2

c
(m)
k,` (j)

k!`!
Hk(ξ1m(j))H`(ξ2m(j)).

Relation (38) follows from

E

(
N∑

j=1

η′m(j)

)2

= o(mN) (42)

and

Σ := E

(
N∑

j=1

(
η′′m(j)− η0

m(j) + Eη0
m(j)

)
)2

= o(mN). (43)

Let us prove (43). We shall use the following inequality, due to Arcones [1], in
the particular case of Gaussian vectors in R2.

Namely, for any integer r ≥ 1, any standard Gaussian vectors (ξ1, ξ2), (ξ′1, ξ
′
2),

any functions Fi(x1, x2), i = 1, 2, (x1, x2) ∈ R2 with ‖Fi‖2 := EF 2
i (ξ1, ξ2) < ∞ both

having Hermite rank equal or greater than r, the following inequality holds:

|cov (F1(ξ1, ξ2), F2(ξ
′
1, ξ

′
2))| ≤ ‖F1‖‖F2‖%̄r, (44)

where
%̄ := max {|Eξuξ

′
v| : u, v = 0, 1}

is the maximal correlation coe�cient between (ξ1, ξ2) and (ξ′1, ξ
′
2).

From de�nitions (40)-(41), we have

η′′m(j)− η0
m(j) + Eη0

m(j) = Fj,m (ξ1m(j), ξ2m(j)) ,

where

Fj,m(x1, x2) := gj,m(x1, x2)− c
(m)
0,1 (j)x1 − c

(m)
1,0 (j)x2

− Egj,m(ξ1m(j), ξ2m(j))− g0
m(x1, x2) + Eg0

m(ξ1m(j), ξ2m(j)).

Note that for any j = 0, 1, 2, . . . and m ∈ N, the Hermite rank of Fj,m is not less
than 2. From inequality (44) we have

|cov (Fj,m(ξ1m(j), ξ2m(j)), F`,m(ξ1m(`), ξ2m(`)))| ≤ ‖Fj,m‖‖F`,m‖ (%̄m(j, `))2 (45)

and, therefore,

Σ ≤
N∑

k,l=1

‖Fj,m‖‖F`,m‖ (%̄m(j, `))2 , (46)
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where
%̄m(j, `) := max {|Eξu,m(j), ξv,m(`)| : u, v = 1, 2} .

The quantity %̄m(j, `) = %̄m(j − l) depends on j − ` and is estimated in Lemma
5.1 of [61]; in particular,

∑

j∈Z
(%̄m(j))2 ≤ Cm (47)

for some constant C = C(d) > 0 independent of m. Using the fact that ‖Fj,m‖ ≤ 4
is bounded, from (46) and (47) one obtains

Σ ≤ 4N
N∑

k=1

‖Fj,m‖
∑

j∈Z
(%̄m(j, `))2

≤ 4mN

(
N−1

N∑

k=1

‖Fj,m‖
)

≤ 4mN

(
N−1

N∑

k=1

‖Fj,m‖2

)1/2

. (48)

To �nish the proof of (43), we use the fact that for each j = 0, 1, . . . and m ∈ N,

‖Fj,m‖2 ≤ C
{
(|Gm(j)|+ |Gm(j + m)|) + (|Gm(j)|+ |Gm(j + m)|)2} . (49)

Then the right-hand side of (48) does not exceed CmN(G1
m + G2

m) = o(mN),
and (43) follows. To show (49), by de�nition of Fj,m one has

‖Fj,m‖2 ≤ 6‖gj,m − g0
m‖2 + 3

{(
c
(m)
0,1 (j)

)2

+
(
c
(m)
1,0 (j)

)2
}

, (50)

where

‖gj,m − g0
m‖2 ≤ C (|Gm(j)|+ |Gm(j + m)|) , (51)∣∣∣c(m)

0,1 (j)
∣∣∣ +

∣∣∣c(m)
1,0 (j)

∣∣∣ ≤ C (|Gm(j)|+ |Gm(j + m)|) , (52)

see (40)-(41) and Lemma 2.1. Putting together (50), (51), and (52) gives (49).
Relation (42) follows from

E

(
N−3m−1∑

j=0

c
(m)
1,0 (j)ξ1m(j)

)2

= o(mN), E

(
N−3m−1∑

j=0

c
(m)
0,1 (j)ξ2m(j)

)2

= o(mN) (53)

as N, m, N/m → ∞. Since the proofs of the relations in (53) are similar, we will
consider the left relation only. Applying (52), (47), and the Cauchy inequality, we
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obtain

E

(
N−3m−1∑

j=0

c
(m)
1,0 (j)ξ1m(j)

)2

=
N−3m−1∑

j,`=0

c
(m)
1,0 (j)c

(m)
1,0 (`)E (ξ1m(j)ξ1m(`))

≤
{

N−3m−1∑
j=0

(
c
(m)
1,0 (j)

)2
}{

N−3m−1∑

j,`=0

(%̄m(j − `))2

}1/2

≤ CNG2
m



N

∑

j∈Z
(%̄m(j))2





1/2

≤ CNG2
m{Nm}1/2 = o(mN),

according to (14). This proves (53) and also Theorem 2.2. ¤
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Chapter 3

Asymptotic independence of distant
partial sums of linear process

3.1 Main results
Let (ξt, t ∈ Z) be a (weak) white noise, with zero mean Eξt = 0, unit variance
Eξ2

t = 1, Eξtξs = 0 (t 6= s). Let

Xt =
∞∑
i=0

biξt−i, t ∈ Z (1)

be a moving average (linear) process, where bi, i = 0, 1, . . . are nonrandom weights
satisfying

∑∞
i=0 b2

i < ∞. We shall assume that bi satisfy one of the following condi-
tions:

(i) bi = L(i)id−1, for some 0 < d < 1/2 and a slowly varying at in�nity function
L(·);

(ii)
∑∞

i=0 |bi| < ∞,
∑∞

i=0 bi 6= 0;
(iii) bi = L(i)id−1, for some −1/2 < d < 0 and a function L(·) slowly varying at

in�nity; moreover,
∑∞

i=0 bi = 0.
Recall that a measurable function L(x), x ≥ 0 is called slowly varying at in�nity

if L(·) is bounded on each compact interval, L(x) > 0 (x > x0) for some x0 and for
aech x > 0

lim
λ→∞

L(λx)

L(λ)
= 1. (2)

We shall denote (bi) ∈ γ(d) (0 < |d| < 1/2) if (bi) satisfy (i) or (iii) with
corresponding d, the notation (bi) ∈ γ(0) being equivalent to condition (ii). If
(bi) ∈ γ(d) (0 < d < 1/2), the process Xt in (1) is called long memory with memory
parameter d ∈ (0, 1/2). We also say that Xt in (1) has short memory if (bi) ∈
γ(0) and Xt in (1) has negative memory with parameter d ∈ (−1/2, 0) if (bi) ∈
γ(d) (−1/2 < d < 0). See e.g. [32], [34] concerning these de�nitions.
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Note that the process Xt (1) is covariance stationary: the covariance

r(t) = EXsXs+t =
∞∑
i=0

bibi+t (t ≥ 0)

does not depend on s ∈ Z. The variance

A2
n := E

( n∑
t=1

Xt+m

)2

=
n∑

t,s=1

r(t− s) (3)

does not depend on m and grows as n2d+1 with n →∞. More precisely, if (bi) ∈ γ(d)
then

A2
n ∼

{
c2(d)L2(n)n2d+1, if 0 < |d| < 1/2,
c2(0)n, if d = 0, (4)

where c(0) =
∑∞

i=0 bi and

c(d) =
Γ(d + (1/2))

{Γ(2d + 1) sin(πd)}1/2
,

is a constant depending only on d. Here and below, ∼ stands for asymptotic equiv-
alence: An ∼ Bn (n →∞) if and only if limn→∞ An/Bn = 1.

Consider the normalized partial sums process

Un(τ) := A−1
n

[nτ ]∑
t=1

Xt, τ ∈ [0, 1]. (5)

Under condition (bi) ∈ γ(d) and some additional weak dependence conditions
on the white noise sequence (ξt), the partial sums process in (5) converges to a
fractional Brownian motion with Hurst parameter H = d + 1/2:

Un(τ) →D[0,1] BH(τ) (6)

Recall that BH(τ), τ ≥ 0 (a fractional Brownian motion with parameter 0 <
H < 1) is a Gaussian process with zero mean and the covariance

E [BH(τ)BH(τ ′)] = (1/2)
(|τ |2H + |τ ′|2H − |τ − τ ′|2H

)
, τ, τ ′ ≥ 0.

Notation →D[0,1] stands for weak convergence of random elements in the Skoro-
hod space D[0, 1] of cadlag functions [0, 1] → R2, with uniform topology.

Denote the vector-valued process

U(τ) := (U (1)
n (τ), U (2)

n (τ)), τ ∈ [0, 1], (7)
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where U
(1)
n (τ) := Un(τ) is given in (5) and U

(2)
n (τ) is the "shifted" partial sums

process

U (2)
n (τ) := A−1

n

[nτ ]∑
t=1

Xt+m, τ ∈ [0, 1],

when the "shift" m →∞ grows to in�nity faster than n: m/n →∞.
Let us formulate the main result. We shall assume the following condition:

n−1/2
( [nτ ]∑

t=1

ξt,

[nτ ]∑
t=1

ξt+m

)
→FDD W(τ), (8)

where W(τ) = (W (1)(τ),W (2)(τ)), τ ≥ 0 is a standard Brownian motion with
values in R2 and unit covariance matrix (in other words, the components W (1)(τ)
and W (2)(τ) are independent copies of a standard Brownian motion W (τ), τ ≥ 0
with EW (τ)W (τ ′) = min(τ, τ ′)), and →FDD stands for weak convergence of �nite
dimensional distributions. The assumption (8) on the white noise is very weak and
is satis�ed e.g. by any stationary ergodic martingale di�erence sequence with strong
mixing (see Remark 3.1 below). Our main result is the following theorems.

Theorem 3.1 [see [17]] Let Xt be a linear process as in (1), where (bi) ∈ γ(d),
for some d ∈ (−1/2, 1/2), and where (ξt) is a weak white noise satisfying condi-
tion (8). Then, as n,m, m/n → ∞, the bivariate partial sums process Un(τ) in
(7) converges, in sense of weak convergence of �nite dimensional distributions, to a
bivariate fractional Brownian motion BH(τ) = (B

(1)
H (τ), B

(2)
H (τ)) with Hurst param-

eter H = d + 1/2 and mutually independent components:

Un(τ) →FDD BH(τ). (9)

Recall that a sequence {ξt, t ∈ Z} of random variables is called a martingale
di�erence sequence if E|ξt| < ∞ and E(ξt+1|ξs, s ≤ t) = 0, a.s. for every t ∈ Z.
The next theorem discusses the convergence of the bivariate process Un(τ) in the
Skorochod space D[0, 1].

Theorem 3.2 [see [17]] Let Xt be a linear process as in Theorem 3.1, where
(ξt) is a weak white noise satisfying condition (8). In addition, assume that (ξt)is
a stationary martingale di�erence sequence and one of the following conditions
(i)-(ii) holds:

(i) (bi) ∈ γ(d), for some d ∈ (−1/2, 0), and E|ξ0|α < ∞ for some α > 2/(1+2d);

(ii) (bi) ∈ γ(0), and E|ξ0|α < ∞, for some α > 2;
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(iii) (bi) ∈ γ(d), for some d ∈ (0, 1/2), and E|ξ0|2 < ∞.

Then, as n, m,m/n →∞,

Un(τ) →D[0,1] BH(τ), (10)

where BH(τ) is the same as in Theorem 3.1.

Remark 3.1 Let us note that the assumption (8) holds for strongly mixing station-
ary martingale di�erence sequence (ξt), with zero mean and unit variance. Indeed,
any such sequence is ergodic and satis�es the Donsker invariance principle, see ([13],
Thm. 23.1). In particular, for any m ∈ Z, as n →∞ we have marginal convergences

S(1)
n (τ) →FDD W(1)(τ), S(2)

n (τ) →FDD W(2)(τ), (11)

where

S(1)
n (τ) := n−1/2

[nτ ]∑
t=1

ξt, S(2)
n (τ) := n−1/2

[nτ ]∑
t=1

ξt+m,

and W(1)(τ), W(2)(τ) are standard Brownian motions. Moreover, for any 0 ≤
τ1 < . . . < τp ≤ 1, p ≤ 1, the sequence of random vectors ((S

(1)
n (τk), S

(2)
n (τk)), k =

1, . . . , p) ∈ R2p, n, m = 1, 2, . . . is compact, or tight, in the topology of weak conver-
gence of probability measures on R2p. Therefore (8) follows from (11) and the fact
that S

(1)
n (τ) and S

(2)
n (τ) are asymptotically independent as n,m/n →∞, i. e.,

E exp
{

ixS(1)
n (τ) + iyS(2)

n (τ)
}
− E exp

{
ixS(1)

n (τ)
}

E exp
{

iyS(2)
n (τ)

}
→ 0, (12)

for any τ ∈ [0, 1], (x, y) ∈ R2. Under a strong mixing condition on (ξt), relation
(12) follows from ([36], Thm. 17.2.1), as the left hand side of (12) does not exceed
4α(m), where α(m) → 0 (m → ∞) is the strong mixing coe�cient. Thus, in the
case of a strongly mixing stationary martingale di�erence sequence (ξt), relation
(8) holds provided n,m → ∞; condition m/n → ∞ is not needed here. An open
question is whether (8) is satis�ed if one assumes only ergodicity instead of strong
mixing condition, as in the classical martingale central limit theorem.

See [47] for a result on CLT for partial sums of linear processes with strong
mixing innovations.

3.2 Discrete stochastic integrals
We will use the so-called "scheme of discrete stochastic integrals" introduced in [59].
We refer the interested reader to review [60].
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Given n,m = 1, 2, . . . and a weak white noise (ξt), let de�ne a vector-valued
random set function Wn(B) = (W

(1)
n (B),W

(2)
n (B)) on intervals B = (x1, x2] ⊂ R of

the real line, as follows:

Wn(B) :=
1

n1/2

( ∑

t/n∈B,t≤n+m/2

ξt,
∑

t/n∈B,m+t>n+m/2

ξm+t

)
. (13)

Note for any disjoint intervals B = (x1, x2], B′ = (x′1, x
′
2], B ∩B′ = ∅,

W (1)
n (B) + W (1)

n (B′) =
1

n1/2

( ∑

t/n∈B,t≤n+m/2

ξt +
∑

t/n∈B′,t≤n+m/2

ξt

)

=
1

n1/2

∑

t/n∈B∪B′,t≤n+m/2

ξt

= W (1)
n (B ∪B′)

and, similarly, W
(2)
n (B) + W

(2)
n (B′) = W

(2)
n (B ∪ B′). Therefore, the stochastic set

function Wn satis�es the �nite additivity property on the algebra formed by �nite
intervals of the real line. In the sequel, we call Wn a random measure.

We shall need the following properties of the random measure in (13).

Proposition 3.1 [see [17]]

(i) For any intervals B, B′ ⊂ R

E[W (i)
n (B)W (i)

n (B′)] = 0 (B ∩B′ = ∅, i = 1, 2), (14)

E[W (1)
n (B)W (2)

n (B)] = 0. (15)

Moreover, for any interval B = (x1, x2] with |B| := x2 − x1 < ∞,

EW (i)
n (B) = 0, E(W (i)

n (B))2 ≤ |B| (i = 1, 2). (16)

(ii) Assume condition (8). For any L ≥ 1 and any mutually disjoint intervals
Bj = (x1j, x2j], j = 1, 2, . . . , L, as n,m, n/m →∞,

(
W

(1)
n (Bj),W

(2)
n (Bj), j = 1, 2, . . . , L

)

→FDD

(
W (1)(Bj),W

(2)(Bj), j = 1, 2, . . . , L
)
, (17)

where W (i)(B) =
∫

B
W (i)(dx), i = 1, 2 are independent standard Gaussian noises.
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Proof. Part (i) follows by orthogonality of (ξt) and the de�nition (13). Part (ii) is
an easy consequence of (8). ¤

Introduce the Hilbert space L2(R) of vector valued functions f = (f (1), f (2)) :
R→ R2 with the norm

‖f‖ :=
( ∫

R

(
(f (1)(x))2 + (f (2)(x))2

)
dx

)1/2

. (18)

A function f ∈ L2(R) will be called simple if it takes a �nite number of constant
nonzero values f∆ = (f 1,∆, f 2,∆) on intervals ∆ = (i1/n, (i2 + 1)/n], i1 ≤ i2. The
class of all simple functions will be denoted by Ln(R). For any n ≥ 1 and any
simple function f ∈ Ln(R) we de�ne the discrete stochastic integral with respect to
the random measure Wn in (13) as

I(f ,Wn) :=
∑
∆

(
f 1,∆W (1)

n (∆) + f 2,∆W (2)
n (∆)

)
. (19)

Note EI(f ,Wn) = 0. Moreover, according to Proposition 3.1 (i),

E(I(f ,Wn))2 ≤ 2
2∑

i=1

E

(∑
∆

f i,∆W (i)
n (∆)

)2

≤ 2
2∑

i=1

∑
∆

(f i,∆)2|∆| = 2‖f‖2. (20)

We also introduce the stochastic integral of a function f ∈ L2(R) with respect
to a vector-valued standard Brownian motion W:

I(f ,W) :=

∫ (
f (1)(x)W (1)(dx) + f (2)(x)W (2)(dx)

)
. (21)

It is well-known that I(f ,W) ∼ N(0, ‖f‖2); in particular,

EI(f ,W) = 0, E(I(f ,W))2 = ‖f‖2.

Write ⇒ for the convergence in distribution.

Lemma 3.1 [see [17]] Let fn ∈ Ln(R) (n = 1, 2, . . .) be a sequence of simple func-
tions convergent to a function f ∈ L2(R):

‖fn − f‖ → 0 (n →∞). (22)

Let (ξt) satisfy condition (8). Then, as n,m, m/n →∞,

I(fn,Wn) ⇒ I(f ,W). (23)
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Proof. Let us consider the case where n takes values n = 2s, s = 1, 2, . . ., i.e., the
partitions {(i1/n, (i2 + 1)/n], i1 < i2, i1, i2 ∈ R} of R are monotone. This implies
the monotonicity L2

n′(R) ⊂ L2
n′′(R) (n′ < n′′) of spaces of simple functions. For

non-monotone partitions, the proof below requires slight modi�cations. To prove
(23), it is su�ces to show that for every u ∈ R

EeiuI (fn ,Wn ) → EeiuI (f ,W).

From (22) it follows that, for every ε > 0, there exist an integer ñ ≥ 1 and simple
function fñ ∈ Lñ(R) with compact support such that

‖fn − fñ‖+ ‖fñ − f‖ < ε (24)

for all n ≥ ñ.
We have

∣∣EeiuI (fn ,Wn ) − EeiuI (f ,W)
∣∣ ≤

∣∣EeiuI (fn ,Wn ) − EeiuI (fñ ,Wn )
∣∣

+
∣∣EeiuI (fñ ,Wn ) − EeiuI (fñ ,W)

∣∣
+

∣∣EeiuI (fñ ,W) − EeiuI (f ,W)
∣∣

:= V1 + V2 + V3.

We need to show
lim

n→∞
Vi = 0, i = 1, 2, 3.

Using (20), we obtain

V1 ≤ E
{ ∣∣eiuI (fñ ,Wn )

∣∣ ∣∣eiuI (fn−fñ ,Wn ) − 1
∣∣
}

≤
{

E
∣∣eiuI (fñ ,Wn )

∣∣2
}1/2{

E
∣∣eiuI (fn−fñ ,Wn ) − 1

∣∣2
}1/2

≤ |u|
{

E |I(fn − fñ,Wn)|2
}1/2

≤ 2|u| · ‖fn − fñ‖ < 2ε|u|

for every n ≥ ñ. A similar inequality holds for V3. The sum V1 + V3 can be made
arbitrary small for all su�ciently large n by an arbitrary choice of ñ and ε. The
convergence limn→∞ V2 = 0 for every 1 ≤ ñ < ∞ follows from Proposition 3.1 (ii)
and Cramér-Wold principle. ¤

3.3 Proof of Theorem 3.1
We need to show that for any τi ∈ [0, 1], ai ∈ R2, i = 1, 2, . . . , k, k = 1, 2, . . .

k∑
i=1

〈ai,Un(τi)〉 ⇒
k∑

i=1

〈ai,BH(τi)〉, (25)
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where 〈·, ·〉 is the scalar product in R2. For simplicity of notation, we shall restrict
the proof of (25) to one-dimensional convergence at τ = 1, i.e. we shall prove that

a(1)U (1)
n (1) + a(2)U (2)

n (1) ⇒ a(1)B
(1)
H (1) + a(2)B

(2)
H (1), (26)

for any reals a(1), a(2) ∈ R. To that end, we shall write both sides of (26) as
stochastic integrals, the left hand side as a stochastic integral with respect to the
discrete random measure of (25) and the right hand side as a stochastic integral
with respect to a Gaussian white noise W in (21), and then apply Lemma 3.1.
The cases (I): 0 < d < 1/2, (II): d = 0 and (III): −1/2 < d < 0 will be considered
separately. Put bi := 0 (i = −1,−2, . . .).

Case (I): 0 < d < 1/2 . Write

〈a,BH(1)〉 = I(f ,W), (27)

where

f (i)(x) := a(i)χ(d)

∫ 1

0

(y − x)d−1
+ dy

=
a(i)χ(d)

d

{
(1− x)dI{x < 1} − (−x)dI{x < 0}

}
, x ∈ R, (28)

where (y − x)d−1
+ := (y − x)d−1 if y > x, := 0 otherwise, and where χ(d) > 0 is

de�ned by
χ(d)−2 =

∫

R

( ∫ 1

0

(y − x)d−1
+ dy

)2

dx.

See e.g. [62] for the stochastic integral representation of BH and the explicit
form of the constant χ(d). Next, write

〈a,Un(1)〉 = Σ1 + Σ2,

where

Σ1 = A−1
n

∑
s≤n+m/2

∑n
t=1(a

(1)bt−s + a(2)bt−s+m)ξs

Σ2 = A−1
n

∑
s>n+m/2

∑n
t=1(a

(1)bt−s + a(2)bt−s+m)ξs.

Using

ξs/n
1/2I(s ≤ n + m/2) = W

(1)
n ((s− 1)/n, s/n),

ξs+m/n1/2I(s > n−m/2) = W
(2)
n ((s− 1)/n, s/n),

we obtain

〈a,Un(1)〉 = I(fn,Wn), (29)
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where

f (1)
n (x) := n1/2A−1

n

n∑
t=1

(
a(1)bt−s + a(2)bt+m−sI(s ≤ n + m/2)

)
, (30)

f (2)
n (x) := n1/2A−1

n a(2)

n∑
t=1

bt−sI(s > n−m/2) (31)

for x ∈ ((s− 1)/n, s/n], s ∈ Z. It is easy to show that
∫

R
(f (i)

n (x)− f (i)(x))2 dx → 0 (n →∞), (32)

see [59] for details. Hence ‖fn − f‖ → 0 as n → ∞. From (27-29) and Lemma
3.1 it follows the convergence 〈a,BH(1)〉 ⇒ 〈a,BH(1)〉, or the �nite dimensional
convergence (25) in Case (I).

Case (II): d = 0 . Recall from (4) that An ∼ c(0)n1/2, where the constant

c(0) = b̄ :=
∞∑

t=0

bt 6= 0.

Consider the representation (29), with fn given in (30-31), which is true in this
case, too. Let x ∈ R be a real number and let s ∈ Z be de�ned by x ∈ ((s−1)/n, s/n].
Then as n →∞,

n∑
t=1

bt−s →
{

b̄, if x ≥ 0,
0, if x < 0.

Then it is easy to show that for each x ∈ R,
f (1)

n (x) → f (1)(x), f (2)
n (x) → f (2)(x) (33)

as n,m, m/n → ∞, where the limit functions are proportional to the indicator
function:

f (i)(x) := a(i)I(0 ≤ x ≤ 1), i = 1, 2, x ∈ R. (34)

It is also easy to show that the convergence (33) extends to the convergence in
L2(R).

In particular,
∫ 0

−∞
|f (1)

n (x)|2 dx = A−2
n

0∑
s=−∞

(
n∑

t=1

(
a(1)bt−s + a(2)bt+m−sI(s ≤ n + m/2)

)
)2

≤ Cn−1





∑
s≥0

( n∑
t=1

|bt+s|
)2

+
∑

s≥m/2−n

( n∑
t=1

|bt+s+m|
)2




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for some constant C depending on a(i), i = 1, 2 but independent of m,n. Here,

n−1
∑
s≥0

( n∑
t=1

|bt+s|
)2

≤ n−1

n∑
t=1

∞∑
s=0

|bt+s|
∞∑

t′=1

|bt′+s| ≤ n−1|b̄|
n∑

t=1

∞∑
u=t

|bu| → 0

and, similarly,

n−1
∑

s≥m/2−n

( n∑
t=1

|bt+s+m|
)2

→ 0.

Thus, condition (22) of Lemma 3.1 is satis�ed, for fn given in (30-31) and f given
in (34). Then Lemma 2.1 yields 〈a,BH(1)〉 ⇒ I(f ,W), where

I(f ,W) = a(1)W (1)(1) + a(2)W (2)(1) = a(1)B
(1)
1/2(1) + a(2)B

(2)
1/2(1).

Case (III): −1/2 < d < 0 . Again, consider the representation (29), with fn
given in (30-31). The limit rv, 〈a,BH(1)〉 can be written as

〈a,BH(1)〉 = I(f ,W) =

∫ (
f (1)(x)W (1)( dx) + f (1)(x)W (1)( dx)

)
,

where

f (i)(x) := a(i)χ(d)




− ∫∞

1
(y − x)d−1 dy, 0 < x < 1,∫ 1

0
(y − x)d−1 dy, x < 0,

0, x ≥ 1,
(35)

i = 1, 2, where χ(d) > 0 is de�ned by

χ(d)−2 =

∫

R

( ∫ ∞

1

(y − x)d−1
+ dy

)2

dx,

(see [65], Proposition 9.1). In order to apply Lemma 3.1, we need to verify (22), or
∫

R
(f (i)

n (x)− f (i)(x))2 dx → 0 (i = 1, 2). (36)

We shall verify the last relation for i = 1 only, as the case i = 2 is analogous.
For simplicity, we shall assume a(1) = a(2) = 1. According to (35), it su�ces to show

∫ 1

0

(
f (1)

n (x) + χ(d)

∫ ∞

1

(y − x)d−1 dy
)2

dx → 0, (37)
∫ 0

−∞

(
f (1)

n (x)− χ(d)

∫ 1

0

(y − x)d−1 dy
)2

dx → 0, (38)
∫ ∞

1

(f (1)
n (x))2 dx → 0, (39)
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as n,m,m/n →∞. Write

f (1)
n (x) = g1n(x) + g2n(x),

where

g1n(x) := n1/2A−1
n

n∑
t=1

bt−s,

g2n(x) := n1/2A−1
n

n∑
t=1

bt+m−sI(s ≤ n + m/2), (40)

for x ∈ ((s− 1)/n, s/n]. Then (37) follows from
∫ 1

0

(
g1n(x) + χ(d)

∫ ∞

1

(y − x)d−1 dy
)2

dx → 0,
∫ 1

0

(g2n(x))2 dx → 0. (41)

Using condition
∑∞

i=0 bi = 0, we can rewrite

g1n(x) = −αn

∑
i>n−s

L(i)id−1

c(d)L(n)nd
≡ αng̃n1(x), x ∈ ((s− 1)/n, s/n] ⊂ (0, 1],

where αn := c(d)L(n)nd+(1/2)/An → 1, see (4). Therefore it su�ces to show (41) for
g̃1n(x) instead of g1n(x). Note for each x < 1,

g̃n(x) = − 1

c(d)

∫ ∞

1− [nx]
n

L(n [ny]
n

)

L(n)

( [ny]

n

)d−1

dy → − 1

c(d)

∫ ∞

1

(y − x)d−1 dy

and the �rst relation in (41) follows by a standard argument involving the dom-
inated convergence theorem, provided the asymptotic constants are related by
χ(d) = c−1(d).

Let us prove the second relation in (41). We have
∫ 1

0

(g2n(x))2 dx = A−2
n

n∑
s=1

(
n∑

t=1

bt+m−s)
2

and the required relation follows from

Sn,m :=
n∑

s=1

( n∑
t=1

bt+m−s

)2

= o(L2(n)n2d+1). (42)

Assume m > 2n and L(u) > 0 (u > n) without loss of generality. Then the inner
sum in (42) does not exceed
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∑
u>m−s

L(u)ud−1 = L(n)n−δ
∑

u>m−s

L(n(u/n))

L(n)(u/n)δ
ud−1+δ

≤ L(n)n−δ
∑

u>m−s

ud−1+δ

(
sup
x≥1

L(nx)

L(n)xδ

)

≤ CL(n)n−δ(m− s)d+δ, (43)

where 0 < δ < −d and where we used the following well-known property of slowly
varying functions: for any x0 > 0, δ > 0, there exists a constant C = C(x0, δ) < ∞
such that for all n ≥ 1

sup
x∈[x0,∞)

1

xδ

∣∣∣L(nx)

L(n)

∣∣∣ < C.

Consequently,

Sn,m ≤ CL2(n)n1+2d
( n

m− n

)−2(d+δ)

= o(L2(n)n2d+1)

as d + δ < 0 and n/(m− n) → 0. This proves (42).
Relation (38) follows from

∫ 0

−∞

(
g1n(x)− χ(d)

∫ 1

0

(y − x)d−1 dy
)2

dx → 0,

∫ 0

−∞
(g2n(x))2 dx → 0, (44)

where g1n, g2n are de�ned in (40). Similarly as above, the �rst relation in (44) follows
by the dominated convergence theorem, by writing g1n(x) = αng̃1n(x), with

αn = c(d)L(n)nd+(1/2)/An → 1

and

g̃1n(x) :=
1

(d)

n∑
t=1

L(t− s)(t− s)d−1

L(n)nd

=
1

c(d)

∫ 1

0

L(n [ny]−[nx]
n

)

L(n)

( [ny]− [nx]

n

)d−1

dy

→ 1

c(d)

∫ 1

0

(y − x)d−1 dy

for each x < 0, x ∈ ((s − 1)/n, s/n]. This proves the �rst relation in (44). The
second relation in (44) follows from

Rn,m :=
∑
s≤0

( n∑
t=1

bt+m−s

)2

= o(L2(n)n2d+1). (45)
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Indeed, assuming L(u) > 0(u > m), we have
n∑

t=1

bt+m−s =
n∑

t=1

L(t− s + m)(t− s + m)d−1

≤ CL(n)n−δ

n∑
t=1

(t + m− s)d+δ−1

≤ CL(n)n1−δ(m− s)d+δ−1. (46)

Then (45) is immediate by

L2(n)n2−2δ
∑
s≥0

(m + s)2(d+δ−1) ≤ CL2(n)n2−2δm2(d+δ−1)+1

= CL2(n)n1+2d
( n

m

)1−2(d+δ)

= o(L2(n)n2d+1),

as 1− 2(d + δ) > 0 for δ > 0 small enough.
Finally, let us prove (39), which follows from

Pn,m :=

n+(m/2)∑
s=n+1

( n∑
t=1

bt+m−s

)2

= o(L2(n)n2d+1). (47)

Using (46) and taking m > 4n (which implies (m/2)− n > m/4) we obtain

Pn,m ≤ CL2(n)n2−2δ

n+(m/2)∑
s=n+1

(m− s)2(d+δ−1) ≤ CL2(n)n2−2δ
∑

u>(m/2)−n

u2(d+δ−1)

≤ CL2(n)n2−2δ(m/4)2(d+δ−1)+1 = CL2(n)n1+2d(n/m)1−2(d+δ)

= o(L2(n)n2d+1),

proving (47) and (39). The proof of Theorem 3.1 is complete. ¤

3.4 Proof of Theorem 3.2
We need to establish tightness of the random function sequence Un(τ). We shall
use the Kolmogorov criterion: there exist δ > 0, C > 0 such that for any 0 ≤ τ0 <
τ1 < τ2 ≤ 1 and any n ≥ 1

E |Un(τ1)−Un(τ0)| |Un(τ2)−Un(τ1)| ≤ C|τ2 − τ0|1+δ. (48)

It su�ces to show (48) for τ2 − τ0 ≥ 1/n, as 0 ≤ τ2 − τ0 < 1/n implies

|Un(τ1)−Un(τ0)| |Un(τ2)−Un(τ1)| = 0.

The inequality |[nτ ′] − [nτ ′′]| < 2n|τ ′ − τ ′′| holds for τ ′, τ ′′ ∈ R. Thus we need
to consider the case τi = ki/n, i = 1, 2, where 0 ≤ k1 < k2 ≤ n are integers. By
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applying Hölder inequality for α ≥ 2 (it will be speci�ed later), we obtain that (48)
follows from

E |Un(k2/n)− Un(k1/n)|β ≤ C|(k2 − k1)/n|1+δ. (49)

The process Xt being covariance stationary, (49) reduces to the inequality

E|Un(k/n)|β ≤ C
∣∣∣k
n

∣∣∣
1+δ

, (50)

where k := k2 − k1.
To estimate moments of weighted sums in martingale di�erences, we use the

following Lemma 3.2, which is a consequence of Burkholder's inequality (see also
[66], Lemma2).

Lemma 3.2 [see [17]] Let (ηj) be martingale di�erence sequence such that E|ηj|β <
∞ for every j ∈ Z and some β ≥ 2. Then exists a constant C(β) < ∞ depending
on β only, such that

E
∣∣∣
∑

ηj

∣∣∣
β

≤ C(β)
( ∑

E2/β|ηj|β
)β/2

. (51)

Proof. Let Fj := σ{ηs, s ≤ j}. We shall use the well-known Burkholder inequality
(see e.g. [20]):

E1/β
∣∣∣
∑

ηj

∣∣∣
β

≤ C(β)

{(∑
E|ηj|β

)1/β

+ E1/β
(∑

E(η2
j |Fj−1)

)β/2
}

. (52)

By Minkowski inequality,

E2/β
(∑

E(η2
j |Fj−1)

)β/2

≤
∑

E2/β
(
E(η2

j |Fj−1)
)β/2 ≤

∑
E2/β|ηj|β,

where the last step follows from Hölder inequality

E
(
E(η2

j |Fj−1)
)β/2 ≤ E|ηj|β, (β ≥ 2).

Lemma 3.2 is proved. ¤

To prove the bound (49), write

Un(k/n) = A−1
n

∑

j≤k

cj,kξj, cj,k :=
k∑

s=1∨j

bs−j.

By Lemma 3.2, for a given α ≥ 2,

E|Un(k/n)|α ≤ CE|ξ0|α
Aα

n

( ∑
j≤k c2

j,k

)α/2

≤ CE|ξ0|α Aα
k

Aα
n
, (53)
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where the constant C < ∞ does not depend on n, k.

Consider �rst the case (iii), or (bi) ∈ γ(d) (0 < d < 1/2), α = 2. Using the
asymptotics (4) and the property (44) of slowly varying functions, for any ε > 0 one
can �nd a constant C(ε) < ∞ such that

A2
k

A2
n

≤ C(ε)
(k

n

)1+2d−ε

(54)

holds for any k, n ≥ 1. Then (50) holds with α = 2 and δ = 2d− ε > 0 provided ε
was chosen so that 0 < ε < 2d.

Next, consider the case (i), or (bi) ∈ γ(d) (−1/2 < d < 0), α > 2/(1+2d). Then
(54) yields (A2

k

A2
n

)α/2

≤ C
(k

n

)α(1+2d−ε)/2

for some C = C(ε, α) < ∞, implying (50) by (53) with δ = (α(1+2d−ε))/2−1 > 0,
provided ε > 0 is chosen small enough. The last case (ii), or (bi) ∈ γ(0), α > 2,
follows similarly from (50-54). Theorem 3.2 is proved. ¤

3.5 Application: convergence of increment-type
statistics

Let f(x, y) be a real nonnegative function, de�ned for all (x, y) ∈ R2 and continuous
at almost every (a.e.) point (x, y) ∈ R2, such that

f(x, y) ≤ Cf (1 + |x|+ |y|)1−δ, (x, y) ∈ R2 (55)

for some constants Cf < ∞ and δ > 0. Let

Rf :=
1

N − 3n

N−3n−1∑

k=0

f
(
A−1

n

k+n∑

t=k+1

(Xt+n −Xt), A−1
n

k+2n∑

t=k+n+1

(Xt+n −Xt)
)
, (56)

where 1 ≤ n ≤ N/3 and X1, . . . , XN is a sample from a second order stationary
process (Xt, t ∈ Z); An de�ned in (3). Note that the sum in (56) can be rewritten
in terms of increments of partial sums process Un of (5):

Rf =
1

N − 3n

N−3n−1∑

k=0

f(∆2Un(k/n), ∆2Un(1 + k/n)), (57)

where

∆Un(τ) := Un(τ + 1)− Un(τ),
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∆2Un(τ) := ∆(∆Un(τ)) = Un(τ + 2) + Un(τ)− 2Un(τ + 1)

are the �rst and the second order increments, respectively. We call (56) an incre-
ment-type statistic. If the function f is scaling invariant, i.e.

f(λx, λy) = f(x, y), ∀(x, y) ∈ R2, ∀λ > 0.

the statistic Rf (56) is scale-free, in other words it does not change when (Xt, 1 ≤
t ≤ N) are replaced by linear transformations (aXt + b, 1 ≤ t ≤ N), with arbitrary
a 6= 0, b ∈ R. A particular case of the statistic Rf corresponding to the function
f(x, y) = (|x + y|)/(|x|+ |y|) was studied in [61].

Theorem 3.3 [see [17]] Let Xt be a linear process as in (1), where (bi) ∈ γ(d), for
some d ∈ (−1/2, 1/2), and where (ξt) is a weak white noise satisfying condition (8).
Then as N →∞, n →∞, N/n →∞,

E(Rf − Λf (H))2 → 0, (58)

where the function Λf (H) is de�ned by

Λf (H) := Ef(∆2BH(0), ∆2BH(1)).

Here (∆2BH(0), ∆2BH(1)) is a Gaussian vector with zero mean and the covari-
ances

E(∆2BH(0))2 = E(∆2BH(1))2 = 4− 22d+1,
E[∆2BH(0)∆2BH(1)] = −(1/2)32d+1 + 22d+3 − (7/2).

Proof. By (55) and stationarity of (Xt)

Ef(∆2Un(k/n), ∆2Un(1 + (k/n))) = Ef(∆2Un(0), ∆2Un(1))

≤
{

E
(
f(∆2Un(0), ∆2Un(1))

)1/(1−δ)}1−δ

≤ C(1 + 2E|∆2Un(0)|)1−δ < C,

where the constant C < ∞ does not depend on n, k. Thus,

ERf =
1

N − 3n

N−3n−1∑

k=0

Ef(∆2Un(0), ∆2Un(1))

= Ef(∆2Un(0), ∆2Un(1)).

From (9) if follows that

(∆2Un(0), ∆2Un(1)) →FDD (∆2BH(0), ∆2BH(1)) (n →∞),
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implying f(∆2Un(0), ∆2Un(1)) ⇒ f(∆2BH(0), ∆2BH(1)) and
Ef(∆2Un(0), ∆2Un(1)) → (∆2BH(0), ∆2BH(1)), (59)

as N ≥ n →∞.
Next, let us prove

E(ηn(k)ηn(j)) →
(
Ef(∆2BH(0), ∆2BH(1))

)2

, (60)

as n →∞, |j − k|/n →∞. Here we de�ned
ηn(k) := f(∆2Un(k/n), ∆2Un(1 + (k/n))).

From Theorem 3.1 it follows that(
∆2Un(k/n), ∆2Un(1 + (k/n)), ∆2Un(j/n), ∆2Un(1 + (j/n))

)

→FDD

(
∆2B

(1)
H (0), ∆2B

(1)
H (1), ∆2B

(2)
H (0), ∆2B

(2)
H (1)

)

where (B
(1)
H (τ) and (B

(2)
H (τ) are independent fractional Brownian motions. When-

ce follows that the sequence of random variables (ηn(k)ηn(j), n ∈ N) converges in
distribution to

f(∆2B
(1)
H (0), ∆2B

(1)
H (1))f(∆2B

(2)
H (0), ∆2B

(2)
H (1)),

by applying the continuous mapping theorem. Applying (55), we have

E(ηn(k))2/(1−δ) ≤ CE
(
1 + ∆2Un(k/n) + ∆2Un(1 + (k/n))

)2

≤ C(1 + E(∆2Un(0))2) < C.

Then using Hölder inequality again,
E(ηn(k)ηn(j))1/(1−δ) < C.

To establish (60) we use well-known moment criterion: if the sequence (Yn)
converges in distribution to a random variable Y and E|Yn|% are bounded for some
% > 0, then E|Yn|%̃ → E|Y |%̃ for any %̃ < % (see [29],p. 306). Relations (59-60) imply

cov
(
f(∆2Un(k/n), ∆2Un(1 + (k/n)), f(∆2Un(j/n), ∆2Un(1 + (j/n))

)
→ 0, (61)

as n → ∞, |j − k|/n → ∞. Denote l.h.s. of (61) by %n(k, j). Relation (58) now
follows from (61) and the inequalities

%n(k, j) ≤ %1/2
n (k, k)%1/2

n (j, j) = %n(0, 0)

≤
{

E
(
f(∆2Un(0), ∆2Un(1))

)2/(1−δ)}1−δ

≤ 3C2
f (1 + E(∆2Un(0))2)1−δ < C,

with C < ∞ independent of n, k, j, by writing

var(Rf ) = (N − 3n)−2

N−3n−1∑

k,j=0

%n(k, j)

and using the dominated convergence theorem. Theorem 3.3 is proved. ¤
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Conclusions

Most of the studies in long memory assume that observations are stationary or have
stationary increments, which is not realistic in the case of a long sample. The study
of nonstationary long memory and (linear) models of time series with nonstation-
ary long memory is important to theory and applications. The thesis studies the
limit distribution of partial sums for certain linear time series models with nonsta-
tionary long memory, and the limit distribution of some statistics under trended
long memory observations. In particularly, the results of Philippe, Surgailis, Viano
[51] about time-varying fractionally integrated (tv-FI) �lters with �nite variance are
extended the case of in�nite variance processes and to more general "memory gov-
erning" sequences. Under the assumption that innovations are belong to the domain
of attraction of an α-stable law (1 < α < 2), we show that the partial sums pro-
cess of in�nite variance tv-FI �lters converges to some α-stable self-similar process
with nonstationary increments. The limit distribution of the Increment Ratio (IR)
statistic for Gaussian observations superimposed on a slowly-varying deterministic
trend is studied. The IR statistic was introduced in Surgailis, Teyssière, Vai£iulis
[61] for testing nonparametric hypotheses about d-integrated (−1/2 < d < 3/2) be-
havior of the time series, which often can be confused with deterministic trends and
change-points. Conditions on the trend are obtained so that the IR statistic follows
the same asymptotic Gaussian con�dence intervals as in the absence of trend. We
also establish the consistency of the IR-type statistics for general linear models with
long, short, or negative memory. The proof of the last fact is based on asymptotic
independence of distant partial sums.
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Notation

C � some positive constant, which may change
from line to line

R � the set of all real numbers
N � the set of all natural numbers
Z � the set of all integer numbers
L � the backward shift operator
I � the unit operator
L2(Ω) � the set of all real random variables, which are de�ned

on set Ω and have second moment
L2(R) � the Hilbert space of vector valued functions

f = (f (1), f (2)) : R→ R2 with norm
‖f‖ :=

( ∫
R((f (1)(x))2 + (f (2)(x))2)dx

)1/2

D[0, 1] � the Skorohod space of real-valued functions
on the interval [0,1] without second order discontinuities

Hn(x) � Hermite polynomial
L(i) � slowly varying at in�nity function
BH(t) � fractional Brownian motion
Γ(x) � the Gamma-function
mes(A) � the Lebesgue measure of setA
[·] � the integer part of number
an ∼ bn(n →∞) � meaning, that limn→∞ an

bn
= 1

an = O(bn)(n →∞) � meaning, that |an| ≤ C|bn|, for some C > 0, N ∈ N
and for all n ≥ N

an = o(bn)(n →∞) � meaning, that limn→∞ an

bn
= 0
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=law � equality of distributions
=FDD � equality of �nite dimensional distributions
⇒ � convergence in distribution
→FDD � weak convergence of �nite dimensional distributions
→D[0,1] � weak convergence of random variables in the Skorohod

space D[0, 1]
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