
INSTITUTE OF MATHEMATICS AND INFORMATICS

VYTAUTAS MAGNUS UNIVERSITY

Jelena Gasperovič

EVALUATION OF FUNCTIONALITY OF SPECIFICATION
LANGUAGES

Doctoral dissertation

Physical sciences, informatics (09 P)

Vilnius, 2007

Dissertation has been prepared during the period from 2002 until 2006 in the Institute of

Mathematics and Informatics.

Scientific Advisor:

Prof. Habil. Dr. (HP) Albertas Čaplinskas (Institute of Mathematics and Informatics, physical

sciences, informatics – 09 P).

MATEMATIKOS IR INFORMATIKOS INSTITUTAS

VYTAUTO DIDŽIOJO UNIVERSITETAS

Jelena Gasperovič

SPECIFIKAVIMO KALBŲ FUNKCIONALUMO
VERTINIMAS

Daktaro disertacija

Fiziniai mokslai, informatika (09 P)

Vilnius, 2007

Disertacija rengta 2002 - 2006 metais Matematikos ir informatikos institute.

Mokslinis vadovas:

prof. habil. dr. (HP) Albertas Čaplinskas (Matematikos ir informatikos institutas, fiziniai

mokslai, informatika – 09 P).

 v

Gratitude and Acknowledgments

I would like to particularly thank my advisor Prof. Albertas Čaplinskas for directing this

dissertation. He was undoubtedly the architect of this work. I am truly grateful to him for his

understanding, help and valuable advices. I would like to thank him for always inducing me to

trust myself, push further my ideas, and also for all the opportunities he offered me. I say “Thank

You” to him with all my heart.

I would like to express my gratitude to Dr. Audrone Lupeikiene, Assoc. Prof. Dr. Dale

Dzemydiene for valuable criticism, comments and discussions.

I would like to express my thankfulness to all personnel and doctoral students of the Software

Engineering Department of the Institute of Mathematics and Informatics for help, inducement

and understanding. I'm also grateful to all people, who have contributed to this work by

commenting it and giving advices.

I think that recognition should be given to the head of the Lithuanian IT company “Algoritmu

sistemos” Rimgaudas Zaldokas, who had some impact to my choice of the research field and for

his support and understanding during my writing of this work and during the four years of my

doctoral studies.

A particular credit should be given to Lithuanian State Science and Studies Foundation for

financial support of this work during nine last months of doctoral studies (from 2006.01.01 until

2006.10.01).

I would like to finish by thanking my family and all my friends, who morally supported me not

only during writing of this work, but also during the time that I have been studying.

 vi

Abstract

The dissertation presents an approach to evaluate quality of specification languages. It is divided

into five parts.

The first part is introductory. It presents the main information about the research, such as

research problem, research question and objectives, motivation of the research, in the research

used methodology, research findings and main results, its scientific novelty, practical

importance, and approbation. Besides, the section has information about the papers, in which the

main results of the research were published.

The second part presents problem statement. First, the main concepts of specification languages

theory and quality evaluation theory are described. Further the scientific hypotheses are stated

and described. Finally, in the dissertation proposed main scheme of specification languages

quality evaluation is presented and described shortly.

The third part is analytical. It analyses and compares known approaches to evaluate quality of

specification languages. First, methods of comparative analysis are described shortly, and the

methodology to compare the analysed approaches is developed. Then the approaches to evaluate

quality of specification languages are described in detail and compared using the proposed

methodology.

The fourth part describes the research design. First of all, internal quality is distinguished from

quality in use. Taxonomy of quality characteristics, which has five hierarchical levels, is

developed. It is proposed to evaluate the lowest-level characteristics (elementary characteristics)

of the taxonomy using the library of evaluation test examples, and to aggregate the values of

elementary characteristics up to a single value, describing internal quality of the whole

specification language, using aggregation techniques. Further it is considered that quality in use

should be evaluated on the basis of internal quality. To evaluate quality in use it is proposed to

specify the quality goals of the particular project and construct a quality model. The dissertation

elaborates in the literature proposed quality model and its construction procedure, and proposes

the procedure to evaluate quality in use.

The fifth part describes the research experiment. It presents the experimental evaluation of UML

and Z specification languages functionality. According to the results of UML and Z evaluation

conclusions about functionality of these languages are made.

 vii

Contents

List of Figures ..ix

List of Tables...x

Concepts... xii

Abbreviations ...xiv

1. Introduction ..15

1.1. Research Problem..15

1.2. Research Question and Objectives..15

1.3. Motivation ...15

1.4. Research Methodology..16

1.5. Research Findings ...17

1.6. Results ...18

1.7. Scientific Novelty..18

1.8. Practical Importance..18

1.9. Approbation...19

1.10. Publications ...20

1.11. Synopsis...20

2. Problem statement ..22

2.1. Specification Languages ...22

2.2. The Notion of Quality ...23

2.3. Hypotheses ..24

2.4. The Main Quality Evaluation Scheme..26

3. Comparative Analysis of Approaches to Evaluate Quality of Specification Languages28

3.1. Aims and Objectives ...28

3.2. Subject of the Comparative Analysis..28

3.3. Main Principles of the Comparative Analysis ..28

3.4. Qualitative Comparative Analysis Methods...30

3.5. Methodology of Comparative Analysis..33

3.6. Bunge Ontology Based Approach ..34

3.6.1. Bunge’s Ontology .. 34

3.6.2. Bunge-Wand-Weber (BWW) models.. 37
3.6.3. Guizzardi Framework .. 40
3.6.4. Strengths and Weaknesses of Bunge Ontology Based Approach... 42

3.7. Extension of Bunge Ontology Based Approach...44

3.7.1. Extension of BWW Models ... 44
3.7.2. Strengths and Weaknesses of the Extension of Bunge Ontology Based Approach ... 47

3.8. Chisholm Ontology Based Approach ...48

3.8.1. Chisholm’s Ontology ... 48
3.8.2. S. Milton, E. Kazmierczak and C. Keen Methodology... 49

3.8.3. Strengths and Weaknesses of Chisholm Ontology Based Approach.. 51

3.9. Ontological Categories Based Approach..51

 viii

3.9.1. Mylopolous Methodology.. 51
3.9.2. Strengths and Weaknesses of Ontological Categories Based Approach .. 53

3.10. Quality Model Based Approach..53

3.10.1. Semiotic Framework... 53
3.10.2. Strengths and Weaknesses of Quality Model Based Approach... 57

3.11. Comparative Analysis of Approaches ..57

3.12. Conclusions ...58

4. An Approach to Evaluate Quality of Specification Languages..60

4.1. Contribution to the Research...60

4.2. Specification Languages Internal Quality Evaluation Framework ..60

4.2.1. Taxonomy of Quality Characteristics .. 60
4.2.2. Functionality and Its Sub-Characteristics.. 64

4.2.3. Methodology to Evaluate Functionality Characteristics of Internal Quality .. 73
4.2.4. Techniques to Aggregate the Characteristics of Internal Quality ... 90

4.3. Specification Languages Quality in Use Evaluation Framework ..109

4.3.1. On Construction of a Quality Model ... 109
4.3.2. Quality Model .. 111

4.3.3. Quality Evaluation Procedure .. 115
4.3.4. Quality Goals.. 117

4.3.5. Quality Assessment Function .. 118

4.4. Conclusions ...118

5. Experimental evaluation of UML and Z languages functionality ..120

5.1. Contribution to the Experimental Evaluation...120

5.2. Aim and Objectives...120

5.3. Subject of the Experimental Evaluation ...121

5.4. Evaluation of the Functionality of UML and Z Languages ...121

5.4.1. Framing .. 121

5.4.2. Sampling Vocabulary... 123
5.4.3. Sampling Questionnaire... 126
5.4.4. Feature Models... 135
5.4.5. Web Portal Requirements (Evaluation Test Examples) .. 161

5.4.6. Description of Quality Evaluation Tests.. 171
5.4.7. Testing .. 179
5.4.8. Interpretation of the Results of UML and Z Functionality Testing .. 187

5.5. Conclusions ...192

6. Conclusions ..193

Bibliography..196

The List of Publications ..202

APPENDIXES ..203

APPENDIX 1. Taxonomy of Quality Characteristics...203

APPENDIX 2. Graphical Representation of the Taxonomy of Quality Characteristics206

 ix

List of Figures
Figure 1. The main quality evaluation scheme ..27

Figure 2. Steps of comparative analysis...29

Figure 3. Bunge categories ...36

Figure 4. BWW models ..37

Figure 5. Extension of Bunge categories ...44

Figure 6. Chisholm categories ..48

Figure 7. Evaluation aspects...51

Figure 8. Semiotic framework scheme...54

Figure 9. Semiotic framework..55

Figure 10. Sub-characteristics of internal quality ..61

Figure 11. Linguistic system [CLV02] ..62

Figure 12. Sub-characteristics of functionality ..66

Figure 13. Methodogy to evaluate elementary characteristics of functionality ..74

Figure 14. Problem Diagram ..76

Figure 15. An example of the expected results of the test ...86

Figure 16. An example of the coverage of elementary characteristics by the suite of evaluation tests86

Figure 17. An example of the coverage of tests by suites of quality evaluation tests...87

Figure 18. Aggregation of orthogonal sub-characteristics quality (case 1)...99

Figure 19. Aggregation of orthogonal sub-characteristics quality (case 2)...100

Figure 20. Aggregation of supplemental sub-characteristics quality (case 3) ..103

Figure 21. Aggregation of alternative sub-characteristics quality (case 4) ...104

Figure 22. Fuzzy model ..110

Figure 23. Context-oriented quality model ..111

Figure 24. Quality model construction...113

Figure 25. The weighted digraph describing interdependencies between quality goals...114

Figure 26. The part of the taxonomy of quality characteristics Ψ1..114

Figure 27. Quality evaluation procedure..116

Figure 28. Multi-frame system for Web portal ..121

 x

List of Tables
Table 1. The main components of analysed approaches..33

Table 2. Category matrix ..46

Table 3. Qualitative features...50

Table 4. Results of the evaluation ..51

Table 5. The results of comparative analysis ...57

Table 6. Feature table ...81

Table 7. Requirements table ...83

Table 8. Portal requirements table..83

Table 9. Sampling vocabulary..123

Table 10. Sampling questionnaire ..128

Table 11. Developer Portal feature table..135

Table 12. Indiana Learning Portal feature table...141

Table 13. HKU Portal feature table..147

Table 14. Generic feature table ..153

Table 15. Content management requirements table...161

Table 16. Search requirements table ..163

Table 17. Collaboration requirements table ...165

Table 18. Workflow requirements table...169

Table 19. Description of UML evaluation test T-F-IAS-UML-01..171

Table 20. Description of UML evaluation test T-F-IAS-UML-02..172

Table 21. Description of UML evaluation test T-F-CS-UML-01 ...173

Table 22. Description of UML evaluation test T-F-CS-UML-02 ...174

Table 23. Description of suite of UML evaluation tests TS-F-UML-MagicDraw ...174

Table 24. Description of Z evaluation test T-F-IAS-Z-01...175

Table 25. Description of Z evaluation test T-F-IAS-Z-02...176

Table 26. Description of Z evaluation test T-F-CS-Z-01 ..176

Table 27. Description of Z evaluation test T-F-CS-Z-02 ..178

Table 28. Description of suite of Z evaluation tests TS-F-Z-ZEVES ...178

Table 29. UML evaluation test T-F-IAS-UML-01 ..179

Table 30. UML evaluation test T-F-IAS-UML-02 ..180

Table 31. UML evaluation test T-F-CS-UML-01..180

Table 32. UML evaluation test T-F-CS-UML-02..182

Table 33. Suite of UML evaluation tests TS-F-UML-MagicDraw ...182

Table 34. Z evaluation test T-F-IAS-Z-01 ...183

Table 35. Z evaluation test T-F-IAS-Z-02 ...184

Table 36. Z evaluation test T-F-CS-Z-01...184

Table 37. Z evaluation test T-F-CS-Z-02...186

Table 38. Suite of Z evaluation tests TS-F-Z-ZEVES...186

Table 39. Features for requirement REQ-1.8...187

Table 40. Results of q(ξi) evaluation for suites of quality evaluation test ..188

 xi

Table 41. Results of p(ξi) evaluation for suites of quality evaluation test ..189

Table 42. Results of elementary characteristics evaluation...189

Table 43. Results of functionality evaluation ..191

 xii

Concepts

Concept Definition
Aggregation operator A mathematical object that has the function of reducing a

set of numbers into a unique representative (or
meaningful) number [Det00].

Aggregation technique A well-defined procedure required calculating internal
quality from the results of measurements.

Elementary characteristic
(Quality sub-characteristic)

Internal quality sub-characteristic, which can be evaluated
using the library of evaluation test examples.

Elementary problem frame A description of a recognisable class of problems, where
the class of problems has a known solution. In a sense,
elementary problem frames are problem patterns.

Evaluation test example
(Representative example)

For the particular category of Software Systems developed
representative example used to test the sufficiency of a
specification language for specification of requirements of
any Software System from the current population of
Software Systems.

Feature diagram A graphical representation of a feature model.
Feature model A model that represents the standard features of a family

of systems in the domain and relationships between them.
Feature table A tabular notation, which describes feature models and

allows collecting together all information about the feature
that in the original Feature-Oriented Domain Analysis
approach is distributed among feature diagrams, feature
definitions and rationale of features.

Formal specification language A specification language with formally defined syntax and
semantics.

Functionality The set of features necessary to describe requirements of a
future system.

Goal Interdependency Graph User’s treatment of quality goals and interdependencies
between goals.

Infrastructure A particular software tool(s) required supporting data
collection, sampling, and testing of internal quality
characteristics.

Internal quality Internal quality of a specification language is the
descriptive characteristic of a language as a product
independently from any context of use. It means that
internal quality is described by some value obtained from
measurements.

Library of evaluation test
examples
(Library of representative
examples)

The set of evaluation test examples for the particular
category of Software Systems.

Lightweight formal
specification language

A specification language with partially formal syntax and
greatly simplified semantics.

Linguistic system A system defining a formal structure beyond a
specification language.

Multi-frame A composition of conceptual subsystems, each from which
can be described by an elementary frame.

Problem diagram A graphical representation of a problem frames.
Quality Totality of characteristics of an entity that bear on its

 xiii

Concept Definition
ability to satisfy stated or implied needs [ISO94].

Quality assessment function A function used to propagate rating values of quality
characteristics through the Goal Interdependency Graph
from bottom towards the top of the graph.

Quality characteristics A set of attributes of a language, by which its quality is
described and evaluated. Quality characteristics may be
refined into multiple levels of sub-characteristics.

Quality evaluation plan A plan of a specification language evaluation, which
contains the set of suites of quality evaluation tests, time
and financial constraints, evaluators and other necessary
information.

Quality evaluation test The test that consists of a test identifier, a test example,
test execution conditions, and expected results, which
describe what this test allows to check.

Quality evaluation test
coverage

The degree to which a given quality evaluation test or suite
of tests addresses all specified requirements for the
Software System of the particular category.

Quality goal High-level requirements formulated by users (audience) of
a specification language.

Quality in use Quality in use is evaluative characteristic of a language
obtained by making a judgment based on criteria that
determine the worthiness of a language for a particular
project.

Quality model A formula and a set of instructions for how the obtained
quality measures are to be interpreted to draw conclusions
about the quality of a specification language.

Representation system A system defining forms of representation of specification
language constructs.

Sample A part or subset of the population taken to be
representative of this population as a whole for some
investigative purposes of research [Co77]. In the context of
this dissertation the term population refers to all systems of
the particular category of Software Systems.

Sampling The technique of selecting a suitable sample.
Semi-formal specification
language

A language with formally defined syntax, but not
completely defined semantic. Usually such languages
depend on data-flow diagrams, entity-relationship
diagrams, data dictionaries, finite state machines, or
decision tables.

Specification language A language of a high abstract level with syntax and
semantics appropriate enough to define both the
functionality of a system under consideration and its non-
functional properties.

Suite of quality evaluation
tests

A collection of tests developed to test some top-level
group of the characteristics of internal quality
(functionality, reliability, efficiency, and usability) for the
particular specification language using the same testing
infrastructure.

Taxonomy of quality
characteristics

A hierarchical classification of quality characteristics,
represented by tree. It consists of 5 hierarchical levels, and
includes 34 elementary characteristics.

 xiv

Abbreviations

Concept Abbreviation
A Lightweight Object Modelling Notation Alloy

Bunge-Wand-Weber BWW

Entity-Relationship-Analysis ERA

Feature-Oriented Domain Analysis FODA

Good decomposition model GDM

Goal Interdependency Graph GIG

Object Constraint Language OCL

Structured Analysis and Design Technique SADT

State-tracking model STM

Textual Representation of an Object Logic Language TROLL

Unified Modelling Language UML

VDM Specification Language VDL-SL

Z notation Z

 15

1. Introduction

1.1. Research Problem

The dissertation analyses the problem of quality evaluation of formal, semi-formal and

lightweight formal specification languages, including UML, Z, VDL-SL, TROLL, and Alloy.

1.2. Research Question and Objectives

The aim of the dissertation is to propose an approach to evaluate quality of specification

languages, including both internal quality and quality in use, and detail procedures allowing

evaluation of specification languages functionality.

The objectives of the dissertation are the following:

• to collect, analyse and compare known approaches to evaluate quality of specification

languages;

• to develop exhaustive taxonomy of internal quality characteristics and propose how it can

be used to elaborate in scientific literature proposed quality models;

• to create a methodology to evaluate functionality characteristics of internal quality;

• to develop techniques to aggregate the values of elementary characteristics of internal

quality;

• to create quality in use evaluation procedure;

• to carry out experimental evaluation of the functionality of UML and Z specification

languages.

1.3. Motivation

Actuality of the dissertation is determined by practical needs. There exists a great variety of

languages, methods, techniques, and tools. These are specification languages, domain of

discourse analysis and systems development methods, systems implementation methods, and

other for different purposes used tools (packages for creation of requirements DB, development

packages, specialised text editors, and etc.). This list is continuing to grow. Although systems

creation tools frequently have the same functionality, they are different otherwise. Thus, systems

engineers are faced with the problem of selection of tools, including specification languages,

which are the most appropriate for the particular project. This problem is not trivial. First of all, a

language should have expressive power that is enough to specify all aspects of any theoretically

possible system. On the other hand, a language should be simple, reliable and other requirements

should be satisfied depending on the context of the particular project. In other words, to select

the most appropriate language for the particular project multi-criteria task should be carried out.

 16

In systems development practice attempts to carry out this task has been made for a long time.

However, until now no methodology based on formally defined evaluation criteria is proposed.

In the literature quality of specification languages is evaluated using comparison by subjective

criteria, comparison to some standard (or norm), ontological analysis or qualitative analysis

methods. However, no one of these methods is objective enough or proposes scale that could be

used to measure quality characteristics of a specification language. All these methods are not

developed well, and, thus, cannot be used to evaluate quality of a specification language.

Besides, this dissertation is very important from scientific point of view. Research in the field

of evaluation of specification languages quality still is at the beginning. There is no

comprehensive definition of quality, internal quality is not separated from quality in use, up to

date exhaustive set of quality characteristics is not proposed and even no commonly accepted

agreement exists about the names of quality characteristics. These problems arise because of

absence of a clear picture of exactly what should be required in specifications and lack of

standards for specification languages.

1.4. Research Methodology

Research methodology that is used in the dissertation includes the following methods:

methods of qualitative comparative analysis, methods of taxonomical analysis, methods of non-

statistical sampling, methods of domain engineering, methods of testing theory, methods of

aggregation theory, statistical methods, methods of rating theory, and methods of fuzzy theory.

Methods of qualitative comparative analysis are used to compare known approaches to

evaluate quality of specification languages. First, Method of conceptual analysis-based

comparison is used to identify the main components of the approaches, and then Method of

Agreement and Method of Difference are used to compare the identified components by their

commonalities and differences.

Methods of taxonomical analysis are used to identify, define internal quality characteristics

of a specification language, and organise them in the form of the hierarchical structure, called

taxonomy of quality characteristics. This taxonomy has five levels and provides that the quality

of specification language can be characterised by its functionality, reliability, usability, and

efficiency. The taxonomy consists of 5 hierarchical levels, and includes 34 elementary

characteristics.

Methodology to evaluate functionality characteristics of internal quality is developed by

combination of methods of non-statistical sampling, methods of domain engineering, and

methods of testing theory. It is proposed to use method of non-statistical sampling (purposeful

judgment sampling) to choose a sample for each category of Software Systems from the

 17

population of really existing systems. After this, using methods of domain analysis for each

sample a feature model should be created. These models should be used to develop a number of

representative examples (evaluation test examples). Further it is proposed to use methods of

testing theory to develop quality evaluation tests to test functionality of specification languages.

Methods of aggregation theory are used to develop techniques to aggregate the values of

elementary characteristics of internal quality. Different aggregation techniques are developed

according to the kind of dependencies among quality sub-characteristics in the taxonomy of

quality characteristics. Besides, it is necessary to aggregate the results of measurements of a

particular quality sub-characteristic obtained using several different suites of quality evaluation

tests. For this aim using statistical methods the heuristic, which can be seen as a kind of

combination of arithmetic and winsorised means, is developed.

Methods of rating theory and methods of fuzzy theory are used to elaborate in the literature

proposed context-oriented quality model. Using these methods the quality model is

supplemented by fuzzy rating functions and fuzzy interpretation functions. Fuzzy rating

functions are used to map the values of quality characteristics to appropriate rating values, while

fuzzy interpretation functions are used to interpret the obtained measure of the top-level quality

goal.

1.5. Research Findings

The main findings of the dissertation are the following:

• Internal quality should be described by the taxonomy of quality characteristics.

• Quality in use should be evaluated on the basis of internal quality, thus the taxonomy

of quality characteristics should be seen as a part of a quality model.

• The values of elementary characteristics of internal quality should be described as

expected frequencies with which corresponding feature of a language L will be

successfully used to specify any possible Software System development project

regardless of its purpose, complexity, size and other specifics.

• Elementary characteristics of internal quality should be evaluated using the library of

evaluation test examples (representative examples), developed using sampling and

domain engineering theory methods.

• The values of elementary characteristics of internal quality should be obtained using

suites of quality evaluation tests, developed using testing theory methods.

• The values of elementary characteristics of internal quality should be aggregated up

to a single value, describing the internal quality of the whole language L.

 18

1.6. Results

The main results of the dissertation are:

• the methodology to compare approaches to evaluate quality of specification

languages;

• the taxonomy of quality characteristics;

• the methodology to evaluate functionality characteristics of internal quality, which

includes the library of evaluation test examples, internal quality evaluation procedure

based on development of suites of quality evaluation tests, and the procedure to

interpret internal quality evaluation results;

• techniques to aggregate the values of elementary characteristics of internal quality;

• the heuristic to aggregate the results of measurements of a particular quality sub-

characteristic obtained using several different suites of quality evaluation tests;

• elaborated quality model and its construction procedure;

• quality in use evaluation procedure;

• evaluation of the functionality for UML and Z specification languages.

1.7. Scientific Novelty

This dissertation is the first work, in which exhaustive quality characteristics taxonomy to

evaluate internal quality is developed and the framework to evaluate quality in use is proposed.

Every characteristics of the hierarchical taxonomy of quality characteristics is described in terms

of the linguistic system, defining a formal structure beyond the language, and in terms of the

representation system, defining forms of representation of its constructs. We hope that the

proposed taxonomy will contribute both to the research on evaluation of the quality of existing

specification languages and to the development of new ones.

Besides, this dissertation proposes a new approach to evaluate quality in use. It is based on

the construction of quality model. This approach can be considered as more objective than the

other known approaches to evaluate quality of specification languages, because, first, it allows

evaluation of quality in use according to the quality goals of the particular project, second, it

proposes theoretically-grounded framework for evaluation of specification languages quality in

use.

1.8. Practical Importance

First of all, in the dissertation proposed taxonomy of quality characteristics could be used as

a guide during creation of new specification languages, because it provides valuable information

about the conceptual structure of specification languages and about the features, on which their

 19

internal quality and quality in use depends. Besides, the proposed taxonomy, internal quality and

quality in use evaluation procedures could be used to compare several different specification

languages both independently from their context of use or according to their worthiness for the

particular project.

Second, the work that is done in the dissertation can be used to start storing representative

examples in the library. Of course, such kind of library cannot be created at once. For this aim

several projects should be initiated. During each such project representative examples for the

systems of the particular category should be developed. It follows from the theory of problem

frames that 5-6 projects should be enough, thus, such kind of work is rather expensive, but is

possible to implement in practice.

Third, in the dissertation proposed quality in use evaluation procedure can be used in

practice, when it is necessary to choose the language that is the most suitable to describe

requirements of the particular project. The evaluation should be done by an expert, who should

apply the proposed quality in use evaluation procedure for several chosen specification

languages and compare the obtained results of evaluation according to achievement of for the

particular project formulated quality goals. Besides, it can be done only in such case, when

internal quality for in the project created system of the particular category has been already

evaluated.

1.9. Approbation

The main results of the dissertation were presented and discussed during the following in

Lithuania and abroad hold national and international conferences:

1. “Informacinės technologijos '2003”, January 28-29, 2003, Kaunas, Lithuania, Kaunas

Technology University.

2. “Kompiuterininku dienos-2003” (the conference was held by Lithuanian Computer

Society), August 28-30, 2003, Vilnius, Lithuania, Parliament of the Republic of

Lithuania.

3. XLIV Conference of Lithuanian Mathematicians (the conference was held by Lithuanian

Mathematicians Society), June 19-20, 2003, Vilnius, Lithuania, Vilnius Pedagogical

University.

4. The Sixth International Baltic Conference “DB&IS’2004”, June 6-8, 2004, Riga, Latvia,

Institute of Mathematics and Computer Science of University of Latvia.

5. The 13th International Conference on IS Development “ISD’2004”, September 9-11,

2004, Vilnius, Lithuania, Vilnius Gediminas Technical University.

 20

6. XLV Conference of Lithuanian Mathematicians (the conference was held by Lithuanian

Mathematicians Society), June 17-18, 2004, Kaunas, Lithuania, Lithuanian University of

Agriculture.

7. “Kompiuterininku dienos-2005” (the conference was held by Lithuanian Computer

Society), September 15-17, 2005, Klaipeda, Lithuania, University of Klaipeda.

8. XLVI Conference of Lithuanian Mathematicians (the conference was held by Lithuanian

Mathematicians Society), June 15-16, 2005, Vilnius, Lithuania, Vilnius University.

9. XLVII Conference of Lithuanian Mathematicians (the conference was held by Lithuanian

Mathematicians Society), June 20-21, 2006, Kaunas, Lithuania, Kaunas Technology

University.

1.10. Publications

The main results of the dissertation were published in 12 papers:

• 2 papers published in the scientific journals included into the ISI Master Journal list;

• 6 papers published in other referred scientific journals;

• 2 papers published in other reviewed periodical scientific publications;

• 1 paper published in the international conference proceedings included into the ISI

Proceedings list;

• 1 paper published in the proceedings of the local scientific conference.

The list of papers is presented in the section “The List of Publications”.

1.11. Synopsis

Dissertation consists of six sections.

The first section is introductory. It presents research problem, research question and

objectives, motivation of the research, in the research used methodology, research findings and

results, its scientific novelty, practical importance, approbation, and information about the

papers, in which the main results of the research were published.

The second section presents problem statement. First, it provides definition and

classification of specification languages. Then the definitions of quality, quality in use, and

internal quality are provided. After that the scientific hypotheses that will be tested in the

dissertation are stated and described in detail. Finally, the main specification languages quality

evaluation scheme is presented.

The third section is analytical. The object of the analysis is known approaches to evaluate

quality of specification languages. First, methods of comparative analysis are described, and the

methodology to compare known approaches to evaluate quality of specification languages is

 21

proposed. The approaches to evaluate quality of specification languages are described in detail

and compared using the proposed methodology of comparative analysis. Finally, it is concluded

that all analysed methods are incomplete, have weak theoretical background, and, thus, cannot be

used to evaluate and compare quality of different specification languages.

The fourth section describes the research design. An approach to evaluate quality of

specification languages is presented and described in detail. First, the taxonomy of quality

characteristics is developed, and functionality characteristic and its sub-characteristics are

defined and described in detail. Then the the framework to evaluate elementary characteristics of

internal quality is developed. It contains the methodology to evaluate functionality

characteristics of internal quality, which includes the library of evaluation test examples, internal

quality evaluation procedure based on development of suites of quality evaluation tests, and the

procedure to interpret internal quality evaluation results; techniques to aggregate the values of

elementary characteristics of internal quality; the heuristic to aggregate the results of several

measurements of a particular quality sub-characteristic. The next issues are related to evaluation

of quality in use on the basis of internal quality. First of all, it is proposed how to elaborate the

quality model and its construction procedure. Further, quality in use evaluation procedure is

developed. It aims to evaluate quality of a specification language in context of the particular

project. The quality model, the particular part of the taxonomy, which is relevant to the needs of

the particular project, and quality in use evaluation procedure constitute in the dissertation

proposed framework to evaluate specification language quality in use. It is concluded that this

dissertation proposes a sketch of the systematic specification languages quality evaluation and,

thus, it should make an impact on the whole specification languages theory. Besides, the

systematic evaluation of internal quality and quality in use provides valuable experience, which

could be used during construction of new specification languages.

The fifth section describes the research experiment. It is demonstrated how to evaluate

functionality of UML and Z specification languages by application of the framework to evaluate

elementary characteristics of internal quality. The results of experimental evaluation of UML and

Z languages functionality are presented. It is concluded that evaluation of the particular aspects

of the particular specification language allows preparing of valuable recommendations how to

use the language in more appropriate way as well as how to improve it.

The sixth section contains the main conclusions.

At the end of the dissertation there are references, the list of publications and appendixes.

 22

2. Problem statement

2.1. Specification Languages

Definition 1: Specification language is the language of a high abstract level with syntax and

semantics appropriate enough to define both the functionality of a system under consideration

and its non-functional properties. In general case, the system under consideration can be some

real-world business system, information system, software system, hardware system or any other

system.

First specification languages were created at the end of the fifth decade of the last century. In

1979 about 150 different specification languages were used [JS80]. We consider only languages

that are intended to specify systems, which are relevant to the field of Information Systems

engineering, namely, real-world systems, Information Systems and Software Systems. The

specifications may be external (requirements specification) or internal (design specification). A

specification language that supports the specification process throughout many phases of a life-

cycle model is called a wide-spectrum language, and a language that supports only one or two

phases of a life-cycle model is known as a narrow-spectrum language. We use the term

“specification language” in the broad sense that covers both wide-spectrum and narrow-spectrum

languages and suppose that wide-spectrum languages should support business modelling as well

as requirement specification and design. Usually specification languages are classified into

formal and semi-formal ones.

Definition 2: Formal specification language is the language that has formally defined

vocabulary, syntax, and semantics.

The main advantage of formal specification languages is that they are amenable to automatic

semantic and syntax analysis. These features increase correctness of formal specifications,

because it is possible to check completeness, ambiguity and some other features of created

specification. On the other hand, formal specification languages have some deficiencies, the

main of which is that formal specifications are cumbersome and not easy to write and

understand. These are the main reasons why formal specification languages are not widely

spread in software development industry. Well-known formal specification languages are Z,

VDL-SL, TROLL, OCL, and etc.

Definition 3: Semi-formal specification language is the language with formally defined

syntax, but not completely defined semantic. Usually such languages depend on data-flow

diagrams, entity-relationship diagrams, data dictionaries, finite state machines, or decision

tables.

 23

Thus, semi-formal specification languages are less strict than formal. They have long been

generally recognised as an improvement over purely natural language specification. These

languages represent an attempt to solve some of the ambiguity and completeness problems of

natural language specifications by forcing the system behaviour description to be made using a

more controlled syntax. Well-known semi-formal specification language is UML, SADT, and

etc.

Recently an attempt to combine strengths of formal and semi-formal specification languages

was made. A new group of languages has appeared - lightweight formal specification languages

[Jac99], [Jac02], [JW96].

Definition 4: Lightweight formal specification language is the specification language with

partially formal syntax and greatly simplified semantics.

Lightweight formal specification language like formal specification languages has

vocabulary and formally defined semantics. The main difference is that syntax of such languages

is less formal and semantics is simplified. The idea of simplification is related to partial

specification. In other words, using these languages only some aspects of specified system are

described formally, while other aspects remain semi-formal. These aspects of the system are not

described completely, and for their complete specification it is necessary to write separate

specifications. The main elements of lightweight approach are partiality in language, partiality in

modelling, partial analysis, and partiality in composition [JW96]. A lightweight approach, in

comparison to the traditional approach, lacks power of expression and breadth of coverage. On

the other hand, it makes software development process more efficient and reduces the cost of

creation and usage of software. Well-known lightweight formal specification language is Alloy

[Jac02].

2.2. The Notion of Quality

The ISO 8402 standard [ISO94] defines quality as a “totality of characteristics of an entity

that bear on its ability to satisfy stated or implied needs”. In contractual environment needs are

specified whereas in other environments implied needs should be identified and defined.

Following this approach, the quality of a specification language is defined in the following way.

Definition 5: Specification language quality is the totality of features and characteristics of

this language that bear on its ability to satisfy stated or implied needs [CLV02].

The ISO/IEC 9126 standard [ISO91] distinguishes three kinds of quality: internal quality,

external quality and quality in use. Internal quality describes the level, to which the product was

developed following “good engineering” practices. In other words, it evaluates the product from

the point of view of developers. External quality describes the level, to which the product

 24

correctly provides the expected services. It treats the product as “black box” and evaluates it

from the point of view of potential users. Quality in use describes the level, to which a product

used by particular users meets their needs to achieve some specified goals. External quality of

software in many aspects depends on its internal quality. Sometimes it is not simple to

distinguish external quality and internal quality at all. Although in the field of software

engineering such distinction is deeply reasonable, because “good engineering” practices play in

this field very important role, in many other fields, including specification languages, the

situation is slightly different. To distinguish internal and external quality of a specification

language is very difficult and sometimes even impossible. In addition, there are no serious

reasons to make such distinction for specification languages. Thus, in this dissertation we will

distinguish only two kinds of quality: internal quality and quality in use and use the term

“internal quality” to address both internal and external quality.

Definition 6: Internal quality of a specification language is the quality of a specification

language itself, and it is described by some value obtained from measurements.

Definition 7: Quality in use of a specification language describes the extent to which a

language used by specified users meets their needs to achieve specified goals in specified context

of use.

Thus, internal quality is the descriptive characteristic of a language as a product

independently from any context of use, while quality in use is evaluative characteristic of a

language obtained by making a judgment based on criteria that determine the worthiness of a

language for the particular project.

2.3. Hypotheses

The dissertation aims to prove the following hypotheses:

Hypothesis 1: Internal quality should be described by the taxonomy of quality

characteristics.

Internal quality is described by a set of quality characteristics. Usually a set of characteristics

forms some hierarchical taxonomy, in which top-level characteristics may be refined into

multiple levels of sub-characteristics. Every characteristic should be described in terms of the

linguistic system, defining a formal structure beyond the language, and in terms of the

representation system, defining forms of representation of its constructs.

Hypothesis 2: Quality in use should be evaluated on the basis of internal quality, thus the

taxonomy of quality characteristics should be seen as a part of a quality model.

Quality is use should be evaluated according to the needs of the particular project, for which

the high-level quality goals should be identified and quality model should be constructed. It can

 25

be done only after evaluation of specification language internal quality independently from any

context of use. The taxonomy of quality characteristics should be included into quality model,

and quality characteristics should be related to quality goals. Because for the evaluation of

quality in use not all internal quality characteristics may be important for the particular project,

in the particular quality model only some part of the taxonomy may be used.

Hypothesis 3: The values of elementary characteristics of internal quality should be

described as expected frequencies with which corresponding feature of a language L will be

successfully used to specify any possible Software System development project.

Because it is impossible to measure quality characteristics using some kind of quantitative

measurement units (such as the units used to measure distance or mass), it is supposed that

internal quality of specification language L should be described as expected frequency with

which corresponding feature of a language L will be successfully used to specify the current

population of Software Systems. In other words, expected frequency can be considered as the

frequency, with which the specification language will satisfy the needs of any possible Software

System development project regardless of its purpose, complexity, size and other specifics. The

value of the expected frequency should belong to the interval [0,1].

Hypothesis 4: Elementary characteristics of internal quality should be evaluated using the

library of evaluation test examples (representative examples), developed using sampling and

domain engineering theory methods.

To develop a library of evaluation test examples (representative examples), first of all,

taxonomy of Software Systems should be proposed. Then, for each category of Software

Systems that belong to this taxonomy the particular library of representative examples should be

developed combining non-statistical sampling, domain engineering, and testing theory methods.

These examples should be used as evaluation test examples to test the sufficiency of

specification language L for specification of requirements of any Software System from the

current population of Software Systems. For this aim we propose to use a multi-stage sampling

scheme, which provides that all theoretically possible Software Systems should be first divided

into categories of systems that meet principally different requirements, then from the population

of really existing systems a sample for each category of Software Systems should be chosen via

purposive judgment sampling. After this using domain analysis methods for each sample feature

model should be developed. These models should be used to develop a number of representative

examples (evaluation test examples). Further quality evaluation tests to test functionality,

reliability, efficiency and usability of specification languages should be developed. It should be

noted that for every internal quality sub-characteristic (functionality, reliability, efficiency, and

 26

usability) the representative test examples and quality evaluation tests should be developed and

adapted separately.

Hypothesis 5: The values of elementary characteristics of internal quality should be obtained

using suites of quality evaluation tests, developed using testing theory methods.

Suite of quality evaluation tests should be a collection of tests developed to test some top-

level group of the characteristics of internal quality (functionality, reliability, efficiency, and

usability) for the particular specification language using the same testing infrastructure. It should

consist of quality evaluation tests, from which each is developed to test the different category of

Software Systems. In order to minimise prior arrangement efforts, the suite should be developed

for the particular collection of tools required supporting the testing (i.e. for a particular testing

infrastructure).

After development of suites of quality evaluation tests the results of testing should be

interpreted, and the values of quality characteristics should be calculated.

Hypothesis 6: The values of elementary characteristics of internal quality should be

aggregated up to a single value, describing the internal quality of the whole language L.

To evaluate internal quality the values of the lower-level sub-characteristics of the taxonomy

should be aggregated into characteristics of the higher-level. This process should be executed

using aggregation techniques, and it should be repeated until finally the internal quality is

described at the higher level by single aggregated characteristic.

2.4. The Main Quality Evaluation Scheme

According to [ISO99] “quality evaluation is a systematic examination of the extent to which

an entity (part, product, service or organisation) is capable of meeting specified requirements”.

The main quality evaluation scheme is presented in Figure 1.

It is proposed to describe internal quality of a specification language by the taxonomy of

quality characteristics, which has five levels and includes 34 elementary characteristics. This

proposal has been based on the careful conceptual analysis of wide spectrum of specification

languages, including UML, Z, VDL, TROLL, and Alloy, as well as on the analysis of quality

characteristics that are used to describe quality of similar artefacts, such as programming

languages and conceptual models. The proposed taxonomy is based on the classification scheme

that is similar to the one described by ISO/IEC 9126 standard [ISO91]. This taxonomy provides

that the quality of a specification language can be characterised by its functionality, reliability,

usability, and efficiency. However, these characteristics are decomposed further in the different

way than in ISO/IEC 9126.

 27

Figure 1. The main quality evaluation scheme

It is proposed to express the values of characteristics of internal quality as expected

frequencies with which corresponding feature of a language L will be successfully used to

specify the current population of Software Systems, and to evaluate expected frequencies using

the library of evaluation test examples (representative examples).

To evaluate internal quality, different groups of related elementary characteristics are

aggregated into characteristics of higher level and this process is repeated until finally the quality

is described at the higher level by single aggregated characteristic. For this aim it is proposed to

use methods for aggregation of the values of characteristics of internal quality. Using these

methods the values of elementary characteristics can be aggregated up to a single value,

describing the internal quality of the whole language L.

It is also proposed how to evaluate the quality in use of the IS specification language L on

the basis of its internal quality. Quality in use is evaluated for a given Software System

development project P and describes the degree of appropriateness of the language L for the

project P. In order to evaluate quality in use, the quality goals of the project P must be specified.

 28

3. Comparative Analysis of Approaches to Evaluate Quality of

Specification Languages

The main results of this section are published in papers [GC03a], [GC03b], [GC03c].

3.1. Aims and Objectives

The aim of comparative analysis is to analyse and compare approaches to evaluate quality of

specification languages. Comparative analysis should help to determine how by combination of

the strengths of the analysed approaches and by eliminating of their weaknesses to develop an

approach to evaluate quality of specification languages.

The objectives of comparative analysis are the following:

• to identify strengths and weaknesses of the analysed approaches to evaluate quality of

specification languages;

• to identify evaluation criteria, which should be used during comparative analysis;

• to compare the analysed approaches by their commonalities and differences;

• to evaluate the results of comparison and make conclusions about appropriateness of the

analysed approaches to evaluate quality of specification languages.

3.2. Subject of the Comparative Analysis

The subject of the comparative analysis is approaches to evaluate quality of specification

languages. The following approaches are analysed:

• Bunge ontology based approach and its extension;

• Chisholm ontology based approach;

• ontological categories based approach;

• quality model based approach.

These approaches are compared using in this dissertation proposed methodology of

comparative analysis, which combines the particular qualitative comparative analysis methods.

3.3. Main Principles of the Comparative Analysis

Comparative analysis is the method of theoretical research that is used practically in all

sciences. Every science uses different comparative analysis methods and has specific collection

of analysis tools. Generally, comparative analysis is used to determine commonalities and

differences between two or more analysed phenomena. Commonalities and differences between

compared phenomena are separated considering goals of comparative analysis. Usually the aim

of comparative analysis is to find the best and the most appropriate instances of the particular

phenomena class. Besides, during comparative analysis not only differences between instances

 29

are determined and compared, but also an effort to explain their causes and influence on

analysed phenomena class is made.

The ultimate goal of comparative analysis is to structure and classify analysed phenomena.

Both qualitative and quantitative methods of comparative analysis can be used for this aim.

Quantitative methods are precise, but frequently they can’t be applied in practice, because it is

impossible to collect all necessary data. Thus, in this dissertation attention is paid mostly to

qualitative methods of comparative analysis.

Extremely important in comparative analysis are so called essential elements of analysed

phenomenon. These are the elements that determine the nature of phenomenon by making

influence on its main features directly or indirectly. The other elements of analysed phenomenon

are called secondary. They make influence only on some individual aspects of the particular

phenomenon. In other words, essential elements are associated to phenomenon commonalities,

secondary – to phenomenon differences. Essential elements are more important than secondary,

besides usually they are easier to understand and learn. Thus, during comparison of phenomena

first it is necessary to determine and compare their essential elements and only then analyse their

secondary elements. It should be noticed that essential elements usually are related to each other

by dependencies (relations) or, in other words, they can be described using some pattern. Pattern

matching is one of the most important qualitative methods of comparative analysis. It can be

done in many different ways and using different methods. One of these methods is so called

normative comparison, when phenomena are compared to particular standard or norm.

Generally comparative analysis is accomplished in three steps (see Figure 2).

1. Define analysis

goals and output

2. Define the class of

analysed phenomena

3. Choose qualitative

method(s) and evaluate

each compared

phenomenon

Figure 2. Steps of comparative analysis

In the first step it is necessary to determine what the goals of comparative analysis are and

what results are expected after doing it. In the second step the class of analysed phenomenon is

defined. Finally, in the third step qualitative method (or several methods) of comparative

analysis is chosen and each compared phenomenon is evaluated (using particular evaluation

 30

criteria and methodology of comparison), in other words, differences between phenomena,

positive and negative influence of these differences on compared phenomena are identified.

3.4. Qualitative Comparative Analysis Methods

Qualitative comparative analysis methods can be defined as the ways of collecting

information about different phenomena and identification of differences between these

phenomena. As a rule, information gathered using qualitative comparative analysis methods is

not numerically measurable. The following comparative analysis methods can be found in the

literature:

• method of conventional comparison;

• method of agreement and method of difference;

• method of conceptual analysis based comparison;

• method of normative comparison;

• method of ontological categories based comparison;

• method of quality model based comparison.

Method of conventional comparison has no common comparison framework. Using this

method researchers analyse strengths and weaknesses of the chosen phenomena. This is done

subjectively without using any objective evaluation criteria. For example, method of

conventional comparison is used in [Jac99], where specification languages Alloy [Jac02], UML

and Z are evaluated and compared. The main idea of this work is to use attestation techniques or,

in other words, to construct a library of characteristic situations that should be created and used

to evaluate quality of a specification language. For this aim representative fragment of social

reality is conceptualised in different ways (using different specification languages). Given

specifications are evaluated to determine strengths and weaknesses of compared specification

languages.

Such a comparison method seems to be well grounded (it is based on the methods of

controlled experiments), but it cannot be considered objective, because the fragment of social

reality is constructed using subjective criteria. Besides, no goals or criteria of comparison are

used. Thus, it is not clear what result is expected specifying some social reality fragment using

different specification languages.

Method of agreement and method of difference have been proposed by English philosopher

John Stuart Mill [Mil02]. These methods are intended to shed light on issues of causation, which

refers to the set of all particular "causal" or "cause-and-effect" relations between instances of the

phenomena. During comparison by agreements one phenomenon is compared to the other in

order to find their commonalities. In the process of comparison by differences it is attempted to

 31

determine how one phenomenon differs from the other. Then, comparison table is filled in and

used to compare different phenomena by their commonalities and differences.

The method of agreement and the method of difference can be used, for example, to identify

two similar or two different Software or Information Systems. During identification of similar

systems an assumption that systems are identical by essential elements is made, while during

identification of different systems their differences are compared. Identification of differences

results in secondary elements of analysed systems.

Both method of agreement and method of difference have some serious weaknesses. First of

all, it is not clear if in practice it is really possible to determine the best (most appropriate)

features of phenomena only by separating and comparing their commonalities and differences.

The other deficiency is that no distinction is made between contingent and necessary features of

phenomenon. This means that separate cases can be not properly generalised into common case.

And, finally, if some hypothesis is stated and it affirming case is found, then, in general, that

does not prove anything. Thus, both method of agreement and method of difference are not

subjective enough.

More objective method of comparative analysis is the method of conceptual analysis based

comparison. It can be used, for example, to compare Software Systems design methodologies

[Son92], [SO91], [SO92]. The main idea of conceptual analysis based comparison is to separate

components of each phenomenon and compare for the same purposes used ones. Components

should be formalised before comparison. Formalising is considered to be conceptual modelling

of a component, when model is specified using some semi-formal modelling language.

Phenomena should be modelled using structural models that represent relationships between

components of the compared phenomena. Separation and classification of components is based

on their functional purposes criteria.

The main strength of the method of conceptual analysis based comparison is that formal

basis of comparison is proposed that can be used repeatedly to satisfy in objectivity of obtained

results. However, this method also has some weaknesses. First of all, in practice separation of

components is rather complicated task, because a great variety of concepts exists. Each

compared phenomenon may be described using different terms. That is why it is almost

impossible to identify what characterises the particular component of one phenomenon, what is

the equivalent of this component in the other phenomenon, and what is the difference between

these two components. To solve these problems it is necessary to have a consistent system of

concepts, formulated using the same conceptualisation way. In other words, it is necessary to

have the ontology of the analysed phenomena. Second, functional purposes criteria are not

enough for separation of components. Using this criteria it is possible to identify what

 32

components each phenomenon has and what is their functionality, but the context of the solved

problem (the particular project) is ignored at all. Third, results of comparison may have

deviations generated by shortcomings of the particular modelling formalism.

Method of normative comparison makes comparison of phenomena even more objective than

method of conceptual analysis based comparison. The main idea is to choose “the best” way of

social reality conceptualisation, consider it to be a norm, and compare all analysed phenomena to

this norm.

If A = {ai} is the set of norm features, B = {bi} is the set of analysed phenomenon features,

and R ⊂ A X B is the collation relation, then the features of the analysed phenomena can be

identified as follows:

• Incompleteness: it is identified what are the features that are available in the norm, but

the analysed phenomenon does not have them, that is: ∃x∀y((x∈A)&(y∈B)&¬R(x, y));

• Enrichment: it is identified by which in norm available features it is possible to enrich

the analysed phenomenon that does not have such features;

• Overload: it is identified what are the features that are available in the norm, but in the

analysed phenomenon they are expressed as only one feature, that is: ∃∃∃∃x1,x2,y

((x1∈A)&(x2∈A)&(y∈B)&R(x1,y)&R(x2, y));

• Redundancy: it is identified what are the features that the analysed phenomenon has, but

in the norm they are expressed as only one feature, that is:

∃x,y1,y2((x∈A)&(y1∈B)&(y2∈B)&R(x,y1)&R(x, y2));

• Excess: it is identified what are the features that are not available in the norm, but the

analysed phenomenon has them, that is: ∃x∀y((x∈A)&(y∈B) &¬R(x, y)).

The method of normative analysis is used, for example, to do ontological analysis of

specification languages. Two normative ontologies have been proposed – Bunge (see sections

3.6, 3.7) and Chisholm (see section 3.8).

In the method of ontological categories based comparison it is refused to use normative

ontology. Instead of this it is proposed to use the comparative framework that classifies

phenomena according to their ontological categories supported by a phenomenon in the selected

system of ontologies. The analysed phenomena are evaluated using qualitative scale and the

formula to calculate the overall evaluation of each phenomenon. This formula depends on the

ontological categories that are supported by the particular phenomena.

The method of ontological categories is used, for example, to evaluate and compare

information modelling techniques (see section 3.9).

 33

Method of quality model based comparison has common comparison framework, based on

quality model construction. Quality model is used to evaluate quality characteristics of the

particular phenomena according to in the quality model specified quality goals. To evaluate

quality characteristics qualitative or quantitative evaluation scale should be developed.

The most typical example of quality model is used in specification languages quality

evaluation approach, based on quality model construction (see section 3.10).

3.5. Methodology of Comparative Analysis

To compare known approaches to evaluate quality of specification languages it is proposed

to use the methodology that combines the following qualitative analysis methods:

• method of conceptual analysis based comparison;

• method of agreement and method of difference.

Table 1. The main components of analysed approaches

Components Approach Method (s)
Goals Criteria Quality

attributes
Metric Scale Framework

Bunge ontology
based approach

[Available|

Partially

available|

Not

available]

[Available|

Partially

available|

Not

available]

[Available|

Partially

available|

Not

available]

[Available|

Partially

available|

Not

available]

[Available|

Partially

available|

Not

available]

[Available|

Partially

available|

Not

available]

Extension of
Bunge ontology
based approach

Method of
normative
comparison

Method of
normative
comparison

Chisholm
ontology based
approach

Method of
agreement and
method of
difference

Ontological
categories based
approach

Method of
ontological
categories based
comparison

Quality model
based approach

Method of
quality model
based
comparison

Method of conceptual analysis based comparison is used to identify the main components

(Table 1) of analysed approaches to evaluate quality of specification languages. The components

of the approaches are separated according to the following criteria:

• possibility to consider the particular project context by stating quality evaluation goals;

• possibility to define quality evaluation criteria;

 34

• possibility to separate and evaluate the particular quality attributes (quality characteristics

or quality features that describe different aspects and/or abilities of evaluated

specification language);

• availability of metric (various parameters or ways of looking at a process that is to be

measured);

• possibility to use qualitative measurement scale;

• availability of the theoretically-grounded framework of evaluation.

Method of agreement and method of difference provides the possibility to compare different

phenomena by their commonalities and differences. This is done by filling in the comparison

table (Table 1) and comparing the components by availability of the particular component: is the

component Available, Not available or Partially available in the particular approach.

3.6. Bunge Ontology Based Approach

3.6.1. Bunge’s Ontology

Already in 1977 an attempt to evaluate and compare specification languages was made

[PT77]. Semi-formal graphical specification languages were divided into two groups: dataflow-

based languages and data structure-based ones. In other words, in both cases particular

ontological assumptions about the nature of social reality were made. In the first case social

reality was conceptualised using data store, data flow and data flow transforming process

categories, in the second case data structure and structure creating process categories were used.

So already comparing the first specification languages the main problem of such comparison can

be noticed. The problem is how to compare specification languages, which use different ways of

social reality categorisation. In other words, problems emerge comparing languages, which

conceptualise modelled social reality in completely different ways.

The problem of social reality conceptualisation is very important. Different evaluation

criteria can be used: clarity of conceptualisation (how much intellectual effort is necessary to

understand a specification), expressive power of the system of categories (is it possible to specify

all necessary aspects of social reality), semantic power of the system of categories (what is the

size of specification), selective power of the system of categories (what is the degree of

distinguishing details) and others. These criteria can conflict with each other, so everything

depends on the priority that is set for them in the particular case. An attempt to evaluate different

ways of social reality conceptualisation using various criteria is made in the method of

conventional comparison. However, as it was mentioned in 3.4 this method is very subjective.

Subjectivity can be eliminated using some kind of standard or norm. Already in 1977

philosopher Mario Bunge has proposed ontology [Bun77], which can be used as standard or

 35

normative one. In other words, quality of specification language can be evaluated comparing

constructs of this language to some collection of “standard” constructs.

The main idea of Bunge’s ontology is the assumption that social reality can be

conceptualised using category of “thing”. In other words, in Bunge’s ontology the real world is

composed of things. The notion of thing is based on the concept of substantion proposed by

Aristotle. According to this concept things are material, existing independently of the observer

and saving their identity while changes are made. Things can be simple and composite, made

up of simple things. Simple things are called components of some composite thing. Every thing

has some particular properties. Outside or inside events, related to a thing, and laws, changing

states of a thing, are called properties of this thing. Generally, properties of things are divided

into four groups: intrinsic, mutual, emergent and hereditary properties. Group of intrinsic

properties has properties of individual things, group of mutual properties includes properties of

two or more things (for example, dependencies and relations between the things), group of

emergent properties has properties of composite things, but not of their components, group of

hereditary properties has properties of composite things, which they inherit from their

components. Sum of the properties of a thing at some moment of time is called its state. Class is

a "set of things that can be defined via their possessing a particular set of properties” [WZ96].

Things are particular objects in Bunge’s ontology. The main property of every thing is its

existence. Existing thing is bounded to it surrounding things. So things have not only structure,

but also environment. Environment of a thing is made up of things, to which this thing is

bounded. Neither things nor systems can be analysed ignoring their environment. Relations of a

thing with environment form external structure of this thing. It should be noticed, that relations

belong to the group of mutual properties. So, intrinsic and mutual properties form internal and

external structure of a thing accordingly. Relations can be bonding or non-bonding. Bonding

relations have influence on states of bound things, while non-bonding relations do not have any

influence on states. They connect things with frames of reference. For example, time and space

relations are non-bonding. Space relations in Bunge’s ontology are treated as mutual properties

of a thing. Space is considered to be a combination of things connected by relations. In other

words, space-forming things are outlined, and space determines spatial properties of these things.

Such concept of space is constructive enough, but is hardly compatible with everyday notion of

space as abstract thing limited by some restrictions. In everyday life space category defines

where things exist and events take place. According to Bunge every collection of things, for

example, constellation of stars or alley of trees can be treated as space.

System is defined as composite thing, which components are connected by bonds of one or

different types. System may at the same time be a component thing of a larger system. This

 36

establishes a part-of relation over things. If components are connected not by bonds, but by other

relations, then we have not system but aggregate. Ontology defines two classes of problems,

connected to systems – analysis and synthesis. Analysis problem is that having a system and

knowing its composition, environment and structure, it is necessary to determine behaviour of

this system. It should be reminded, that the structure of a system is the combination of all its

relations (internal and external), the composition has the things, from which a system is

composed, and environment includes all things, to which the analysed thing is bounded.

Synthesis problem is inversed: having behaviour of a system it is necessary to determine what

kind of system can generate such behaviour. In other words, synthesis is interpreted as

development of a system having its requirements specification, and analysis can be treated as

evaluation of already developed system. From the notion of synthesis very important conclusion

can be made – properties of a thing and a thing itself may be specified separately. Properties of

things are defined by requirement specification, and a thing itself is defined by development

specification. Things in Bunge’s ontology are interpreted as material things having material

properties, so separation of things and properties also can have another meaning: while

properties of a thing change, the thing itself does not change. For example, requirements

specification is transformed into development specification, and the latter into working system,

but in all three cases we have the same thing (the same system).

Cathegories

Fundamental Derivative

Things Properties Classes Systems

Simple Composite

Figure 3. Bunge categories

Things, properties, systems and classes are meta-constructs, "that is, fundamental elements in

modelling systems" [WSW99]. Things and properties can be considered as fundamental Bunge

categories, while classes and systems are derived Bunge categories (Figure 3).

Bunge’s ontology is extensive and it covers static structure as well as dynamic behaviour. It

belongs to the group of integrated pluralism ontologies [Joh98]. In other words, variety and unity

of social reality is announced at the same time. According to Bunge theses, social reality consists

of multiple layers. The main features of such system of multiple layers are:

• every object (thing) of social reality belongs to at most one layer;

 37

• system of multiple layers is evolving: new layers, properties and laws emerge, and some

old properties are lost;

• all new layers are connected to old ones, and it makes their existence continuous;

• every layer is stable and autonomous, if it is analysed inside its boundaries;

• every event depends on laws, characterising the layer, to which it belongs, and the related

layers.

Bunge epistemology can be derived from this system of multiple layers. According to this

epistemology layers can represent knowledge about social reality. Every new science, in which

social reality is analysed, has its specific objects of research and specific methods of research.

However ideas from origin sciences are kept. Deeper understanding of knowledge is impossible

without analysis of related layers. Every new science, in which social reality is analysed, is

independent and stable at some extent. Every system or event can be described, explained and

forecasted in terms of to it related layers, and it isn’t necessary to analyse all system of multiple

layers. This epistemology should be considered during construction of methodologies of social

reality analysis, and methodologies that are used during creation of Information or Software

Systems.

Bunge’s ontology is widely used in different scientific areas, including informatics. For

instance, UML specification language is based on Bunge’s ontology. Using Bunge’s ontology

for Information or Software System, system is treated as the model of social reality. This model

is constructed according to some meta-physical theory of social reality, i.e. to Bunge’s ontology.

3.6.2. Bunge-Wand-Weber (BWW) models

In works [WSW99], [WW96], [WW89a], [WW89b], [WW90a], [WW90b], [WW91],

[WW93], [WW95], [CW98] Bunge’s ontology is used to evaluate specification languages

(modelling grammars in the terminology of Wand and Weber) and specifications (scripts in the

terminology of Wand and Weber). On the basis of Bunge’s ontology normative method of

comparison, called Bunge, Wand and Weber (BWW) set of models, is constructed.

Figure 4. BWW models

 38

Things and properties are the only fundamental meta-constructs of the BWW models that are

specific to static structure. Hence, systems and classes are derived from, and only from, things

and properties, which are therefore the basic static building blocks of the real world.

Consequentially, the BWW models assume that systems and classes are "out there" in the real

world. Applied to analysis of domain of discourse, this implies that these systems should be

represented as validly and completely as possible, and that a discourse analysis method should

ideally support exploration of relations within and between each of the meta-constructs as

systematically as possible.

BWW family of models includes three models: representation model, state-tracking model

(STM), and good decomposition model (GDM) (Figure 4).

STM and GDM are intended to use to characterise the specifications of Information or

Software Systems. STM identifies the necessary and sufficient conditions that a specification

must satisfy in order to grasp the real world system (organisation’s social reality) it is supposed

to describe. The good decomposition model focuses on the problem of communication of the

meaning of the real world system to the users. It is supposed that specifications, which possess

certain types of attributes, better communicate the meaning of real world [CLV02], [CW98].

Representation model is thought as a kind of conceptualisation that can be used to evaluate

ontological completeness [CW98] and ontological clarity of a specification language. The

ontological completeness is defined as the ability of the language and associated reasoning

system to represent all phenomenon of interest in the domain of discourse. In other words,

ontological completeness defines both expressive power and selective power of a specification

language. A system is ontologically incomplete if it is not completely specified, so a system

having, for example, only an ERA conceptual model would not be ontologically complete

[CW98], because using only this language it is impossible to specify all aspects of a social reality

in appropriate degree of detail. Ontological clarity is a degree, in which for specification

language conceptualisation used categories can be compared to category system of

representation model, or Bunge’s ontology.

It is supposed that only essential aspects (so called deep structures) of Information or

Software System should be specified. Essential aspects of a system are those that represent the

meaning of the real world system. Technological and implementation aspects (so called surface

structures) of a system are supposed to be not essential, because those aspects can be

implemented automatically using appropriate CAiSE tools [CW98]. Consequently, we should

specify not Information or Software System itself but describe the social reality [CW98].

To serve as a theoretical basis, on which the specification languages can be evaluated from

the point of view of ontological completeness and ontological clarity, BWW representation

 39

model should categorise all possible aspects of the social reality, and should allow checking

whether the specification is at least potentially complete (logical or computational

completeness). The claim, that the BWW representation model fulfils this requirement, is

fundamental. To accept BWW approach one should suppose that there exists a universal

conceptualisation of any social reality, which is language neutral and independent of any

observer’s interest in it [CW98].

BWW models where used to evaluate ontological completeness and ontological clarity of

different specification languages [GR99], [GR00a], [GR00b], [RG99], [RG02], [WZ96], [JD01],

[WW89a], [WW95], [Web97], [PW97], [WSW99]. The main evaluation criterion is based on

assumption that specification language should be appropriate to specify all social reality’s things,

in which Information or Software System users are interested. In other cases specification

language is considered to be not ontologically complete. Ontological completeness of a

specification language is evaluated comparing constructions of BWW representation model to

constructions of this language. It is required that every construction of BWW model could be

compared to at least one construction of the evaluated specification language. If such comparison

is not possible then the specification language is considered to be not ontologically complete or

incomplete. Ontological clarity of the specification language is violated, if it is determined that:

• different constructions of BWW representation model can be compared to the same

construction of evaluated specification language (this is called construct overload);

• one construction of BWW representation model can be compared to different

constructions of evaluated specification language (this is called construct redundancy);

• BWW representation model has no constructions that can be compared to some

construction of evaluated specification language (this is called construct excess).

So, in BWW models particular specification language is evaluated comparing constructions

of BWW representation model to constructions of evaluated specification language. In other

words, method of comparison with a norm is used. BWW model is proclaimed to be the norm,

and other specification languages are evaluated comparing them to this norm.

BWW models have been applied for numerous purposes, including evaluation and analyses

of:

• information Systems design methods [Wan88];

• Dataflow diagrams and ER diagrams [WW89],

• Systems decomposition [PW89],

• NIAM [WZ96], and

• Data quality dimensions [WW96].

 40

3.6.3. Guizzardi Framework

In [Gui05] it is proposed to merge BWW models with in [Gur98], [Gur99] presented

framework into one single evaluation framework. In [Gur98], [Gur99] the author presents a

framework to formally evaluate the relation between the properties of a specification language

representation system and the properties of the domain entities they represent. According to him,

representations are more or less effective depending on the level of homomorphism between the

algebras used to represent what he terms the representing and the represented world. In [Gur99]

four properties are defined, which are required to hold for a homomorphic correlation to be an

isomorphism: lucidity, soundness, laconicity, and completeness. In [Gui05] these properties are

combined with in [WW89a], [WW95], [Web97], [PW97], [WSW99] proposed evaluation of

specification languages by construct overload, construct redundancy, and construct excess.

Guizzardi [Gui05] focuses our evaluation on the level of the system of representations by

discussing the relation between a particular specification S (representing world in terms of Gurr)

and a particular abstraction of a portion of reality, i.e., a particular model M (represented world

in terms of Gurr). The original proposal of Wand & Weber is extended in the sense that by

considering desirable properties of the mapping of individual diagrams onto what they represent,

it is possible to account for desirable properties of the modelling languages used to produce these

diagrams. The following properties form in [Gui05] proposed framework:

• Lucidity and construct overload. A specification S is called lucid with respect to a

model M if a (representation) mapping from M to S is injective. A mapping between

M and S is injective iff every entity in the specification S represents at most one

(although perhaps none) entity of the model M.

• Soundness and construct excess. A specification S is called sound with respect to a

model M if a (representation) mapping from M to S is surjective. A representation

mapping from M to S is surjective iff the corresponding interpretation mapping from

S and M is total, i.e. iff every entity in the specification S represents at least one

entity of the model M (although perhaps several).

• Laconicity and construct redundancy. Specification S is called laconic with respect

to a M if the interpretation mapping from S to M is injective, i.e. iff every entity in

the model M is represented by at most one (although perhaps none) entity in the

representation S.

• Completeness. A specification S is called complete with respect to a model M if an

interpretation mapping from S to M is surjective. An interpretation mapping from S

to M is surjective iff the corresponding representation mapping from M to S is total,

 41

i.e., iff every entity in a model (instance of the domain conceptualisation) is

represented by at least one (although perhaps many) entity in the representation S.

Let’s discuss every property shortly.

The notion of lucidity at the level of individual diagrams is strongly related to the notion of

ontological clarity at the language level as discussed in [Web97], [WW96], [WW89a]. In

[Web97], the author states that the ontological clarity of a modelling grammar is undermined by

what they call construct overload: “construct overload occurs when a single grammatical

construct can stand for two or more ontological constructs, The grammatical construct is

overloaded because it is being used to do more than on job.”

The notions of lucidity and ontological clarity albeit related are not identical. We say that a

language (system of representation) is non-lucid according to a conceptualisation if there is a

construct of the language, which is nonlucid, i.e., a construct that when used in a specification of

a model (instantiation of this conceptualisation) stands for more than one entity of the

represented model. A construct can be overloaded in the language level, i.e. it can be used to

represent different concepts, but every manifestation of this construct in individual specifications

is used to represent only one of the possible concepts [Gui05]. Thus, in ideal case a specification

language should not contain construct overload and every instance of a construct of this language

should represent only one individual of the represented domain abstraction.

Unsoundness at the level of individual specifications is strongly related to unsoundness at

language level, a property that is termed construct excess by Weber: “construct excess occurs

when a grammatical construct does not map onto an ontological construct. [Web97].

Although construct excess can result in the creation of unsound specifications, soundness at

the language level does not prohibit the creation of unsound specifications. According to

[Web97], users of a specification language must be able to make a clear link between a construct

and its interpretation in terms of domain concepts. Otherwise, they will be unable to articulate

precisely the meaning of the specifications they generate using the language [Gui05]. Therefore,

a specification language should not contain construct excess and every instance of its constructs

must represent an individual in the domain.

The notion of laconicity in the level of individual specifications is related to the notion of

construct redundancy in the language level in [Web97]: “construct redundancy occurs when

more than one grammatical construct can be used to represent the same ontological construct.”

Despite of being related, laconicity and construct excess are two different (even opposite)

notions. On one hand, construct redundancy does not entail non-laconicity. For example, a

language can have two different constructs to represent the same concept. However, in every

situation the construct is used in particular specifications it only represents a single domain

 42

element. On the other hand, the lack of construct redundancy in a language does not prevent the

creation of non-laconic specifications in that language [Gui05]. In ideal case a specification

language should not contain construct redundancy, and elements in the represented domain

should be represented by at most one instance of the language constructs.

The notion of completeness at the level of individual specifications is related to the notion of

ontological expressiveness and, more specifically, completeness at the language level, which is

perhaps the most important property that should hold for a representation system. A specification

language is said to be complete if every concept in a domain conceptualisation is covered by at

least one construct of the language. Language incompleteness entails lack of expressivity, i.e.,

that there are phenomena in the considered domain (according to a domain conceptualisation)

that cannot be represented by the language. An incomplete specification language is bound to

produce incomplete specifications unless some existing construct is overloaded [Gui05]. Thus, a

specification language should be complete with respect to a domain conceptualisation and every

element in a domain abstraction (instance of this domain conceptualisation) must be represented

by an element of a specification built using this language.

3.6.4. Strengths and Weaknesses of Bunge Ontology Based Approach

A method of determining whether an Information of Software System development

environment is ontologically adequate is proposed in Bunge-Wand-Weber (BWW) models.

Taking the view that information is a representation of social reality, the state of a system is

considered to be a text, and the dynamics of the system is expressed by the dynamics of a text

editor. This view allows making use of a generalised ontology developed by Bunge to get clear

picture of the functions of Information or Software System, and therefore a set of criteria for

ontological adequacy. The value of these results is that they validate a large body of existing

Information and Software Systems. They also validate the basic approach used to construct them,

although proposing some improvements [CW98].

BWW models also have a number of weaknesses. First of all, according to the methodology,

proposed by Wand and Weber, it is required to accept that BWW ontology conceptualises all

aspects of social reality, and that this methodology is constructed in such way, that it should be

the most natural for every user, independently from his subjective thinking, interests and native

language. Although this requirement is fundamental, in works [WSW99], [WW96], [WW89a],

[WW89b], [WW90a], [WW90b], [WW91], [WW93], [WW95], [CW98] provided arguments are

not sufficient to ground it. This was noticed and by other authors [GR99], [GR00a], [GR00b]. In

their works it is stated, that possibly BWW ontology is overloaded by some unnecessary

constructions, because in none of the specification languages that have been analysed

corresponding constructions were met. Besides, some specification languages are used for

 43

specification of only some aspects of Information or Software System. In practice they are

combined with other specification languages, and the whole Information or Software System is

specified using collection of several languages. Collection is constructed according to principle

that specification languages that form it should overlap minimally from ontological point of view

[WZ96]. Thus, it has no sense to require that all collection forming languages should be

ontologically complete. On the other hand, ontology of BWW representation model clearly has

no some necessary constructions, for instance, it has no constructions for specifying of business

objectives, strategies, goals, or knowledge, which can be necessary for management modelling

[GR00a].

Second important weakness of suggested methodology is that quality of a specification

language is evaluated from two points of view – ontological completeness and ontological

clarity. It is supposed that specifying Information or Software System only ontological aspects of

social reality (deep structures) are essential. All other aspects are considered to be not essential,

technical (surface structures). However, it should be noted that most frequently Software System

implementation progresses though a number of intermediary steps. A step starts with a set of

statements representing the system design so far achieved. This set of statements is considered as

the specification for the current step. The resultant representation must admit dual interpretation:

as a partial implementation of the software system under development and as specification for

the next step. So, we have a chain of theories and models, each model being a theory for the next

step. It is also important, that each specification (except the final implementation) is incomplete.

Incompleteness reflects the fact that each level should provide design alternatives. Resultant

representation may differ in quite important aspects and it is impossible to choose the alternative

mechanically. The designer enriches each level of representation using his intuition, experience,

and knowledge. He defines a number of internal objects that quietly differs from external objects

described by domain theory. A software system has immediate access to its internal objects and,

consequently, can restructure and modify those objects. In other words, software system can be

designed to be self-structuring and self-modifying, however, the correct implementation of such

system is highly intellectual task. So, the assumption adopted in BWW approach that surface

structures are not essential, because those structures can be implemented automatically is weak-

grounded [CW98].

However, an attempt to solve problems of completeness and quality in development of

Information or Software Systems is made in BWW. Proposed categorisation of social reality is

useful, when it is necessary to outline aspects, by which specification languages should be

analysed and evaluated.

 44

3.7. Extension of Bunge Ontology Based Approach

3.7.1. Extension of BWW Models

In [Opd97] it is proposed to extend category system of BWW representation model by two

new meta-constructs – perspective and conception (Figure 5):

Cathegories

Fundamental
Derivative

Things Properties Classes Systems

Simple Composite

Conceptions Perspectives

Figure 5. Extension of Bunge categories

Domain of discourse analysis involves numerous stakeholders and groups of stakeholders,

including future users, general and information technologies managers, as well as the analytics

themselves. Stakeholders or groups of stakeholders have different knowledge backgrounds,

values and beliefs, and hence different perspectives on the domain of discourse. It should be

noted that our world is shaped by our experience of it. We see different things, have different

perspectives, and structure the world differently, depending on interests, background, education

and culture. Complicating the picture further, individual stakeholders also take different roles in

different contexts and at different times, making even individual perspectives situation-

dependent.

Assuming a real world comprising only two fundamental meta-constructs, i.e., things with

properties, according to the BWW model, a perspective can only shape the real world in two

ways, by limiting

• the set of things in the problem domain that is part of the perspective, and

• the set of properties of these things that is part of the perspective.

Unsurprisingly, a perspective is therefore an excerpt of the problem domain. However, it also

has a more profound effect on how that excerpt is conceptualised. As the BWW model defines a

class as a set of things that possess a particular set of properties, and a perspective extracts only a

subset of properties of each thing, it follows that the same thing may belong to different classes

when perceived from different perspectives.

 45

Perspective is an independent from context and moment of time view of the user to analysed

social reality. In other words, this is a particular interpretation of social reality. According to

Bunge’s ontology social reality is constructed from particular properties having things. So

perspective can be created either considering not all things of social reality or considering not all

properties of these things.

When things are perceived from a perspective, they are therefore not perceived as the things

themselves, but as conceptions of the things. Conception is a perception of a thing from some

perspective, inheriting a subset of properties of that thing [Opd97]. In other words, when some

thing is seen from some perspective, then we have not the thing itself but only some conception

of it. A conception possesses a subset of the properties of the underlying thing, and is classified

according to those properties. Therefore, the perspective does not comprise things and their

properties, but a set of conceptions of things and their properties, and maybe also a set of class

definitions.

Since different conceptions of the same thing may possess different properties, and mutual

properties correspond to dependencies and relations between things, it follows that different

conceptions of the same thing correspond to different dependencies and relations between

conceptions. Hence, when perceived from different perspectives, the domain of discourse

appears as different systems of conceptions and properties. From different perspectives seen

social reality has different business aspects. In [Opd97] made propositions are based on

assumptions of radical constructivism philosophy. These assumptions contain thoughts that

social reality partially is mental construction of the observer. In other words, it is difficult to

determine at what extent the notion of social reality that is at the disposal of an analytic is

objective. That is why specifications of Information or Software Systems should be extended by

descriptions of perspectives and conceptions of things.

So, four meta-constructs - things, properties, conceptions and perspectives - are essential to

the understanding of multiple perspectives on a domain of discourse. While both perspectives

and things are fundamental according to this line of reasoning, conceptions emerged when things

with properties were perceived from a perspective. Hence, the corresponding meta-construct is

derived. Nevertheless, these two meta-constructs should be considered equally important.

In [Opd97] it is proposed to use by new constructs extended Bunge’s ontology to evaluate

not only specification languages, but also methods of domain of discourse analysis methods.

During analysis of social reality it is intended to understand it better by considering different

perspectives, thus domain of discourse analysis methods as well as specification languages can

be evaluated using category matrix of social reality conceptualisation (Table 2):

 46

Table 2. Category matrix

 Things Properties Conceptions Perspectives
Things
Properties
Conceptions
Perspectives

In Opdahl’s [Opd97] opinion, quality of a specification language can be evaluated answering

the following questions:

• What semantic quality categories can be expressed for a language?

• How easily can it be done?

Terms of conceptualisation categories are used to answer these questions. Thus, it is

convenient to form questions in the cells of the category matrix. Each cell represents an analysis

opportunity, which a particular method (or language) may or may not provide. According to

[Opd97], each cell raises the question:

"Whether the method given a particular element indicated by the cell's row identified by the

user explicitly and systematically explores relevant semantic quality features of that element

in relation to all the relevant identified and/or identifiable elements indicated by the cell's

column “.

For example:

1. For the "property" - column of the "thing" - row, this question is reduced to

"Whether the method (language), given a particular thing identified by the user, explicitly

and systematically explores relevant semantic quality features of that thing in relation to all

the relevant identified and/or identifiable properties [Opd97]”.

2. For the "thing" - column of the "thing" - row, this question is reduced to

"Whether the method (language), given a particular thing identified by the user, explicitly

and systematically explore all other relevant things in its context [Opd97]”.

Such questionnaire should be prepared for every quality characteristic of in [Opd97]

evaluated domain of discourse analysis method. Set of quality characteristics and its importance

depends on the particular project, so both the set of questionnaires and in questionnaires

presented questions also depend on the particular project. In [LSS94] it is stated that all quality

characteristics can be generalised to two characteristics - completeness and validity, and quality

can be analysed using only these characteristics. Thus, in [Opd97] quality is analysed using only

these two characteristics. The main attention in [Opd97] is paid to domain of discourse analysis

methods, leaving specification languages for future research. Four families of domain of

discourse analysis methods are compared: structured, object-oriented, faceted, and viewpoints-

based analysis. The intention behind such a comparison is to point out how and why existing

 47

methods and method families differ in how they support multiple perspectives. The underlying

assumption, which makes this effort worthwhile is that existing method families tend to focus

analysis on distinct, but complementary, elements of multi-perspective problem domains, and

that the quality of discourse analysis in many cases can be improved by integrating them.

3.7.2. Strengths and Weaknesses of the Extension of Bunge Ontology Based

Approach

Proposed framework extends the basic static structure of the BWW model with two meta-

constructs - conceptions and perspectives, which makes it applicable to the evaluation of

languages from different perspectives. Thus, the step towards evaluation of a specification

language according to project context is made. Besides, an attempt to propose qualitative scale is

made, however the scale is very imprecise, thus further research is needed.

Practical usage of the methodology has shown that it has several weaknesses. One of them is

so called transitive problem, connected with interrelations between in the questionnaires

proposed questions. For instance, while creating questionnaires for evaluation of specification

languages completeness it has become clear that some relations in the matrix (Table 2) implicate

the other relations. For example, if it is possible to specify explicitly relations between thing and

its conceptions and relations between conceptions and their properties, then it is possible to

specify explicitly relations between thing and its properties. In other words, the questionnaire is

not minimal, and the scope of the analysis can be broadened without any ground. Besides, it is

still not clear how to evaluate quality characteristics of a specification language using only

questionnaire.

The other problem is that really the same quality characteristics and their importance can be

treated differently at different moments of time. For instance, specification consistency with no

doubt is a good feature, but very often at the beginning of the project it can be even necessary to

work with contradictory specification leaving elimination of contradictions for future. This is not

considered in the proposed methodology.

The third problem is that although in [Opd97] proposed the methodology rejects the view of

method (language) evaluation using only two characteristics - ontological completeness and

ontological clarity, it still uses only one way of quality characteristics evaluation - ontological

analysis.

The fourth problem is that although the proposed framework extends the basic static structure

of the BWW model with conceptions and perspectives, which makes it applicable also to the

evaluation of multi-perspective methods, in comparison to the BWW model, it has less

developed and less firmly grounded foundation. Strengthening the foundation of the present

work can be done by further underpinning and clarifying the present platform, or, preferably, by

 48

aligning the present platform with an established and widely-accepted ontology, which takes into

account multiple perspectives.

Finally, the main problem of the methodology is that as BWW models it is also normative. In

other words, it is supposed that the best way of social reality conceptualisation exists, and all

other ways should be compared to it.

However, in spite of all the weaknesses the proposed methodology it proposes to evaluate a

specification language (or domain of discourse method) taking into account the context of the

particular project. During such evaluation strengths and weaknesses of each specification

language can be noticed, and its appropriateness for the particular project can be determined.

3.8. Chisholm Ontology Based Approach

3.8.1. Chisholm’s Ontology

In [MKK98] it is proposed to evaluate specification languages using not Bunge, but

Chisholm’s ontology [Ch92], [Ch96]. According to Chisholm’s ontology social reality is

constructed from entities. In this case the meaning of the term “entity” is not the same as it has in

informatics, for example, in data modelling. In Chisholm’s ontology, entities describe all things,

which make up the furniture of the world, with individuals representing significant substances

within that world. Chisholm divides the world of entities into contingent, which don’t have to

exist, and necessary entities, which always exist. The taxonomy of Chisholm categories of social

reality is shown in Figure 6.

Entity

Contingent
Necessary

States Individuals States Non - states

Events SubstancesBoundaries SubstancesAttributes

Figure 6. Chisholm categories

Contingent entities consist of individuals, and their states. Individuals can either be

substances, or boundaries. Boundaries are spatial elements, which define the bounds of

individual substances [MKK98]. Substances have much in common with entities (in the meaning

they are used in informatics). Substances can encompass physical things as well as legendary or

conceptual things. Necessary entities has no individuals, they encompass attributes, necessary

substances and their states. Attributes and necessary substances are examples of enduring thing

and do not pass away or come into being.

 49

Entities of both types have states, bet only for contingent entities events are described as

being a subcategory of states. Events are used for modelling dynamics of the system. Attributes

of necessary entities and substances, which they represent, cannot be neither created nor deleted.

Attributes are associated with entities by observers (analytics), according to their intentions and

intuition. If an observer believes that an individual has a particular attribute, and that belief is

shared, then that individual is said to exemplify that attribute. This is called the primacy of

intention, because intent, or belief, is the fundamental notion in the ontology. Intentions and

intuition are main Chisholm’s ontology categories. In other words, it is not necessary that an

entity has an attribute, but rather that someone believes that an entity has an attribute (an idea of

subjectivism). Some attributes are exemplified, others are not, and some cannot be exemplified.

We can represent both facts and propositions using attributes. Attributes may be simple or

compound. Compound attributes are formed through disjunctions and conjunctions of compound

or simple attributes. A conjunction of attributes conceptually entails, and exemplifies, each of the

attributes in the conjunction simultaneously. A disjunction of attributes exemplifies one attribute

or the other attribute but not both simultaneously [MKK98].

Relations exist between individuals. Relations are directed from one individual to another,

which means that they have a concrete direction. Relations are represented by an attribute, which

is an ordered pair of attributes (the attributes can be compound). Indeed, the attribute

representing the relation is said to order things. An attribute relating one thing to another consists

of an attribute, which uniquely describes the first individual, and an attribute, which uniquely

describes the second individual. Moreover, one can have dyadic (two term), triadic (three term),

tetradic (four term), and in general n-ary (n term) relations, but all of these relations can be

represented as a series of dyadic relations [MKK98].

Classes and sets are also represented in Chisholm’s ontology using attributes. There is a set

of axioms, which establish the fundamental properties of sets and classes in Chisholm’s

ontology.

Chisholm’s ontology also considers theology, perceptions, appearances, stories, times, and

events [MKK98].

3.8.2. S. Milton, E. Kazmierczak and C. Keen Methodology

In [MK99], [MKK98] it is proposed to use Chisholm’s ontology instead of Bunge’s

ontology, because, in authors’ opinion, it has the potential to be a unifying framework for data

models. Specification languages can be considered as modelling constructions of social reality.

Two different analytics for the same fragment of social reality can create different specifications.

One of them may use one tool, the other - another tool. Thus, in authors’ opinion languages

should be evaluated not from the viewpoint of its constructions, but from the point of its ability

 50

to specify a variety of situations of social reality. For this aim it is proposed to use method of

agreement and method of difference (see section 3.4). Using these methods, social cases are

analysed to identify similarities and differences between them, and to establish causal links that

exist in qualitative data. Further, the inferred causations may be extended to form limited

generalisations. For this aim a set of qualitative features and a set of characteristics should be

defined. Qualitative features are the elements of the situations, which the analytic believes to be

important in identification of differences between cases. Characteristics contain the set of

properties, which qualitative features may have in a particular situation. By determining

agreements the analytic intends to identify common characteristics of the particular outcome and

decide what qualitative features could cause that outcome. By determining differences the

analytic intends to check if at different outcomes for the same quality feature different

characteristics are observed. By application of the method of agreement and the method of

difference it is analysed what commonalities and what differences are observed for a

specification language comparing it to Chisholm’s ontology. Qualitative agreement/difference

scale of five levels is used to determine whether the specification language has a particular

qualitative feature [MKK98]. Qualitative features are summarised in Table 3:

Table 3. Qualitative features

Qualitative feature Qualitative summary of emphasis
Entity Support (ES) Model supports significant perceivable or observable

entities or things, which may be described in part
through the perception of attributes or properties.

Attribute Support (AS) Attributes must be modelled with one overriding
requirement – attributes are displayed by entities (and
perceived by observers), but must not be tightly coupled
with that entity.

Attribute Construction (AC) Attributes must be able to be formed through the
combination of other attributes. These combinations may
be conjunctive or disjunctive.

Class/Set Support (CS) The membership of classes or sets is based on attributes.
Importantly, classes can be described through attributes.
This means that entities can be members of several
classes simultaneously and can be moved freely between
classes.

Relationship Support (RS) Relations must be attributes (or provided in the same
way as attributes). Additionally, they must be
directional.

The first three in Table 3 presented features form fundamental (or core) features. All others

are resultant (or consequential). The process of evaluation includes not only determining whether

the language has some qualitative feature, but also at what extent this feature is supported. The

evaluation of feature support is made using the following evaluation levels:

√√√√ - Support for the feature.

X - No support for the feature.

 51

* - Support given, but attributes are tightly coupled to entities.

+ - Support not given, but could be provided relatively easily.

∧∧∧∧ - Loose coupling between features is provided, but generally is ignored.

Evaluation levels are assigned to each pair “Qualitative feature – Language” (Table 4):

Table 4. Results of the evaluation

Qualitative feature Language 1 Language 2 … Language N

ES

AS
AC
CS
RS

3.8.3. Strengths and Weaknesses of Chisholm Ontology Based Approach

Comparing to BWW models Milton, E. Kazmierczak and C. Keen is more suitable for

specification of specific requirements of Information or Software Systems, because it has

qualitative scale for evaluation of quality characteristics. However, this methodology is also

normative, that is, it intends to construct “the best” way of social reality conceptualisation. Thus,

it has the same weaknesses as BWW models (see section 3.6.2).

3.9. Ontological Categories Based Approach

3.9.1. Mylopolous Methodology

An attempt to eliminate weaknesses of normative methodologies is made in works [Myl98],

[Gua98], where normative ontology is not used. Instead, it is proposed to compare analysed

phenomena (for example, information modelling techniques, specification languages) by their

ontological categories. In [Myl98] ontological analysis is done using complex ontological system

that comprises static, dynamic, intentional and social ontologies. In general, it is proposed to

evaluate quality of a specification language in three orthogonal dimensions: ontologies,

abstraction mechanisms, and tools (Figure 7):

Evaluation

aspects

Abstraction

mechanisms

Ontological Tools

- Static
- Dynamic
- Intentional
- Social

- Classification
- Generaliasation
- Aggregation
- Contextualisation
- Materialisation
- Normalisation
- Parameterisation

- Analysis
- Design
- Management

Figure 7. Evaluation aspects

 52

Ontological aspect is described by several ontologies, which define the specified social

reality. It is static ontology, dynamic ontology, intentional ontology, and social ontology.

Static ontology encompasses static aspects of an application, by describing the existing

things, their attributes and interrelationships. Most conceptual models assume that the world is

populated by entities, which are endowed with a unique and immutable identity, a lifetime, a set

of attributes, and relationships to other entities [Myl98]. However, this way of social reality

conceptualisation is neither universal nor minimal or the best in some other aspect. It can be used

to conceptualise social reality in order to solve problems of a particular kind. Another kind of

problems can be solved more successfully using another conceptualisation of social reality.

Dynamic ontology encompasses dynamic aspects of an application in terms of states, state

transition and processes [Myl98]. However, this is also not the only way of changes

conceptualisation. For instance, dynamics of social reality can be conceptualised using process,

process step, goal, and agent categories.

Intentional ontology encompasses the world of agents that is things agents believe in, want,

prove or disprove, and argue about [Myl98]. Different category systems can be used, for

example, the system, made of the following categories: agent, issue, goal, subgoal of, supports,

denies, and etc. It should be noticed, that only the newest specification languages operate by

such kind of categories, while in artificial intelligence these categories are used already for

several decades.

Social ontology covers social settings, permanent organisational structures or shifting

networks of alliances and inter-dependencies. Traditionally, this ontology has been characterised

in terms of categories such as actor, position, role, authority, commitment, etc. [Myl98]. These

categories are used to determine roles of actors and strategic dependencies between the actors.

Such dependencies can occur, for example, when one actor passes fulfilment of a particular task

to the other actor.

Specification languages differ in what aspects of social reality (static, dynamic, intentional,

social) can be specified using a particular language.

Ontologies describe specified social reality, while abstraction mechanisms of a specification

language determine allowed ways of information organisation. The most important abstraction

mechanisms are classification, generalisation, aggregation, contextualisation, materialisation,

normalisation and parameterisation [Myl98]. Specification languages differ by supported

abstraction mechanisms.

Tools are used to increase the productivity of Information or Software System specifier.

They help to construct, analyse and evaluate specifications. There are three basic classes of tools:

 53

analysis, design and management tools. For different specification languages different tools can

be used or constructed.

Mylopolous proposes to evaluate specification languages depending on the ontologies that

they are based on, abstraction mechanisms that they support, and tools that can be used or

constructed for them. Using by the author proposed classification schemes all three aspects can

be evaluated by particular scale. It is proposed to use the following qualitative scale: {excellent,

good, OK, so-so, none}. The overall evaluation of a specification language is the combination of

the evaluations it gets with respect to each dimension. Likewise, the overall evaluation for each

dimension is the combination of the partial evaluations for each component of the dimension

[Myl98]

When specification languages are evaluated the specification language, which is the most

sufficient for any possible project is selected according to the following evaluation criteria:

• the type of Information or Software System (what kind of ontologies will become

necessary);

• the degree of complexity of Information or Software System (what abstraction

mechanisms should be supported);

• the scope of Information or Software System (what tools are the most important);

• the character of fulfilled tasks (what abstraction mechanisms and tools should be used).

3.9.2. Strengths and Weaknesses of Ontological Categories Based Approach

Mylopolous methodology also has some serious weaknesses. First of all, it is not clear

whether proposed types of ontologies are really sufficient to conceptualise all possible aspects of

social reality. For example, in [Gua98] ontology system is constructed in completely different

way. Second, all category systems of a particular ontology are supposed to be equivalent, but it is

not true. One of them is suitable for one purpose, others – for another purpose. Third, evaluation

is done subjectively without any exact measurements, and the proposed scale is not strict,

qualitative.

However, this methodology is a step forward comparing to normative comparison. Instead of

comparison to a norm it is proposed to use evaluation criteria. Evaluation by the defined criteria

is done using the proposed metric, which has a qualitative scale. Such evaluation is more

objective than comparison to predefined norm or standard.

3.10. Quality Model Based Approach

3.10.1. Semiotic Framework

One of quality model-based methodologies is semiotic framework [Kr01a], [Kr01b], [Kr03],

[KS03], [LSS94]. Semiotic framework is the first serious attempt to develop quality model for

 54

specification languages. This model have been proposed originally by Sindre [Sin90], further

extended by Seltveit [Sel94], and completed in works [Kr01a], [Kr01b], [Kr03], [Ks03],

[LSS94]. Semiotic framework addresses quality of specification as well as the quality of

specifying process [CLV02]. This framework includes a language quality model represented in a

form of quality characteristics tree. The framework provides a systematic structure for evaluation

of specification languages.

Technical actor
interpretation

Modelling
domain

Social actor
interpretation

Participant
knowledge

Modelling
language

Empirical
quality Physical

quality
Syntactic
quality

Pragmatic
quality

Social
quality

Semantic
quality

MODEL

Figure 8. Semiotic framework scheme

Semiotic framework introduces the concepts of a language, a domain, and a model used to

explain the meaning of quality attributes. The language is defined as a set of all syntactically

correct statements, the domain as a set of all statements meaningful for the given domain of

discourse, and the model as a set of statements included in the actual specification [CLV02].

Notion of language quality is based on quality of specifications, which can be written using that

language. Specification language is of high quality if it allows writing high quality

specifications. The semiotic approach (Figure 8) requires that a specification language should be

appropriate to ensure physical, empirical, syntactic, semantic, pragmatic, and social quality of

specifications written in this language [Kr01a], [Kr01b], [Kr03], [KS03].

Physical quality is associated with the form, in which a specification is represented (on disc,

paper, etc.). The main feature that describes physical quality is the ability to store specifications

in such terms that, on one hand, they should be saved from losses, and, on the other hand, they

should be accessible for all interested persons.

Empirical quality determines the probability of errors in specifications and ergonomic

features of specifications and of potentially available tools that are used to construct, analyse and

evaluate specifications.

Syntactic quality can be seen as consistency of the model of social reality with the extension

of a specification language, which tools are used to create specifications. A specification

language is extended by supplementing it with the vocabulary of the particular fragment of social

reality. A language should be constructed in such a way, that syntax analyser could recognise all

syntactically invalid sentences, including those, which use language extending constructions.

 55

Semantic quality can be seen as consistency of the model of social reality with specified

fragment of that social reality. Model should be complete and valid. In other words, a

specification language should allow creating complete and valid specifications.

Pragmatic quality can be seen as consistency of the model of social reality with mentality of

that model analysing persons. That means, that a specification language should allow

conceptualisation of social reality so as it will be conceptualised by the future users of Software

or Information System that is specified.

Social quality is seen as the ability to achieve consistency of different points of view.

Quality model of a specification language has a hierarchical structure. The hierarchy is

constructed from two levels (Figure 9).

Semio tic framewo rk

Concep tu al R ep resen tation

Percep tib i l i ty
Exp ressive

Power

Exp ressive

Economy

Method /to o l

po ten tial
R educib i l i ty

1 st level

2 nd level

Figure 9. Semiotic framework

The top level of the language quality model distinguishes two groups of quality attributes:

conceptual, describing the underlying conceptual basis of the language (i.e. constructs of a

language), and representation attributes, describing the external representation of the language

(i.e. visualisation of its constructs) [CLV02].

Further, each group is divided into five groups of second level attributes:

• Perceptibility is related to the audience (analytics, designers, etc) and describes how

easy is for persons to understand the language (both constructs and their representation).

• Expressive power is related to the domain and describes what part of domain statements

is expressible in the language.

• Expressive economy also is related to the audience and describes how effectively

statements are expressible in the language both at the conceptual level and at the

syntactical level (semantic power) [KS03].

• Method/tool potential characterises ability of specification language supporting tools

creation.

• Reducibility describes the appropriateness of the language to deal with large and

complex specifications [Sel94]

 56

So, second level attributes characterise the language from three different points of view:

domain, audience, and technology. Using proposed quality model one could evaluate domain

appropriateness of the language (expressive power), audience appropriateness of the language

(through perceptibility, expressive economy, and reducibility), technological appropriateness of

the language (through method/tool potential) [CLV02].

The concept of expressive power in the semiotic approach is closely related to the concept of

ontological completeness in the BWW approach. However, they are slightly different concepts,

because it is required [KS03] that the measure of expressive power could be used not only to

evaluate is any statement of the domain expressible in the language, but also to evaluate is it

possible to express in the language any statement, which is not in the domain. It should be noted

also that sometimes the term “expressive power” is used as synonymous to the term “expressive

adequacy”. According to Woods [Wo83], expressive adequacy “has to do with the expressive

power of the representation – that is, what it can say.” Expressive adequacy has two aspects. The

first characterises the ability of the language to distinguish details (selective power), and the

second characterises the ability of the language to hide details (generalitive power) [CLV02].

The concept of audience appropriateness is closely related to ontological clarity. Specification is

understandable for the user if the following conditions are held:

• conceptualisation of the language corresponds to the conceptualisation of the social

reality accepted by the audience;

• the external representation of the language corresponds to the domain metaphor accepted

by the audience;

• the language takes into account the psycho-physical characteristics of the audience:

reasonable number of constructs, possibility to hide detail, uniformity, separation of

concerns, etc. [CLV02].

Thus, the concept of audience appropriateness is wider than the concept of ontological

clarity.

Technological appropriateness is thought as the appropriateness of the language to interpret it

by software. It is supposed [Sin90] that the technological appropriateness requires that the

language lend itself to automatic reasoning and that the reasoning must be fairly efficient to be of

practical use. Technological appropriateness is closely related to the property of notational

efficacy [Wo83]. Notational efficacy concerns the structure of a language and its external

representation as well as the impact this structure has on the software that manipulates

specification text. According to Woods [Wo83], “notational efficacy can be subdivided into

issues of computational efficiency and conceptual efficiency”. Conceptual efficiency supports

 57

knowledge acquisition and computational efficiency supports reasoning and other computational

algorithms [CLV02].

3.10.2. Strengths and Weaknesses of Quality Model Based Approach

Semiotic approach provides a systematic structure for evaluating specification languages. Its

methodological basis includes:

• the idea to separate conceptual and representation issues of the language;

• the idea to compare and evaluate the specification languages on the basis of quality

model;

• the idea to evaluate quality from domain, audience and technology points of view;

• the idea to use set-theoretical approach to explain the meaning of the quality attributes

[CLV02].

The main strength of this methodology is that comparing to all other methodologies, which

were analysed earlier in the dissertation, this methodology is very close to the goal of creation of

objective specification languages evaluation methodology, because the framework of

specification languages evaluation and comparison is proposed.

Although this approach is very advanced, it has some serious weaknesses. The proposed

quality model is only sketched. It is not exhaustive and not homogeneous. It seems that the

semiotic framework has been focused on the issues of specification quality and investigated the

language quality model only occasionally [CLV02]. It is not clear how to measure and evaluate

quality characteristics, and proposals of different authors to evaluate specification languages

using appropriate ontologies are ignored. Finally, it is not clear how to evaluate specification

language quality according to requirement of the particular project.

3.11. Comparative Analysis of Approaches

The results of comparative analysis are presented in Table 5:

Table 5. The results of comparative analysis

Components Approach Method (s)
Goals Criteria Quality

attributes
Metric Scale Framework

Bunge ontology based
approach

Not

available

Not

available

Not

available

Not

available

Not

available

Partially

available

Extension of Bunge
ontology based
approach

Method of
normative
comparison Partially

available
Not

available
Partially

available
Not

available
Available Partially

available

Method of
normative
comparison

Chisholm ontology
based approach

Method of
agreement
and method of
difference

Not

available
Not

available
Partially

available
Not

available
Available Partially

available

Ontological categories
based approach

Method of
ontological

Partially

available
Available Partially

available
Not

available
Available Partially

available

 58

Components Approach Method (s)
Goals Criteria Quality

attributes
Metric Scale Framework

categories
based
comparison

Quality model based
approach

Method of
quality model
based
comparison

Not

available
Available Partially

available
Partially

available
Partially

available
Available

It can be seen from Table 5 that an attempt to evaluate quality according to the particular

project context is made in the extension of Bunge ontology based approach and in ontological

categories based approach. The first approach proposes evaluation of languages from different

perspectives, while the second approach includes intentional ontology that allows expressing of

agents beliefs and goals. More or less objective quality evaluation criteria are proposed only in

ontological categories based approach and in quality model based approach. The other

approaches propose subjective evaluation by comparison to some standard or norm. An attempt

to provide some kind of quality attributes of a specification language is made in all approaches

(except for Bunge ontology based approach). However these attributes (also called

characteristics or features) are neither well-defined, nor structured or organised in some way.

Only quality model based approach has quality attributes that form two-level quality model.

None of the approaches has quality metric that could be used to measure quality attributes,

except for quality model based approach, which proposes set-theoretical approach to explain the

meaning of the quality attributes. Some kind of qualitative scale is available in all approaches,

however the scale is very imprecise, thus further research is needed. And, finally, evaluation

framework is partially available in all compared approaches, however the most complete and

theoretically-ground framework is proposed in quality model-based approach only.

3.12. Conclusions

First of all, all in scientific literature proposed approaches to evaluate quality of specification

languages are incomplete, because they propose neither theoretical ground for separation and

evaluation of quality characteristics, nor precise metrics for their measurement or scale for the

interpretation and aggregation of the results of measurements. At the moment, no commonly

accepted agreement exists about the collection of specification language internal quality

characteristics, their names and their taxonomy. It is true for programming languages, too. An

attempt to develop the taxonomy of quality characteristics and their measurement procedures is

made in quality model based approach. However, this taxonomy is not enough systematic and

exhaustive, and the proposed quality model itself is only sketched. Even the proposed quality

characteristics are not precisely defined, and it is not proposed how exactly they should be

 59

measured. Besides, language characteristics and supporting tools characteristics are considered

together.

Another conclusion that follows from the results of comparative analysis is that none of

known approaches pays attention to relativism of quality concept and dependency on the

particular project requirements and peculiarities. No approach exists, in which quality in use is

separated from internal quality, and which proposes exhaustive procedure to evaluate quality in

use. Thus, we conclude that none of known approaches is mature enough theoretically and is not

developed enough to be used in practice to evaluate quality of a specification language.

One more and the most important conclusion is that the framework to evaluate specification

languages quality should be based on the appropriate quality model, because it ensures obtaining

of objective evaluation results. This requires having an exhaustive taxonomy. In known

approaches to evaluate quality of specification languages only first small steps are made in this

direction. The most valuable results that can be used for the further research have been obtained

in ontological categories based approach and quality model-based approach.

 60

4. An Approach to Evaluate Quality of Specification

Languages

4.1. Contribution to the Research

The main results of this section are published in papers [CG05a], [CG05b], [CG05c],

[CG04], [Gas06b], [Gas04], [GC06], [GC05a], [GC05b]. The dissertation is the result of the join

research, which has been carried out together with my advisor. Each idea and even each sentence

in our common publications is the result of long and intensive discussions. So, it is not simple do

define individual contribution of each of us. Nevertheless, it is possible to say who has originated

and has elaborated the proposed ideas. A sketch of the proposed taxonomy of quality

characteristics has been proposed by A. Čaplinskas and co-authors in [CLV02], and elaborated

further in this dissertation (see sections 4.2.1, 4.2.2). The main idea how to evaluate elementary

characteristics of the functionality has been proposed by me (see section 4.2.3) and, after long

discussions and a number of suggestions made by my advisor have been elaborated by me. The

main approach how to aggregate quality characteristics has been proposed by my advisor and

elaborated in details by me (see section 4.2.4). The idea to evaluate quality in use on the basis of

internal quality has been suggested by my advisor but most of concrete techniques including the

idea to use fuzzy theory has been proposed and elaborated by me (see sections 4.3.2, 4.3.4,

4.3.5). The details of procedure for quality model construction (see section 4.3.3) also have been

proposed by me.

4.2. Specification Languages Internal Quality Evaluation Framework

4.2.1. Taxonomy of Quality Characteristics

4.2.1.1. Main Groups of Quality Characteristics

A number of publications on the problems of specification languages quality evaluation

[Kr01a], [Kr01b], [Kr03], [KS03], [LSS94], [Opd97], [Sel94], [Sin90], [WW89a], [WW93],

[WW95] mention different quality characteristics that specification language should have. Some

quality characteristics discussed in publications on the quality of programming languages and

cognitive dimensions of information artefacts (see, for example, [PM96] also are closely related

to the quality of specification languages. However, exhaustive set of quality characteristics up to

date still has not been proposed. Extensive library research [CLV02] has brought to light that

some important quality characteristics even have no names and some important groups of quality

characteristics are not thought as coherent groups. Also in the field of programming languages,

where research has already a long history, different researchers evaluate quality of programming

 61

languages using slightly different quality characteristics and classify these characteristics in

different ways. For example, some researchers argue that reliability of a language is influenced

by both readability and writability, others – that it is influenced only by readability. In addition,

characteristics of internal quality and characteristics of quality in use often are not entirely

separated. On the basis of the results of conceptual analysis of wide spectrum of specification

languages, including UML, Z, VDL, TROLL, and Alloy, we decided to organise quality

characteristics of specification language in a way proposed by ISO/IEC 9126 standard [ISO91].

Although this standard addresses quality of software, its conceptual basis is significantly wider

and can be applied to evaluate quality of languages, too [KM98], [QJ03]. Thus, we define

internal quality through four lower-level sub-characteristics: functionality, reliability, usability,

and efficiency (Figure 10). Further, we treat the concepts of functionality, reliability, usability,

and efficiency in a different way than ISO/IEC 9126 standard and, consequently, refine these

characteristics using other lower-level sub-characteristics. We do not include maintainability and

portability, because these sub-characteristics are relevant rather to software tools supporting

production of specifications than to specification language itself. The proposed taxonomy of

quality characteristics and its graphical representation are presented accordingly in “APPENDIX

1. Taxonomy of Quality Characteristics” and “APPENDIX 2. Graphical Representation of the

Taxonomy of Quality Characteristics”.

Figure 10. Sub-characteristics of internal quality

It should be noted that although the descriptive sub-characteristics of usability - ontology and

paradigm (see “APPENDIX 1. Taxonomy of Quality Characteristics”) – describe important

properties of a language, they are not related directly to the internal quality of this language.

However, evaluation of the quality in use often requires considering formalism beyond

specification language and assessing of ontological aspects of this language. Besides, these

characteristics sometimes may be operationalised, for example, a metric should be developed to

measure the degree of procedureness of the language.

4.2.1.2. Linguistic System

It should be noted that sub-characteristics of internal quality can be considered from

conceptual as well as from representational points of view [CM75], [Kle52], because any

language has two most important aspects: its semantic and its syntax. Following the idea,

 62

proposed by Krogstie and Sølvberg [KS03] and elaborated in [CLV02], we describe quality

characteristics in terms of the linguistic system, defining a formal structure beyond the language,

and in terms of the representation system, defining forms of representation of its constructs.

Although we share Felleisen’s viewpoint [Fel90] that analogy between formal system and

language could be very useful, we argue, however, that for specification languages more useful

is analogy with first-order languages.

based on

LINGUISTIC SYSTEM L

Concept
constructors

Statement
constructors

Basic concepts
Reasoning
apparatus

Specification

languages

L FAMILY OF LANGUAGES

Figure 11. Linguistic system [CLV02]

We define the notion of the linguistic system defining a formal structure beyond the language

as four-tuple (see Figure 11):

Φ= <α, Σ, Ξ, Ω> (1),

where

α is a nonempty set of basic concepts (primitive concepts),

Σ is a set of constructors used to construct composite concepts,

Ξ is a nonempty set of constructors used to construct statements,

Ω is a reasoning apparatus.

In this definition a concept is considered as some abstract meaning that can be represented in

many different ways using syntactically different notations. It is also supposed that the notion of

constructor comprises also the rules of correct application of constructors. So the set of

composite concepts corresponds to the set of the terms of first-order language and the set of

statements corresponds to the set of well-defined formulae.

It is supposed further that the set α is defined by the chosen ontology (more exactly, by the

chosen conceptualisation) and provides a set of ontological primitives. So it answers the

question: In what terms does a language describe the systems? The set Σ defines a kind of

“algebra of concepts” [Nil00] on α. It provides the apparatus to define domain-oriented

conceptual primitives and operators, including so-called epistemological (abstraction/structural)

primitives, which allows constructing complex concepts from primitive ones. In some cases (e.g.

 63

for domain-oriented specification languages) domain-oriented primitives can be built-in into

linguistic system itself. It is supposed that in such cases domain-oriented primitives have the

status of ontological primitives and are considered as elements of the set α. The set Ξ defines

apparatus to express assertions (more exactly, axioms) about the properties of the system in

question.

It should be noted that specification languages can be seen as modelling languages that are

used to build an abstract model (a theory) of system in question or, in other words, to define a set

of assertions about the required properties of an existing or a future system. Linguistic system

describes modelling facilities and, like description logics, distinguishes two modelling levels,

conceptual and assertional, although language itself cannot distinguish those levels explicitly.

Employing conceptual level apparatus one can define conceptual primitives and create complex

concepts. Assertional level apparatus allows formulating statements about the properties of

instances of concepts.

It should also be noted that specification languages are used to describe systems as “black

boxes” and to define their external properties; design and programming languages deal with the

“transparent boxes” and are used to describe implementation details. The purpose of design

language is to refine operational specification, and the purpose of programming language is to

refine design specification. Therefore it is desirable that the transition from specification to

design and further to implementation would be seamless. On the other hand, the development of

an Information System starts usually with business modelling and is completed by the

implementation of a number of applications (or Software Systems). Architecture of a system

should be aligned with business goals and mission, and architectures of applications should be

aligned with goals and mission of the system. Consequently, it is highly desirable that the

transition from business level to information processing level and further to application

requirements specifications would be seamless, too. Thus, in general case, it is desirable that a

specification language would be suitable also to specify business systems as well as applications

and would be applicable at all stages of development. From this we conclude that functionality

should characterise the degree of potential appropriateness of a language to specify properties of

any kind of system (i.e. business system, Information System, or Software System) and at any

stage of development. Thus, further in the dissertation, we use the term system for business

system, Information System, or Software System that is specified using the particular

specification language. The higher is the value of functionality as an aggregate quality

characteristic of a specification language the less is the expected frequency with which this

language will not be applied to specify some system in question.

 64

4.2.2. Functionality and Its Sub-Characteristics

4.2.2.1. The concept of Functionality

Functionality (from Latin functio meaning "to perform") means the degree to which the

designed product will perform to meet its intended purpose. In the case of specification

languages, functionality is understood as the set of features necessary to describe requirements of

a future system. Despite the fact that functionality is one of the most important characteristics of

internal quality of a specification language, only separate aspects of functionality, mostly

expressiveness and ontological completeness, have been discussed in scientific literature.

A language is said to be more expressive than another one if it can express more concepts

than the other. The concept of expressiveness has been studied formally already in logic [Kle52],

[Tr73]. The main result is that the additional symbols of core logic can be eliminated (i.e.

expressed), if there exist a translation from extended logic to its core that satisfies some given

conditions.

The concept of expressiveness has been extensively studied also in the realm of

programming languages. The earliest works (e.g. [CM75] in this field have been based on

comparative schematology. In this context, some authors consider such concept as computable

functions and define maximally expressive class of languages as those that are equivalent to

Turing machine. However, as it is pointed out in [Fel90], “Comparing the set of computable

functions that a language can represent is useless, because the languages in question are usually

universal; other measures do not exist.” Other authors [Rey81], [SS76] studied expressiveness of

imperative programming languages modelling common programming constructs in terms of a

simple applicative language based on a lambda calculus. They demonstrated that a number of

programming constructs can be modelled locally, without restructuring the whole program, and

analysed to which extent a language can support the organisation of a problem. Steele and

Sussman [SS76] pointed out that “The emphasis not should be on eliminating “bad” language

constructs, but on discovering or inventing helpful ones.” Further, Felleisen [Fel90] suggested

the following analogy between formal systems and programming languages: the set of phrases of

a programming language corresponds to the expressions of a formal system, the set of programs

corresponds to the set of well-defined formulae, and the set of terminating programs corresponds

to the set of theorems. On the basis of this analogy and the works [Kle52], [Tr73] he made an

attempt to develop a formal theory of expressiveness for programming language. In this

approach a common language universe U that comprises all constructs of interest is constructed.

A language L is less expressive than language L1, if L1 can express all the constructs from U,

which L can express. Felleisen concluded that programs in less expressive languages exhibit

 65

repeated occurrences of programming patterns and suggested that such programming style is

harmful.

Ontological completeness is the ability of a specification language and associated reasoning

system to represent all phenomena of interest in the domain of discourse [WW93] or, in other

words, the ability to describe social reality at a certain level of granularity [CW98]. Ontological

completeness of a number of specification languages (mostly diagrammatic languages) has been

analysed in [CW98], [RG99], [WW93], [WW90b]. As a theoretical basis to evaluate ontological

completeness in this approach Bunge-Wand-Weber (BWW) models (see section 3.6.2) have

been used. Using BWW ontological completeness of the language in question is evaluated with

regards to Bunge’s ontology. So, BWW play the role of universe of ontological primitives. In

this sense BWW approach is similar to Felleisen’s approach. A language L is less expressive

than language L1, if L1 can express all the ontological BWW primitives, which L can express.

The shortcoming of both approaches is that they can be accepted only in the case when one

shares objectivistic point of view that the proposed universes are universal indeed, that is

represent everything that may be important for the user of programming or specification

language, and those representations are language neutral and independent of any user’s interest.

Another similar approach to evaluate ontological completeness has been proposed in S.

Milton, E. Kazmierczak and C. Keen methodology (see section 3.8.2). In [MKK98] it is

proposed to use Chisholm’s ontology instead of Bunge’s ontology and to evaluate ontological

completeness not from the viewpoint of language constructs but from the point of its ability to

specify a variety of situations.

Sølvberg and co-authors [Ks03], [LSS94] see this problem in a slightly different way.

Discussing wider issues of appropriateness [Kr01a], [Kr01b], [Kr03] they analyse also the

concept of expressive power that differs from the discussed concept of ontological completeness

in the measure that could be used not only to evaluate is any statement in the domain expressible

in the language, but also to evaluate whether it is impossible to express in the language any

statement, which is not in the domain. In [Kr01a], [Kr01b], [Kr03], [Ks03], [LSS94] the concept

of expressiveness is defined using set-theoretical approach. This definition, in principle, can be

considered as an abstract measure, however it is unclear how one can operationalise this

measure.

4.2.2.2. Main Structure of Functionality

Usually a language provides core facilities allowing specifying in sufficient detail any aspect

of “typical” systems in the realm. The functionality of core facilities can be restricted in two

different ways: by restricting the application area or by restricting the meaning of used concepts.

A flexible language should provide also some apparatus allowing extending or adapting core

 66

facilities in order to specify “untypical” systems. Thus, in addition to suitability (i.e. core

facilities) the concept of functionality comprises also flexibility of a language. Consequently, we

decompose functionality into two sub-characteristics: suitability and flexibility (Figure 12).

Figure 12. Sub-characteristics of functionality

Suitability, like functionality, is an aggregate characteristic. It is decomposed further into

lower level characteristics (Figure 12) for two reasons: to understand better the nature of

functionality and to facilitate the operationalisation of measures of functionality.

Suitability characterises how sophisticated statements about potential systems in a particular

realm a specification language is able to express, and at what level of granularity it can be done.

The measure of suitability is the expected frequency with which any statement about any system

of a particular kind can be formulated in terms of a specification language. The expected

frequency becomes equal to 1, if a language allows formulating statements about any property of

a system in a given realm and expressing it with the needed degree of precision. Therefore the

higher is suitability of a language the more sophisticated systems can be described and in the

more details it can be done. Because of this dualistic nature of suitability, we split it further into

two sub-characteristics: completeness and expressive adequacy (Figure 12).

4.2.2.3. Completeness

Completeness is the measure of the ability of a specification language to describe any system

in question sufficiently and exhaustively. The value of this measure is the expected frequency

with which any required property of a given system will be described in terms of evaluated

specification language. However, completeness does not ensure that statements about these

properties will be expressed in adequate terms or even that they will be expressed with sufficient

 67

degree of precision. It has several aspects (Figure 12). One of the most important from them is

semantic sufficiency.

Semantic sufficiency characterises the conceptual level of the linguistic system. It is the

measure of the ability of a specification language to specify all “things” that might be necessary

for analysis and design of any system in question. Semantic sufficiency is measured by the

expected frequency with which any required concept will be expressed in terms of a

specification language in question. In other words, semantic sufficiency answers the question:

“In which degree sets α and Σ of the linguistic system beyond the language in question are

sufficient for the needs of system engineer?” Consequently, we split further semantic adequacy

into ontological sufficiency and epistemological sufficiency (Figure 12).

We use the term “ontological sufficiency” instead of the traditional term “ontological

completeness”, because ontological completeness characterises a specification language with

regards to a chosen ontology. A language L is ontologically complete with regards to ontology

O, if exists a total mapping f from a set of ontological constructs of αO of this ontology to the set

αL of ontological primitives of the linguistic system beyond the language L. In other words,

language L is ontologically complete, if exist a construct of L that can be used to represent each

ontological construct of O. We aim, however, to define an ontology-independent measure of

completeness. Ontological sufficiency is the expected frequency with which any system in

question will be conceptualised successfully through categories provided by αL. It answers the

question: “In which degree the set α of the linguistic system beyond the language in question is

sufficient for the needs of system engineer?”

Epistemological sufficiency characterises the ability of the linguistic system to express

epistemological primitives or, in other words, the constructive power of “algebra of concepts”

provided by Σ. Here we use the term “epistemology” in a very narrow sense, namely, to refer to

concept structuring/abstraction machinery beyond a language L or, more exactly, to the facilities

allowing to define conceptual primitives on the basis of ontological ones and to combine defined

concepts further in order to form more complex concepts. Epistemological sufficiency can be

measured by the expected frequency with which all required conceptual structures will be

modelled successfully using language constructs. It ensures the ability to structure any given

system in an adequate way and answers the question: “In which degree the set Σ of the linguistic

system beyond the language in question is sufficient for the needs of system engineer?”

Semantic sufficiency does not characterise completeness of a specification language

exhaustively, because it describes only conceptual level of the linguistic system beyond

language. Assertional level can be described by two additional characteristics: expressibility and

reasoning power.

 68

Expressibility of a language is a measure of what it can be used to say. However, we use this

term in more narrow sense. In our case, it describes the ability of a language to express

statements about properties of instances of concepts. In other words, expressibility characterises

the class of formulae expressible in language L and answers the question: “In which degree the

set Ξ of the linguistic system beyond a language L is sufficient for the needs of system

engineer?” The measure of the expressibility is the expected frequency with which any statement

about the system in question will be expressed successfully using language constructs.

Reasoning power of the linguistic system beyond a language L is closely related to its

expressibility. Reasoning power characterises the ability of reasoning apparatus Ω to derive new

statements about properties of conceptual primitives and their compositions. Mainly, reasoning

power is important in cases when a specification is used to reason about a system in question, for

example, to prove some system properties. The measure of reasoning power is the expected

frequency with which any property of the system that in principle can be derived from the stated

basic assumptions will be proved using reasoning apparatus Ω.

One more characteristic of completeness is composability. It characterises the degree of

possibility to compose language constructs and features together. Limited composability limits

functionality, because not all meaningful compositions can be expressed using a language in

question. In such cases composition cannot be realised, because the composition scheme adopted

in the language does not support it, although composition is possible from logical perspective. So

the measure of composability is the expected frequency with which any intuitively and logically

correct composition will be realisable in the language. In terms of the linguistic system, it means

that constructors of Σ and Ξ are free from any artificial restrictions on their applicability.

4.2.2.4. Expressive Adequacy

Completeness characterises how exhaustively any system in question can be described using

a specification language L. However, it ensures neither that statements about the properties of

this system will be expressed with sufficient degree of precision nor that they are described in

adequate terms. Expressive adequacy (Figure 12) is a characteristic of internal quality of a

language L that describes the ability of this language to specify the properties of a system in

question in an adequate way. The measure of this characteristic is the expected frequency with

which all statements about any system in question will be formulated in adequate terms and will

be expressed with required degree of precision. Expressive adequacy has several aspects:

ontological adequacy, epistemological adequacy, selective power, and generalitive power. Thus

we split expressive power into four sub-characteristics (Figure 12).

Ontological commitments can be regarded as decisions about interpretation of statements in a

given language. They can be defined not only by mapping to ontological primitives directly.

 69

Even a language of symbolic level can be used to define ontological commitments. For example,

they can be defined on the basis of set-theoretical formalism as in specification language Z.

Ontological adequacy is the ability of the linguistic system to express its ontological

commitments within this system itself. It focuses on the system-model link and ensures that

primitives from the set α are linked directly to categories describing the system. The concern

about ontological adequacy is that we can adequately capture peculiarities of the system through

ontology O beyond the language L. The measure of ontological adequacy is the expected

frequency with which that any system in question will be conceptualised adequately using

ontological primitives provided by α. Thus ontological adequacy answers the question: “How

well do specifications written in the language represent real-world phenomena?”

Epistemological adequacy is closely related to ontological adequacy. The term

epistemological adequacy is used in many different senses, for example, as a degree to which the

language is able to reflect all distinctions that are important. We define epistemological

adequacy as the characteristic that describes the degree to which the linguistic system beyond the

language is able to express epistemological primitives directly. In other words, epistemological

adequacy ensures that constructors provided by Σ are linked directly to such epistemological

schemes as generalisation, aggregation, and etc. The measure of epistemological adequacy is the

expected frequency with which any useful epistemological primitive will have his counterpart in

Σ.

The notion of selective power has been developed in the realm of relational databases. The

measure of selective power of a query language is relational completeness. The language L is

relationally complete if any relation derivable by means of relational calculus can be retrieved by

means of this language. We argue the notion of expressive adequacy is applicable also to other

languages, including specification languages. For example, we can say that the language of first

order logic has limited selective power, because it cannot distinguish two elementary-equivalent

structures [Rud04]. The measure of selective power of the specification language L is the

expected frequency with which any two different concepts, any two different instances of a

concept and any two properties of an instance of a concept can be described in the language L in

a distinguishable way.

Finally, the fourth sub-characteristic of expressive adequacy is generalitive power. It

characterises the ability of the language to describe system at different levels of granularity.

Generalitive power allows suppressing irrelevant details while preserving essential properties of

the system. The influence of generalitive power on internal quality of the language is ambiguous.

The language that attempts to cover too many levels of granularity is likely to be overly

complex. On the other hand, the language that supports only one level of granularity is likely to

 70

be overly restricted. However, we suppose that measuring functionality other aspects of quality

can be ignored (they are described by other characteristics) and define the measure of

generalitive power as the expected frequency with which any system in question will be

described at any required level of granularity.

4.2.2.5. Flexibility

Suitability characterises the power of built-in facilities of the language. Flexibility

supplements suitability, because it in some sense characterises scope of applicability of the

language. The more flexible is the language the easier is to adjust built-in facilities to situations

that have been not provided in advance by language designers. Thus flexibility describes the

extent to which the language can be adjusted to specify preliminary not intended properties. The

measure of flexibility is the expected frequency with which the language will be applied to the

whole spectrum of systems, namely, business systems (from the Information System design

perspective), Information Systems, and Software Systems.

Flexibility can be achieved in different ways: by universalisation of the language constructs,

by adaptability or by extensibility. So we split flexibility into three sub-characteristics:

universality, adaptability, and extensibility (Figure 12).

Universality characterises degree of generality of ontological primitives beyond the

language1. If the language is based on domain-oriented primitives, it has comparatively low

degree of universality, because constructs of this language cannot be applied to systems in other

realms. On the other hand, such ontological primitives as class or relation are universal and can

be applied almost in any realm. Therefore the measure of universality is the expected frequency

with which ontological primitives, provided by α, will be suitable to model concepts from the

whole spectrum of systems in question. In other words, universality answers the question: “To

which extent the language can be considered as a general-purpose language?”

Adaptability is in some degree is the characteristic that is opposite to universality. It

describes the ability of the language to configure syntax and semantics to adapt it for arbitrary

domain. Of course, adaptability is important for general-purpose languages only. Mechanisms of

adaptability still are studied insufficiently. An example of such mechanism is tailoring that

allows selecting some predefined constructs of general-purpose language and specialising these

constructs in order to generate the language dedicated to some specific uses. In general,

mechanisms of adaptability allow offering domain-specificity by the establishing domain-

specific notation, constructs and abstractions on the basis of syntax and semantics of a general-

purpose specification language. Therefore adaptability characterises both linguistic system and

1 It should be noted that composability also can be considered as some aspect of universality.

 71

representational system beyond the language. The measure of adaptability is the expected

frequency with which any required domain-specificity will be introduced using adaptability

mechanisms provided by the language.

Extensibility is closely related to adaptability. It also allows introducing domain specificity

by extending a general-purpose language with new features. However, we argue that adaptability

and extensibility should be considered as separate characteristics, because they characterise

presence of different mechanisms in the language and their power. Adaptability answers the

question: “To which extent is the language reconfigurable?” Extensibility answers the question:

“To which extent can the language be extended by new features?” A well-known mechanism of

extensibility is so-called problem domain-specific profiles in UML that allow introducing some

domain specificity into this language. The measure of extensibility is the expected frequency

with which any required domain-specific features will be introduced using extensibility

mechanisms provided by the language.

4.2.2.6. Operationalisation of the Measures of Functionality

The proposed approach provides that the values of all characteristics of internal quality are

treated as expected frequencies. Indeed, expected frequencies in our approach are used as a kind

of rating levels. Such approach allows calculating aggregated values of higher level

characteristics from the values of lower level characteristics easily. However, characteristics of

the lowest level, such as ontological and epistemological sufficiency, ontological and

epistemological adequacy, selective and generalitive power, universality, adaptability, and

extensibility should be measured directly. Ontological completeness is measured usually

[RG99], [WW90b], [WW93] by comparing language constructs to categories of some chosen

ontology. However, this approach cannot be used to measure neither ontological nor

epistemological adequacy, because we aim to develop ontology-independent approach to

evaluate internal quality of the specification language. For this aim we propose to use the library

of evaluation test examples (see section 4.2.3).

4.2.2.7. Examples

Let’s discuss some examples of the particular specification languages (UML, OCL, Alloy,

and VDL-SL) comparison by their functionality and its high-level sub-characteristics.

Example 1 (Functionality)

Comparing UML, its constraint language OCL and Alloy, we conclude that:

• Comparing UML to Alloy, functionality of both languages is limited at some extent,

because neither Alloy nor UML address the notion of time events directly.

 72

• At some extent UML is more functional than Alloy, because UML defines sequence

models, which can be time bound to individual actions. However, sequence models help

to express only some temporal constraints.

■

Example 2 (Suitability)

From one hand, Alloy is more suitable than UML:

• UML constraints (without using OCL) are insufficient to express statements about

system’s properties.

• Alloy has a variety of constraints: definitions, invariants, and assertions.

From the other hand, in conjunction with OCL, UML is more complete and expressive than

Alloy.

■

Example 3 (Completeness)

From one hand, UML/OCL is more complete than Alloy:

• UML/OCL includes sequences, bags, strings and numbers.

• Alloy has only sets.

From the other hand, in the relational subset UML is less complete. It has no transitive

closure. An attempt to form closures using operations is not well-grounded.

■

Example 4 (Expressive adequacy)

Comparing UML, its constraint language OCL and Alloy, we conclude that expressive

adequacy of UML/OCL is higher than of Alloy, because:

• Alloy is more abstract; its ontological primitives include only relations and atoms.

• UML has special aggregation and composition mechanisms, which are absent in Alloy.

■

Example 5 (Flexibility)

Comparing UML and VDL-SL we conclude that UML is more flexible than VDL-SL:

• Although UML is a general-purpose language, it contains extensibility mechanisms

(stereotypes, tagged values, constraints) that can be used to tailor it to specific domains.

UML extensions are expressed using profiles for different kinds of systems.

• In VDL-SL there is only possibility to extend data types with user-defined types (sets,

maps, records, products).

■

 73

4.2.3. Methodology to Evaluate Functionality Characteristics of Internal

Quality

4.2.3.1. Short Description of the Proposed Approach

Elementary characteristics of internal quality are the lowest-level characteristics. Thus, we

should evaluate these characteristics in some way. Best of all would be to measure elementary

characteristics, but it is possible for some characteristics only. In general, the evaluation

techniques depend on the kind of characteristics or, in other words, depend on the aspect of the

language (functionality, reliability, efficiency or usability), which these characteristics should

describe. However, it is not known how to measure these characteristics directly. For several

reasons, it is a hard problem. Firstly, only several elementary characteristics can be measured

directly. Secondly, internal quality is relative. Elementary characteristics of a specification

language have different weights. Although the internal quality does not depend on any particular

context, the global context should be taken into account. It means that the weights of

characteristics (their importance) depend on the properties of the current population of Software

Systems. Some characteristics are necessary for most of the population, while the others are used

very rarely. Thus, when the structure of the population of Software Systems changes the degree

of languages quality changes too. Finally, the evaluation results should be assessed and

interpreted in a correct way. All three mentioned issues are complex and intricate.

In this dissertation it is proposed how to evaluate the characteristics describing the

functionality of the language L. In the proposed approach the values of elementary

characteristics are described as expected frequency with which corresponding feature of a

language L will be successfully used to specify the current population of Software Systems.

However, it is impossible to calculate this frequency directly, because it is impossible to have

sufficient statistics about requirements of all theoretically possible Software Systems or even of

the entire current population of Software Systems. So we propose to combine non-statistical

sampling, domain engineering, and testing theory methods for this aim. The main idea is to

develop a library of representative examples for each category of Software Systems and to use

these examples as evaluation test examples to test the sufficiency of a specification language L

for specification of requirements of any system from the current population of Software Systems.

We propose to use a multi-stage sampling scheme (see Figure 13), which provides that all

theoretically possible Software Systems should be first divided into categories of systems that

meet principally different requirements, then from the population of really existing systems a

sample for each category of Software Systems should be chosen via purposive judgment

sampling. After this using domain analysis methods for each sample feature model should be

developed. Further these models should be used to develop a number of representative examples

 74

(evaluation test examples), which should be included into quality evaluation tests to test

functionality, reliability, efficiency and usability of specification languages.

Figure 13. Methodogy to evaluate elementary characteristics of functionality

In Figure 13 presented methodology to evaluate elementary characteristics of functionality is

described in detail in the remaining part of section 4.2.3.

It should be noted that although many components of the proposed methodology can be

applied to evaluate elementary characteristics of reliability, efficiency, and usability of a

specification language, for each of the mentioned cases the methodology as a whole should be

elaborated and adapted separately.

4.2.3.2. Questions to be answered

To make the proposed approach practically usable, we must answer several significant

questions:

• In which way to classify Software Systems that is what taxonomy of Software Systems is

better to choose for this aim?

• What information should contain an evaluation test example and how to choose a sample

and collect data that is necessary for development of such examples? How to evaluate

relevance, reliability, and validity of the sample? What are the requirements for the

collected data?

• How to analyse and interpret sampling results?

• In which way to describe and represent evaluation test examples in the library?

• How many evaluation test examples are needed to evaluate internal quality of a

specification language?

• What should be the structure of evaluation test example? How to construct the suites of

quality evaluation tests? What kind of testing methodology to apply? How to evaluate the

test coverage?

 75

• In which way to describe quality evaluation results and how to calculate expected

frequency with which corresponding feature of a language L will be successfully used to

specify the current population of Software Systems?

• What infrastructure is necessary for data collecting, sample developing, managing quality

evaluation tests and suites of quality evaluation tests and performing tests?

The remaining part of section 4.2.3 aims to answer these questions.

4.2.3.3. Taxonomy of Software Systems

Different taxonomies of systems have been proposed in the literature. For example,

Information Systems were classified into strategic-level, management-level, knowledge-level

and operational-level systems [OB00]. The kind of taxonomy depends on its intended use. In our

case the classification should be done in such a way that each class of the systems should be

characterised by some group of requirements specific for this class only. Additionally, the

subject of our considerations is rather Software Systems that can be considered as software

constituent of Information Systems, because only properties of software should be specified

using a specification language L. Our aim is to evaluate functionality of the language L, which is

defined as the set of this language features intended to be used for specification of requirements.

Taxonomy relevant to our aims has been proposed by Michael Jackson [Jac95], [Jac01].

Jackson suggests that the main classification criteria of Software Systems should be the kind

of problems solvable by the system. He proposed problem-oriented methodology - problem

frames - that is purposed to characterise systems of different classes. Key concepts of this

methodology are world, phenomena, domains, and descriptions. Problems are all located in the

world. World phenomenology includes entities, events, values, states, truths, and roles. A

domain is a distinct part of the world or, in other words, a collection of related phenomena.

Phenomena and their relationships constitute domain properties. Domains can share phenomena.

The only way two domains can interact is by an interface of shared phenomena [Jac00]. System

(machine in Jackson terms) is seen as a separate domain. Generally, there are four kinds of

domains: systems (machines in Jackson terms), causal domains, lexical domains, and biddable

domains. Essential properties of a causal domain are causal relationships. These relationships

allow the system to cause and constrain events and state changes in the domain. The significance

of the lexical domain is in the values and the truths and other relationships among them. The

relationships here are not causal but definitional. Biddable domains represent users and

operators, because their correct behaviour is described in instructions and they are bidden to

follow the instructions.

Properties of problem domain describe facts about real world that are entirely beyond the

control or influence of the system that should be built [Bra02]. These are knowledge that is

 76

required to solve the problem and, in parallel to requirements, should be described using

specification language. Problem frames model the problem domain as a set of inter-related

subdomains, where a subdomain is any part of the problem domain that may be usefully singled

out [Bra02]. The effects that the system should produce also should be described using

specification language. Jackson terms this description as requirements. Problem frames model

requirements, too. The system interacts with the real world through the interface of shared

phenomena. Typically, shared phenomena are events and states. Problem frames are represented

using special graphical notation. Such representation is called Problem Diagram (Figure 14).

Jackson identified seven elementary categories of the systems:

• Transformation systems – where the system must transform input data in a particular

format into output data in a corresponding particular format.

• Control systems – where the system must control the behaviour of some part of the real

world.

• Commanded behaviour systems – where the system must control the behaviour of some

part of the real world in accordance with commands issued by an operator.

• Workpiece systems – where the system must perform directed operations upon objects that

exist only within the system.

• Connection systems – where the system must maintain correspondence between subdomains

that are not directly connected.

• Information display systems – where the system must maintain a continuous display of

information about an autonomous dynamic real world.

• Information answer systems – where the system must handle requests for information about

the problem domain.

Figure 14. Problem Diagram

Whilst Jackson explicitly made no claim that he has identified all the elementary frames, as

far as it is known, to date, only one additional frame – the simulator frame – has been proposed

[BK03].

More complex systems can, generally, be described using composite frames composed of

two or more interacting, elementary frames. To construct a multi-frame the system must be seen

as composition of conceptual subsystems, each from which can be described by an elementary

 77

frame. Some elementary frames may partly overlap, for example, they may share some

subdomains of problem domain. Of course, the problem should be partitioned into elementary

subproblems, too. On the other hand, it is possible to distinguish subtypes of the systems

described by elementary frames. For this aim elementary frames must be enriched using so

called variants. A variant typically adds additional subdomain to the problem domain and

supplementary requirements. Jackson proposes [Jac01] four kinds of variants: description,

operator, connection, and control variants. Description variant introduces a description lexical

domain, a biddable operator domain is included into operator variant, a connection variant

provides a connection domain between the system and the problem domain, with which it

interfaces, and a control variant introduces no new domain, but it changes the control

characteristics of interface phenomena.

4.2.3.4. Development of Evaluation Test Examples

In statistics sample is defined as a part or subset of some population taken to be

representative of this population as a whole for some investigative purposes of research [Co77].

In the context of this dissertation the term population refers to all systems of the particular

category of Software Systems. However, any real system has features of several elementary

categories of Software Systems. So, we suppose that our population consists of the systems, in

which features of the particular elementary category are mandatory. For example, many real

portals can be classified as content management systems or as “chatting room” or even as

workflow management systems. However, any portal first of all is a content management system

and we may consider all portals as a population, which represents some subcategory of

information answer systems.

The technique of selecting a suitable sample is called sampling. There are two basic kinds of

sampling: statistical (probability) and non-statistical (non-probability). Statistical sampling is

also called random sampling. Non-statistical sampling is any sampling technique, in which the

probability of a population element being chosen is unknown. There are two basic kinds of non-

probability sampling: accidental sampling and purposive sampling [Co77]. Patton defines

purposive sampling as a “sampling procedure that selects information rich cases for in-depth

study” [Pat90]. It means that during purposive sampling the sample is always intentionally

selected according to the needs of the study. Judgment sampling is a kind of purposive sampling.

It is a sampling technique, in which special expertise is used to choose representative population

elements.

According to William M. Trochim

“The difference between non-probability and probability sampling is that non-

probability sampling does not involve random selection and probability sampling

 78

does. Does that mean that non-probability samples aren't representative of the

population? Not necessarily. But it does mean that non-probability samples cannot

depend upon the rationale of probability theory. At least with a probabilistic sample,

we know the odds or probability that we have represented the population well. We

are able to estimate confidence intervals for the statistic. With non-probability

samples, we may or may not represent the population well, and it will often be hard

for us to know how well we've done so. In general, researchers prefer probabilistic

or random sampling methods over non-probabilistic ones, and consider them to be

more accurate and rigorous.” [Tro02]

So, evaluation of relative sampling risk is a hard problem for any non-statistical sampling

approach, including purposive judgment sampling. However, although the reliability of the

sample cannot be measured, there are other ways to ensure acceptable reliability. It can be done

requiring that the judgement about which element of population should be included into sample

should be made by an expert in the field and that this judgement should be made using three

basic criteria: representativeness of the element, value of the element, and its relative sampling

risk. According to the first criterion, the system is representative enough to be chosen, if it

conforms to the appropriate problem frame. It means that the selected system must be

information rich or, in other words, all the information that is provided by the appropriate

problem frame should be necessary in order to develop this system. The main tool to support

evaluation of the representativeness is sampling questionnaire that should be developed for each

category of Software Systems. According to the second criterion, the system is valuable enough

to be chosen, if it still is up-to-date; if it is popular enough among users, and if its intended

application area is important enough. According to the third criterion, the relative sampling risk

to choose the system is acceptable, if it is expected that the requirements of this system can be in

some way elicited anew more or less completely. Such expectations can be recognised as

justified in case, when the system requirements specification is available, or in case, when it is

possible to contact the system developers, or in case, when the system provides at least

exhaustive helps, demos, the system itself is available, and its non-functional requirements can

be derived from some formal or informal standards of its intended use and its using modes. In

addition, data quality requirements for collected questionnaire data should be stated in such a

way that the relative sampling risk would be minimised. Data quality requirements define the

required degree of data validity, reliability, consistency, accuracy, completeness, and the level of

detail. To be more precise, data validity requirements define the extent to which questionnaire

data should conform real features of the system and its other properties, data reliability

requirements define the degree to which questionnaire data should be free of errors, data

 79

consistency requirements define terms and classifications that should be used answering to

questionnaire questions, data accuracy requirements define the degree to which the questionnaire

data correctly describe the system, and data completeness requirements define the degree to

which questionnaire data should be exhaustive. Before starting data analysis, the expert should

obtain sufficient, competent, and relevant evidence that questionnaire data meet the

requirements. However, even for statistical sampling there is no effective statistical model for

bringing together all these characteristics of quality into a single indicator. Additionally, except

for very simple cases, there is no general statistical model for determining whether one particular

set of quality characteristics provides higher overall quality than another. Thus, the only practical

way to check that questionnaire data meets quality requirements is to apply manual data editing

procedures. Another expert than the one who has collected data should edit data. He should

detect unanswered questions, inaccurate answers, unrecorded answers and other violations of

quality requirements.

Despite the difficulties in evaluation of relative sampling risk, there are two reasons to prefer

purposive judgement sampling against statistical sampling. Firstly, it is impossible to define

sampling frame, because, in general case, the size of the population is unknown. Of course, for

any category of Software Systems the population is large and finite, but it is impossible to say,

even approximately, how large it is. Secondly, it is practically impossible by random sampling to

take into account the value of the chosen system, which is very important for our purposes.

For analysis and interpretation of sampling results we propose to use feature-oriented domain

analysis methods. Feature-oriented domain analysis usually is defined as

“the process of identifying, collecting, organising, and representing the relevant

information in a domain, based upon the study of existing systems and their

development histories, knowledge captured from domain experts, underlying theory,

and emerging technology within a domain" [KCH90].

The aim of domain analysis is to discover features of each system chosen for the sample and

to produce feature-oriented model, which describes features of a generic system for the particular

category of Software Systems. Because almost all real systems are described using several

problem frames, this generic system reflects the properties of several categories of Software

Systems, too. However, only some features are mandatory for all sampled systems and it is

legitimately to suppose that the generic system may be used as a basis to design evaluation test

example for the category of Software Systems that is characterised by these features. Of course,

this test is not necessarily exhaustive and additional tests likely will be necessary. On the other

hand, this test may be used for additional testing of categories, which are characterised by some

optional features.

 80

There are several feature-oriented domain analysis techniques. The essence of each technique

is increasing understanding of the analysed systems by capturing the information in formal

models. In our approach, the Feature-Oriented Domain Analysis (FODA) technique [KCH90] is

used. The feature-oriented model, developed using this technique, describes common and

variable properties of all sampled systems and the dependences between these properties.

Thus, we propose the following methodology for the development of evaluation test

examples for a specification language:

1. Framing. Some category of Software Systems should be chosen and candidates for

sampling should be identified, using criteria of representativeness, worthiness, and

relative sampling risk.

2. Development of vocabulary. The different systems chosen for the sample may use

different terminology and even be conceptualised in different ways. Thus, some

conceptualisation should be chosen for the analysis, the basic terms used to model this

system should be defined, and their equivalents in sampled systems should be listed. This

vocabulary should describe concepts of chosen ontology and relations between these

concepts. It is developed in a step-by-step manner, when analysis of the sampled systems

progresses.

3. Development of questionnaire. The sampling questionnaire and data requirements

should be developed. Both, questionnaire and data requirements, should be formulated in

terms of vocabulary. Outside expert should validate completeness and correctness of the

questionnaire and data requirements.

4. Data collection. Each sampled system should be analysed and all questions provided by

the questionnaire should be answered. Decomposition should be used to support analysis.

Each analysed multi-frame system should be decomposed into elementary frames and

each elementary frame should be analysed autonomously.

5. Data edition. Inaccurate answers, unrecorded answers and other violations of quality

requirements should be detected and corrected. Data edition should be done by some

outside expert.

6. Modelling. Feature model should be developed for each sampled system. Modelling

proceeds in bottom-up manner starting from the elementary frames.

7. Synthesis. Feature models of all sampled systems should be combined in order to

produce the feature model of the generic system that is meant to be representative for the

chosen category of Software Systems. The following rules should be applied to define

features of the generic system:

 81

• Features, which are identical for all sampled systems, are defined as mandatory

for the generic system.

• Features, which differ for different subsets of sampled systems, however, can be

generalised to one mandatory feature of the generic system, are defined as

alternative subfeatures of this feature.

• All other features of sampled systems are defined as optional for the generic

system.

8. Requirements elicitation. Functional and non-functional requirements for the generic

system should be derived from the feature model and documented (see section 4.2.3.5).

The requirements specification of the generic system should include requirements for all

features provided by the feature model. Optional and alternative requirements should be

annotated correspondingly. The main tool to support requirements derivation is

refinement of features and parameterisation. Each feature should be refined into

corresponding group of functional and non-functional requirements. The instances of

entities mentioned in requirements should be replaced by corresponding variables.

Composition rules (Table 6) should be included into the requirements specification.

Table 6. Feature table

ID Feature Description Rationale Type Composition rules
<Hierarchical
number>

<Feature
name>

<Text> <Text> [Optional|
Alternative|
Mandatory]

[Mutually exclusive with:
<feature names>|
Requires: <feature names>]

We propose the tabular notation, feature tables (Table 6), which should be used to describe

feature models. The main reason to use the tabular representation is that it is hard to understand

and to analyse large feature models represented using the original FODA graphical notation. In

addition, the tabular notation allows collecting together all information about the feature that in

the original FODA approach is distributed among feature diagrams, feature definitions and

rationale of features.

Feature table (Table 6) represents FODA feature hierarchy. In this table feature’s ID is a

unique identifier of the feature, which reflects all previous levels of the features hierarchy. The

column “Type” describes the type of the feature. Common properties are addressed as mandatory

or as alternative features and variable features are addressed as optional features. Composition

rules define the semantics existing between features. They cannot be expressed in the feature

diagram. There are two types of composition rules: mutual dependency (Requires) and mutual

exclusion (Mutually exclusive with). All optional and alternative features that cannot be

combined with the feature described in this row are listed after “Mutually exclusive with:”

 82

statement. All optional and alternative features that must be necessarily combined with this

feature are listed after “Requires:” statement [KCH90].

4.2.3.5. Refinement of the Feature Model

To be used as an evaluation test example, the feature model should be represented in the

form of requirements specification. First of all requirements should be derived from the feature

model. We propose to use feature refinement technique for this aim. The feature refinement is a

step-by-step process that involves taking the terminal features from feature model and expanding

it into software requirements, which may be expanded further into more detail requirements. In

other words, it is an iterative process, in which more details are considered with each pass

through the requirements specification. During this process, the requirements specification

consists of two parts: existing text (everything written up to this point) and intended text

(everything that is to be written in the following iterations). The structure of the existing part

depends on the chosen standard. We suppose in this dissertation that requirements are structured

on the basis of ISO 9126 standard [ISO91]. It means that refined requirements may be added to

several structural parts of the specification at once.

The interface between the two parts is called backlog interface. It consists of all terms, which

have already been used in the existing part, but which have not been defined yet. There are two

kinds of definitions of a term: structural and functional. For example, if the term Web site has

been mentioned in already written requirements, this term should be defined in a structural way,

describing the required structure of this page, and in a functional way, describing the operations,

which should be provided by the system for processing Web pages and for manipulation with

them. Some terms require only structural definitions, some terms only functional definitions, and

some should be defined in a structural as well as a functional way. All definitions should be in

strong accordance with the sampling vocabulary, all should be expressed in the form of

requirements, and all may include some constraints (non-functional requirements). In terms of

Jackson [Jac95], [Jac01], structural definitions, constraints and even some functional definitions

are not real requirements, because they describe interfaces or domain properties, but not the

effects that the system should produce. Similar as in the object-oriented decomposition [Raj88],

the terms in backlog interface address objects, functions, flows and constraining properties (e.g.,

“interface should be convenient for the user”). Thus, the backlog interface contains all functions,

objects, events, roles, flows and properties mentioned in the existing part of the requirements

specification.

A refinement iteration step consists of the following activities:

• Select a cluster of related terms from the current backlog interface. Definition of these

terms will constitute a group of functional requirements and, possibly, related groups of

 83

reliability, performance, usability or other non-functional requirements, which will be

added to the existing part of the requirements specification.

• Define all terms in the cluster and add derived in such way requirements to the

corresponding part of the existing requirements specification.

• Update the backlog interface, i.e., delete all terms defined in the step, and add all new

terms, which have appeared in the step.

The refinement process proceeds until all terms are defined completely without considering

any design decisions. Because the requirements specification describes a generic system, apart

mandatory requirements, it should include requirements for all optional and alternative features

provided by the feature model. The requirements also may be prioritised. In this dissertation we

suppose that the MoSCoW list [Cle94] is used to annotate requirements priorities.

The requirements are presented in a tabular form (Table 7). The reason to use tables is the

necessity to store the examples in the library of representative examples and to use tool support

to manipulate with examples. For each requirement the table contains a unique identifier that

reflects all previous levels of the requirements hierarchy, kind of requirement (F for functional

requirements, R for reliability requirements, U for usability requirements, E for efficiency

requirements, M for maintainability requirements, and P for portability requirements), statement

of the requirement, requirement type (M for mandatory, O for optional, A for alternative), and

requirement priority (M for must have this, S for should have this, C for could have this, and W

for won’t have now, but would like to have in the future). Each requirement statement should be

as precise and unambiguous as possible, in an ideal case expressible in the first-order language

of predicate calculus.

Table 7. Requirements table

ID Kind Requirement Type Priority
REQ - <hierarchical
requirement number>

[F| R| U| E | M| P] <Statement of the
requirement>

[M| O| A] [M| S| C| W]

Table 8. Portal requirements table

ID Kind Requirement Type Priority
REQ-1. F Common Web portal requirements M M
REQ-1.1 F Web system must be created as Web portal Pt. M M
REQ-1.2 F Web portal Pt should have three main groups of users Usr:

Visitor Vst, Member Mem and Administrator Adm.
M S

… … … … …
REQ-2. F Content management M M
REQ-2.1 F Portal Pt content items could be library items LbItm and/or

document items DocItm.
O C

REQ-2.2 F Library items LbItm should be reusable, unstructured pieces
of content, typically images, static text, and banners.

O S

 84

… … … … …
REQ-3. F Collaboration requirements O C
REQ-3.1 F Asynchronous collaboration requirements O C
REQ-3.1.1 F Member Mem of the portal Pt could have possibility to

participate in forums Fr1,…, FrN, which are provided by the
portal Pt.

A C

REQ-3.1.2 F Member Mem of the portal Pt could have possibility to
participate in newsgroups Nw1,…, NwN, which are provided
by the portal Pt.

A C

… … … … …

Table 8 describes example of portal requirements representation in tabular form. Because

statements of requirements describe a generic system, all the concrete values should be replaced

by the parameters. For some technical reasons we also use acronyms of entity names. In the

Table 8, parameters are written in bold and acronyms in italic.

4.2.3.6. Evaluation Procedure

A quality evaluation test consists of a test identifier, a test example, test execution

conditions, and expected results, which describe what this test allows to check. It is

recommended that identifier includes information about internal quality characteristic (e.g.,

functionality) under testing, the category of systems, which has been used to produce the test

example (e.g., IAS for information answer systems), and about the specification language under

testing (e.g., UML). Test example is a representative set of functional and non-functional

requirements, which should be specified using specification language L under testing. Test

execution conditions define what specification language is tested (e.g., Z, UML, Alloy, etc.),

what tools should be used to produce specification, in which way requirements should be

represented using the language L (each requirement should be modelled separately, groups of

related requirements should be modelled, entire requirements specification should be represented

as a coherent model, etc.), how requirements should be modelled (only directly, usage of

language flexibility mechanisms, except for the extensibility mechanisms, is allowed, etc.).

Expected results describe elementary characteristics of internal quality under testing. The list of

characteristics is derived from requirements specification using the following rules:

• if some requirement addresses an ontological primitive (e.g., concept) defined by

sampling vocabulary (e.g., user account), then the characteristics “ontological

sufficiency” and “ontological adequacy” should be added to the list;

• if some requirement addresses an epistemological primitive (e.g., specialisation of

concept) defined by sampling questionnaire (e.g., “For every registered user an account

should be provided.”), then the characteristics “epistemological sufficiency” and

“epistemological adequacy” should be added to the list;

 85

• the characteristic “expressibility” should be always added to the list, because by

definition any requirement is a statement about the system under the consideration (e.g.,

“For every registered user an account should be provided.”);

• if some requirements are described not explicitly and should be derived from other

requirements (e.g., “Every registered user should inherit the access rights from default

user and the ability to change inherited rights should be provided.”), then the

characteristic “reasoning power” should be added to the list;

• if some requirement describes composition of different ontological categories (e.g.,

object state and task), defined by sampling vocabulary (e.g., “Registered user should be

able to unsubscribe to newsletter he has subscribed to before.”), then the characteristic

“composability” should be added to the list;

• if some requirement includes some qualified expression (e.g., “The ability to find all

news on the specified subject that were published during specified time interval should be

provided.”), then the characteristic “selective power” should be added to the list;

• if requirements describe system at different levels of granularity (i.e., requirement

specification has hierarchical structure and requirements are refined step-by-step), then

the characteristic “generalitive power” should be added to the list;

• if some requirement addresses a domain-specific ontological primitive defined by

sampling vocabulary that cannot be mapped directly to the type system of the

specification language under testing (e.g., “All users should have unique e-mail

addresses.”), then the characteristics “extensibility” and “adaptability” should be added

to the list;

• if some requirement addresses a domain-independent ontological primitive defined in

sampling vocabulary defined by sampling questionnaire (e.g., class), then the

characteristic “universality” should be added to the list.

Figure 15 presents an example of the expected results of the test T-F-IAS-UML-01, which is

developed to evaluate the ability of UML to describe information answer systems. Such tests

may be used to evaluate the internal quality of a specification language for the current population

of a particular category of Software Systems. To evaluate the internal quality for the whole

current population of Software Systems, an appropriate suite of tests should be designed.

A suite of tests is a collection of tests developed to test some top-level group of the

characteristics of internal quality (functionality, reliability, efficiency, and usability) for the

particular specification language using the same testing infrastructure. It consists of evaluation

tests, from which each is developed to test the different category of systems. In order to

 86

minimise prior arrangement efforts, the suite should be developed for particular collection of

tools required supporting the testing (i.e., for a particular testing infrastructure).

It is recommended that the identifier of a suite of tests include information about internal

quality characteristic (e.g., functionality) under testing, about the specification language under

testing (e.g., UML), and about for testing used tool (e.g., MagicDraw UML).

Figure 15. An example of the expected results of the test

Figure 16 presents an example of the coverage of elementary characteristics of the

functionality of a specification language by the suite of evaluation tests TS-F-UML-MagicDraw,

which is designed to test the functionality of UML using the CASE tool MagicDraw2:

Figure 16. An example of the coverage of elementary characteristics by the suite of evaluation tests

In this example the number of requirements used to test the characteristics of functionality is

calculated summarising requirements used for this aim in the tests of the suite. If the suite does

not cover some characteristics, the sampling frames for each category of systems should be

carefully examined. If some frames have been defined incorrectly, they should be extended to

2 MagicDraw is the trademark of No Magic, Inc.

 87

include additional systems. In the case, when all frames have been defined correctly, the

uncovered characteristics should be eliminated from the further evaluation process, because they

are insignificant for the current population of Software Systems. Although, at least in the ideal

case, tools used to produce specifications to test some specification language cannot affect the

evaluation results, it is reasonable to point out the tool for the suite explicitly, because

appropriate testing infrastructure should be prepared. The suite of tests developed for a particular

tool should cover all four top-level characteristics of the evaluated language and all should be

included in the evaluation plan of this language. To avoid measurement errors, which can occur

as a result of using a particular tool, it is recommended that the evaluation plan provide at least

three groups of suites developed for different tools.

Figure 17. An example of the coverage of tests by suites of quality evaluation tests

Apart the set of suites of evaluation tests, the evaluation plan should provide time and

financial constraints, evaluators and other necessary information. The coverage of tests by suites

of quality evaluation tests for characteristics of internal quality is described by diagram (Figure

17) produced summarising expected results of all suites of evaluation tests provided by the plan.

4.2.3.7. Interpretation of Evaluation Results

Each elementary characteristic of functionality characterises corresponding feature of a

language. In our approach, the values of these characteristics are described as expected

frequency p(ξ) with which corresponding feature of a language L will be successfully used to

 88

specify the current population of Software Systems. Thus, in order to define this frequency, the

specification language evaluation results should be interpreted in an appropriate way.

Let us denote the feature of the language L described by characteristic ξi by L(ξi), the

expected frequency with which L(ξi) will become necessary specifying the current population of

Software Systems by q(ξi), and the expected frequency with which L(ξi) will be sufficient for

this aim by p(ξi). Then the value of the characteristic ξi is calculated as a production of expected

frequencies q(ξi) and p(ξi).

For the characteristics of reliability, efficiency and usability q(ξi)=1. For the characteristics

of functionality the value of q(ξi) should be defined in two steps: firstly, the value of q(ξi) should

be defined for each test and after that the value of q(ξi) should be calculated for the whole suite

taking into account all evaluation tests included into this suite.

The value of q(ξi) for a particular test should be defined taking into account test coverage and

the types of requirements used to test the characteristic ξi. Any characteristic ξi is tested using a

group G(ξi) of N(ξi) requirements. If for some evaluation test G(ξi) is empty, then q(ξi)=0,

because it means that ξi was not required to specify any requirement. In other cases the type of

requirement used to test ξi should be examined:

• If at least one mandatory requirement or at least one group of alternative requirements

belongs to the group G(ξi), then q(ξi)=1.

• If the group G(ξi) consists only of optional requirements, then, taking into account the

whole feature model, the expected frequency qi(ξi) for each requirement ri belonging to

the G(ξi) should be calculated, and after this q(ξi) is defined as follows:

∏
=

−−=
ξn

i

i

1
ii))ξ(q1(1)q(ξ (2).

In order to define expected frequency qi(ξi) for the ri, it is necessary to start from the initial

node of the feature model and proceed down the feature model up to the terminal feature that

generates ri. If this path is unique, then in each optional node the expected frequency of this node

should be calculated as the ratio of the number of systems, which provide corresponding optional

feature, to the total number of sampled systems, and the expected frequency for the ri should be

calculated multiplying all intermediate expected frequencies. If some intermediate node can be

reached via several paths, then the expected frequencies should be calculated for each path

(including the node itself), and the expected frequency for this node should be calculated in the

same way as in formula (2). After this, it is necessary to take this node as the initial node and to

proceed down further. So, in this way the expected frequencies for all terminal features are

calculated. Requirements generated by these features inherit their expected frequencies.

 89

To calculate the value of q(ξi) for the whole suite taking into account all evaluation tests

included into this suite the formula analogous to the formula (2) should be used once again.

The expected frequency p(ξi) is defined examining testing results. It is defined as a ratio of

the number N+(ξi) of requirements, which belong to the group G(ξi) and has been successfully

expressed in the language L, to the total number of requirements N(ξi) in this group, i.e.:

p(ξi)=N+(ξi)/N(ξi) (3).

To calculate the value of q(ξi) the group G(ξi) of requirements should include requirements

related to the particular quality characteristic tested by the particular quality evaluation test,

while to calculate the value of p(ξi) the group of requirements should include requirements

related to the particular quality characteristic tested by the whole suite of quality evaluation tests.

4.2.3.8. Infrastructure

Infrastructure can be defined as the particular software tool(s) required supporting data

collection, sampling, and testing of internal quality characteristics.

Sampling questionnaire data should be entered using the particular textual editor (e.g.,

Microsoft Word3.). Functional and non-functional requirements should be documented using

the particular requirements management tool. Because refinement of features is an iterative

process, in which more details are considered with each pass through the requirements

specification, it is necessary to use the tool allowing quick view and modification of

requirements. Two of the leading requirements management tools in today's market are Telelogic

DOORS4 and IBM5 Rational6 RequisitePro7. RequisitePro is a requirements and use case

management tool, which has requirements adding, organisation, tracking, and management

capabilities, and supports Microsoft Word for requirement authoring and communication.

Requisite Pro provides possibility to expose changes of requirements and omissions at multiple

levels of detail. DOORS is a requirements management tool, having powerful capabilities for

capturing, linking, structuring, analysing, and managing changes to requirements and their

traceability. This multi-platform system ensures conformance to requirements and compliance

with regulations and standards.

Specification of requirements should be done using the particular tools, which supports the

evaluated specification language. In this dissertation we evaluate Z [Spi92], [Woo96] and UML

3 Microsoft is a registered trademark of Microsoft Corporation.
4 DOORS is a registered trademark of Telelogic Company.
5 IBM is is a registered trademark of IBM Corporation.
6 Rational Software is a registered trademark of IBM Corporation.
7 RequisitePro is a registered trademark of IBM Corporation.

 90

2.0 [OMG05] languages, thus as a testing infrastructure MagicDraw UML 10.0 [NM06] and

Z/EVES 2.1 [Saa99] have been used. Using MagicDraw UML requirements are specified using

diagrammatical UML 2.0 notation, and using Z/EVES 2.1 requirements are specified using

textual Z notation. The specifications are saved as the libraries of files.

The particular testing tool should be used that should allow development of suites of quality

evaluation tests for every testing infrastructure. The tool should provide possibility to derive

from the requirements specification the list of the quality characteristics under testing and

calculate the number of requirements, by which every derived characteristic is tested. The tools

that could be used for this aim is Rational TestManager or Test Input Adapter for Telelogic

DOORS. TestManager is the central console for test activity management, execution and

reporting. Built for extensibility, it supports everything from pure manual test approaches to

various automated paradigms. TestManager is integrated with Rational RequisitePro. This

ensures seamless traceability between requirements and quality evaluation tests. Requirements

are linked to quality evaluation tests, ensuring proper test coverage. In addition, suspicion

analysis ensures that when requirements change, quality evaluation tests traced to the

requirement are automatically flagged as possible candidates for modification. Test Input

Adapter for Telelogic DOORS is developed for Telelogic DOORS, but it is also integrated with

Rational RequisitePro. This tool has similar capabilities as Rational TestManager. It allows

organisation and management of requirements testing process, easy modification and re-

execution of quality evaluation tests, and ensures traceability between requirements and quality

evaluation tests. Both Rational TestManager and Test Input Adapter for Telelogic DOORS

provide possibility to generate meaningful reports, including a series of predefined graphical and

textual reports capturing the crucial aspects of quality of the specification language under testing

and test completeness.

4.2.4. Techniques to Aggregate the Characteristics of Internal Quality

4.2.4.1. Short Description of the Proposed Techniques

The results of measurements of internal quality sub-characteristics should be aggregated to

evaluate internal quality. Aggregation techniques are used for several purposes: to aggregate

different sub-characteristics of internal quality; to aggregate results of several measurements of a

particular quality sub-characteristic obtained using the same suite of quality evaluation tests; and

to aggregate results of measurements of a particular quality sub-characteristic obtained using

several different suites of quality evaluation tests.

In the first case the problem is to bring to light what kinds of dependencies can occur among

quality sub-characteristics in the taxonomy of quality characteristics and to decide in which way

to aggregate sub-characteristics in order to take into account all measurements in a proper way.

 91

In last two cases the problem is to minimise possible deviations generated by shortcomings

of the particular metric or by inaccuracy of the particular measurement. The dissertation

considers this problem too but only in a very limited extent. Theoretical analysis of this problem

is not provided, however, the heuristic, which is acceptable in most of practical situations, is

proposed.

4.2.4.2. Preliminaries

Aggregation of information plays an important role in many fields. According to [Det00] the

purpose of aggregation is “the simultaneous use of different pieces of information (provided by

several sources) in order to come to a conclusion or a decision”. More exactly, “Aggregation

refers to the process of combining values (numerical or non numerical) into a single one, so that

the final result of aggregation takes into account in a given fashion all the individual aggregated

values” [GOY98]. A number of approaches, including rule-based approach, neuronal networks,

fusion specific techniques, probabilistic approach, evidence theory, possibility theory, fuzzy set

approach, and many other approaches have been proposed for this aim. However, all proposed

approaches are based at some extent on the numerical aggregation. In other words, all

approaches include aggregation of some numerical values. More generally, “the aggregation

operators are mathematical objects that have the function of reducing a set of numbers into a

unique representative (or meaningful) number” [Det00]. In theoretical considerations it is

assumed usually that both aggregated values and result of aggregation belong to some finite

interval, say interval [0,1], without any assumption about their nature. The choice of the interval

[0,1] is not restrictive, because any interval can be transformed into this interval using a positive

linear transformation ax+b, a>0 [GOY98]. Then an aggregation operator is defined as a function

that assigns a real number y (y ∈[0,1]) to any n-tuple (x1, x2, … , xn| xi∈[0,1]).

Fundamental properties of aggregation operators have been considered by [MT86], [Ovc98],

[MK97], [Det00]. These properties can be divided into two groups: mathematical properties and

behavioural properties. To be intuitively meaningful, an aggregation operator must satisfy at

least the following axioms [Det00]:

 Aggreg(x)=x (identity) (4)

 Aggreg(0, … , 0) = 0, Aggreg(1, … , 1)=1 (boundary conditions) (5)

 Aggreg(x1, x2, … , xn)≤Aggreg(y1, y2, … , yn) (monotonicity) (6)

 if(x1, x2, … , xn)≤(y1, y2, … , yn)

These axioms define fundamental mathematical properties that are inherent to any

aggregation operator.

It is proven [Det00] that any Aggreg operator is continuous with respect to each variable,

associative, commutative, bisymmetric, and idempotent. However, these properties are non-

 92

axiomatic and can be derived from the axioms (4), (5) and (6). Besides, it is proven that some

specific classes of aggregation operators have such mathematical properties as a neutral element,

an absorbent element (annihilator), compensation (Pareto property), counterbalancement and

reinforcement. Finally, some aggregation operators can be stable with respect to linear changes

of measurement scale and invariant for any bijection (e.g., in case when aggregation operator is

defined as a projection).

Behavioural properties are specific for each class of aggregation operators. In other words,

each class has individual behavioural properties. In general, there exist four behavioural

properties:

• possibility to express weights of importance on the values that are aggregated,

• possibility to express relations between the values that are aggregated,

• possibility take into account the aims of aggregation, and

• possibility of an easy semantic interpretation (i.e. being able to relate the values that are

aggregated to the behaviour implied by aggregation operator).

4.2.4.3. Aggregation Operators

There exist a great variety of aggregation operators. They can be roughly classified into

several categories [GOY98], each of which possesses distinct behaviour or semantic:

conjunctive, disjunctive, averaging (or compensative), non-compensative, and weighted

operators, according to the way the values are aggregated.

Conjunctive operators are used to aggregate the values when these values are orthogonal.

The term “conjunctive” accents that, in this case, aggregation is in some way analogous to the

logical operator “and”, because the resulting value is high if and only if all the aggregated values

are high. For binary operator this requirement can be expressed in the following axiom

[GOY98]:

Aggreg(1,a)=a, ∀a∈[0,1] (7)

It means that for conjunctive operators 1 is a neutral element.

Important sub-category of conjunctive operators is so called triangular norms (t-norms).

Triangular norms are often denoted by T. They have been introduced by Schweizer and Sklar

[Sch60], [Sch83] to model distance in probabilistic spaces. t-norm is a symmetric, associative,

non-decreasing for any argument mapping

T: [0,1]n→[0,1], (8)

for which 1 is a neutral element. In aggregation theory t-norms are used to generalise Boolean

logical operator “and” to multi-valued logic. For t-norms it is true that

T(x,y)≤min(x,y) (9)

 93

A t-norm is called strict, if it is strictly increasing for any argument. Well-known examples of

t-norms are operator min(x,y) and product xy. Axiomatic of t-norms attempts to capture the basic

properties of set intersection. It is one of the main advantages of t-norms. The main

disadvantages are that t-norms generally do not satisfy criteria (idempotence, compensativeness,

scale invariance, etc.), required for the aggregation of values that have different nature, for

example, for the aggregation results of measurements obtained using different suites of quality

evaluation tests.

Disjunctive operators are dual of conjunctive operators. They are used in cases when

aggregation operator must have properties analogous to the logical operator “or” or, in other

words, when the resulting value must be high if and only if at least one of aggregated values is

high. It will be low if and only if all aggregated values are low. For binary operator this

requirement can be expressed in the following axiom [GOY98]:

Aggreg(0,a)=a, ∀a∈[0,1] (10)

It means that for disjunctive operators 0 is a neutral element.

Important sub-category of disjunctive operators is so called triangular conorms (t-conorms, s-

norms). Triangular conorms are often denoted by ⊥. t-conorm is a symmetric, associative, non-

decreasing for any argument mapping

⊥: [0,1]×[0,1]→[0,1] (11)

that satisfies the axiom (10). In aggregation theory t-conorms are used to generalise Boolean

logical operator “or” to multi-valued logic. For t-conorms it is true that

⊥(x,y)≥max(x,y) (12)

Using the construction

⊥(x,y):=1-T(1-x,1-y) (13)

for any t-norm T dual t-conorm ⊥ can be defined [Ful05]. t-norm and a t-conorm are dual, if

they satisfy the DeMorgan law [Det00]:

¬T(x, y)=⊥(¬ x, ¬y), (14)

where negation usually is defined as a strong negation

¬x=1-x (15)

Well-known examples of t-conorms are operator max(x,y) and probabilistic addition x+y-xy.

Axiomatic of t-conorms attempts to capture the basic properties of set union. It is one of the

main advantages of t-conorms. The main disadvantage is that t-conorms, similarly as t-norms

cannot be used to aggregate the values of different nature.

 94

For details of basic analytical and algebraic properties of t-norms and t-conorms see

[KMP02].

The third category of aggregation operators is compensative operators that are neither

conjunctive nor disjunctive. They are compensative in the sense that low values are compensated

by high values, and the result of combination is a medium value. Thus, compensative operators

are averaging operators. They are monotonic, idempotent and are suitable for combining the

values of different nature. Examples of compensative operators are mean operators8, median and

order statistics9. A family of mean operators formed by different extensions of arithmetic mean is

called quasi-arithmetic means. It is defined [Kol30] as follows:

∑=
=

−
n

1i
i

1
n21f)]x(f

n

1
[f)x,...,x,x(Aggreg (16)

where f is any continuous strictly monotonic function.

Conjunctive, disjunctive and compensative operators are the main categories of aggregation

operators. However, there exist some aggregation operators, so called non-compensative

operators, which do not belong to any of these categories. Usually, non-compensative operators

are more or less of average type. However, they may extend beyond minimum and maximum

operators. Examples of non-compensative operators are symmetric sum [Sil79] and

compensatory operators [Zim80]. Symmetric sums are continuous, monotonic and commutative.

Compensatory operators are a mix of t-norm and t-conorm. Such mixed operators provide a kind

of compensation of each other by the values that are aggregated. They have rather limited

properties: continuity, monotonicity, and associativity. Some non-compensative operators have a

neutral element.

All discussed categories of aggregation operators are non-weighted or, in other words, treat

all arguments as of the same importance. However, in many cases arguments are not of the same

importance. So, in such cases, the weights of arguments must be introduced. Generally, weights

in aggregation can be necessary either from qualitative or quantitative reasons. Qualitative

reasons arise when the values that are aggregated have different importance. Quantitative reasons

arise in cases when the input of aggregation operator has different frequencies or cardinalities.

Introduction of weights extends non-weighted operators. For example, minimum and maximum

8 Quasi-arithmetic means are idempotent, continuous, strictly monotonic, compensative and decomposable. They

may have a neutral element. Arithmetic mean has the following additional property: it is stable with respect to linear

changes of measurement scale.
9 Median and statistics are idempotent, continuous, monotonic, compensative and stable with respect to linear

changes of measurement scale. They may have a neutral element. In addition, medians are associative.

 95

operators have been extended by Dubois and Prade [DP85] to weighted minimum and weighted

maximum operators:

)],xw1(max[min),...,x,x(xminw ii

n

1i
n21n,...,w1w

−=
=

 (17)

)],x(wmin[max),...,x,x(xmaxw ii

n

1i
n21n,...,w1w =

= , (18)

where weights wi≥0 for all i= 1,2, …,n and 1)(wmax i

n

1i
=

=
.

These operators can be generalised to weighted t-norm Tw and weighted t-conorm ⊥w

[Mor01]. Let w=[w1, w2, …, wn], where wi∈[0,1], 1 ≤ i ≤ n. Then ∀xi ∈ [0,1], 1 ≤ i ≤ n

Tw(x1, …, xn)=T(⊥(x1, 1-w1), ⊥(x2, 1-w2), … , ⊥(xn, 1-wn)) (19)

⊥w(x1, …, xn)=⊥(T(x1, w1), T(x2, w2), … , T(xn, wn)) (20)

However, axiomatic definition of t-norms does not allow weighted aggregation. In order to

obtain a weighted extension of t-norms, some of the axiomatic requirements must be dropped.

Weighted operators by definition are not commutative, so commutativity and associativity

axioms are eliminated for them.

Example 6

Consider T=xy is the probabilistic multiplication, and ⊥=x+y-xy is the probabilistic addition.

Then for n=2 the weighted t-norm and the weighted t-conorm will be the following:

Tw(xi, yi) = (1-w1(1-x1))(1-w2(1-x2)) (21)

⊥w(xi, yi) = w1x1+w2x2-w1w2x1x2 (22)

■

The whole family of quasi-arithmetic means (16) is extended by:

∑=
=

−
n

1i
ii

1
n21f)]x(fw[f)x,...,x,x(Aggreg , (23)

where wi are the weights of the values xi.

Example 7

Consider the arithmetic mean is extended to the weighted mean in the following way:

∑=
=

n

1i
iin21 xw)x,...,x,x(Aggreg , (24)

where the weights are normalised so that ∑ =
=

n

1i
i 1w .

■

As a natural framework for the inclusion of the behavioural properties of aggregation

operators the family of ordered weighted operators (OWA) has been proposed [Yag88]. OWA

 96

operators are idempotent, monotonic and commutative. They are important, because they

integrate both conjunctive and disjunctive behaviour. The OWA family is defined as follows:

∑=
=

n

1i
n21in21OWA)x,...,x,x,i(orderw)x,...,x,x(Aggreg , (25)

where function order: {1,2, …, n}×[0,1]n→[0,1] defines ordering of the values x1, x2, … , xn

in increasing order10. Thus, in OWA operator the weight is associated with a particular ordered

position of aggregate but not with a particular value [Ful96]. The main advantage of OWA

operators is their versatility [Det00], [GOY98]. In case, when w1=1 and all other weights are

equal to zero, OWA is equivalent to maximum operator; in case, when only wn=1 and all other

weights are equal to zero, it is equivalent to minimum operator. Arithmetic mean also is a

particular case of OWA operator. It is obtained when all weights are equal to 1/n.

Further generalisation of average operators is so-called fuzzy integrals. It is evident that

discretisation of traditional integral (including Lebesgue integral) of a function is a particular

case of averaging operator, because it represents the average value of this function [GOY98].

[Det00], [Sug74] [0] and other authors extended the notion of Lebesgue integrals by introducing

the fuzzy measure that is considered as the weight of importance of a set of the values that are

aggregated. It is defined as a mapping

]1,0[)V(P:m → , (26)

where V={v1, v2, … , vn} is a set of the values that are aggregated, and P(V) denotes the

power set of V. In addition, the function m must satisfy boundary conditions and monotonicity

axiom:

;1)V(m,0)(m ==∅ (27)

)))B(m)A(m()BA)((V(PB,A ≤⇒⊂∈∀ (28)

Lebesgue integrals with fuzzy measure are called fuzzy integrals. Discrete fuzzy integrals

can be seen as particular cases of averaging operators, too. There are two kinds of fuzzy

integrals: Sugeno integrals and Choquet integrals. The discrete Choquet integral of values x1, x2,

… , xn for the values V={v1,v2, … , vn} that are aggregated with respect to a fuzzy measure m is

defined as follows:

}),x,...,x,x({m))x,...,x,x,1i(order)x,...,x,x,i(order(

)x,...,x,x(Aggreg

n1ii

n

1i
n21n21

n21Choquet

+
=
∑ −−

=
 (29)

where it is supposed that order(0, x1, x2, … , xn)=0.

10 Using substitution n-i+1 it is possible to order the values in decreasing order.

 97

In the case when fuzzy measure m0=m(∅)=0, and mi=m(S)=i for any S⊆{x1, x2, … , xn} of

the cardinality i, the Choquet integral corresponds to the OWA operator:

∑ −=
=

−

n

1i
n211iin21OWA)x,...,x,x,i(order)mm()x,...,x,x(Aggreg (30)

And vice versa, each OWA operator corresponds to the Choquet integral with the measure

∑=
=

n

ki
ik wm .

The discrete Sugeno integral of values x1, x2, … , xn for the values V={v1, v2, … , vn} that

are aggregated with respect to a fuzzy measure m is defined as follows:

)))x,...,x,x(m)x,...,x,x,i(order(min(maxAggreg n1iin21

n

1i
Sugeno +

=
= , (31)

where it is supposed that order(0, x1, x2, … , xn)=0.

Sugeno integrals generalise the weighted minimum and the weighted maximum. In the case,

when fuzzy measure m0=m(∅)=0, and mi=m(S)=i for any S⊆{x1, x2, … , xn} of the cardinality i,

the Sugeno integral corresponds to the weighted maximum:

))m)x,...,x,x,i(order(min(maxAggreg in21

n

1i
max

=
= (32)

In the case, when fuzzy measure m0=m(∅)=0, and mi=m(S)=i for any S⊆{x1, x2, … , xn} of

the cardinality i, the Sugeno integral corresponds to the weighted minimum:

))m)x,...,x,x,i(order(max(minAggreg in21

n

1i
min =

= (33)

Choquet integrals and Sugeno integrals have been widely studied in literature and compared

to each other (see, for example [BHS96]. These integrals are complementary in the sense that

Choquet integrals can be seen as a kind of average, while Sugeno integrals can be seen as a kind

of median. Thus, each integral is intended to be used for different purposes.

4.2.4.4. Aggregation of Internal Quality Characteristics

Let us consider further how to apply surveyed above aggregation theory in order to solve the

problem of aggregation of quality characteristics of a specification language.

It is highly desirable that internal quality of a language will be measured using some

numerical scale. It is also preferable to use a scale of cardinal type. On the other hand, internal

quality of a language cannot be measured in any standard units, like meters or amperes, of some

measurement system. In addition, internal quality characterises the potential applicability of a

language only but says nothing about its quality in use or about the degree to which this language

satisfies the requirements of a particular project. These are the main reasons to define internal

quality of a language through the expected frequency with which this language will satisfy the

requirements of any possible project regardless of its complexity or size. If, for example, quality

 98

of some specification language is characterised by the value 0,8, it means that this language will

be acceptable approximately for 4/5 of all imaginable projects.

The quality is described in a hierarchical way: it is decomposed into characteristics and sub-

characteristics of several levels. Each characteristic (sub-characteristic) describes some feature of

a language. Characteristics of the lowest level are described by the expected frequencies with

which corresponding feature of a language will be sufficient for any possible project. So, the

notion of expected frequency allows expressing partiality that is natural for specification

languages, because almost always a language supports any particular feature at some limited

extent only. Expected frequencies can be evaluated, for example, using in this dissertation

proposed suites of quality evaluation tests (see section 4.2.3).

The values of the characteristics of all higher levels can be calculated using some

aggregation techniques. Let us consider this problem in detail.

Let us discuss now the techniques to aggregate measurements of sub-characteristics.

There are several cases and for each of them different aggregation method should be used:

1. All sub-characteristics ξ1, ξ2, … , ξn of the characteristic ξ are orthogonal and for

∀i∈[1,n](q(ξi)=1).

2. All sub-characteristics ξ1, ξ2, … , ξn of the characteristic ξ are orthogonal and there

exists such subset ξ’⊆{ξ1, ξ2, … , ξn} that ξ’={ξk|q(ξk)<1}.

3. There exists some main sub-characteristic of the characteristicξ, say ξ1, in the sense

that q(ξ1)=1. For all other sub-characteristics ξ2, … , ξn is true that q(ξi)<1 for i∈[2,n]

and L(ξ2) suppl L(ξ1), L(ξ3) suppl L(ξ2), … , L(ξn) suppl L(ξn-1), where L(ξk) suppl

L(ξl) means that L(ξk) is supplementary (additional) for L(ξl).

4. All sub-characteristics ξ1, ξ2, … , ξn of the characteristic ξ are alternative, q(ξi)<1 for

any i∈[1,n] and is true that:

∑ =
=

n

1i
i 1)q(ξ (34)

The expected frequencies p(ξ1), p(ξ2),…, p(ξn) can be compared to compound probabilities.

Thus, methods to aggregate sub-characteristics were constructed by analogy to in probability

theory used methods to combine probabilities [Pfe79]: multiplication rule and addition rule. We

will apply the multiplication rule to aggregate orthogonal sub-characteristics or, in other words,

in cases when features described by these sub-characteristics are used for different aims.

Addition rule will be applied to aggregate supplemental and alternative sub-characteristics or, in

other words, when features described by these sub-characteristics are used for the same aim and

compensate each other or are alternative to each other. Let us consider now how to apply

multiplication and addition rules for aggregation of quality sub-characteristics in each of cases

 99

mentioned above. We will also check for each case that the proposed aggregation technique is an

aggregation operator and that it indeed has the properties required in this particular case to

aggregate sub-characteristics in a proper way.

In the first case all sub-characteristics are orthogonal. If two sub-characteristics ξ1 and ξ2 are

orthogonal it means that L(ξ1) and L(ξ2) are independent, used for different aims. So, in the first

case all characteristics are independent and will become necessary (the expected frequency with

which L(ξ) will become necessary specifying the current population of Software Systems is

equal to 1) for any possible project. Consequently, in this case the multiplication rule can be

applied directly to aggregate the sub-characteristics.

)p(ξ)p(ξ
n

1i
i∏=

=
 (35)

In order to illustrate the proposed aggregation techniques, we use geometric probability. As

sample space (i.e. the set of all possible values the events may assume) we use unitary square.

Event space (i.e. the subset of the sample space consisting of events that represent a successful

outcome) is represented by the corresponding area in the unitary square. Further we use Venn

diagrams to illustrate aggregation techniques for aggregation of some small number of sub-

characteristics. Figure 18 represents the result of aggregation of p(ξ1) and p(ξ2) by the area

p(ξ1)p(ξ2):

Figure 18. Aggregation of orthogonal sub-characteristics quality (case 1)

Statement 1. The formula (35) defines a t-norm.

Proof. It is evident that operator)p(ξ
n

1i
i∏

=
 is aggregation operator. Satisfaction of axioms (4)-

(6) follows immediately from the properties of multiplication rule:

• for n=1, the formula (35) defines identity (i.e. p(ξ) = p(ξ1));

• boundary conditions are satisfied: because (if p(ξi) = 0 for any i then p(ξ) = 0); if p(ξi) =

1 for any i then p(ξ) = 1);

• multiplication is monotonic in the interval [0,1].

It is also evident that multiplication rule is symmetric, associative and that for multiplication

rule 1 is the neutral element. Consequently, (35) defines a t-norm.

 100

■

Thus, the aggregation technique defined by formula (35) really can be applied to aggregate

orthogonal sub-characteristics in a proper way, since t-norms are conjunctive aggregation

operators generalising Boolean logical operator “and” to multi-valued logic.

Example 8

Internal quality of a specification language L is defined through four characteristics:

functionality ξ1, reliability ξ2, usability ξ3, and efficiency ξ4. Measures of these characteristics

are expected frequencies p(ξ1), p(ξ2), p(ξ3) and p(ξ4) correspondingly. All four characteristics are

orthogonal to each other (i.e. describes the features of a language that are used for different

purposes) and the expected frequencies q(ξ1), q(ξ2), q(ξ3) and q(ξ4) that they will become

necessary for any project P are equal to 1. Thus, internal quality of the language L is described

by the expected frequency p(ξ)=p(ξ1)p(ξ2)p(ξ3)p(ξ4).

■

In the second case, all sub-characteristics ξ1, ξ2, … , ξn of the characteristic ξ are also

orthogonal, but there exists at least one sub-characteristic ξi, for which q(ξi)<1. In this case

multiplication rule cannot be applied directly. It must be changed in the way to meet the

requirement that any feature L(ξ) must be sufficient for any particular project at the same degree

as its sub-features L(ξi) are sufficient for this project in case, when these sub-features are

required for this project at all. Of course, L(ξi) is sufficient also for projects, for which it is not

required. It means that multiplication rule must be modified to cover also the projects, for which

L(ξ) is not required:

)))p(ξ1)(q(ξ-(1)p(ξ
n

1i
ii∏ −=

=
 (36)

Figure 19 represents the result of aggregation of one sub-characteristic, which is evaluated as

p(ξ1) and for which q(ξ1)<1. In this case aggregated characteristic is expressed by the area

p(ξ1)q(ξ1) (for the case that characteristic is indeed sufficient for any possible project) and areas

p(ξ1)(1-q(ξ1)) and (1-p(ξ1))(1-q(ξ1)) (for the case, when the characteristic is not required for this

project at all). Although only one characteristic is illustrated in Figure 19, this principle can be

generalised for any number of quality sub-characteristics.

Figure 19. Aggregation of orthogonal sub-characteristics quality (case 2)

 101

Statement 2. The formula (36) defines a weighted t-norm.

Proof.

Rewrite formula (36) in the form

p(ξ)=(1-q(ξ1)(1-p(ξ1))(1-q(ξ2)(1-p(ξ2)) … (1-q(ξn)(1-p(ξn)).

Denote T=xy and ⊥= x+y-xy. Let us use now proof by induction.

For n=2

p(ξ)=(1-q(ξ1)(1-p(ξ1)))(1-q(ξ2)(1-p(ξ2)))=

=(1-q(ξ1)+q(ξ1) p(ξ1))(1-q(ξ2)+q(ξ2) p(ξ2))=

=(1+p(ξ1)-p(ξ1)-q(ξ1)+q(ξ1)p(ξ1))(1+p(ξ2)-p(ξ2)-q(ξ2)+q(ξ2)p(ξ2))=

=(p(ξ1)+1-q(ξ1)-p(ξ1)(1-q(ξ1))(p(ξ2)+1-q(ξ2)-p(ξ2)(1-q(ξ2))=

=⊥(p(ξ1), 1-q(ξ1))⊥(p(ξ2), 1-q(ξ2))=

=T(⊥(p(ξ1), 1-q(ξ1)), ⊥(p(ξ2), 1-q(ξ2))).

Thus, for n=2 the Statement 2 is true.

Now suppose that the Statement 2 is true for n=i. It means that for n=i

p(ξ) = (1-q(ξ1)(1-p(ξ1))(1-q(ξ2)(1-p(ξ2)) … (1-q(ξi)(1-p(ξi))

defines weighted t-norm

T(⊥(p(ξ1), 1-q(ξ1)), ⊥(p(ξ2), 1-q(ξ2)), ... , ⊥(p(ξi), 1-q(ξi))).

For i=i+1

p(ξ) = T(⊥(p(ξ1), 1-q(ξ1)), ⊥(p(ξ2), 1-q(ξ2)), ... , ⊥(p(ξi), 1-q(ξi)))(1-q(ξi+1)

(1-p(ξi+1))=(1-q(ξ1)(1-p(ξ1))(1-q(ξ2)(1-p(ξ2)) … (1-q(ξi)(1-p(ξi))(1-q(ξi+1)

(1-p(ξi+1)) = T(⊥(p(ξ1), 1-q(ξ1)), ⊥(p(ξ2), 1-q(ξ2)), ... , ⊥(p(ξi), 1-q(ξi)), ⊥(p(ξi+1),

1-q(ξi+1))).

Consequently, (36) defines weighted t-norm T(⊥(p(ξ1), 1-q(ξ1)), ⊥(p(ξ2), 1-q(ξ2)), ... ,

⊥(p(ξn), 1-q(ξn))).

■

Thus, the aggregation technique defined by formula (36) really can be applied to aggregate

orthogonal sub-characteristics of different importance in a proper way, since weighted t-norms

are theoretically sound extension of t-norms.

Example 9

Semantic sufficiency ξ of a specification language L characterises the conceptual level of the

linguistic system ΦL beyond this language. It is the measure of the ability of language L to

specify all “things” that might be necessary for analysis and design of any possible project P.

 102

Semantic sufficiency ξ is decomposed into ontological sufficiency ξ1 and epistemological

sufficiency ξ2. Ontological sufficiency ξ1 is characterised through the expected frequency p(ξ1)

with which any project P will be conceptualised successfully through categories α
L
 provided by

the linguistic system ΦL. Epistemological sufficiency ξ2 characterises the ability of the linguistic

system ΦL to express epistemological primitives or, in other words, characterises the constructive

power of “algebra of concepts” provided by ΦL. ξ2 is characterised through the expected

frequency p(ξ2) with which all required conceptual structures will be modelled using constructs

of language L. The expected frequency q(ξ1) with which ξ1 will become necessary for any

project P is equal to 1, and the expected frequency q(ξ2) with which ξ2 will become necessary for

any project P is less than 1. Thus the measure of semantic sufficiency ξ is described by the

expected frequency p(ξ)=(1-q(ξ1)(1-p(ξ1)))(1-q(ξ2)(1-p(ξ1)))=p(ξ1)(1-q(ξ2)(1-p(ξ1))).

■

In the third case sub-characteristics are supplemental to the main sub-characteristic ξ1 or, in

other words, all features L(ξ1), L(ξ2), … , L(ξn) are used for the same purpose, and supplemental

features are necessary only when previous features are insufficient for this purpose. In this case

addition rule can be applied, however, it must be modified appropriately, because q(ξ) can be

expressed through p(ξ) in the following way:

q(ξ1)=1,

q(ξ2)=1-p(ξ1),

q(ξ3)=1-p(ξ1)-p(ξ2)(1-p(ξ1)),

q(ξ4)=1-p(ξ1)-p(ξ2)-p(ξ3)(1-p(ξ1)-p(ξ2)(1-p(ξ1))),

…

q(ξn)=1-p(ξ1)-…-p(ξn-1)q(ξn-1).

Thus,

)(ξ)...pp(ξ(-1))ξ(p)...p(ξ(-1)

...))p(ξ)p(ξp(ξ))p(ξp(ξ)p(ξ

)ξ(q)ξ(p...)ξ(q)ξ(p)ξ(q)ξ(p)p(ξ))q(ξp(ξ)p(ξ

r

n

nr...skj1
1

n

1r

1r
n1

1n

s

n

nskj1
kj

n

nkj1
kj

n

ni1
i

nn33221i

n

1i
i

∑∑=+

−∑+∑−∑=

=++++=∑=

≤<<<<≤=

−−

≤<<≤≤<≤≤≤

=

 (37)

This formula is a well-known inclusion-exclusion formula [Dur93]. Figure 20 represents the

result of aggregation of p(ξ1), p(ξ2) and p(ξ3). In this case from the area p(ξ1)+p(ξ2)+p(ξ3) it is

necessary to exclude the areas p(ξ1)p(ξ3), p(ξ2)p(ξ3), p(ξ1)p(ξ2) and to include the area

p(ξ1)p(ξ2)p(ξ3), because when n>2 the exclusion of the pairwise intersections is too severe, thus

compensating inclusion is required.

 103

1

1 x

y

p(2)p(3)

p(1)p(3)

p(1)p(2)

p(1)p(2)p(3)

p(1)

p(2)

p(3)

Figure 20. Aggregation of supplemental sub-characteristics quality (case 3)

Statement 3. The formula (37) defines t-conorm.

Proof.

Denote ⊥= x+y-xy. Let us use now proof by induction.

For n=2

p(ξ)=p(ξ1)+p(ξ2)-p(ξ1)p(ξ2)=⊥(p(ξ1), p(ξ2)).

Thus, for n=2 the Statement 3 is true.

Now suppose that the Statement 3 is true for n=m. It means that for n=m

p(ξ)=p(ξ1)+p(ξ2)-p(ξ1)p(ξ2)-…+(-1)m-1p(ξ1)…p(ξm)

defines t-conorm

⊥(p(ξ1), p(ξ2), ..., p(ξm)).

For m=m+1

)).ξ(p),...,ξ(p),ξ(p(

)ξ(p)...p(ξ(-1)...))p(ξ)p(ξp(ξ))p(ξp(ξ)p(ξ

)ξ(p)ξ(p)...p(ξ(-1)...

))p(ξ)p(ξ)p(ξp(ξ))p(ξ)p(ξp(ξ))p(ξp(ξ)ξ(p

)ξ(p)....p(ξ(-1)...))p(ξ)p(ξp(ξ))p(ξp(ξ)p(ξ

)ξ(p)...ξ(p)1))(ξ(p),...,ξ(p),ξ(p()p(

1m21

1m1

m

s

m

1mskj1
kj

m

1mkj1
kj

m

1mi1
i

1mm1
1m

1ms

m

mskj1
kj1m

m

mkj1
kj

m

mi1
1mim

m1
1m

s

m

mskj1
kj

m

mkj1
kj

m

mi1
i

1m1
m

m21

+

+
+≤<<≤+≤<≤+≤≤

+
+

+
≤<<≤

+
≤<≤≤≤

+

−

≤<<≤≤<≤≤≤

+

=⊥

=+−∑+∑−∑=

=++

+∑−∑+∑−+

++−∑+∑−∑=

=−=⊥ξ

Consequently, (37) defines t-conorm ⊥(p(ξ1), p(ξ2), ..., p(ξn)).

■

Thus, the aggregation technique defined by formula (37) really can be applied to aggregate in

a proper way such non-orthogonal sub-characteristics, for which it is true that at least one sub-

characteristic will become necessary for any possible project with the expected frequency 1,

since t-conorms generalise Boolean logical operator “or” to multi-valued logic.

 104

Example 10

Functionality ξ of a specification language L is defined as the existence of means required

specifying functional and non-functional properties of the subject system. Functionality has two

sub-characteristics: suitability ξ1 and flexibility ξ2. The sub-characteristic ξ1 is the main sub-

characteristic. It characterises how sophisticated statements about potential systems in a

particular realm a specification language L is able to express, and at what level of granularity it

can be done. The measure of ξ1 is the expected frequency p(ξ1) with which any statement about

any system of a particular kind can be formulated in terms of the language L. The expected

frequency becomes equal to 1, if the language L allows formulating statements about any

property of a system in a given realm and expressing it with the needed degree of precision. The

sub-characteristic ξ2 is supplemental. It describes the extent to which the language can be

adjusted to specify preliminary not intended properties. The measure of ξ2 is the expected

frequency p(ξ2) with which the language L can be applied to the whole spectrum of systems,

namely, business systems (from the Information Systems design perspective), Information

Systems, and Software Systems. The expected frequency q(ξ2)=1-p(ξ1), because ξ2 becomes

necessary only in cases, when L(ξ1) is not sufficient to specify the subject system. Thus,

p(ξ)=p(ξ1)+p(ξ2)q(ξ2)=p(ξ1)+p(ξ2)(1-p(ξ1))= p(ξ1)+p(ξ2)-p(ξ1)p(ξ2).

■

In the fourth case all sub-characteristics ξ1, ξ2, … , ξn, are alternative. It means that there

exist no main sub-characteristic or, in other words, q(ξi)<1 for any i∈[1,n], however, at least one

of features L(ξi) must be used. Thus, the condition (34) must be satisfied. In this case addition

rule must be changed taking into account that sub-characteristics may duplicate each other and

that the overlapping of alternative sub-characteristics should be eliminated:

))q(ξp(ξ))q(ξp(ξ)p(ξ i

n

1i
ii

n

1i
i ∏−∑=

==
 (38)

Figure 21 represents the result of aggregation of p(ξ1) and p(ξ2). In this case from the area

p(ξ1)q(ξ1)+p(ξ2)q(ξ2) it is necessary to exclude the area p(ξ1)q(ξ1)p(ξ2)q(ξ2).

Figure 21. Aggregation of alternative sub-characteristics quality (case 4)

 105

Statement 4. The formula (38) defines a weighted t-conorm.

Proof.

Rewrite formula (38) in the form

p(ξ)=q(ξ1)p(ξ1)+q(ξ2)p(ξ2)+…+q(ξn)p(ξn)-q(ξ1)p(ξ1)q(ξ2)p(ξ2) … q(ξn)p(ξn))

Denote T=xy and ⊥=x+y-xy. Let us use now proof by induction.

For n=2

p(ξ)=q(ξ1)p(ξ1)+q(ξ2)p(ξ2)-q(ξ1)p(ξ1)q(ξ2)p(ξ2)=

=⊥(q(ξ1)p(ξ1), q(ξ2)p(ξ2))=⊥(T(p(ξ1), q(ξ1)), T(p(ξ2), q(ξ2)).

Thus, for n=2 the Statement 4 is true.

Now suppose that the Statement 4 is true for n=i. It means that for n=i

p(ξ)=q(ξ1)p(ξ1)+q(ξ2)p(ξ2)+…+q(ξi)p(ξi)-q(ξ1)p(ξ1)q(ξ2)p(ξ2) … q(ξi)p(ξi))

defines weighted t-conorm

⊥(T(p(ξ1), q(ξ1)), T(p(ξ2), q(ξ2)),…,T(p(ξi), q(ξi))).

For i=i+1

p(ξ)=⊥(T(p(ξ1), q(ξ1)), T(p(ξ2), q(ξ2)),…,T(p(ξi), q(ξi))) q(ξ1)p(ξ1)+

+q(ξ2)p(ξ2)+…+q(ξi)p(ξi)+q(ξi+1)p(ξi+1)-q(ξ1)p(ξ1)q(ξ2)p(ξ2)…

…q(ξi)p(ξi)q(ξi+1)p(ξi+1)=⊥(T(p(ξ1), q(ξ1)), T(p(ξ2), q(ξ2)),…,T(p(ξi), q(ξi)),

T(p(ξi+1), q(ξi+1)).

Consequently, (38) defines weighted t-conorm ⊥(T(p(ξ1), q(ξ1)), T(p(ξ2), q(ξ2)), ...,

T(p(ξn), q(ξn))).

■

Thus, the aggregation technique defined by formula (38) really can be applied to aggregate

in a proper way non-orthogonal sub-characteristics of different importance, since weighted t-

conorms are theoretically sound extension of t-conorms.

Example 11

Flexibility ξ of the language L has three sub-characteristics: universality ξ1, adaptability ξ2,

and extensibility ξ3. These characteristics are alternative. Sub-characteristic ξ1 characterises the

degree of generality of ontological primitives beyond the language L. The measure of ξ1 is the

expected frequency p(ξ1) with which ontological primitives, provided by categories αL of the

linguistic system ΦL, is suitable to model concepts from the whole spectrum of subject systems.

Sub-characteristic ξ2 describes the ability of the language L to configure syntax and semantics to

adapt it for arbitrary domain. The measure of ξ2 is the expected frequency p(ξ2) with which any

 106

required specific of domain can be introduced using adaptability mechanisms provided by the

language L. ξ3 is closely related to ξ2. Although the features L(ξ2) and L(ξ1) in some sense are

opposite to each other, we can consider them as alternative, because it is possible to implement

flexibility through universality as well as through adaptability. Sub-characteristic ξ3 is the

characteristics of the language that bears on its ability to define new constructs. The measure of

extensibility ξ3 is the expected frequency p(ξ3) with which any required domain-specific features

can be introduced using extensibility mechanisms provided by the language L. Both ξ2 and ξ3 are

important for general-purpose languages only. If the expected frequency with which ξ1 will

become necessary for any project P is q(ξ1), the expected frequency with which ξ2 will become

necessary for any project P is q(ξ2) and the expected frequency with which ξ3 will become

necessary for any project P is q(ξ3), then flexibility ξ of the language L can be described by the

expected frequency p(ξ)=p(ξ1)q(ξ1)+p(ξ2)q(ξ2)+p(ξ3)q(ξ3)–p(ξ1)q(ξ1)p(ξ2)q(ξ2)p(ξ3)q(ξ3).

■

4.2.4.5. Aggregation of Measurements of Internal Quality Characteristics

Usually, it is very difficult or even impossible to develop precise metrics to measure the

characteristics of internal quality of a specification language. One way to measure quality

characteristics is to use suites of quality evaluation tests (see section 4.2.3). However, the notion

of representativity cannot be defined strictly and precisely. It is defined on an empirical basis.

So, in order to be more precise, any sub-characteristic ξi of the internal quality of a language L

should be measured using a number of different metrics (suites of quality evaluation tests) and

results of different measurements should be aggregated. For example, three different suites of

quality evaluation tests can be used for this aim. Ideally, all measurements should produce

almost identical results, because all quality evaluation tests should be debugged using a number

of most popular specification languages (Z, UML, etc.). However, when a new specification

language is evaluated it may occur that it accents a feature that is secondary only in most popular

languages and for this reason has been underestimated in some suites of quality evaluation tests.

Thus, in some cases an unacceptable dispersion of measurement values may appear.

Unacceptable dispersion can also be generated by inaccuracy of measurements, because quality

evaluation tests are specified manually and, consequently, measurement results can be impacted

by the errors of the particular specifier. There is no way to determine the source of dispersion. It

means that in both situations the same approach should be used to process unacceptable

dispersion.

If the dispersion produces obviously meaningless results, for example, out of the interval

[0,1], the only way to solve this problem is to analyse all quality evaluation tests, to discover

 107

reasons of such behaviour and to improve appropriate suite of quality evaluation tests or to

perform more accurate measurements. However, it is very expensive solution and can be

accepted in some exceptional cases only. In most of the cases, it is preferable to minimise the

dispersion in some way or, in other words, to use appropriate weights for aggregation of

measurement values. Partially, it is because the taxonomy of characteristics encompasses fifty-

seven characteristics and has five hierarchical levels and, therefore, the impact of one or even

several characteristics to the final result of aggregation is very small.

Different approaches can be used to minimise possible deviations of measurement results.

Most of methods of smoothing over measurement errors are based on the assumption that

measurement errors are random errors and that measurements obey a normal, or Gaussian,

distribution. It means that the measurements should be distributed about the mean in such a

manner that more measurements lie close to the mean than lie far away from it. We also accept

this assumption. However, we cannot use so called Q-tests, empirical schemes that are used in

statistics for testing inaccurate values (so called outliers) in small data sets, for example, Grubbs

Test [EPA92], Dixon Test [EPA96], or Discordance Test [EPA96], because in our case not only

the deviations from Gaussian distribution, but also the distribution of values at some extent is

unacceptable. In addition, the reliability of Q-tests for data sets including only three values is

very low, although theoretically all mentioned above tests can be applied for such data sets, too.

Aggregation operators with static weights (for example, Choquet integral) also cannot be used,

because they require analysis of each particular case to assign appropriate weights. So, we

propose the following heuristic, in which weights for aggregation of measurement values are

determined dynamically:

1. to calculate the arithmetic mean

∑ 






 ⋅=∑=
==

n

1i
i

n

1i
in21 x

n

1
x

n

1
)x,...,x,M(x (39)

and the standard deviation

n

))x,...,x,M(x(x
d

n

1i

2
n21i∑ −

= = (40)

for the set of measurements {x1, x2, …, xn} of the characteristicξ;

2. to substitute the values that are out of interval [M-d;M+d] by the value M-d or M+d

correspondingly;

3. to calculate the new arithmetic mean M1 and to take it as the value of characteristicξ.

This heuristic can be seen as a kind of combination of arithmetic and winsorised means. It

allows dynamic determining of weights and minimising of dispersion. The main advantage of the

 108

proposed heuristic is that it can be used in all cases when the dispersion of the values is not

obviously meaningless, including cases when two measurements are equally distant from the

mean (in this case the heuristic rejects both the highest and the lowest values) and even cases

when the dispersion is at acceptable extent.

Example 12

Ontological sufficiency ξ of a language L was measured using metrics µ={m1, m2, m3}.

Measurements resulted in three different results: m1(ξ)=0,1; m2(ξ)=0,2; m3(ξ)=0,9.

So, the aggregation of measurements should be done in the following way:

1. Firstly, the arithmetic mean of measurements

0,40,9)0,2(0,1
3

1
M =++=

and the standard deviation

() 0,35590,4)(0,90,4)(0,20,4)(0,1
3

1
d 222 =−+−+−=

are calculated by the formulas (39) and (40).

2. Secondly, the value 0,9 that is out of the interval

[M-d; M+d]=[0,0441; 0,7559]

is substituted by the value 0,7559.

3. Finally, the new arithmetic mean is calculated

0,351970,7559)0,2(0,1
2

1
M 1 =++=

is calculated and the value 0,35197 is taken as the value of the characteristic ξ.

■

Example 13

Let three different measurements of the epistemological sufficiency ξ of a language L using

metric m have given results with small dispersion: m1(ξ)=0,81; m2(ξ)=0,82; m3(ξ)=0,89. Using

the proposed heuristic to aggregate measurements, we obtain the following results:

1. The arithmetic mean

840,9)80,280,81(0,
3

1
M =++=

and the standard deviation

 109

() 0,03560,84)(0,890,84)(0,820,84)(0,81
3

1
d 222 =−+−+−=

are calculated by the formulas (39) and (40).

2. The value 0,89 that is out of the interval [M-d; M+d]=[0,8044; 0,8756] is replaced by the

value 0,8756.

3. New arithmetic mean

0,83520,8756)0,82(0,81
3

1
M 1 =++=

is calculated and the value 0,8352 is taken as the value of characteristic ξ.

■

The presented examples demonstrate that the heuristic produces acceptable results in the case

with large dispersion as well as in case with small dispersion.

4.3. Specification Languages Quality in Use Evaluation Framework

4.3.1. On Construction of a Quality Model

There is a number of works, were an attempt to construct quality model is made. One of

them, semiotic framework [Sin90], [Sel94], [Kr01a], [Kr01b], [Kr03], [KS03], [LSS94], was

already discussed in 3.10. Let’s discuss the other works, which do not address the quality of

specification languages directly, but has a strong impact on the research in this field. First of all,

ISO/IEC 9126 standard [ISO91] should be mentioned among them. Although this standard

addresses the quality of software, its conceptual basis is significantly wider and can be applied to

many other fields. For example, the ISO/IEC 9126 standard has been taken as a baseline for

QStudio11 [QJ03], which specifies quality concepts for Java12 language. This approach defines

so-called Quality Attribute Tree, which indeed is ISO/IEC 9126 quality model extended by

additional sub-characteristics. The Quality Attribute Tree is not a proper tree, because many of

quality sub-characteristics at once refine several characteristics. The "many to many"

relationship introduces no difficulties in using the “tree” for quality assessment, because the

quality is assessed top down by evaluating the characteristics first and then the sub-

characteristics and metrics. So, using stepwise refinement techniques, the notion of code quality

is expressed in terms of quality sub-characteristics and mapped further onto programming

11 QStudio is a registered trademark of QA Systems BV, The Netherlands.

12 Java is a registered trademark of Sun Microsystems.

 110

constructs. In this way quality metrics are attached to the sub-characteristics. The advantage of

such approach is the possibility to assess by measurement the quality on multiple levels of detail.

Another example is EAGLES/ISO methodology [KM98] that aims to evaluate the quality of

natural language processing systems. It supposes that evaluation expresses what some object is

worth to somebody. Quality model is constructed according to two different perspectives. The

first perspective (object-based perspective) is who likes it. The second perspective (user-based

perspective) is what they like. EAGLES augments the ISO/IEC 9126 approach in the sense that

it deals with the formulation of stated or implied needs, which are the primary input to the

quality requirement definition. The project aims at producing an evaluation package, from which

different elements can be taken and combined in different ways to reflect the needs of any

particular user. In EAGLES, quality requirements definition is based on the union of the implied

needs of classes of users, appropriate metrics are selected and measurements are carried out, but

any user is left to construct his preferred rating level definition and assessment criteria definition

[KM98]. ISO/IEC 9126 also has been used as a basis to develop quality characteristics trees for

software components [SB98] and for ERP systems [BBC98].

Figure 22. Fuzzy model

One more important approach, called the fuzzy model (see Figure 22) for software quality

evaluation (FMSQE), has been proposed by Belchior and developed further by his colleagues

[BXR96]. They proposed a hierarchical quality model based on four main concepts: goals,

factors, criteria, and evaluation processes. Goals represent the general properties that a product

should possess. Goals are decomposed in factors; factors can be further decomposed in sub-

factors. Factors and sub-factors define different users' perspectives about the quality. Factors

(sub-factors) should be decomposed in measurable quality characteristics, called criteria. For

each criterion one or more alternative evaluation processes, describing a measurement

methodology, should be established. In order to obtain the values of factors, both numerical and

qualitative measurement results must be aggregated. Measures and aggregate measures are

 111

related by quantitative relations. Obtained measures are interpreted using a set of fuzzy

functions. Fuzzy functions support the aggregation of measures expressed in different units and

are used as a suitable interpretation mechanism able to deal, at the same time, with qualitative

measures and numerical data. The proposed approach provides: a membership function mapping

the desired quality criterion; a method to calculate the membership function for the aggregate

quality; and a final membership function for the whole product.

4.3.2. Quality Model

There exists no comprehensive definition of quality. Quality ever depends on context.

Quality of a specification language is also relative. It depends on the requirements of the

particular project. Following the ISO 8402 [ISO94] definition of quality, the quality of a

specification language can be defined as “the totality of features and characteristics of this

language that bear on its ability to satisfy stated or implied project’s needs”. The language that

is excellent for one project may be unacceptable for some other projects, because each project

has its specific priorities. Usually the definition of the term “quality” is formalised by a quality

model. Quality models are used in many areas, however, often these models are defined

imprecisely, only in the form of a quality characteristics tree and, may be, associated metrics.

Although some approaches (e.g., ISO/IEC 9126 [ISO91]) address quality in use, quality

requirements usually are not seen as a part of a quality model. They should be defined separately

in terms of a quality characteristics tree. It is embarrassing for users, because such requirements

are low-level requirements even in the case, when they are formulated using abstraction levels

provided by quality characteristics tree. We propose context-oriented quality model (see Figure

23) that includes quality requirements and allows formulating those requirements in the form of

high-level quality goals.

Figure 23. Context-oriented quality model

 112

In [CLV02] the main idea how to define context-oriented quality model that includes quality

requirements and allows formulating these requirements in the form of high-level quality goals is

proposed. In this dissertation we elaborate this idea further. We define context-oriented quality

model as the following nine-tuple:

Q=< Γ, Ψ, Θ, ∆, Λ, F, M, µ, ξ> (41),

where

Γ=<V, A, G, f, l> is a weighted AND/OR digraph describing quality goal

interdependencies, termed as “goal graph”:

V={vi1≤i≤N} is a nonempty set of graph vertices (quality goals), V1⊂V is a set of

vertices that have no incoming arrows (terminal goals);

A⊂VxV is a nonempty set of ordered pairs of vertices (graph’s arrows), A1⊂V1xΨ is

a nonempty set of ordered pairs that relates terminal goals to the characteristics of

internal quality;

G={gk1≤k≤N1} is a nonempty set of weights;

f: A∪A1⇒G is a weighting function that maps graph’s arrows to weights;

l: V⇒{AND, OR} is a labelling function that marks vertices with the labels “AND”

or “OR”.

Ψ is taxonomy of quality characteristics with the set of leaf nodes Ψ1;

∆ = {δi0≤i≤ N2} is a nonempty set of rating levels;

Λ = {λi0≤i≤ N2} is a nonempty set of linguistic terms, used to interpret rating levels;

Θ is a quality assessment function used to evaluate quality goals and defined in the

following way:

OR""label

AND""label

thehas

thehas

vif

vif

),g*δ(max

,g*δ
)v(

i

i

jj
Nj1

j

N

1j
j

i

3

3









=Θ

≤≤

=
∑

 (42),

where

vi∈V is a vertex;

δj is an evaluation value that signs vertices adjacent to the vertex vi;

gj∈G is a weight that signs incoming arrow aj∈ A∪ A1 of the vertex vi;

N3 is the number of incoming arrows for the vertex vi (goals of the lowest levels are

evaluated on the basis of rating levels of appropriate quality characteristics).

F = {Fλλ∈Λ} is a nonempty set of interpretation functions used to interpret obtained

measure of the top-level quality goal v0. Functions Fλ:{Θ(v)| v∈V}⇒[0,1] are fuzzy

functions that are defined following [BXR96].

 113














<<

≤<
−

−

≤≤
−

−

=Θ

+

+
+

+

−

)v(Θδor δ)v(Θ when undefined,

δ)v(Θδwhen ,
δδ

)v(Θδ

δ)v(Θδ when ,
δδ

δ)v(Θ

))v((F

1i1-i

1ii

i1i

1i

i1-i

1ii

1-i

iλ (43),

where

{δi-1, δi, δi+1} ∈ ∆ are rating levels;

v is a vertex (the function is calculated for the vertex v0).

M = {mj 1≤j≤ N4}- a nonempty set of quality metrics;

µ: Ψ1⇒M is one-to-many mapping that relates quality metrics to quality characteristics;

ξ = {ξλ λ∈Λ} is a nonempty set of rating functions for the set of measured values (scores),

where functions ξλ: Ψ2 ⇒[0,1] are defined in analogical way as in (43):














<<

−
≤<

−−

−
−

≤≤
−−

−

=

+

+

+

+

(x)m δor δ (x)m when undefined,

1

δ
(x)m

1

δ
 when,

δδ

(x)1)m-(δ
1

δ
(x)m

1

δ
 when,

δδ

δ(x)1)m-(

 (x))(mξ

j1i1-ij

2

1i
j

2

i

i1i

j21i

2

i
j

2

1-i

1-ii

1-ij2

j

NN

N

NN

N

iλ
 (44),

where

{δi-1, δi, δi+1} ∈ ∆ are rating levels;

N2 is the number of rating levels;

mj (x) – the value of quality characteristic x∈Ψ1 measured using metric mj;

Ψ2 = {m(x) m∈M, x∈ Ψ1, µ(x)=m}.

A quality model for the particular project is designed in seven steps (Figure 24).

Define quality

goals and their

weights

Develop

GIG

Select rating

levels and define

linguistic terms

Select quality

characteristics

that impact quality goals

Choose metrics for

measuring of

characteristics

Develop quality

assessment criteria

Define fuzzy functions

for every linguistic term

Figure 24. Quality model construction

The taxonomy of quality characteristics Ψ is the same for any context-oriented quality

model, because it defines internal quality of the language and does not depend on the particular

project. In general case, characteristics of internal quality can be measured using several

different metrics mj∈M. In the case of different measurements, their values should be

aggregated. We suppose that, evaluating quality in use, internal quality has been evaluated

already (an approach to evaluate internal quality is proposed in 4.2).

 114

Because for the evaluation of quality in use not all quality characteristics may be important,

in the particular quality model only some part of the taxonomy Ψ may be used. Values of to this

part of the taxonomy Ψ belonging quality characteristics are mapped to appropriate rating values

using (fuzzy) rating functions ξλ ∈ ξ.

Let us consider the example of a simple quality model Q1 designed for project P1 in order to

choose the most appropriate specification language.

Example 14

1. Goal interdependencies graph Γ is presented in Figure 25.

v6

+0,4 +0,6

+1,3 -0,3 +0,2 +0,8

v3 v4 v5

v1 v2

v0

Figure 25. The weighted digraph describing interdependencies between quality goals

The set of weights is defined as G={-0.3, +0.2, +0.4, +0.6, +0.8, +1.3}.

Weighting function f is defined as follows:

f(v3,v1)=+1.3; f(v4,v1)=-0.3; f(v1,v0)=+0.4;

f(v5,v2)=+0.2; f(v6,v2)=+0.8; f(v2,v0)=+0.6.

2. The part of the taxonomy of quality characteristics Ψ1 (Figure 26) has 3 leaf nodes Ch1,

Ch2, Ch3.

Figure 26. The part of the taxonomy of quality characteristics Ψ1

3. The set of rating levels is defined as ∆ = {0, 1, 2, 3}.

4. The set of linguistic terms is defined as Λ = {U, A, G, VG}, where U is unacceptable, A

is acceptable, G is good and VG is very good.

5. According to (42) quality assessment function Θ is calculated in the following way:

Θ(v1)= 1.3 Θ(v3) – 0.3 Θ(v4);

Θ(v2)= 0.2 Θ(v5) + 0.8 Θ(v6);

Θ(v0)= 0.4 Θ(v1) + 0.6 Θ(v2);

Θ(v3)= 1.5 ξ(Ch1) – 0.5 ξ(Ch2);

 115

Θ(v4)= 0.2 ξ(Ch2) + 0.8 ξ(Ch3);

Θ(v5)= 0.3 ξ(Ch1) + 0.8 ξ(Ch2) – 0.1 ξ(Ch3);

Θ(v6)= 0.8 ξ(Ch1) + 0.2 ξ(Ch3).

6. The set of quality metrics is defined as µ ={m1, m2}. Metrics are related to quality

characteristics in the following way:

µ={(m1,Ch1), (m2,Ch2), (m2,Ch3)}

7. According to (44) rating functions ξλ are calculated in the following way:

1/3(x)m 0when ,1)(x-3m))(xm(ξ jjjU ≤<+=





≤<+−

≤≤
=

2/3(x)m1/3 when 2,)(x3m

1/3(x)m0when),(x3m
))(xm(ξ

jj

jj

jA





≤<+−

≤≤−
=

1(x)m2/3 when 3,)(x3m

2/3(x)m3/1when ,1)(x3m
))(xm(ξ

jj

jj

jG

1)(ξm2/3when ,2)(ξ3m))(ξm(ξ ijijijVG ≤≤−=

8. According to (43), for Λ = {U, A, G, VG} interpretation functions Fλ in the point v0 are

calculated in the following way:

1)Θ(v 0n whe,1)Θ(v))v(Θ(F 000U ≤<+−=





≤<+−

≤≤
=

2)Θ(v1 when 2,)Θ(v

1)Θ(v0when ,)Θ(v
))v(Θ(F

00

00
0A





≤<+−

≤≤−
=

3)Θ(v2 when 3,)Θ(v

2)Θ(v1when ,1)Θ(v
))v(Θ(F

00

00
0G

3)Θ(v 2n whe,2)Θ(v))v(Θ(F 000VG ≤≤−−=

■

4.3.3. Quality Evaluation Procedure

The proposed user-oriented quality model suggests appropriate quality evaluation procedure.

This procedure includes five steps (Figure 27).

1. Characteristics of internal quality, which are relevant to the quality goals V, are

identified and the part Ψ1 of the taxonomy Ψ is constructed.

2. Rating values for characteristics of Ψ1 are calculated using rating functions from ξ.

3. The rating values for terminal quality goals are calculated using quality assessment

function Θ.

4. The rating values are propagated through the goal interdependencies graph Γ using

quality assessment function Θ.

 116

5. The rating value of the top-level quality goal Θ(v0) is interpreted using interpretation

functions Fλ (Θ(v0)).

Figure 27. Quality evaluation procedure

Example 15

The evaluation of a specification language L1 according to quality evaluation procedure

provided by the quality model Q1 presented in Example 14 gives the following results:

1. m1(Ch1) = 0,17; m2(Ch2) = 0,47; m2(Ch3) = 0,27
13.

2. m1(Ch1):

0<m1(Ch1)≤1/3, 0≤m1(Ch1)≤1/3

ξU(m1(Ch1)) = –3*0,17+1=0,49; ξA(m1(Ch1)) = 3*0,17 = 0,51

(Ch1) is 49 % Unacceptable and 51 % Acceptable. Thus, the rating level is:

0*0,49+1*0,51=0,51 (0 and 1 are corresponding rating levels).

m2(Ch2):

1/3< m2(Ch2)≤2/3, 1/3≤ m2(Ch2)≤2/3

ξA(m2(Ch2)) = -3*0,47+2 = 0,59; ξG(m2(Ch2)) = 3*0,47-1 = 0,41

Ch2 is 59 % Acceptable and 41 % Good. Thus, the rating level is: 1*0,59+2*0,41=1,41.

m2(Ch3):

0< m2(Ch3)≤1/3, 0≤ m2(Ch3)≤1/3

ξU(m2(Ch3)) = –3*0,27+1 = 0,19; ξA(m2(Ch3)) = 3*0,27=0,81

13 We assume that these values were obtained after application of in 4.2 proposed approach to evaluate internal

quality.

 117

Ch2 is 19 % Unacceptable and 81 % Acceptable. Thus, the rating level is:

0*0,19+1*0,81=0,81.

3. Θ(v3)= 0,06; Θ(v4)= 0,93; Θ(v5)= 1,2; Θ(v6)= 0,57;

4. Θ(v1)= -0,2; Θ(v2)= 0,696; Θ(v0)= 0,338

5. FU (Θ(v0)) = -0,338+1=0,662; FA (Θ(v0))=0,338

Thus, the quality of evaluated specification language L1 for the project P1 is 66%

Unacceptable and 34% Acceptable.

■

4.3.4. Quality Goals

In this dissertation proposed approach to evaluate internal quality of a specification language,

high-level quality requirements are formulated in the form of quality goals. The user’s treatment

of quality goals and interdependencies between goals is described using goal interdependency

graph (GIG) Γ. The idea of GIG is borrowed from [CNM99], where similar graphs, namely, soft-

goal interdependency graphs (SIG), are used to define non-functional software requirements. The

advantage of GIG, comparing to the taxonomy of quality characteristics, is that the user can start

from business goals, formulate high-level quality requirements and derive further detailed

quality requirements, formulated in the terms of low-level quality characteristics. For example,

top management may aim to spend money on staff training, minimise the amount of efforts

needed to produce specifications, and produce specifications readable by domain experts. In

other words, management is looking for a specification language, which would be simple enough

to learn in short terms by not skilled staff, would be efficient and would have high degree of

audience appropriateness. GIG allows defining goal interdependences and priorities, helps to

expose implicit interdependencies and to refine requirements up to low-level quality

characteristics. By refinement, for each goal a set of sub-goals to satisfy this goal is introduced.

Parent goal may be satisfied by all of its sub-goals or by any of them. In addition, some sub-

goals can contribute positively towards a particular goal and negatively towards other goals.

Although GIGs are very similar to SIGs, they are used for different purposes and in different

way. The main problem investigated in [CNM99] is software design problem. SIGs are used in

top-down manner with the aim to refine non-functional requirements, including quality

requirements, to choose design decisions, which accomplish those requirements in the possibly

best way, and to evaluate the impact of chosen decisions in bottom-up way. Our task is to choose

such specification language, which satisfies quality requirements in the best way. So we need to

choose not the design decisions, but the most appropriate metrics and measurement procedures

(see section 4.2) and, further, to propagate evaluation results through the GIG in the bottom-up

manner.

 118

4.3.5. Quality Assessment Function

Each quality goal is evaluated using quality assessment function Θ. This function is used to

propagate rating values of quality characteristics through the GIG from bottom towards the top

of the graph. Measured or aggregated values of quality characteristics should be mapped to

rating values, because, in general case, they are incomparable, expressed in different dimensions.

Rating values of the lowest GIG level are used as intermediate to calculate quality assessment

function of the highest GIG level. Quality assessment function depends on goals priorities and,

consequently, is designed in such way that to evaluate the impact of quality characteristics of the

chosen language on the quality goals. Because the arrows are signed by negative and positive

priorities, the calculated value may be not exactly integer. It means that we propagate towards

top of the graph not the rating levels itself, but some values that belong to intervals [v1, v2],

where v1 and v2 are adjacent rating levels.

For “AND” vertices the value of quality assessment function is calculated taking into account

the weights of all incoming arcs. In this case, positive as well as negative weights are allowed,

and it is required that the sum of weights should be equal to 1. For “OR” vertices the value of the

Θ is the maximal one from the propagated values. In this case, only positive weights are allowed,

and it is required that any weight do not exceed 1.

4.4. Conclusions

First of all, this dissertation continues research on the evaluation of the quality of

specification languages, which has begun in [CLV02]. Internal quality of a specification

language L describes the quality that is independent from any context of use. Because of the

imprecise nature of quality characteristics, it is reasonable to define such quality as the expected

frequency with which the language L will satisfy the requirements of any imaginable project P.

In an analogous way can be defined also all characteristics of internal quality, including

elementary ones.

Second, because characteristics of internal quality of the language L form a large hierarchical

structure F, in order to evaluate internal quality it is necessary to aggregate sub-characteristics

through the whole structure F. Thus, techniques of aggregation depend on the kind of

dependences among characteristics that are aggregated. There exist four kinds of such

dependencies: characteristics are orthogonal (independent) and all are required for any project;

characteristics are orthogonal but not all are required for any project; characteristics supplement

the one that is required for any project; and none of the characteristics is required for any project.

In the first case the characteristics can be aggregated properly using a kind of t-norm, in the

second case using a kind of weighted t-norm, in the third case using a kind of t-conorm, and in

 119

the fourth case using a kind of weighted t-conorm. In order to minimise possible deviations

generated by shortcomings of the particular metric (suite of quality evaluation tests) or by

inaccuracy of the particular measurement, the mean with weights that are determined

dynamically should be calculated. For this aim the dissertation proposes the heuristic, which can

be seen as a kind of combination of arithmetic and winsorised means.

Third, the dissertation elaborates in [CLV02] proposed quality model and proposes a

systematic evaluation of quality in use on the basis of measurements of internal quality. Such

approach can be used to evaluate the quality of the specification language in the context of the

particular project, i.e. considering the high-level quality requirements formulated by the users of

the particular system in the form of quality goals.

Fourth, the main characteristic of internal quality – functionality– is analysed in the

dissertation, and it is concluded that evaluation of the elementary characteristics of functionality

is a hard and complicated task, which requires relatively high time and labour overheads. Many

and long-time efforts are needed to do sampling, develop suites of tests, test language and

interpret obtained results. Besides, some difficulties of theoretical character should be overcome.

The theory of problem frames is relatively new and still not sufficiently elaborated. There are no

any well-grounded methods for framing and sampling particular category of systems. Too little

is known how to eliminate the impact of human factor to results of evaluation procedure. Thus,

the systematic evaluation clarifies deep internal structure of each evaluated language as well as

of specification languages in general and provides valuable experience that could be used during

construction of new specification languages. We hope the proposed approach to evaluate internal

quality will contribute both to the research on evaluation of the quality of existing specification

languages and to the development of new ones.

 120

5. Experimental evaluation of UML and Z languages functionality

Detail description of experimental evaluation of UML and Z specification languages

functionality with UML and Z specifications (created using MagicDraw UML 10.0 [NM06] and

Z/EVES 2.1 [Saa99] tools) is presented in technical report [Gas06a].

5.1. Contribution to the Experimental Evaluation

The experimental evaluation has been carried out by me. First of all, I have chosen the

category of systems under experiment and found the particular systems of this category. Second,

using methodology to evaluate functionality characteristics of internal quality I have developed

the requirements specification for generic Web portal. Third, I have specified these requirements

in UML and Z specification languages. Fourth, I have developed suites of quality evaluation

tests to test functionality characteristics of UML and Z languages and used these test to evaluate

elementary characteristics of functionality. Finally, I have used aggregation techniques to

aggregate elementary characteristics of functionality and obtain the evaluation of functionality

for UML and Z languages.

5.2. Aim and Objectives

The experimental evaluation aims to demonstrate how to use in the dissertation proposed

specification languages internal quality evaluation framework to evaluate functionality of UML

and Z specification languages independently from any context of use.

The tasks that should be carried out during the experimental evaluation are the following:

• to choose the category of Software Systems and describe its multi-frame system;

• to develop sampling vocabulary and sampling questionnaire;

• to create feature model;

• to develop evaluation test examples by refinement of feature model into requirements

specification;

• to develop quality evaluation tests for MagicDraw UML 10.0 [NM06] testing

infrastructure;

• to develop quality evaluation tests for Z/EVES 2.1 [Saa99] testing infrastructure;

• to apply developed quality evaluation tests to test elementary characteristics of

functionality for UML and Z specification languages;

• to interpret the results of elementary characteristics evaluation;

• to aggregate the values of elementary characteristics and calculate the value of

functionality for UML and Z specification languages;

 121

• to make conclusions about functionality characteristics of UML and Z specification

languages.

5.3. Subject of the Experimental Evaluation

The subject of the experimental evaluation is Z [Spi92], [Woo96] and UML 2.0 [OMG05]

specification languages. The category of Software Systems that have been chosen for the

experimental evaluation is Web portal. The reason of such choice is that it is a multi-frame

system that can be described using two different information answer frames (for content

management and for search) and two different connection frames (for chatting and workflow

management).

5.4. Evaluation of the Functionality of UML and Z Languages

5.4.1. Framing

Most of Web portals contain content management, search, collaboration and groupware, task

management and workflow functionality. Thus, a generic Web portal may be described by a

multi-frame system, which contains four elementary frames (see Figure 28). The frames for

content management and search are interconnected one with the other and with all other frames

by Content Repository domain that is the subject of the enquiries, used to store/retrieve content

items, and by Member domain that is the enquirer, who searches/publishes the content items of

the portal. The frames for chatting and workflow management are interconnected one with the

other and with all other frames by Member domain that is connected to all other domains of

these two frames, because portal members use the provided connection to exchange messages

and tasks with one another.

Figure 28. Multi-frame system for Web portal

 122

In the Figure 28 used denotations for shared phenomena (events) are the following:

• R1 – Requirements for entered search options.

• R2 – Requirements that constrain displaying of found search results.

• R3 – Requirements for searching of content items in the repository by the path, used in

the Portal Information Architecture.

• O1 – Search keywords are entered.

• O2 – Ordering options are entered.

• O3 – Date options are entered.

• O4 – Scope options are entered.

• I1 – Found search results are displayed.

• C1 – The path that leads to the searched for content items and consists of hierarchical

categories of Portal Information Architecture.

• R4 – Requirements for content items under creation.

• R5 – Requirements that constrain publishing of content items and their display.

• R6 – Requirements for saving of content items in consistency with Portal Information

Architecture.

• I2 – Library item is entered.

• I3 – Document item is entered.

• I4 – Published items are displayed.

• C2 – The path that leads to published items and consists of hierarchical categories of

Portal Information Architecture.

• R7, R8 – Requirements for correspondence between by the particular portal member

typed message and for the other portal member displayed message. R8 requirement

constrains displaying of the messages in the course of chat.

• M1 – The message is typed.

• MD1 – The message is displayed.

• R9, R10 – Requirements for correspondence between by the particular portal member

assigned/processed (accepted, rejected or suspended) task and for the other portal

member displayed task. R8 requirement constrains displaying of the tasks in the tasks list.

• T1 – The task is assigned.

• T2 – The task is accepted.

• T3 – The task is rejected.

• T4 – The task is suspended.

• TD1 – Assigned/processed task is displayed.

 123

Three Web portals have been chosen for the experiment:

• Developer Portal of Beunited organisation (http://www.beunited.org/),

• Indiana Learning Portal (http://www.ihets.org/progserv/education/ilportal/),

• HKU Portal of the University of Honkong (http://www.hku.hk/cc/).

The reasons for choosing these portals are the following:

• Representativeness. All of them conform to in Figure 28 represented multi-frame

system.

• Value. They are up-to-date, popular enough among users, and their application area is

important enough:

• Developer Portal of Beunited organisation is a community that puts an emphasis on

people-to-people communication. It is actively used by the users, because it can

incorporate all types of people in the community, developers and end-users alike,

rather than being solely developer-specific.

• Indiana Learning Portal makes collaborative or community workspace available in

Indiana and around the world, it provides access to corporate training, training

programs, college classes and programs, professional development, public

broadcasting, and other educational opportunities.

• HKU Portal is designed to enable convenient and effective communications among

University members, who can access on-line library resources, web-based email,

on-line courses, personal records, administrative data, teaching and learning

resources, research information and other on-line services provided by various

departments with a single sign-in.

• Relative sampling risk. Developer Portal and Indiana Learning Portal have requirements

specification documents [Req03], [ILP03]. HKU portal’s user guide

(http://www.hku.hk/cc/faq/portal/) and demo version is available on the Web.

5.4.2. Sampling Vocabulary

Sampling vocabulary that describes the main concepts of the chosen conceptualisation is

presented in Table 9:

Table 9. Sampling vocabulary

Equivalents Term Definition
Developer
Portal

Indiana
Learning Portal

HKU Portal

Access rights Permissions or privileges granted to portal
members by portal administrator.

Action The action, which is done to the content item:
“Check in” or “Check out”.

 124

Equivalents Term Definition
Developer
Portal

Indiana
Learning Portal

HKU Portal

Administrator The type of the role, which has possibility to
access, create and modify all resources of the
portal, i.e. to perform content, user, and search
management.

Advanced
search

Search for the particular information by
advanced search options, which allow limiting
the scope of search. Advanced search allows
making search more precise by using up to
three search terms at once and combining
search terms using Boolean operators AND,
OR, NOT.

 Targeted search

Advanced
search options

Option of combining a variety of terms to help
to construct a more detailed search for
particular portal content.

 Guided
search
options

Asynchronous
collaboration

Collaboration at different time
(asynchronous).

 Off-line
collaboration

Attachment A computer file, which is sent along with
messages in forums (newsgroups).

Ban Barring access to all portal chat rooms or to
the particular chat room for a specific portal
member either indefinitely or for a specific
time period. Typically, a ban is levied by the
Administrator as punishment for typing
messages with unprintable words.

Category Hierarchical unit that function like directories
(folders) and correspond to the Portal
Information Architecture.

Section Folder Folder

Chat room
group

A group of chat rooms, which are available
for the particular role having users of the
portal.

Check in Saving of created, modified or deleted piece
of content. In case of creation/modification
the new version is assigned to the content
item.

Check out Reserving of the particular piece of content by
the particular portal member for creation,
modification or deletion.

Content creator The type of the role, which provides
possibility to create content.

Content item Items, stored in the portal Content Repository.

Content
manager

The type of the role, which provides
possibility to create and publish content, and
approve or reject the content that the other
portal members have created.

Administrator Administrator

Content
publisher

The type of the role, which provides
possibility to publish content.

Content
repository

Facility that contains the content managed,
displayed or just used by a content application
such as a Content Management system.

Date options Options that allow filtering data according to
dates (possibility to show all data or only the
data that belongs to the particular interval of
dates).

 Date settings

Document item Structured pieces of content, typically stored
in the form of files, such as .DOC or .PDF.

Folder A place in the portal Content Repository,
where the results of simple or advanced search
are saved.

 Directory

Forum Online collaboration through discussion Discussion board

 125

Equivalents Term Definition
Developer
Portal

Indiana
Learning Portal

HKU Portal

group, where portal members can exchange
messages.

Group task A task that is assigned to the group of portal
members.

Individual task A task that is assigned to individual portal
member.

Instant
messaging

A form of real-time communication between
two or more people based on typed text or by
participation in voice or video conference.

Item kind The kind of library items: image, static text,
banner or video.

Item type The type of content item: library item or
document item.

Library item Reusable, unstructured pieces of content.

Member The type of the role, which is assigned to
registered users of the portal. Members have
access to all main resources of the portal.

Member profile A user account that contains user membership
term and personal user information (such as
name, e-mail, nickname, address, etc.).

Profile

Message A text that is typed by the particular member
and displayed to all participants of the
collaboration (forum, newsgroups, public chat
room) or only to one participant of the
collaboration (private chat room, instant
messaging).

Newsgroup Collaboration through bulletin boards, where
portal members can put and read messages on-
line or download and save messages for off-
line reading.

 Discussion group Bulletin
board

Newsletter Asynchronously distributed publication
generally about one main topic that is of
interest to its subscribers.

Nickname An alternate name someone uses or others use
to refer to that person instead of using that
person’s real or complete name.

Notification E-mail indication that the particular event that
took place in the portal requires member’s
attention.

Ordering
options

Options that allow ordering of search results
in the particular way.

 Sorting settings

Poll An inquiry into public opinion conducted by
interviewing portal members.

Private chat
room

A virtual room, where two people can
communicate pear-to-pear in real time while
on the Internet.

Private chat Private chat

Public chat
room

A virtual room, where people can
communicate in real time while on the
Internet.

 Chat room

Role A relationship that person has to a project or
portal. Usually a role has the set of access
rights.

Activity

Saved search Simple or advanced search with possibility to
save search results in folders, and later extract
of saved search results from the particular
folder.

 Custom search

Scope options Options that allow limiting scope of search by
providing the particular topics, which are
relevant for the member.

 Scope settings

 126

Equivalents Term Definition
Developer
Portal

Indiana
Learning Portal

HKU Portal

Search
keywords

Keywords or key phrases that some search
engines will use to search for particular portal
content.

Simple search Search for the particular information by
entered search keywords. It includes search
using only one search term. The scope of
simple search is „all portal content items“.

 Basic search

Status The status of the content item: “Approved” or
“Not approved” (if approval is necessary).

Synchronous
collaboration

Collaboration in real-time (concurrently). Real-time
communication

On-line
collaboration

Task A unit of work within a workflow. Workflows
are composed of multiple tasks which can be
executed serially, in parallel, or on a
conditional basis. Examples of tasks include
tasks that are assigned by project manager to
in the particular projects participating
developers, different learning tasks assigned
to students by their tutors (lectors), etc.

Task action The action, which is done to the task: “Send
for approval”, “Approve”, “Reject.”

Task manager Portal member, who assigns tasks to the other
members and administers the processing of
tasks (approves or rejects by portal members
accepted, rejected or suspended tasks). Task
managers in different portals are different (for
example, project managers, tutors (lectors),
etc.).

Project manager Lector, tutor Lector, tutor

Task priority The importance of task (“High”, “Low”,
“Medium”).

Task status The status of the task, which depends on the
states of the processed task: „Accepted“,
„Rejected”, „Suspended”, „Completed”.

Topic The subject matter of a conversation or
discussion, which takes place in forum or
newsgroup, or the subject of to portal
members distributed newsletter.

Topic post Topics and their replies. Post Post

Topic reply Reply to the particular topic.

Topic subject The name of the topic.

Visitor Not registered user of the portal.

Workflow Automation of a business process, in whole or
part, during which documents, information or
tasks are passed from one member to another
for action, according to a set of procedural
rules.

5.4.3. Sampling Questionnaire

5.4.3.1. Data Requirements

Data in the sampling questionnaire should meet the following requirements:

1) Data validity requirements:

• Questionnaire data should express which components (Figure 28) are mandatory for

the particular portal and which are optional and, thus, are not present in that portal.

 127

• Questionnaire data should show how the main components of the particular portal

interact one with the other.

• Questionnaire should contain questions about the features of the main components

of the particular portal.

• Questionnaire data should show interactions and dependencies between different

features of the particular portal.

• Questionnaire data should express which features are mandatory for the particular

portal and which are optional and, thus, are not present in that portal.

2) Data reliability requirements:

• Questionnaire should not be too large; it should be as short as possible – only

essential questions should be included into it.

• If the question has no any answering conditions, then it should be answered.

• If it is explicitly stated in the question that it should be answered only if the

particular condition holds (for example, if answer to the previous question is

„Yes“), then it should not be required to have answers to such questions.

• In order to avoid inaccurate answers because of invalid interpretation of questions,

all the questions should be as unambiguous as possible.

• Questions should not have technical terms or acronyms that are not defined in

sampling vocabulary.

• Every question should be formulated in such a way that it should cover all the

possible answers.

• In order to make questions easier to answer questions on the same topic should be

grouped together.

3) Data consistency requirements:

• For every question the type of answer should be defined: multiple choice, numeric

answer, free text answer.

• Every multiple choice answer should use the particular rating scale, agreement scale

or enumeration of possible values.

• If the particular question should be answered using the particular rating or

agreement scale, then only one rating or agreement value from the available set of

values should be chosen.

• If the particular question should be answered using enumeration of possible values,

then one or several possible values may be chosen.

 128

• If the particular question should be answered using free text, then the entered text

should not have terms or acronyms that are not defined in sampling vocabulary.

• If the particular question should be answered using numerical value, then this value

should be meaningful (positive and not too large or too small).

4) Data accuracy requirements:

• Questions should be ordered according to necessity of portal components: first the

questions for mandatory components, then the questions for optional components.

• Every question should be formulated in such a way that is should accurately express

what feature (es) of the portal it aims to clarify and to what portal component this

feature belongs.

• If the particular question should be answered using enumeration of possible values,

then the set of values should be finite (there should be no values as „others“, „etc.“,

and so on).

5) Data completeness requirements:

• Questions should cover all the main mandatory and optional components of the

portal.

• For every portal component it should be possible from questions and answers to

them to clarify all its mandatory and optional features.

6) Level of detail requirement: Questionnaire data should have the appropriate level of

detail, which, on the one hand, should be high enough to include all the essential features

of the portal, and, from the other hand, not too high, because according to data reliability

requirements too large questionnaire is the source of errors and inaccuracies

5.4.3.2. Questionnaire

For Web portal developed sampling questionnaire that meets data validity, data reliability,

data consistency, data accuracy, data completeness, and level of detail requirements, is presented

in Table 10:

Table 10. Sampling questionnaire

Nr. Question Answer
1. What does content management include? • Creation of portal content

• Publishing of portal content
• Deletion of portal content
• Changing of portal content
• Filtering of portal content
• Searching for portal content

2. What are the main roles that are defined for
portal members to perform content
management?

• Content manager
• Content creator
• Content publisher

3. Should every role that is defined for content
management have its own set of access rights?

• Yes
• No

 129

Nr. Question Answer
4. Is content approval procedure used in the

portal?
• Yes
• No

5. What are the access rights of the content
manager?

• Create content
• Publish content
• Approve or reject by content creators created

content
6. For which roles approval of created content

before its publishing is necessary?
• Content creators
• Content publishers

7. What are the access rights of the content
creator?

• Only to create content
• Create and publish content

8. What are the access rights of the content
publisher?

• Create content
• Publish content.

9. What kind of items is it possible to create? • Library items
• Document items

10. What kind of library items is it possible to
create?

• Images
• Static text
• Banners
• Video

11. Does portal has other kinds of library items? • No
• Yes

12. If the answer to question 11 is “Yes”, then
what kinds of other library items are
available?

13. In which formats is it possible to store
document items?

• .DOC
• .PDF

14. Does Portal Information Architecture is
organised in the form of the hierarchy of
categories, in which library and document
items are saved?

• Yes
• No

15. Is check in-check out procedure used in the
portal?

• Yes
• No

16. Is it possible to change the items that are
checked out?

• Yes
• No, only one user should be able to work

with the particular content item at the same
time

17. What are the attributes of every created item? • Menu item
• Item type
• Item kind
• Item name
• Size (Kb)
• Last modification date
• Item author name

18. Does portal has other attributes of created
content items?

• No
• Yes

19. If the answer to question 18 is “Yes”, then
what other attributes of content items are
available?

20. Which information is it necessary to indicate
during creation of the particular content item?

• Menu item
• Item type
• Item kind

21. Which information is generated automatically
during creation of the particular content item?

• Item name
• Size (Kb)
• Last modification date
• Item author name

Questions 22-24 should be answered only if answer to question 15 is “Yes”.
22. Which information should be available if

check in-check out procedure is used?
• Version of the item
• Item action

23. Does the version of content item changes, • Yes

 130

Nr. Question Answer
when the item is checked in? • No

24. What are the available actions? • Check in
• Check out

Questions 25-26 should be answered only if answer to question 4 is “Yes”.
25. Which information should be available if

approval procedure is used?
• Item status
• Other information

26. What are the available statuses of items? • Approved
• Not approved

27. Is it possible for content manager to
change/delete all portal items?

• Yes
• No, content manager can delete/change only

the items that he has created
28. Is it possible for content creator/content

publisher to change/delete all portal items?
• Yes
• No, content creator/content publisher can

delete/change only the items that he has
created

29. For which roles is it possible to search for
content items?

• For content manager only
• For content manager and content publisher
• For content manager, content creator and

content publisher
30. What kinds of content search is it possible to

perform?
• Simple search
• Advanced search

31. What are the possible search conditions? • Search keywords
• Advanced search options

32. For which roles is it possible to filter
published content items?

• For content manager only
• For content manager and content publisher

33. By which criteria is it possible to filter
published content items?

• Item type
• Item kind
• Last modification date
• Version of the item

34. For which roles is it possible to preview
published content items?

• For content manager only
• For content manager and content publisher

35. What are the main roles that are defined for
portal users to perform search?

• Visitor
• Member

36. Should every role that is defined for search
have its own set of access rights?

• Yes
• No

37. What are the access rights to perform search
for a Visitor?

• Perform simple search
• Perform advanced search

38. What are the access rights to perform search
for a Member?

• Perform simple search
• Perform advanced search

39. What are the search options for simple search? • Search keywords
• Other

40. If the answer to question 39 is “Other”, then
what kind of other simple search options are
available?

41. How is it possible to limit the scope of simple
search?

• By entering another search keywords
• In another way

42. If the answer to question 42 is “In another
way”, then what is the other way of limiting
simple search scope?

43. What kinds of options are provided by the
advanced search?

• Date options
• Ordering options
• Scope options

44. Does portal has other kinds of search options? • No
• Yes

45. If the answer to question 44 is “Yes”, then
what kinds of other search options are
available?

46. How is it possible to limit the scope of • By entering another advanced search options

 131

Nr. Question Answer
advanced search? • In another way

47. If the answer to question 46 is “In another
way”, then what is the other way of limiting
advanced search scope?

48. How saved search results are saved? • There is no possibility to save search results
• Search results are saved in folders

(directories)
49. Is the number of possible to create folders

limited?
• Yes, it is possible to create no more than N

folders
• No, member can create as much folders as he

wishes
50. Is it possible to create folders with the same

names?
• No, folder name should be unique
• Yes

51. Is it possible to create any number of folders • Yes
• No, the number is restricted

52. Is it possible to save both simple search results
and advanced search results?

• No, only simple search results
• No, only advanced search results
• Yes, both types of results

53. Are the results of simple search and the results
of advanced search saved in separate folders?

• Yes, there are simple search folders and
advanced search folders

• No, results of different kinds of search can be
saved in one folder

54. Is it possible to run saved search? • Yes
• No

55. Does the member have possibility to
view/delete only the folders that he has
created or also the folders of the other
members?

• Yes, the member has possibility to
view/delete only the folders that he has
created

• No, the member can view/delete the folders
of the other members

56. Does portal provide collaboration service? • Yes
• No

Questions 57-90 should be answered only if answer to question 56 is “Yes”.
57. What kinds of collaboration are available in

the portal?
• Synchronous collaboration
• Asynchronous collaboration

58. What are the main roles that are defined for
portal users to collaborate?

• Visitor
• Member

59. Should every role that is defined for
collaboration have its own set of access
rights?

• Yes
• No

60. What are the access rights to collaborate for a
Visitor?

• To collaborate synchronously
• To collaborate asynchronously

61. What are the access rights to collaborate for a
Member?

• To collaborate synchronously
• To collaborate asynchronously

62. If in question 57 “Asynchronous
collaboration” is marked, then what kind of
asynchronous collaboration means does the
portal have?

• Forum
• Newsgroup

63. Is newsletter available in the portal? • Yes
• No

Questions 64-79 should be answered only if in question 62 “Forum” is marked.
64. Is it possible to view the profile information of

forum participants?
• Yes, only for members of the portal
• No

65. How is it possible to filter topic posts? • View the posts in selected forum
• View the posts in selected topic

66. What possibilities to work with topics are
provided for portal member?

• Creation of topics
• Posting replies to topics
• Deletion of topics/replies to topics

67. What information is it necessary to indicate • Subject

 132

Nr. Question Answer
during creation of the particular topic? • Message

• Notification type
68. What information is optional during creation

of topic?
• Poll information
• Attachment
• Topic options

69. Which information is generated automatically
during creation of the particular topic?

• Topic author
• Topic post date and time

70. Is the number of poll options restricted? • Yes
• No

71. If in question 68 “Poll information” is marked,
then what do the results of voting process
include?

• Total number of votes
• The list of poll options with corresponding

percents of votes
72. What information is it necessary to indicate

during creation of topic reply?
• Subject
• Message
• Notification type

73. What information is optional during creation
of topic reply?

• Attachment
• Reply options

74. Which information is generated automatically
during creation of the particular topic reply?

• Topic reply author
• Topic reply post date and time

75. Is the length of topic/topic reply message
restricted?

• Yes
• No

76. What kinds of notifications can be sent to
topic author and to other topic participants
(who have posted replies to the topic)?

• Notification about new topic reply to topic
author

• Notification about new topic reply to other
topic participants

77. Is it possible for members to change/delete all
topics/topic replies?

• Yes
• No, content manager can delete/change only

the topics/topic replies that he has created
78. Are all topic replies deleted automatically

after deletion of topic?
• Yes
• No

79. If in question 57 “Synchronous collaboration”
is marked, then what kind of synchronous
collaboration means does the portal have?

• Chat rooms
• Instant messaging

Questions 80-90 should be answered only if in question 79 “Chat rooms” is marked.
80. What are the possible kinds of chat rooms? • Public chat rooms

• Private chat rooms
81. Is access to chat rooms restricted in some

way?
• Yes, visitors are allowed to enter limited set

of chat rooms
• No, both members and visitors can enter any

chat rooms
82. Is single sign-in principle used? • Yes, for members

• No, members as visitors should enter their
nickname

83. How visitors enter chat rooms? • Enter nickname before entering every chat
room

• Enter nickname one time, before entering the
first chat room

84. Is the number of chat room participants
limited?

• Yes
• No

85. What kind of information is it possible to send
in private chat rooms?

• Only messages (typed text)
• Only files
• Files and messages

86. Is it possible to view the profile information of
chat room participants?

• Yes, only for members of the portal
• No

87. If in question 80 “Private chat room” is
marked, then what kind of information is it
possible to send in public chat rooms?

• Only messages (typed text)
• Only files
• Files and messages

88. Is the number of at one time opened public or • Yes

 133

Nr. Question Answer
private chat rooms limited? • No

89. Is it possible to type messages with
unprintable words in public or private chat
room?

• Yes
• No, the member, who did so, will be banned

90. Is for member set ban unset automatically,
when the particular period of time ends?

• Yes
• No, portal Administrator should unset the

ban
91. Does portal provide workflow management

service?
• Yes
• No

Questions 92-120 should be answered only if answer to question 91 is “Yes”.
92. What are the main services provided by the

workflow management?
• Creation and assignment of tasks
• Viewing of tasks
• Processing of tasks
• Changing of tasks
• Deletion of tasks
• Approval or rejection of tasks
• Filtering and grouping of tasks
• Searching for tasks
• Viewing the history of task modifications

93. What are the main roles that are defined for
portal users to participate in workflow?

• Workflow manager
• Member

94. Should every role that is defined for workflow
have its own set of access rights?

• Yes
• No

95. What are the access rights to participate in
workflow for a workflow manager?

• To create and assign/reassign tasks to portal
members

• To view tasks
• To change tasks
• To delete tasks
• To approve or reject tasks
• To filter and group tasks
• To search for tasks
• To view the history of task modifications

96. What are the access rights to participate in
workflow for a member?

• To view assigned tasks
• To process assigned tasks

97. How workflow manager can assign tasks to
portal members?

• To the group of portal members
• To the particular portal member

98. Is it possible for workflow manager to view
all tasks?

• Yes, workflow manager has possibility to
view all tasks that he has assigned to portal
members

• No
99. Is it possible for portal member to view all

tasks?
• Yes, the member can view tasks of the other

members
• No, the member has possibility to view only

to him assigned tasks
100. What are the main attributes of the assigned

tasks?
• Task name
• Resource name (name of the member or

member group the task is assigned to)
• Task assignment date
• Task description
• Task type (group or individual task)
• Task priority
• Task last modification date
• Task status
• Task action
• Task completion date
• Information date
• Task deletion date
• Comment

 134

Nr. Question Answer
101. Does portal has other attributes of assigned

tasks?
• No
• Yes

102. If the answer to question 101 is “Yes”, then
what other attributes of assigned tasks are
available?

103. Which information is it necessary to indicate
during creation and assignment of the
particular task?

• Task name
• Resource name (name of the member or

member group the task is assigned to)
• Task assignment date
• Task description
• Task type (group or individual task)
• Task priority
• Task last modification date

104. Which task attributes are filled during
processing and approval of tasks?

• Task status
• Task action

105. What are the possible statuses of processed
tasks?

• Accepted
• Rejected
• Suspended
• Completed

106. What are the possible dependencies between
statuses of tasks?

• Suspended tasks later can be accepted or
rejected

• Accepted or rejected tasks become completed
• Other dependency

107. If in question 106 “Other dependency” is
marked, then what kind of dependency is it?

108. What are the possible actions for processed
tasks?

• Check in
• Check out
• Send for approval
• Approve
• Reject

109. When is the action “Check out” set? • When member is viewing or processing the
task

• When member sets the particular task status
110. When is the action “Check in” set? • When member is viewing or processing the

task
• When member sets the particular task status

111. When is the action “Send for approval” set? • After member sets the status of the particular
task to “Accepted” or “Rejected”

• After member sets the status of the particular
task to “Suspended”

112. When is the action “Approve” set? • When workflow manager approves the
particular task

• When workflow manager rejects the
particular task

113. When is the action “Reject” set? • When workflow manager approves the
particular task

• When workflow manager rejects the
particular task

114. Is it possible to assign by workflow manager
rejected task to the other portal member or
member group?

• Yes
• No

115. Is it possible to change/delete all tasks? • Yes, but only workflow manager can
change/delete all tasks that he has assigned

• No
116. Do several workflow managers can

change/delete the same task at the same time?
• Yes
• No, only one workflow manager is able to

work with the particular task at the same time
117. When are notifications to workflow manager

sent?
• After approval or rejection of tasks by portal

members

 135

Nr. Question Answer
• After suspending of tasks by portal members

118. When are notifications to portal members
sent?

• After workflow manager accepts or rejects
tasks, which were sent to him for approval

• After workflow manager deletes/changes the
tasks

119. By which criteria is it possible to filter tasks? • Member group
• Particular member
• Task status
• Deleted tasks
• Tasks pending manager’s approval (action

“Send for approval”)
• Overdue tasks
• Completed tasks

120. What does the history of task modification
include?

• Date and time (task deletion date in case of
task deletion, information date in case of task
creation, last modification date in case of task
modification)

• Member (resource name), who have changed
the status of task

• Was the task approved or moved on in the
workflow (reassigned to the other member)

• Was the task suspended for later processing

In Table 10 presented questionnaire has been used to analyse the features all for experiment

chosen Web portals.

5.4.4. Feature Models

5.4.4.1. Feature Model for Developer Portal

Feature model for Developer Portal is presented in tabular form (Table 11):

Table 11. Developer Portal feature table

Level Feature Description Rationale Type Composition
rules

1 Content
management
feature

A service that allows
creation, management, and
publishing of portal
content

 Mandatory

1.1 Role A service that has the set of
access rights to portal
content

 Mandatory

1.1.1 Content
manager role

A service that allows
management of portal
content

 Mandatory

1.1.1.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.1.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.1.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.1.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.1.2 Content

publishing

A service that allows

publishing of portal content.

 Mandatory Requires:

Content

creation

1.1.1.2.1 Item filtering A service that allows portal
members to filter published

 Mandatory

 136

Level Feature Description Rationale Type Composition
rules

items by the particular
filtering criteria.

1.1.1.2.2 Item preview A service that allows
preview of published content
items

 Mandatory

1.1.1.3 Content

approval

A service that allows content

manager to approve item

creation, changing or

deletion, done by portal

members.

 Mandatory

1.1.1.4 Content search A service that allows content

manager to search for

necessary content items

 Mandatory

1.1.1.4.1 Simple search A service that includes
search for content items by
entered search keywords.

 Mandatory

1.1.2 Content
creator role

A service that allows
creation of portal content

 Mandatory

1.1.2.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.2.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.2.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.2.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.3 Content
publisher role

A service that allows
publishing of portal
content

 Mandatory

1.1.3.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.3.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.3.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.3.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.3.2 Content

publishing

A service that allows

publishing of portal content.

 Mandatory Requires:

Content

approval

1.1.3.2.1 Item filtering A service that allows portal
members to filter published
items by the particular
filtering criteria.

 Mandatory

1.1.3.2.2 Item preview A service that allows
preview of published content
items

 Mandatory

1.2 Category A service that allows
storing of portal content
items in hierarchical
categories

 Mandatory

1.2.1 Item A service that allows storing
of content in the form of
content units.

 Mandatory

1.2.1.1 Library item A service that allows
creation of reusable,
unstructured pieces of
content.

If it is necessary
to store parts of
documents for
re-use

Optional

1.2.1.1.1 Image A service that allows
creation of a visual
representation of an object,
scene, person, abstraction,
etc. produced on a Web

If images should
be reused in
many
documents

Optional

 137

Level Feature Description Rationale Type Composition
rules

page.
1.2.1.1.2 Static text A service that allows

creation of a text that doesn’t
change its position on a Web
page.

If static text
should be reused
in many
documents

Optional

1.2.1.2 Item name A service that allows
assignment of names to
content items.

 Mandatory

1.2.1.3 Menu item A service that allows
identification of portal menu
item, to which the particular
content item belongs.

 Mandatory

1.2.1.4 Last
modification
date

A service that allows
identification of the date of
last content item
modification.

 Mandatory

1.2.1.5 Version of the
item

A service that allows
generation of content item
version.

If it is necessary
to version
content items.

Optional

1.2.1.6 Action A service that allows
performing items check in-
check out procedure.

Optional

1.2.1.6.1 Check in A service that allows making
changes to the particular
content item and
automatically generate its
new version.

Optional

1.2.1.6.2 Check out A service that allows
reserving of the particular
content item by the particular
user (the other users can not
work with that item).

If check in-
check out
procedure is
used.

Optional

1.2.1.7 Status A service that allows
management of content
items publishing.

Optional

1.2.1.7.1 Approved A service that allows
approval of publishing of
content items.

Optional

1.2.1.7.2 Not approved A service that allows
disapproval of publishing of
content items.

If the procedure
of content items
approval is used.

Optional

1.2.1.8 Item author
name

A service that allows
identification of the name of
the user, who has created the
particular content item.

If it is necessary
to have the
name of the
user, who has
created the
particular
content item.

Optional

2 Search feature A service that allows
finding for necessary
information by entering
search keywords or search
options.

 Mandatory

2.1 Role A service that has the set of
access rights to portal
content

 Mandatory

2.1.1 Visitor role A service that has the set of
access rights for
unregistered user (visitor)
to search for portal
content.

 Mandatory

2.1.1.1 Simple search A service that includes

search by entered search

keywords.

 Mandatory

2.1.1.1.1 Search
keywords

A service that allows
performing search for portal
content by the particular

 Mandatory

 138

Level Feature Description Rationale Type Composition
rules

keywords or key phrases.
2.1.2 Member role A service that has the set of

access rights for portal
member to search for
portal content.

 Mandatory

2.1.2.1 Simple search A service that includes

search by entered search

keywords.

 Mandatory

2.1.2.1.1 Search
keywords

A service that allows
performing search for portal
content by the particular
keywords or key phrases.

 Mandatory

2.1.2.2 Advanced

search

A service that includes

search by advanced search

options, which allow filtering

and/or ordering of search

results.

 Mandatory

2.1.2.2.1 Date options A service that allows
filtering of search results
according to the interval of
dates.

If it is necessary
to filter search
results
according to the
interval of dates.

Optional

2.1.2.2.2 Ordering
options

A service that allows
ordering of search results in
the particular way.

If it is necessary
to order search
results in the
particular way.

Optional

2.1.2.3 Saved search A service that allows saving

search results in folders, and

later extract of saved search

results from the particular

folder.

 Mandatory

2.1.2.3.1 Advanced
search folder

A service that allows saving
of advanced search results in
the particular folder.

 Mandatory Requires:
Advanced
search results

2.2 Search results A service that allows
viewing the list of simple or
advanced search results.

 Mandatory

2.2.1 Simple search

results

A service that allows viewing

the list of simple search

results.

 Mandatory Requires:

Simple search

2.2.2 Advanced

search results

A service that allows viewing

the list of advanced search

results.

 Mandatory Requires:

Advanced

search

3 Collaboration
feature

An online service that
provides means of
communication between
portal users.

 Mandatory

3.1 Role A service that has the set of
access rights to portal
content

 Mandatory

3.1.1 Member role A service that has the set of
access rights for portal
member to search for
portal content.

 Mandatory

3.1.1.1 Asynchronous

collaboration

A service that allows

collaboration at different

(asynchronous) time.

 Mandatory

3.1.1.1.1 Forum A service that provides
online collaboration through
discussion group, where
users can exchange
messages.

 Mandatory Requires:
Message

3.1.1.1.1.1 Topic post A service that allows posting
topics and replies to them.

 Mandatory

3.1.1.1.1.1.1 Topic A service that allows posting
topics.

 Mandatory

 139

Level Feature Description Rationale Type Composition
rules

3.1.1.1.1.1.1.1 Subject A service that allows naming
of topics.

 Mandatory

3.1.1.1.1.1.1.2 Message A service that allows
creation of messages that
could be seen to the
participants of not-real time
conversation.

 Mandatory

3.1.1.1.1.1.1.3 Notification
type

A service that allows
determining if e-mail
notifications should be sent
to the author of the topic,
when replies to it are posted.

 Mandatory

3.1.1.1.1.1.1.4 Topic author A service that allows
identification of the name of
the user, who has created the
particular topic.

 Mandatory

3.1.1.1.1.1.1.5 Topic post date
and time

A service that allows
identification of the date and
time of topic creation.

 Mandatory

3.1.1.2.1.1.1.6 Attachment A service that allows sending
computer files along with
messages.

If it is necessary
to send a
computer file.

Optional

3.1.1.1.1.1.2 Topic reply A service that allows posting
replies to the particular topic.

 Mandatory

3.1.1.1.1.1.2.1 Subject A service that allows naming
of topic replies.

 Mandatory

3.1.1.1.1.1.2.2 Message A service that allows
creation of messages that
could be seen to the
participants of not-real time
conversation.

 Mandatory

3.1.1.1.1.1.2.3 Notification
type

A service that allows
determining if e-mail
notifications should be sent
to the author of the topic,
when replies to it are posted.

 Mandatory

3.1.1.1.1.1.2.4 Reply author A service that allows
identification of the name of
the user, who has created the
particular reply to topic.

 Mandatory

3.1.1.1.1.1.2.5 Attachment A service that allows sending
computer files along with
messages.

If it is necessary
to send a
computer file.

Optional

4 Workflow
management
feature

A service that includes
assignment of tasks, tasks
management and
processing.

If automated
management of
tasks is
required.

Optional

4.1 Role A service that has the set of
access rights to participate
in portal workflow.

 Mandatory

4.1.1 Task manager
role

A service that has the set of
access rights for task
manager to participate in
portal workflow.

 Mandatory

4.1.1.1 Task creation A service that allows
creation of tasks and their
assignment to portal
members.

 Mandatory

4.1.1.2 Task viewing A service that allows
viewing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.3 Task changing A service that allows
changing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.4 Task deletion A service that allows
deletion of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.5 Task approval A service that allows
approval of by portal
members processed tasks.

 Mandatory Requires:
Task
processing

 140

Level Feature Description Rationale Type Composition
rules

4.1.2 Member role A service that has the set of
access rights for portal
member to participate in
portal workflow.

 Mandatory

4.1.2.1 Task viewing A service that allows
viewing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.2.2 Task processing A service that allows
processing (acceptation,
rejection, suspending, etc.)
of to the member assigned
tasks.

 Mandatory

4.1.2.2.1 Task acceptance A service that allows
acceptance of by the member
fulfilled tasks.

If task needs to
be accepted.

Optional

4.1.2.2.2 Task rejection A service that allows
rejection of tasks, which the
member was unable to fulfil.

If task needs to
be rejected.

Optional

4.1.2.2.3 Task suspending A service that allows
suspending of tasks, which
the member could not fulfil
because some kind of delay.

If task needs to
be suspended.

Optional

4.2 Task A service that allows
storing of to portal
members assigned tasks.

 Mandatory

4.2.1 Task name A service that allows
registration of task name.

 Mandatory

4.2.2 Resource name A service that allows
registration of member or
member group name the task
is assigned to.

 Mandatory

4.2.3 Task assignment
date

A service that allows
registration of task
assignment date.

 Mandatory

4.2.4 Task description A service that allows
registration of task
description.

 Mandatory

4.2.5 Task priority A service that allows
registration of task priority
(importance of the particular
task).

If importance of
tasks is required.

Optional

4.2.6 Task last
modification
date

A service that allows
registration of task last
modification date.

 Mandatory Requires:
Task creation,
Task
changing

4.2.7 Task status A service that allows setting
of task status (“Accepted”,
“Rejected”, “Suspended”,
“Completed”).

If task is
processed.

Mandatory

4.2.8 Task action A service that allows setting
of task action (“Check out”,
“Check in”, “Send for
approval”, “Approve”,
“Reject”)

 Mandatory

4.2.9 Task completion
date

A service that allows
registration of task
completion date.

If task is
completed.

Mandatory Requires:
Task status

4.2.10 Information date A service that allows
identification of task creation
date.

 Mandatory Requires:
Task creation

4.2.11 Task deletion
date

A service that allows
registration of task deletion
date.

If task is
deleted.

Mandatory Requires:
Task deletion

4.2.12 Comment A service that allows
registration of the comment
about the particular task.

If task is
rejected or
suspended by
the portal
member.

Mandatory Requires:
Task status

 141

5.4.4.2. Feature Model for Indiana Learning Portal

Feature model for Indiana Learning Portal is presented in tabular form (Table 12):

Table 12. Indiana Learning Portal feature table

Level Feature Description Rationale Type Composition
rules

1 Content
management
feature

A service that allows
creation, management, and
publishing of portal
content

 Mandatory

1.1 Role A service that has the set of
access rights to portal
content

 Mandatory

1.1.1 Content
manager role

A service that allows
management of portal
content

 Mandatory

1.1.1.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.1.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.1.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.1.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.1.2 Content

publishing

A service that allows

publishing of portal content.

 Mandatory Requires:

Content

creation

1.1.1.2.1 Item filtering A service that allows portal
members to filter published
items by the particular
filtering criteria.

 Mandatory

1.1.1.2.2 Item preview A service that allows
preview of published content
items

 Mandatory

1.1.1.3 Content

approval

A service that allows content

manager to approve item

creation, changing or

deletion, done by portal

members.

 Mandatory

1.1.1.4 Content search A service that allows content

manager to search for

necessary content items

 Mandatory

1.1.1.4.1 Simple search A service that includes
search for content items by
entered search keywords.

 Mandatory

1.1.1.4.2 Advanced
search

A service that includes
search for content items by
advanced search options,
which allow filtering and/or
ordering of search results.

 Mandatory

1.1.2 Content
creator role

A service that allows
creation of portal content

 Mandatory

1.1.2.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.2.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.2.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.2.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.3 Content
publisher role

A service that allows
publishing of portal

 Mandatory

 142

Level Feature Description Rationale Type Composition
rules

content
1.1.3.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.3.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.3.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.3.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.3.2 Content

publishing

A service that allows

publishing of portal content.

 Mandatory Requires:

Content

approval

1.1.3.2.1 Item filtering A service that allows portal
members to filter published
items by the particular
filtering criteria.

 Mandatory

1.1.3.2.2 Item preview A service that allows
preview of published content
items

 Mandatory

1.2 Category A service that allows
storing of portal content
items in hierarchical
categories

 Mandatory

1.2.1 Item A service that allows storing
of content in the form of
content units.

 Mandatory

1.2.1.1 Library item A service that allows
creation of reusable,
unstructured pieces of
content.

If it is necessary
to store parts of
documents for
re-use

Optional

1.2.1.1.1 Image A service that allows
creation of a visual
representation of an object,
scene, person, abstraction,
etc. produced on a Web
page.

If images should
be reused in
many
documents

Optional

1.2.1.1.2 Static text A service that allows
creation of a text that doesn’t
change its position on a Web
page.

If static text
should be reused
in many
documents

Optional

1.2.1.1.3 Banner A service that allows
creation of graphic image
(static, animated, or rich
media) that is used for the
purpose of advertisement.

If banners
should be reused
in many
documents

Optional

1.2.1.1.4 Video A service that allows
creation of video (e.g. video
clip).

If videos should
be reused in
many
documents

Optional

1.2.1.2 Document item A service that allows
creation of structured pieces
of content, typically stored in
the form of files (.DOC,
.PDF, etc.).

If it is necessary
to have
documents for
re-use

Optional

1.2.1.2.1 File .DOC A service that allows
creation of structured pieces
of content, typically stored in
the form of .DOC files.

If it is necessary
to store
document items
in .DOC files

Optional

1.2.1.2.2 File .PDF A service that allows
creation of structured pieces
of content, typically stored in
the form of .PDF files.

If it is necessary
to store
document items
in .PDF files

Optional

1.2.1.3 Item name A service that allows
assignment of names to
content items.

 Mandatory

 143

Level Feature Description Rationale Type Composition
rules

1.2.1.4 Size A service that allows
identification of the size of
content items.

If it is necessary
to have the size
of files

Optional

1.2.1.5 Menu item A service that allows
identification of portal menu
item, to which the particular
content item belongs.

 Mandatory

1.2.1.6 Last
modification
date

A service that allows
identification of the date of
last content item
modification.

 Mandatory

1.2.1.7 Version of the
item

A service that allows
generation of content item
version.

If it is necessary
to version
content items.

Optional

1.2.1.8 Item author
name

A service that allows
identification of the name of
the user, who has created the
particular content item.

If it is necessary
to have the
name of the
user, who has
created the
particular
content item.

Optional

2 Search feature A service that allows
finding for necessary
information by entering
search keywords or search
options.

 Mandatory

2.1 Role A service that has the set of
access rights to portal
content

 Mandatory

2.1.1 Visitor role A service that has the set of
access rights for
unregistered user (visitor)
to search for portal
content.

 Mandatory

2.1.1.1 Simple search A service that includes

search by entered search

keywords.

 Mandatory

2.1.1.1.1 Search
keywords

A service that allows
performing search for portal
content by the particular
keywords or key phrases.

 Mandatory

2.1.2 Member role A service that has the set of
access rights for portal
member to search for
portal content.

 Mandatory

2.1.2.1 Simple search A service that includes

search by entered search

keywords.

 Mandatory

2.1.2.1.1 Search
keywords

A service that allows
performing search for portal
content by the particular
keywords or key phrases.

 Mandatory

2.1.2.2 Advanced

search

A service that includes

search by advanced search

options, which allow filtering

and/or ordering of search

results.

If it is necessary

to filter/order

search results.

Mandatory

2.1.2.2.1 Scope options A service that allows
limiting scope of search by
providing the particular
topics, which are relevant for
the member.

If it is necessary
to limit the
scope of search.

Optional

2.1.2.3 Saved search A service that allows saving

search results in folders, and

later extract of saved search

results from the particular

folder.

If it is necessary

to save search

results for later

review.

Mandatory

 144

Level Feature Description Rationale Type Composition
rules

2.1.2.3.1 Simple search
folder

A service that allows saving
of simple search results in
the particular folder.

If it is necessary
to save simple
search results
for later review.

Optional Requires:
Simple search
results

2.1.2.3.2 Advanced
search folder

A service that allows saving
of advanced search results in
the particular folder.

If it is necessary
to save
advanced search
results for later
review.

Optional Requires:
Advanced
search results

2.2 Search results A service that allows
viewing the list of simple or
advanced search results.

 Mandatory

2.2.1 Simple search

results

A service that allows viewing

the list of simple search

results.

 Mandatory Requires:

Simple search

2.2.2 Advanced

search results

A service that allows viewing

the list of advanced search

results.

 Mandatory Requires:

Advanced

search

3 Collaboration
feature

An online service that
provides means of
communication between
portal users.

 Mandatory

3.1 Role A service that has the set of
access rights to portal
content

 Mandatory

3.1.1 Member role A service that has the set of
access rights for portal
member to search for
portal content.

 Mandatory

3.1.1.1 Synchronous

collaboration

A service that allows

collaboration in real-time

(concurrently).

 Mandatory

3.1.1.1.1 Chat room A service that allows real-
time communication through
Internet by exchange of
messages.

 Mandatory

3.1.1.1.1.1 Public chat
room

A service that allows
communication in real time
while on the Internet.

 Mandatory

3.1.1.1.1.1.1 Message A service that allows
exchange of messages
between the participants of
the on-line conversation.

 Mandatory

3.1.1.1.1.2 Private chat
room

A service that allows
communication pear-to-pear
in real time while on the
Internet.

 Mandatory

3.1.1.1.1.2.1 Message A service that allows
exchange of messages
between the participants of
the on-line conversation.

 Mandatory

3.1.1.1.1.2.2 File A service that allows
exchange of files between
participants of pear-to-pear
conversation.

If files
sending/receivin
g is required.

Optional

3.1.1.1.2 Instant
messaging

A service that allows real-
time communication through
Internet by typing messages
or by participation in on-line
voice or video conference

If real-time
communication
by participation
in on-line voice
or video
conference is
required.

Optional

3.1.1.2 Asynchronous

collaboration

A service that allows

collaboration at different

(asynchronous) time.

 Mandatory

3.1.1.2.1 Newsgroup A service that provides
collaboration through

 Mandatory Requires:
Message

 145

Level Feature Description Rationale Type Composition
rules

bulletin boards, where users
can put and read messages
on-line or download and
save messages for off-line
reading.

3.1.2 Visitor role A service that has the set of
access rights for
unregistered user (visitor)
to search for portal
content.

 Mandatory

3.1.2.1 Synchronous

collaboration

A service that allows

collaboration in real-time

(concurrently).

 Mandatory

3.1.1.2.1 Chat room A service that allows real-
time communication through
Internet by exchange of
messages.

 Mandatory

3.1.1.2.1.1 Public chat
room

A service that allows
communication in real time
while on the Internet.

 Mandatory

3.1.1.2.1.1.1 Message A service that allows
exchange of messages
between the participants of
the on-line conversation.

 Mandatory

3.1.1.2.1.2 Private chat
room

A service that allows
communication pear-to-pear
in real time while on the
Internet.

 Mandatory

3.1.1.2.1.2.1 Message A service that allows
exchange of messages
between the participants of
the on-line conversation.

 Mandatory

3.1.1.2.1.2.2 File A service that allows
exchange of files between
participants of pear-to-pear
conversation.

If files
sending/receivin
g is required.

Optional

3.1.1.2.2 Instant
messaging

A service that allows real-
time communication through
Internet by typing messages
or by participation in on-line
voice or video conference

If real-time
communication
by participation
in on-line voice
or video
conference is
required.

Optional

4 Workflow
management
feature

A service that includes
assignment of tasks, tasks
management and
processing.

If automated
management of
tasks is
required.

Optional

4.1 Role A service that has the set of
access rights to participate
in portal workflow.

 Mandatory

4.1.1 Task manager
role

A service that has the set of
access rights for task
manager to participate in
portal workflow.

 Mandatory

4.1.1.1 Task creation A service that allows
creation of tasks and their
assignment to portal
members.

 Mandatory

4.1.1.2 Task viewing A service that allows
viewing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.3 Task changing A service that allows
changing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.4 Task deletion A service that allows
deletion of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.5 Task approval A service that allows
approval of by portal
members processed tasks.

 Mandatory Requires:
Task
processing

 146

Level Feature Description Rationale Type Composition
rules

4.1.1.6 Task analysis A service that allows
analysis of tasks, including
filtering, grouping of tasks,
search for tasks, viewing the
history of tasks.

If it is necessary
to analyse tasks.

Optional

4.1.1.6.1 Task filtering A service that allows
filtering of tasks by the
particular filtering options.

If filtering of
tasks is required.

Optional

4.1.1.6.2 Task grouping A service that allows
grouping of tasks by the
particular grouping options.

If grouping of
tasks is required.

Optional

4.1.1.6.3 Task search A service that allows search
for tasks by the particular
search options.

If search for
tasks is required.

Optional

4.1.1.6.4 Task history
viewing

A service that allows
viewing of task modification
history.

If viewing of
task history is
required.

Optional

4.1.2 Member role A service that has the set of
access rights for portal
member to participate in
portal workflow.

 Mandatory

4.1.2.1 Task viewing A service that allows
viewing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.2.2 Task processing A service that allows
processing (acceptation,
rejection, suspending, etc.)
of to the member assigned
tasks.

 Mandatory

4.1.2.2.1 Task acceptance A service that allows
acceptance of by the member
fulfilled tasks.

If task needs to
be accepted.

Optional

4.1.2.2.2 Task rejection A service that allows
rejection of tasks, which the
member was unable to fulfil.

If task needs to
be rejected.

Optional

4.1.2.2.3 Task suspending A service that allows
suspending of tasks, which
the member could not fulfil
because some kind of delay.

If task needs to
be suspended.

Optional

4.2 Task A service that allows
storing of to portal
members assigned tasks.

 Mandatory

4.2.1 Task name A service that allows
registration of task name.

 Mandatory

4.2.2 Resource name A service that allows
registration of member or
member group name the task
is assigned to.

 Mandatory

4.2.3 Task assignment
date

A service that allows
registration of task
assignment date.

 Mandatory

4.2.4 Task description A service that allows
registration of task
description.

 Mandatory

4.2.5 Task type A service that allows
assignment of individual or
group tasks.

 Optional

4.2.5.1 Group task A service that allows
assignment of tasks to the
particular group of portal
members.

If it is required
to assign the
same task to the
group of
members.

Optional

4.2.5.2 Individual task A service that allows
assignment of tasks to the
particular member.

If it is required
to assign the
task to the
particular
member
personally.

Optional

 147

Level Feature Description Rationale Type Composition
rules

4.2.6 Task last
modification
date

A service that allows
registration of task last
modification date.

 Mandatory Requires:
Task creation,
Task
changing

4.2.7 Task status A service that allows setting
of task status (“Accepted”,
“Rejected”, “Suspended”,
“Completed”).

If task is
processed.

Mandatory

4.2.8 Task action A service that allows setting
of task action (“Check out”,
“Check in”, “Send for
approval”, “Approve”,
“Reject”)

 Mandatory

4.2.9 Task completion
date

A service that allows
registration of task
completion date.

If task is
completed.

Mandatory Requires:
Task status

4.2.10 Information date A service that allows
identification of task creation
date.

 Mandatory Requires:
Task creation

4.2.11 Task deletion
date

A service that allows
registration of task deletion
date.

If task is
deleted.

Mandatory Requires:
Task deletion

4.2.13 Comment A service that allows
registration of the comment
about the particular task.

If task is
rejected or
suspended by
the portal
member.

Mandatory Requires:
Task status

5.4.4.3. Feature Model for HKU Portal

Feature model for HKU Portal is presented in tabular form (Table 13):

Table 13. HKU Portal feature table

Level Feature Description Rationale Type Composition
rules

1 Content
management
feature

A service that allows
creation, management, and
publishing of portal
content

 Mandatory

1.1 Role A service that has the set of
access rights to portal
content

 Mandatory

1.1.1 Content
manager role

A service that allows
management of portal
content

 Mandatory

1.1.1.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.1.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.1.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.1.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.1.2 Content

publishing

A service that allows

publishing of portal content.

 Mandatory Requires:

Content

creation

1.1.1.2.1 Item filtering A service that allows portal
members to filter published
items by the particular
filtering criteria.

 Mandatory

1.1.1.2.2 Item preview A service that allows
preview of published content

 Mandatory

 148

Level Feature Description Rationale Type Composition
rules

items
1.1.1.3 Content

approval

A service that allows content

manager to approve item

creation, changing or

deletion, done by portal

members.

 Mandatory

1.1.1.4 Content search A service that allows content

manager to search for

necessary content items

 Mandatory

1.1.1.4.1 Simple search A service that includes
search for content items by
entered search keywords.

 Mandatory

1.1.1.4.2 Advanced
search

A service that includes
search for content items by
advanced search options,
which allow filtering and/or
ordering of search results.

. Mandatory

1.1.2 Content
creator role

A service that allows
creation of portal content

 Mandatory

1.1.2.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.2.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.2.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.2.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.3 Content
publisher role

A service that allows
publishing of portal
content

 Mandatory

1.1.3.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.3.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.3.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.3.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.3.2 Content

publishing

A service that allows

publishing of portal content.

 Mandatory Requires:

Content

approval

1.1.3.2.1 Item filtering A service that allows portal
members to filter published
items by the particular
filtering criteria.

 Mandatory

1.1.3.2.2 Item preview A service that allows
preview of published content
items

 Mandatory

1.2 Category A service that allows
storing of portal content
items in hierarchical
categories

 Mandatory

1.2.1 Item A service that allows storing
of content in the form of
content units.

 Mandatory

1.2.1.1 Document item A service that allows
creation of structured pieces
of content, typically stored in
the form of files (.DOC,
.PDF, etc.).

If it is necessary
to have
documents for
re-use

Optional

1.2.1.1.1 File .DOC A service that allows
creation of structured pieces
of content, typically stored in

If it is necessary
to store
document items

Optional

 149

Level Feature Description Rationale Type Composition
rules

the form of .DOC files. in .DOC files
1.2.1.1.2 File .PDF A service that allows

creation of structured pieces
of content, typically stored in
the form of .PDF files.

If it is necessary
to store
document items
in .PDF files

Optional

1.2.1.2 Item name A service that allows
assignment of names to
content items.

 Mandatory

1.2.1.3 Menu item A service that allows
identification of portal menu
item, to which the particular
content item belongs.

 Mandatory

1.2.1.4 Last
modification
date

A service that allows
identification of the date of
last content item
modification.

 Mandatory

1.2.1.5 Status A service that allows
management of content
items publishing.

Optional

1.2.1.5.1 Approved A service that allows
approval of publishing of
content items.

Optional

1.2.1.5.2 Not approved A service that allows
disapproval of publishing of
content items.

If the procedure
of content items
approval is used.

Optional

1.2.1.6 Item author
name

A service that allows
identification of the name of
the user, who has created the
particular content item.

If it is necessary
to have the
name of the
user, who has
created the
particular
content item.

Optional

2 Search feature A service that allows
finding for necessary
information by entering
search keywords or search
options.

 Mandatory

2.1 Role A service that has the set of
access rights to portal
content

 Mandatory

2.1.1 Visitor role A service that has the set of
access rights for
unregistered user (visitor)
to search for portal
content.

 Mandatory

2.1.1.1 Simple search A service that includes

search by entered search

keywords.

 Mandatory

2.1.1.1.1 Search
keywords

A service that allows
performing search for portal
content by the particular
keywords or key phrases.

 Mandatory

2.1.2 Member role A service that has the set of
access rights for portal
member to search for
portal content.

 Mandatory

2.1.2.1 Simple search A service that includes

search by entered search

keywords.

 Mandatory

2.1.2.1.1 Search
keywords

A service that allows
performing search for portal
content by the particular
keywords or key phrases.

 Mandatory

2.1.2.2 Advanced

search

A service that includes

search by advanced search

options, which allow filtering

and/or ordering of search

 Mandatory

 150

Level Feature Description Rationale Type Composition
rules

results.

2.1.2.2.1 Date options A service that allows
filtering of search results
according to the interval of
dates.

If it is necessary
to filter search
results
according to the
interval of dates.

Optional

2.1.2.2.2 Ordering
options

A service that allows
ordering of search results in
the particular way.

If it is necessary
to order search
results in the
particular way.

Optional

2.1.2.2.3 Scope options A service that allows
limiting scope of search by
providing the particular
topics, which are relevant for
the member.

If it is necessary
to limit the
scope of search.

Optional

2.2 Search results A service that allows
viewing the list of simple or
advanced search results.

 Mandatory

2.2.1 Simple search

results

A service that allows viewing

the list of simple search

results.

 Mandatory Requires:

Simple search

2.2.2 Advanced

search results

A service that allows viewing

the list of advanced search

results.

 Mandatory Requires:

Advanced

search

3 Collaboration
feature

An online service that
provides means of
communication between
portal users.

 Mandatory

3.1 Role A service that has the set of
access rights to portal
content

 Mandatory

3.1.1 Member role A service that has the set of
access rights for portal
member to search for
portal content.

 Mandatory

3.1.1.1 Synchronous

collaboration

A service that allows

collaboration in real-time

(concurrently).

 Mandatory

3.1.1.1.1 Instant
messaging

A service that allows real-
time communication through
Internet by typing messages
or by participation in on-line
voice or video conference

 Mandatory

3.1.1.2 Asynchronous

collaboration

A service that allows

collaboration at different

(asynchronous) time.

 Mandatory

3.1.1.2.1 Forum A service that provides
online collaboration through
discussion group, where
users can exchange
messages.

 Mandatory Requires:
Message

3.1.1.2.1.1 Topic post A service that allows posting
topics and replies to them.

 Mandatory

3.1.1.2.1.1.1 Topic A service that allows posting
topics.

 Mandatory

3.1.1.2.1.1.1.1 Subject A service that allows naming
of topics.

 Mandatory

3.1.1.2.1.1.1.2 Message A service that allows
creation of messages that
could be seen to the
participants of not-real time
conversation.

 Mandatory

3.1.1.2.1.1.1.3 Notification
type

A service that allows
determining if e-mail
notifications should be sent
to the author of the topic,
when replies to it are posted.

 Mandatory

 151

Level Feature Description Rationale Type Composition
rules

3.1.1.2.1.1.1.4 Topic author A service that allows
identification of the name of
the user, who has created the
particular topic.

 Mandatory

3.1.1.2.1.1.1.5 Topic post date
and time

A service that allows
identification of the date and
time of topic creation.

 Mandatory

3.1.1.2.1.1.1.6 Poll A service that allows voting
to the particular question that
is raised in the topic.

If some question
that requires the
opinion of
conversation
participants is
raised in the
topic.

Optional

3.1.1.2.1.1.1.7 Attachment A service that allows sending
computer files along with
messages.

If it is necessary
to send a
computer file.

Optional

3.1.1.2.1.1.1.8 Topic options A service that allows setting
of different topic reply
options, such some
restrictions to allowable
number of replies to topic,
etc.

If topic has
some
restrictions that
should be
checked.

Optional

3.1.1.2.1.1.2 Topic reply A service that allows posting
replies to the particular topic.

 Mandatory

3.1.1.2.1.1.2.1 Subject A service that allows naming
of topic replies.

 Mandatory

3.1.1.2.1.1.2.2 Message A service that allows
creation of messages that
could be seen to the
participants of not-real time
conversation.

 Mandatory

3.1.1.2.1.1.2.3 Notification
type

A service that allows
determining if e-mail
notifications should be sent
to the author of the topic,
when replies to it are posted.

 Mandatory

3.1.1.2.1.1.2.4 Reply author A service that allows
identification of the name of
the user, who has created the
particular reply to topic.

 Mandatory

3.1.1.2.1.1.2.5 Attachment A service that allows sending
computer files along with
messages.

If it is necessary
to send a
computer file.

Optional

3.1.1.2.1.1.2.6 Reply options A service that allows setting
of different topic reply
options, such as restrictions
to length of every topic
reply, etc.

If reply to topic
has some
restrictions that
should be
checked.

Optional

3.1.1.2.2 Newsletter A service that provides
periodic sending of
publications on a specific
topic by e-mail only to those
members, who have
subscribed to that service.

 Mandatory

3.1.2 Visitor role A service that has the set of
access rights for
unregistered user (visitor)
to search for portal
content.

 Mandatory

3.1.2.1 Synchronous

collaboration

A service that allows

collaboration in real-time

(concurrently).

If real-time

communication

is required.

Optional

3.1.1.2.1 Instant
messaging

A service that allows real-
time communication through
Internet by typing messages
or by participation in on-line

 Mandatory

 152

Level Feature Description Rationale Type Composition
rules

voice or video conference
4 Workflow

management
feature

A service that includes
assignment of tasks, tasks
management and
processing.

If automated
management of
tasks is
required.

Optional

4.1 Role A service that has the set of
access rights to participate
in portal workflow.

 Mandatory

4.1.1 Task manager
role

A service that has the set of
access rights for task
manager to participate in
portal workflow.

 Mandatory

4.1.1.1 Task creation A service that allows
creation of tasks and their
assignment to portal
members.

 Mandatory

4.1.1.2 Task viewing A service that allows
viewing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.3 Task changing A service that allows
changing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.4 Task deletion A service that allows
deletion of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.5 Task approval A service that allows
approval of by portal
members processed tasks.

 Mandatory Requires:
Task
processing

4.1.2 Member role A service that has the set of
access rights for portal
member to participate in
portal workflow.

 Mandatory

4.1.2.1 Task viewing A service that allows
viewing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.2.2 Task processing A service that allows
processing (acceptation,
rejection, suspending, etc.)
of to the member assigned
tasks.

 Mandatory

4.1.2.2.1 Task acceptance A service that allows
acceptance of by the member
fulfilled tasks.

If task needs to
be accepted.

Optional

4.1.2.2.2 Task rejection A service that allows
rejection of tasks, which the
member was unable to fulfil.

If task needs to
be rejected.

Optional

4.1.2.2.3 Task suspending A service that allows
suspending of tasks, which
the member could not fulfil
because some kind of delay.

If task needs to
be suspended.

Optional

4.2 Task A service that allows
storing of to portal
members assigned tasks.

 Mandatory

4.2.1 Task name A service that allows
registration of task name.

 Mandatory

4.2.2 Resource name A service that allows
registration of member or
member group name the task
is assigned to.

 Mandatory

4.2.3 Task assignment
date

A service that allows
registration of task
assignment date.

 Mandatory

4.2.4 Task description A service that allows
registration of task
description.

 Mandatory

4.2.5 Task last
modification
date

A service that allows
registration of task last
modification date.

 Mandatory Requires:
Task creation,
Task
changing

4.2.6 Task status A service that allows setting
of task status (“Accepted”,

If task is
processed.

Mandatory

 153

Level Feature Description Rationale Type Composition
rules

“Rejected”, “Suspended”,
“Completed”).

4.2.7 Task action A service that allows setting
of task action (“Check out”,
“Check in”, “Send for
approval”, “Approve”,
“Reject”)

 Mandatory

4.2.8 Task completion
date

A service that allows
registration of task
completion date.

If task is
completed.

Mandatory Requires:
Task status

4.2.9 Information date A service that allows
identification of task creation
date.

 Mandatory Requires:
Task creation

4.2.10 Task deletion
date

A service that allows
registration of task deletion
date.

If task is
deleted.

Mandatory Requires:
Task deletion

4.2.11 Comment A service that allows
registration of the comment
about the particular task.

If task is
rejected or
suspended by
the portal
member.

Mandatory Requires:
Task status

5.4.4.4. Generic feature model

In 5.4.4.1, 5.4.4.2, 5.4.4.3 presented feature models have been combined into generic feature

model using in 4.2.3.4 proposed synthesis method (Table 14):

Table 14. Generic feature table

Level Feature Description Rationale Type Composition
rules

1 Content
management
feature

A service that allows
creation, management, and
publishing of portal
content

 Mandatory

1.1 Role A service that has the set of
access rights to portal
content

 Mandatory

1.1.1 Content
manager role

A service that allows
management of portal
content

 Mandatory

1.1.1.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.1.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.1.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.1.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.1.2 Content

publishing

A service that allows

publishing of portal content.

 Mandatory Requires:

Content

creation

1.1.1.2.1 Item filtering A service that allows portal
members to filter published
items by the particular
filtering criteria.

 Mandatory

1.1.1.2.2 Item preview A service that allows
preview of published content
items

 Mandatory

1.1.1.3 Content

approval

A service that allows content

manager to approve item

creation, changing or

 Mandatory

 154

Level Feature Description Rationale Type Composition
rules

deletion, done by portal

members.

1.1.1.4 Content search A service that allows content

manager to search for

necessary content items

 Mandatory

1.1.1.4.1 Simple search A service that includes
search for content items by
entered search keywords.

 Mandatory

1.1.1.4.2 Advanced
search

A service that includes
search for content items by
advanced search options,
which allow filtering and/or
ordering of search results.

If it is necessary
to filter/order
search results.

Optional

1.1.2 Content
creator role

A service that allows
creation of portal content

 Mandatory

1.1.2.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.2.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.2.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.2.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.3 Content
publisher role

A service that allows
publishing of portal
content

 Mandatory

1.1.3.1 Content creation A service that allows

creation of portal content.

 Mandatory

1.1.3.1.1 Item creation A service that allows
creation of content items.

 Mandatory

1.1.3.1.2 Item changing A service that allows portal
members to change the items
they have created.

 Mandatory Requires:
Item creation

1.1.3.1.3 Item deletion A service that allows portal
members to delete the items
they have created.

 Mandatory Requires:
Item creation

1.1.3.2 Content

publishing

A service that allows

publishing of portal content.

 Mandatory Requires:

Content

approval

1.1.3.2.1 Item filtering A service that allows portal
members to filter published
items by the particular
filtering criteria.

 Mandatory

1.1.3.2.2 Item preview A service that allows
preview of published content
items

 Mandatory

1.2 Category A service that allows
storing of portal content
items in hierarchical
categories

 Mandatory

1.2.1 Item A service that allows storing
of content in the form of
content units.

 Mandatory

1.2.1.1 Library item A service that allows
creation of reusable,
unstructured pieces of
content.

If it is necessary
to store parts of
documents for
re-use

Optional

1.2.1.1.1 Image A service that allows
creation of a visual
representation of an object,
scene, person, abstraction,
etc. produced on a Web
page.

If images should
be reused in
many
documents

Optional

1.2.1.1.2 Static text A service that allows
creation of a text that doesn’t

If static text
should be reused

Optional

 155

Level Feature Description Rationale Type Composition
rules

change its position on a Web
page.

in many
documents

1.2.1.1.3 Banner A service that allows
creation of graphic image
(static, animated, or rich
media) that is used for the
purpose of advertisement.

If banners
should be reused
in many
documents

Optional

1.2.1.1.4 Video A service that allows
creation of video (e.g. video
clip).

If videos should
be reused in
many
documents

Optional

1.2.1.2 Document item A service that allows
creation of structured pieces
of content, typically stored in
the form of files (.DOC,
.PDF, etc.).

If it is necessary
to have
documents for
re-use

Optional

1.2.1.2.1 File .DOC A service that allows
creation of structured pieces
of content, typically stored in
the form of .DOC files.

If it is necessary
to store
document items
in .DOC files

Optional

1.2.1.2.2 File .PDF A service that allows
creation of structured pieces
of content, typically stored in
the form of .PDF files.

If it is necessary
to store
document items
in .PDF files

Optional

1.2.1.3 Item name A service that allows
assignment of names to
content items.

 Mandatory

1.2.1.4 Size A service that allows
identification of the size of
content items.

If it is necessary
to have the size
of files

Optional

1.2.1.5 Menu item A service that allows
identification of portal menu
item, to which the particular
content item belongs.

 Mandatory

1.2.1.6 Last
modification
date

A service that allows
identification of the date of
last content item
modification.

 Mandatory

1.2.1.7 Version of the
item

A service that allows
generation of content item
version.

If it is necessary
to version
content items.

Optional

1.2.1.8 Action A service that allows
performing items check in-
check out procedure.

Optional

1.2.1.8.1 Check in A service that allows making
changes to the particular
content item and
automatically generate its
new version.

Optional

1.2.1.8.2 Check out A service that allows
reserving of the particular
content item by the particular
user (the other users can not
work with that item).

If check in-
check out
procedure is
used.

Optional

1.2.1.9 Status A service that allows
management of content
items publishing.

Optional

1.2.1.9.1 Approved A service that allows
approval of publishing of
content items.

Optional

1.2.1.9.2 Not approved A service that allows
disapproval of publishing of
content items.

If the procedure
of content items
approval is used.

Optional

1.2.1.10 Item author
name

A service that allows
identification of the name of
the user, who has created the
particular content item.

If it is necessary
to have the
name of the
user, who has

Optional

 156

Level Feature Description Rationale Type Composition
rules

created the
particular
content item.

2 Search feature A service that allows
finding for necessary
information by entering
search keywords or search
options.

 Mandatory

2.1 Role A service that has the set of
access rights to portal
content

 Mandatory

2.1.1 Visitor role A service that has the set of
access rights for
unregistered user (visitor)
to search for portal
content.

 Mandatory

2.1.1.1 Simple search A service that includes

search by entered search

keywords.

 Mandatory

2.1.1.1.1 Search
keywords

A service that allows
performing search for portal
content by the particular
keywords or key phrases.

 Mandatory

2.1.2 Member role A service that has the set of
access rights for portal
member to search for
portal content.

 Mandatory

2.1.2.1 Simple search A service that includes

search by entered search

keywords.

 Mandatory

2.1.2.1.1 Search
keywords

A service that allows
performing search for portal
content by the particular
keywords or key phrases.

 Mandatory

2.1.2.2 Advanced

search

A service that includes

search by advanced search

options, which allow filtering

and/or ordering of search

results.

If it is necessary

to filter/order

search results.

Optional

2.1.2.2.1 Date options A service that allows
filtering of search results
according to the interval of
dates.

If it is necessary
to filter search
results
according to the
interval of dates.

Optional

2.1.2.2.2 Ordering
options

A service that allows
ordering of search results in
the particular way.

If it is necessary
to order search
results in the
particular way.

Optional

2.1.2.2.3 Scope options A service that allows
limiting scope of search by
providing the particular
topics, which are relevant for
the member.

If it is necessary
to limit the
scope of search.

Optional

2.1.2.3 Saved search A service that allows saving

search results in folders, and

later extract of saved search

results from the particular

folder.

If it is necessary

to save search

results for later

review.

Optional

2.1.2.3.1 Simple search
folder

A service that allows saving
of simple search results in
the particular folder.

If it is necessary
to save simple
search results
for later review.

Optional Requires:
Simple search
results

2.1.2.3.2 Advanced
search folder

A service that allows saving
of advanced search results in
the particular folder.

If it is necessary
to save
advanced search
results for later
review.

Optional Requires:
Advanced
search results

 157

Level Feature Description Rationale Type Composition
rules

2.2 Search results A service that allows
viewing the list of simple or
advanced search results.

 Mandatory

2.2.1 Simple search

results

A service that allows viewing

the list of simple search

results.

 Mandatory Requires:

Simple search

2.2.2 Advanced

search results

A service that allows viewing

the list of advanced search

results.

 Mandatory Requires:

Advanced

search

3 Collaboration
feature

An online service that
provides means of
communication between
portal users.

If
communication
between portal
users is
required.

Optional

3.1 Role A service that has the set of
access rights to collaborate
in the portal.

 Mandatory

3.1.1 Member role A service that has the set of
access rights for portal
member to search for
portal content.

 Mandatory

3.1.1.1 Synchronous

collaboration

A service that allows

collaboration in real-time

(concurrently).

If real-time

communication

is required.

Optional

3.1.1.1.1 Chat room A service that allows real-
time communication through
Internet by exchange of
messages.

If real-time
communication
by exchange of
typed messages
is required.

Alternative

3.1.1.1.1.1 Public chat
room

A service that allows
communication in real time
while on the Internet.

 Mandatory

3.1.1.1.1.1.1 Message A service that allows
exchange of messages
between the participants of
the on-line conversation.

 Mandatory

3.1.1.1.1.2 Private chat
room

A service that allows
communication pear-to-pear
in real time while on the
Internet.

If
communication
pear-to-pear is
required.

Optional

3.1.1.1.1.2.1 Message A service that allows
exchange of messages
between the participants of
the on-line conversation.

 Mandatory

3.1.1.1.1.2.2 File A service that allows
exchange of files between
participants of pear-to-pear
conversation.

If files
sending/receivin
g is required.

Optional

3.1.1.1.2 Instant
messaging

A service that allows real-
time communication through
Internet by typing messages
or by participation in on-line
voice or video conference

If real-time
communication
by participation
in on-line voice
or video
conference is
required.

Optional

3.1.1.2 Asynchronous

collaboration

A service that allows

collaboration at different

(asynchronous) time.

If

communication

not in real-time

is required.

Optional

3.1.1.2.1 Forum A service that provides
online collaboration through
discussion group, where
users can exchange
messages.

If service that
allows
exchanging
messages on-
line is required.

Alternative Requires:
Message

3.1.1.2.1.1 Topic post A service that allows posting
topics and replies to them.

 Mandatory

3.1.1.2.1.1.1 Topic A service that allows posting Mandatory

 158

Level Feature Description Rationale Type Composition
rules

topics.
3.1.1.2.1.1.1.1 Subject A service that allows naming

of topics.
 Mandatory

3.1.1.2.1.1.1.2 Message A service that allows
creation of messages that
could be seen to the
participants of not-real time
conversation.

 Mandatory

3.1.1.2.1.1.1.3 Notification
type

A service that allows
determining if e-mail
notifications should be sent
to the author of the topic,
when replies to it are posted.

 Mandatory

3.1.1.2.1.1.1.4 Topic author A service that allows
identification of the name of
the user, who has created the
particular topic.

 Mandatory

3.1.1.2.1.1.1.5 Topic post date
and time

A service that allows
identification of the date and
time of topic creation.

 Mandatory

3.1.1.2.1.1.1.6 Poll A service that allows voting
to the particular question that
is raised in the topic.

If some question
that requires the
opinion of
conversation
participants is
raised in the
topic.

Optional

3.1.1.2.1.1.1.7 Attachment A service that allows sending
computer files along with
messages.

If it is necessary
to send a
computer file.

Optional

3.1.1.2.1.1.1.8 Topic options A service that allows setting
of different topic reply
options, such some
restrictions to allowable
number of replies to topic,
etc.

If topic has
some
restrictions that
should be
checked.

Optional

3.1.1.2.1.1.2 Topic reply A service that allows posting
replies to the particular topic.

 Mandatory

3.1.1.2.1.1.2.1 Subject A service that allows naming
of topic replies.

 Mandatory

3.1.1.2.1.1.2.2 Message A service that allows
creation of messages that
could be seen to the
participants of not-real time
conversation.

 Mandatory

3.1.1.2.1.1.2.3 Notification
type

A service that allows
determining if e-mail
notifications should be sent
to the author of the topic,
when replies to it are posted.

 Mandatory

3.1.1.2.1.1.2.4 Reply author A service that allows
identification of the name of
the user, who has created the
particular reply to topic.

 Mandatory

3.1.1.2.1.1.2.5 Attachment A service that allows sending
computer files along with
messages.

If it is necessary
to send a
computer file.

Optional

3.1.1.2.1.1.2.6 Reply options A service that allows setting
of different topic reply
options, such as restrictions
to length of every topic
reply, etc.

If reply to topic
has some
restrictions that
should be
checked.

Optional

3.1.1.2.2 Newsgroup A service that provides
collaboration through
bulletin boards, where users
can put and read messages
on-line or download and

If service that
allows reading
messages off-
line is required.

Alternative Requires:
Message

 159

Level Feature Description Rationale Type Composition
rules

save messages for off-line
reading.

3.1.1.2.3 Newsletter A service that provides
periodic sending of
publications on a specific
topic by e-mail only to those
members, who have
subscribed to that service.

If service that
provides
sending of
publications on
a specific topic
by e-mail is
required.

Optional

3.1.2 Visitor role A service that has the set of
access rights for
unregistered user (visitor)
to search for portal
content.

 Mandatory

3.1.2.1 Synchronous

collaboration

A service that allows

collaboration in real-time

(concurrently).

If real-time

communication

is required.

Optional

3.1.1.2.1 Chat room A service that allows real-
time communication through
Internet by exchange of
messages.

If real-time
communication
by exchange of
messages is
required.

Alternative

3.1.1.2.1.1 Public chat
room

A service that allows
communication in real time
while on the Internet.

 Mandatory

3.1.1.2.1.1.1 Message A service that allows
exchange of messages
between the participants of
the on-line conversation.

 Mandatory

3.1.1.2.1.2 Private chat
room

A service that allows
communication pear-to-pear
in real time while on the
Internet.

If
communication
pear-to-pear is
required.

Optional

3.1.1.2.1.2.1 Message A service that allows
exchange of messages
between the participants of
the on-line conversation.

 Mandatory

3.1.1.2.1.2.2 File A service that allows
exchange of files between
participants of pear-to-pear
conversation.

If files
sending/receivin
g is required.

Optional

3.1.1.2.2 Instant
messaging

A service that allows real-
time communication through
Internet by typing messages
or by participation in on-line
voice or video conference

If real-time
communication
by participation
in on-line voice
or video
conference is
required.

Optional

4 Workflow
management
feature

A service that includes
assignment of tasks, tasks
management and
processing.

If automated
management of
tasks is
required.

Optional

4.1 Role A service that has the set of
access rights to participate
in portal workflow.

 Mandatory

4.1.1 Task manager
role

A service that has the set of
access rights for task
manager to participate in
portal workflow.

 Mandatory

4.1.1.1 Task creation A service that allows
creation of tasks and their
assignment to portal
members.

 Mandatory

4.1.1.2 Task viewing A service that allows
viewing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.3 Task changing A service that allows
changing of assigned tasks.

 Mandatory Requires:
Task creation

 160

Level Feature Description Rationale Type Composition
rules

4.1.1.4 Task deletion A service that allows
deletion of assigned tasks.

 Mandatory Requires:
Task creation

4.1.1.5 Task approval A service that allows
approval of by portal
members processed tasks.

 Mandatory Requires:
Task
processing

4.1.1.6 Task analysis A service that allows
analysis of tasks, including
filtering, grouping of tasks,
search for tasks, viewing the
history of tasks.

If it is necessary
to analyse tasks.

Optional

4.1.1.6.1 Task filtering A service that allows
filtering of tasks by the
particular filtering options.

If filtering of
tasks is required.

Optional

4.1.1.6.2 Task grouping A service that allows
grouping of tasks by the
particular grouping options.

If grouping of
tasks is required.

Optional

4.1.1.6.3 Task search A service that allows search
for tasks by the particular
search options.

If search for
tasks is required.

Optional

4.1.1.6.4 Task history
viewing

A service that allows
viewing of task modification
history.

If viewing of
task history is
required.

Optional

4.1.2 Member role A service that has the set of
access rights for portal
member to participate in
portal workflow.

 Mandatory

4.1.2.1 Task viewing A service that allows
viewing of assigned tasks.

 Mandatory Requires:
Task creation

4.1.2.2 Task processing A service that allows
processing (acceptation,
rejection, suspending, etc.)
of to the member assigned
tasks.

 Mandatory

4.1.2.2.1 Task acceptance A service that allows
acceptance of by the member
fulfilled tasks.

If task needs to
be accepted.

Optional

4.1.2.2.2 Task rejection A service that allows
rejection of tasks, which the
member was unable to fulfil.

If task needs to
be rejected.

Optional

4.1.2.2.3 Task suspending A service that allows
suspending of tasks, which
the member could not fulfil
because some kind of delay.

If task needs to
be suspended.

Optional

4.2 Task A service that allows
storing of to portal
members assigned tasks.

 Mandatory

4.2.1 Task name A service that allows
registration of task name.

 Mandatory

4.2.2 Resource name A service that allows
registration of member or
member group name the task
is assigned to.

 Mandatory

4.2.3 Task assignment
date

A service that allows
registration of task
assignment date.

 Mandatory

4.2.4 Task description A service that allows
registration of task
description.

 Mandatory

4.2.5 Task type A service that allows
assignment of individual or
group tasks.

 Optional

4.2.5.1 Group task A service that allows
assignment of tasks to the
particular group of portal
members.

If it is required
to assign the
same task to the
group of
members.

Optional

4.2.5.2 Individual task A service that allows If it is required Optional

 161

Level Feature Description Rationale Type Composition
rules

assignment of tasks to the
particular member.

to assign the
task to the
particular
member
personally.

4.2.6 Task priority A service that allows
registration of task priority
(importance of the particular
task).

If importance of
tasks is required.

Optional

4.2.7 Task last
modification
date

A service that allows
registration of task last
modification date.

 Mandatory Requires:
Task creation,
Task
changing

4.2.8 Task status A service that allows setting
of task status (“Accepted”,
“Rejected”, “Suspended”,
“Completed”).

Mandatory

4.2.9 Task action A service that allows setting
of task action (“Check out”,
“Check in”, “Send for
approval”, “Approve”,
“Reject”)

If task is
processed.

Mandatory

4.2.10 Task completion
date

A service that allows
registration of task
completion date.

If task is
completed.

Mandatory Requires:
Task status

4.2.11 Information date A service that allows
identification of task creation
date.

 Mandatory Requires:
Task creation

4.2.12 Task deletion
date

A service that allows
registration of task deletion
date.

If task is
deleted.

Mandatory Requires:
Task deletion

4.2.13 Comment A service that allows
registration of the comment
about the particular task.

If task is
rejected or
suspended by
the portal
member.

Mandatory Requires:
Task status

5.4.5. Web Portal Requirements (Evaluation Test Examples)

Web portal functional requirements have been derived from in 5.4.4.4 presented feature

model. Four groups of requirements have been separated: content management, search,

collaboration, and workflow requirements. These requirements have been specified using UML

2.0 and Z specification languages. UML 2.0 specification has been created using MagicDraw

UML 10.0 [NM06], and Z specification has been created using Z/EVES 2.1 [Saa99].

5.4.5.1. Requirements for Content Management

Content management requirements are presented in Table 15:

Table 15. Content management requirements table

ID Kind Requirement Type Priority
REQ-1 F Content management requirements M M
REQ-1.1 F Content management should include:

• Creation of portal Pt content;
• Publishing of portal Pt content;
• Deletion of portal Pt content;
• Changing of portal Pt content;
• Filtering of portal Pt content;
• Searching for portal Pt content.

M S

 162

ID Kind Requirement Type Priority
REQ-1.2 F The main roles Rl that should be defined for content

management are:
• Content manager CM;
• Content creator CC;
• Content publisher CP.

M S

REQ-1.3 F All these roles having users should be members of the portal Pt. M S
REQ-1.4 F Every role Rl should have the set of access rights Rt1, …, RtN

that defines permissions and privileges granted to portal
members.

M S

REQ-1.5 F Content manager CM should be able to manage content of the
portal by:
• Creating portal Pt content;
• Publishing portal Pt content;
• Approval or rejection of the content that content creators

have created.

M S

REQ-1.6 F Content creator CC should be able only to create drafts of portal
Pt content items Itm that should be approved by the content
manager CM before publishing.

M S

REQ-1.7 F Content publisher CP should be able to:
• Create portal Pt content;
• Publish portal Pt content.

M S

REQ-1.8 F Portal Pt content items CntItm could be classified into library
items LbItm and document items DocItm.

O C

REQ-1.9 F Library items LbItm could be reusable, unstructured pieces of
content.

O C

REQ-1.9.1 F Library items LbItm could be classified into images, static text,
banners, and video.

O C

REQ-1.10 F Document items DocItm could be structured pieces of content. O C
REQ-1.10.1 F It could be possible to store document items in .DOC and .PDF

formats.
O C

REQ-1.11 F Portal information architecture should be organised in the form
of hierarchy of categories Cat1, …, CatN, in which library items
LbItm and document items DocItm should be saved.

M S

REQ-1.12 F Portal Pt could have content check in-check out procedure. O C
REQ-1.12.1 F Check in-check-out procedure should be used to ensure that at

the same moment of time only one member Mem should be able
to create/change/delete the same content item CntItm.

O C

REQ-1.13 F Every created library item LbItm or document item DocItm
should have:
• Menu item,
• Item type (document item or library item),
• Item kind (image, text, banner, video),
• Item name,
• Size (Kb),
• Last modification date,
• Item author name.

M S

REQ-1.13.1 F During creation of the particular content item the following
attributes should be indicated:
• Item name,
• Menu item,
• Item type,
• Item kind.

M S

REQ-1.13.2 F During creation of the particular content item its name should be
generated.

M S

REQ-1.13.3 F During creation of the particular content item the following
attributes should be generated automatically:
• Version of the item,
• Size (Kb),
• Last modification date,
• Item author name,

O C

 163

ID Kind Requirement Type Priority
• Item status,
• Item action.

REQ-1.13.4 F Version of the item and item action could be generated
automatically after that item is checked in.

O C

REQ-1.13.5 F The available actions could be “Check in” or “Check out”. O C
REQ-1.13.6 F The available statuses of items could be “Approved” or “Not

approved”.
O C

REQ-1.14 F Content manager CM should be able to change/delete all portal
items.

M S

REQ-1.15 F Content creator CC and content publisher CP should be able to
change/delete only the items that he has created.

M S

REQ-1.16 F Content manager CM should be able to search for particular
content items of the portal Pt.

M S

REQ-1.16.1 F It should be possible to perform two kinds of content search:
• Simple search,
• Advanced search.

M S

REQ-1.16.2 F To search for the content of the portal Pt content manager CM
could enter search keywords Kw1,…, KwN and advanced search
options Opt1, …, OptN.

M S

REQ-1.17 F Content manager CM should be able to filter published content
items of the portal Pt.

M S

REQ-1.17.1 F It should be possible to filter published content items CntItm by
the following filtering criteria:
• Item type,
• Item kind,
• Last modification date,
• Version of the item.

M S

REQ-1.18 F Content manager CM and content publisher CP should be able
to preview published content items of the portal Pt.

M S

5.4.5.2. Requirements for Search

Search requirements are presented in Table 16:

Table 16. Search requirements table

ID Kind Requirement Type Priority
REQ-2 F Search requirements M M
REQ-2.1 F Visitor search requirements M M
REQ-2.1.1 F Visitors Vst of the portal Pt should have possibility to perform

only simple search that has the scope “All” (search the entire
portal Pt).

M S

REQ-2.1.2 F The functionality of simple search should include searching in
portal Pt database for certain keywords Kw1, …., KwN and
returning the list of results.

M S

REQ-2.1.2.1 F If the visitor Vst has entered such search keywords Kw1, …., KwN
that no results are found in the database, then the visitor Vst
should be informed that search was not successful.

M S

REQ-2.1.2.2 F If total number of search results is too large, then the visitor Vst
should be proposed to limit the scope of search.

M S

REQ-2.1.2.3 F The visitor Vst should be able limit the scope of search by entering
another keywords Kw1, …., KwN.

M S

REQ-2.1.3 F The top of search results page PREZ should contain:
• Search keywords Kw1, …., KwN and
• The interval of results (from N1 to N2) that are shown on one

page.

M S

REQ-2.1.4 F The number of returned results that are shown on one page should
be not greater than N.

M S

REQ-2.1.4.1 F The returned results should be the numbered list of links L1, ..., LN M S

 164

ID Kind Requirement Type Priority
for pages P1, …, PN that form part of the portal Pt.

REQ-2.1.4.2 F Search results should be prioritised depending on the importance
of each result, but not purely on the basis of how many search
keywords the found pages P1, …, PN contain.

M S

REQ-2.1.4.3 F To view the results that don’t fit on the first page the visitor Vst
should open the Nth search results page PREZ, where he can view
the next N results.

M S

REQ-2.2 F Member search requirements M M
REQ-2.2.1 F Member Mem of the portal Pt should have possibility to perform

two kinds of search:
• Simple search,
• Advanced search.

M S

REQ-2.2.2 F Members Mem of the portal Pt should be able to target their
search by using advanced search options Opt1, …, OptN for
narrowing the results.

M S

REQ-2.2.2.1 F The portal Pt could provide several kinds of advanced options:
• Ordering options Oopt1, …, OoptN,
• Date options Dopt1,…, DoptN,
• Scope options Sopt1, …, SoptN.

O C

REQ-2.2.2.2 F Ordering options OOpt1, …, OOptN should allow ordering of
search results in member Mem preferred way.

O C

REQ-2.2.2.3 F Date options DOpt1, …, DOptN should allow filtering of data
according to dates (to show all data or only the data that belongs to
some date interval).

O C

REQ-2.2.2.4 F Scope options SOpt1, …, SOptN should allow limiting scope of
search (it should be possible to provide particular topics that are
relevant for the member Mem).

O C

REQ-2.2.2.5 F If the member Mem has entered such advanced search options
Opt1, …, OptN that no results are found, then the member Mem
should be informed that search was not successful.

M S

REQ-2.2.2.6 F The scope of advanced search may be limited by entering another
advanced search scope options SOpt1, …, SOptN.

M S

REQ-2.2.3 F The top of search results page PREZ should contain:
• Search keywords Kw1, …., KwN,
• Ordering options OOpt1, …, OOptN,
• Date options DOpt1, …, DOptN,
• Scope options SOpt1, …, SOptN,
• The interval of results (from N1 to N2) that are shown on one

page.

M S

REQ-2.2.4 F The other requirements for advanced search should be the same as
REQ-2.1.4 and it comprising requirements.

M S

REQ-2.2.5 F Member Mem of the portal Pt could have possibility to save the
results of simple search or the results of advanced search.

O C

REQ-2.2.5.1 F The results of simple or advanced search could be saved in folders
F1, …, FM.

O C

REQ-2.2.5.2 F To save the results of simple or advanced search the member Mem
while being on search results page PREZ should open saved search
page PSS.

M S

REQ-2.2.5.3 F Saved search page should contain the list of by the member Mem
saved folders F1, …, FM.

M S

REQ-2.2.5.4 F To save the results of simple or advanced search the member Mem
should enter the name of folder Fi.

M S

REQ-2.2.5.5 F By the member Mem entered folder Fi must be unique, that is such
that no two folders can be identical.

M M

REQ-2.2.5.6 F If the folder Fi is unique then the total number of folders M that
have been created by the member Mem should be counted.

M S

REQ-2.2.5.7 F New saved search folder Fi should be created only if the entered
folder Fi is unique and number of member Mem folders is not
greater than M.

M S

REQ-2.2.5.8 F If member folder Fi is not unique, that is the folder with such M S

 165

ID Kind Requirement Type Priority
name already exists in content repository Cr, then the folder Fi
should not be created and the member Mem should be informed
that another folder name should be entered.

REQ-2.2.5.9 F If the number of member Mem folders is greater than M then
before creation of the new folder Fi the member Mem should be
informed that it is necessary to delete some folder Fk that was
created earlier.

M S

REQ-2.2.6 F Member Mem could have possibility to run his saved searches. O C
REQ-2.2.6.1 F To run saved search member Mem should open saved search page

PSS and select the folder Fi that he prefers to run.
M S

REQ-2.2.6.2 F If the folder Fi contains simple search then search results page
PREZ should be opened, which should have all fields that are
mentioned in requirement REQ-2.1.3.

M S

REQ-2.2.6.3 F If the folder Fi contains advanced search then search, results page
PREZ should be opened, which should have all fields that are
mentioned in requirement REQ-2.2.3.

M S

REQ-2.2.6.4 F The member Mem should have possibility to see the other results
that don’t fit on the first page (see REQ-2.1.4.3).

M S

REQ-2.2.6.5 F The member Mem should have possibility to delete any of the
folders F1, …, FM that he has created.

M S

5.4.5.3. Requirements for Collaboration

Collaboration requirements are presented in Table 17:

Table 17. Collaboration requirements table

ID Kind Requirement Type Priority
REQ-3. F Collaboration requirements O C
REQ-3.1 F Member collaboration requirements O C
REQ-3.1.1 F Member Mem of the portal Pt could have possibility to

collaborate asynchronously (not in real time).
O C

REQ-3.1.1.1 F Member Mem of the portal Pt could have possibility to
participate in forums Fr1,…, FrN, which are provided by
the portal Pt.

A C

REQ-3.1.1.2 F Member Mem of the portal Pt could have possibility to
participate in newsgroups Nw1,…, NwN, which are
provided by the portal Pt.

A C

REQ-3.1.1.3 F Member Mem of the portal Pt could have possibility to
subscribe to newsletters Nwl1, …, NwlN, which are
provided by the portal Pt.

O C

REQ-3.1.1.1.1 F A forum Fr should be an online notice board, where
members Mem should be able to post topics Top1, …,
TopN or replies to selected topics Re1,…, ReN, vote to
questions that can be set in topics Top1, …, TopN.

M S

REQ-3.1.1.1.2 F To access necessary forum Fr and its particular topic Top
member Mem should open asynchronous collaboration
page PAC and select the particular forum Fr and topic Top.

M S

REQ-3.1.1.1.3 F Asynchronous collaboration page PAC should have:
• User name of members that have logged on,
• Total number of portal Pt members.

M S

REQ-3.1.1.1.4 F On asynchronous collaboration page PAC displayed list of
available forums should contain:
• Forum name,
• Number of topics,
• Number of posts,
• Last post author,
• Last post date and time.

M S

REQ-3.1.1.1.5 F On the forum page PF displayed list of topics should M S

 166

ID Kind Requirement Type Priority
contain:
• Topic subject (topic name),
• Number of replies,
• Last post author,
• Last post date and time.

REQ-3.1.1.1.6 F On the topic page PTP displayed topics should contain:
• Subject,
• Message,
• Post date and time,
• Topic author information (user name, membership

start date, number of member posts).

M S

REQ-3.1.1.1.7 F The portal Pt should provide possibility to view topic
author profile Prf information.

M S

REQ-3.1.1.1.8 F Member Mem should be able to view only selected posts
that are:
• In selected forum Fr,
• In selected topic Top.

M S

REQ-3.1.1.1.9 F Member Mem of the portal Pt should have possibility to
create new topics.

M S

REQ-3.1.1.1.9.1 F To create new topic member Mem should enter topic info:
• Subject,
• Message,
• Notification type (notification type should be filled to

determine if e-mail notifications should be sent to the
author of the topic Top, when replies to the topic are
posted).

M S

REQ-3.1.1.1.9.2 F Topic message should be not shorter than S symbols. M S
REQ-3.1.1.1.9.3 F The other topic information that could be set for the new

topic is optional:
• Poll information (poll question, poll options, poll

timeout),
• Attachment,
• Topic options.

O C

REQ-3.1.1.1.9.4 F The number of poll options should be not less than R and
not greater than K.

M S

REQ-3.1.1.1.9.5 F If entered topic information is valid and number of poll
options is allowable, then topic author name, topic post
date, post time should be generated and new topic Top
should be created.

M S

REQ-3.1.1.1.9.6 F If topic message is shorter than S symbols then the member
should be informed that he should enter a message of valid
length.

M S

REQ-3.1.1.1.9.7 F If the number of poll options is less than R or not greater
than K, then member should be informed to correct poll
information.

M S

REQ-3.1.1.1.10 F To post reply Re to the particular topic Top member Mem
should select the necessary topic and provide the following
information:
• Subject,
• Message,
• Notification type.

M S

REQ-3.1.1.1.10.1 F The other topic reply information that can be set for the
new topic reply should be optional:
• Attachment,
• Reply options.

M S

REQ-3.1.1.1.10.2 F If entered topic reply information is valid, then topic reply
author name, topic reply post date, post time should be
generated and new topic reply Re should be created.

M S

REQ-3.1.1.1.10.3 F If reply message is shorter than S symbols then the member
should be informed that he should enter a message of valid

M S

 167

ID Kind Requirement Type Priority
length.

REQ-3.1.1.1.10.4 F After reply Re is created portal Pt should determine:
• If it is necessary to send notification about new topic

reply to topic author;
• If it is necessary to send notification about new topic

reply to other topic participants (who have posted
replies to the topic).

M S

REQ-3.1.1.1.11 F If necessary, notifications should be sent to topic author
and/or to the other topic participants.

M S

REQ-3.1.1.1.12 F Member Mem should have possibility to delete the
topics/topics replies that he has created.

M S

REQ-3.1.1.1.12.1 F When topic Top is deleted all replies to this topic should be
deleted automatically.

M S

REQ-3.1.1.1.13 F If topic has poll options, then member Mem should have
possibility to vote.

M S

REQ-3.1.1.1.13.1 F Voting process should include answering to poll question
by selection of preferred poll option.

M S

REQ-3.1.1.1.13.2 F After poll option is selected the portal Pt should provide
possibility to see the results of voting that should include
total number of votes and the list of poll options with
corresponding percents of votes.

M S

REQ-3.1.2 F Member Mem of the portal Pt could have possibility to
collaborate synchronously (in real time).

O C

REQ-3.1.2.1 F Portal Pt could have a set of virtual public chat rooms CR1,
…, CRN.

A C

REQ-3.1.2.2 F Portal Pt could have a set of instant messaging services
IM1, …, IMN.

A C

REQ-3.1.2.1.1. F Every virtual public chat room CR should have a particular
topic Top.

M S

REQ-3.1.2.1.2 F To enter necessary chat room CR the member Mem should
open synchronous collaboration page PSC and select the
particular chat room CR.

M S

REQ-3.1.2.1.3 F Portal Pt members should belong to members chat room
group GRM, that is member Mem should have possibility to
enter any chat room CR that is provided by the portal Pt.

M S

REQ-3.1.2.1.3.1 F Member Mem nickname should be determined by user
name that he has entered during login to the portal Pt, thus
to enter the particular chart room CR with member rights
member shouldn’t need to log in for the second time.

M S

REQ-3.1.2.1.3.2 F Member Mem should be allowed to enter the selected chat
room CR only if:
• That member Mem nickname is not banned,
• Total number of chat room participants is not greater

than R.

M S

REQ-3.1.2.1.3.3 F In case of successful entering the chat room CR the portal
Pt should open public chat room page PCR, which should
have:
• Topic Topi,
• List of available chat rooms CR1, …, CRN,
• List of chat room participants (first members and then

visitors) Usr1, …, UsrN.

M S

REQ-3.1.2.1.4 F After clicking on any member Mem that is in the list of chat
room participants it should be possible to see his profile Prf
information.

M S

REQ-3.1.2.1.5 F Member Mem of the portal Pt could have possibility to chat
in private chat rooms PCR1, …, PCRN pear-to-pear.

O C

REQ-3.1.2.1.5.1 F To start chatting pear-to-pear member Mem should be able
to select the member Mem he wants to chat and the portal
Pt should open private chat room page PPCR.

M S

REQ-3.1.2.1.5.2 F Private chat room page PPCR should be seen only to two M S

 168

ID Kind Requirement Type Priority
members of conversation, other participants of the chat
room CR should not see that page.

REQ-3.1.2.1.6 F Every virtual chat room (public or private) CR should allow
members Mem to chat with all chat room participants by
typing messages Msg1, …, MsgN to each other in real time,
creating an online conversation.

M S

REQ-3.1.2.1.6.1 F Messages Msg1, …, MsgN should appear on an area of the
public (private) chat room page PCR next to the member’s
Mem nickname.

M S

REQ-3.1.2.1.6.2 In private chat rooms PCR1, …, PCRN members Mem
could have possibility not only exchange messages, but
send/receive files Fl1, …, FlN.

O C

REQ-3.1.2.1.7 F The portal Pt should allow member Mem to open not more
than N public or private chat rooms at one time.

M S

REQ-3.1.2.1.7.1 F If the member Mem has already opened L chat rooms and
attempts to open one more chat room, then he should be
informed that number of allowed to enter chat rooms have
exceeded.

M S

REQ-3.1.2.1.8 F If the member Mem in public or in private chat room types
a message Msg that is unprintable, then the portal Pt should
automatically set ban Ban for such user.

M S

REQ-3.1.2.1.8.1 F Ban should have start date and end date that means that
during that period the member Mem should not be able to
enter none of portal Pt chat rooms CR1, …, CRN.

M S

REQ-3.1.2.1.8.2 F When ban for Mem ends, it is unset automatically and the
member should be allowed to enter the chat rooms CR1, …,
CRN, which are available for portal members.

M S

REQ-3.2 F Visitor collaboration requirements O C
REQ-3.2.1 F Visitor Vst of the portal Pt could have possibility to

collaborate synchronously (in real time).
O C

REQ-3.2.1.1 F Visitor Vst should be allowed to enter only the chat rooms
that belong to the particular group GRi (Visitor chat
rooms).

M S

REQ-3.2.1.2 F Visitor Vst of the portal Pt should have possibility to enter
limited number R of chat rooms

M S

REQ-3.2.1.3 F To enter necessary chat room CRi the visitor Vst should
open synchronous collaboration page PSC and enter his
nickname.

M S

REQ-3.2.1.4 F If the nickname is unique, then the list of available chat
rooms CR1, …, CRN should be displayed on the
synchronous collaboration page PSC.

M S

REQ-3.2.1.5 F In case of successful entering the chat room CRi the portal
Pt should open chat room page PCR, which should have:
• Topic Topi,
• List of chat room participants (first members and then

visitors) Usr1, …, UsrN,
• Filtered list of available chat rooms CR1, …, CRN.

M S

REQ-3.2.1.6 F Messages Msg1, …, MsgN should appear on an area of the
public chat room page PCR next to the visitor’s Vst
nickname.

M S

REQ-3.2.1.7 F The number of opened chat rooms CRi should not be
greater than L.

M S

REQ-3.2.1.7.1 F If the visitor Vst have already opened L chat rooms and
attempts to open one more chat room, then he should be
informed that number of allowed to enter chat rooms have
exceeded.

M S

 169

5.4.5.4. Requirements for Workflow

Workflow requirements are presented in Table 18:

Table 18. Workflow requirements table

ID Kind Requirement Type Priority
REQ-4 F Collaboration requirements O C
REQ-4.1 F Workflow management could include:

• Creation and assignment of tasks Tsk,
• Viewing of tasks Tsk,
• Processing of tasks Tsk,
• Changing of tasks Tsk,
• Deletion of tasks Tsk,
• Approval or rejection of tasks Tsk,
• Filtering and grouping of tasks Tsk,
• Searching for tasks Tsk,
• Viewing the history of task Tsk modifications.

O C

REQ-4.1.1 F The main roles Rl that should be defined for workflow are:
• Workflow manager WM,
• Portal member Mem.

M S

REQ-4.1.2 F Workflow manager WM should be able to manage workflow
process by:
• Creation and assignment/reassignment of tasks Tsk to

portal members,
• Viewing of tasks Tsk,
• Changing of tasks Tsk,
• Deletion of tasks Tsk,
• Approval or rejection of tasks Tsk,
• Filtering and grouping of tasks Tsk,
• Searching for tasks Tsk,
• Viewing the history of task Tsk modifications.

M S

REQ-4.2 F Every task Tsk should have:
• Task name,
• Resource name (member Mem name or member group

name GM, to which the task is assigned to),
• Task assignment date,
• Task description,
• Task type (group or individual task),
• Task priority,
• Task last modification date,
• Task status (“Accepted”, “Rejected”, “Suspended”,

“Completed”),
• Task action (“Check out”, “Check in”, “Send for

approval”, “Approve”, “Reject”),
• Task completion date,
• Information date,
• Comment.

M S

REQ-4.2.1 F During creation of the particular task and assignment it to the
portal member the following attributes should be indicated:
• Task name,
• Resource name (member Mem name or member group

name GM, to which the task is assigned to),
• Task assignment date,
• Task description,
• Task type (group or individual task),
• Task priority,
• Task last modification date.

M S

REQ-4.2.1.1 F Task priority could be registered if it is necessary to indicate the
importance of the particular task.

O C

 170

ID Kind Requirement Type Priority
REQ-4.3 F It could be possible to assign the particular task Tsk to the

particular Mem of the portal Pt or to the group of portal Pt
members GM.

O C

REQ-4.4 F Workflow manager WM should have possibility to view all
tasks Task1, …, TaskN that he has assigned to portal members.

M S

REQ-4.4.1 F Every portal member Mem should have possibility to view only
to him assigned tasks Task1, …, TaskN.

M S

REQ-4.5 F Portal member Mem should be able to process to him assigned
tasks by their acceptation, rejection or suspending.

M S

REQ-4.5.1 F Task Tsk accepting should mean that the member has performed
the task that was assigned to him.

M S

REQ-4.5.2 F Task Tsk rejecting should mean that the member could not
accomplish the task. In this case comment with the rejection
reason should be provided.

M S

REQ-4.5.3 F Task Tsk suspending should mean that the member could not
perform the task because of some kind of delay. In this case
comment with the reason of delay should be provided.

M S

REQ-4.5.3.1 F Suspended tasks further should change their status to “Rejected”
or “Accepted” depending on the member’s ability to perform the
task.

M S

REQ-4.6 F Accepted or rejected tasks should be approved by workflow
manager WM, thus notifications should be sent to him. After
notification is sent, the action should become “Send for
approval”.

M S

REQ-4.6.1 F After workflow manager WM approves or rejects the particular
task by setting their status to “Approve” or “Reject”
correspondingly, notifications should be sent to the particular
member or to all member that belong to the particular group.

M S

REQ-4.6.1.1 F After notifications to the members are sent the status of the
approved or rejected task should change to “Completed”.

M S

REQ-4.6.2 F If the task was rejected by workflow manager WM, this should
mean that the task is not assigned to that member/member group
any more.

M S

REQ-4.6.3 F If necessary, workflow manager WM should be able to assign
rejected tasks to the other portal member Mem or member group
GM.

M S

REQ-4.7 F Workflow manager WM should have possibility to delete tasks
Task1, …, TaskN, which have lost their actuality for some
reasons or to change tasks Task1, …, TaskN that need to be
modified.

M S

REQ-4.7.1 F At the same moment of time only one workflow manager WM
should be able to change/delete the same task Tsk.

M S

REQ-4.7.1.1 F It should be possible to change/delete task with the status
“Check in”.

M S

REQ-4.7.1.2 F It should not be possible to change/delete task with the status
“Check out”.

M S

REQ-4.7.2 F After workflow manager WM deletes not actual tasks or makes
changes, notifications to the members, to whom these tasks were
assigned or to all member that belong to the particular group,
should be sent.

M S

REQ-4.8 F Workflow manager WM could have possibility to analyse tasks
by task filtering, grouping, search for particular tasks Task1, …,
TaskN, and viewing the history of task modifications.

O C

REQ-4.8.1 F Filtering could be done by the following filtering options Fopt1,
.., FoptN:
• Member group,
• Particular member,
• Task status,
• Tasks pending manager’s approval (action “Send for

approval”),
• Overdue tasks,

O C

 171

ID Kind Requirement Type Priority
• Completed tasks.

REQ-4.8.2 F Grouping of tasks could be done by selection of grouping
options Gopt1, …, GoptN.

O C

REQ-4.8.3 F Search for particular tasks could be done by performing two
kinds of search:
• Simple search,
• Advanced search.

O C

REQ-4.8.3.1 F To search for the tasks workflow manager WM should enter
search keywords Kw1,…, KwN and advanced search options
Opt1, …, OptN.

M S

REQ-4.9 F Workflow manager WM could have possibility to view the
history of task modifications during the particular period of time
(Start date, End date).

O C

REQ-4.9.1 F The history typically could include:
• Date and time (information date in case of task creation,

last modification date in case of task modification),
• Member (resource name), who have changed the status of

task,
• If the task was approved or moved on in the workflow

(reassigned to the other member),
• If the task was suspended for later processing.

O C

5.4.6. Description of Quality Evaluation Tests

This section provides descriptions of UML and Z quality evaluation tests and suites of tests.

For every test it has been defined which sub-characteristics of functionality will be tested by that

test and by specification of which requirements these characteristics will be tested. Quality

evaluation tests have been combined into suites of tests.

5.4.6.1. Description of UML Evaluation Tests

Descriptions of UML evaluation tests, which have been developed for content management

and search components of Web portal, are presented in Table 19, Table 20:

Table 19. Description of UML evaluation test T-F-IAS-UML-01

Test identifier T-F-IAS-UML-01
Test execution conditions 1. Tested language: UML.

2. Tool to produce specifications: MagicDraw UML 10.0.
3. Requirements should be modelled by groups: content management requirements,
search requirements.
4. Requirements should be modelled directly (without using flexibility
mechanisms).

Expected results Elementary characteristics under testing: ontological sufficiency, ontological
adequacy, epistemological sufficiency, epistemological adequacy, expressibility,
reasoning power, composability, selective power, generalitive power.

Quality characteristic Requirements Should be
tested by 14:

Ontological sufficiency
Ontological adequacy

REQ-1.1, REQ-1.2, REQ-1.3, REQ-1.5, REQ-1.6, REQ-1.7,
REQ-1.9, REQ-1.10, REQ-1.11, REQ-1.12, REQ-1.13, REQ-
1.13.1, REQ-1.13.2, REQ-1.13.3, REQ-1.13.4, REQ-1.16, REQ-
1.16.1, REQ-1.16.2, REQ-1.18, REQ-2.1.1, REQ-2.1.2, REQ-
2.1.2.1, REQ-2.1.2.2, REQ-2.1.2.3, REQ-2.1.3, REQ-2.1.4, REQ-

54

14 Number of requirements that belong to the group Gξ of N(ξ) to test the characteristic ξ.

 172

Test identifier T-F-IAS-UML-01
2.1.4.2, REQ-2.1.4.3, REQ-2.2.1, REQ-2.2.2, REQ-2.2.2.1, REQ-
2.2.2.2, REQ-2.2.2.3, REQ-2.2.2.4, REQ-2.2.2.5, REQ-2.2.2.6,
REQ-2.2.3, REQ-2.2.4, REQ-2.2.5, REQ-2.2.5.1, REQ-2.2.5.2,
REQ-2.2.5.3, REQ-2.2.5.4, REQ-2.2.5.5, REQ-2.2.5.6, REQ-
2.2.5.7, REQ-2.2.5.8, REQ-2.2.5.9, REQ-2.2.6, REQ-2.2.6.1,
REQ-2.2.6.2, REQ-2.2.6.3, REQ-2.2.6.4, REQ-2.2.6.5

Epistemological sufficiency
Epistemological adequacy

REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.8, REQ-1.9.1, REQ-1.10.1,
REQ-1.11, REQ-2.1.2, REQ-2.1.3, REQ-2.1.4.1, REQ-2.2.2,
REQ-2.2.2.1, REQ-2.2.3, REQ-2.2.5.1, REQ-2.2.5.4

15

Expressibility REQ-1.4, REQ-1.12.1, REQ-1.13, REQ-1.13.4, REQ-1.14, REQ-
1.15, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.2.2.5, REQ-2.2.5, REQ-
2.2.5.6, REQ-2.2.5.8, REQ-2.2.5.9, REQ-2.2.6.2, REQ-2.2.6.3

15

Reasoning power REQ-1.3, REQ-1.4, REQ-1.12.1, REQ-1.15, REQ-2.1.1, REQ-
2.1.2.1, REQ-2.1.2.2, REQ-2.2.1, REQ-2.2.2.5, REQ-2.2.2.6,
REQ-2.2.5.8, REQ-2.2.5.9

12

Composability REQ-1.5, REQ-1.15, REQ-1.12.1, REQ-2.1.2, REQ-2.1.2.1, REQ-
2.1.2.2, REQ-2.1.2.3, REQ-2.1.3, REQ-2.2.2, REQ-2.2.2.5, REQ-
2.2.2.6, REQ-2.2.3

12

Selective power REQ-1.16.2, REQ-1.17, REQ-2.1.2.1, REQ-2.1.2.3, REQ-2.2.2,
REQ-2.2.2.6

6

Generalitive power REQ-1.9, REQ-1.9.1, REQ-1.10, REQ-1.10.1, REQ-1.12, REQ-
1.12.1, REQ-1.13, REQ-1.13.1, REQ-1.13.2, REQ-1.13.3, REQ-
1.13.4, REQ-1.13.5, REQ-1.13.6, REQ-1.16, REQ-1.16.1, REQ-
1.16.2, REQ-1.17.1, REQ-2.1, REQ-2.1.2, REQ-2.1.2.1, REQ-
2.1.2.2, REQ-2.1.2.3, REQ-2.1.4, REQ-2.1.4.1, REQ-2.1.4.2,
REQ-2.1.4.3, REQ-2.2, REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.2.2,
REQ-2.2.2.3, REQ-2.2.2.4, REQ-2.2.2.5, REQ-2.2.2.6, REQ-
2.2.5, REQ-2.2.5.1, REQ-2.2.5.2, REQ-2.2.5.3, REQ-2.2.5.4,
REQ-2.2.5.5, REQ-2.2.5.6, REQ-2.2.5.7, REQ-2.2.5.8, REQ-
2.2.5.9, REQ-2.2.6, REQ-2.2.6.1, REQ-2.2.6.2, REQ-2.2.6.3,
REQ-2.2.6.4, REQ-2.2.6.5

50

Table 20. Description of UML evaluation test T-F-IAS-UML-02

Test identifier T-F-IAS-UML-02
Test execution conditions 1. Tested language: UML.

2. Tool to produce specifications: MagicDraw UML 10.0.
3. Requirements should be modelled by groups: content management requirements,
search requirements.
4. Requirements should be modelled using language flexibility mechanisms.

Expected results Elementary characteristics under testing: extensibility, adaptability, universality.
Quality characteristic Requirements Should be

tested by:
Extensibility REQ-1.10.1, REQ-1.12.1, REQ-1.13, REQ-1.13.1, REQ-1.13.5,

REQ-1.13.6, REQ-1.15, REQ-2.1.2, REQ-2.1.3, REQ-2.2.2, REQ-
2.2.3

11

Adaptability REQ-1.10.1, REQ-1.13.5, REQ-1.13.6, REQ-1.16.2, REQ-2.1.2,
REQ-2.1.2.3, REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-2.2.2.3,
REQ-2.2.2.4, REQ-2.2.2.5, REQ-2.2.2.6

13

Universality REQ-1.1, REQ-1.4, REQ-1.5, REQ-1.6, REQ-1.7, REQ-1.8, REQ-
1.9.1, REQ-1.10.1, REQ-1.11, REQ-1.14, REQ-1.15, REQ-1.16,
REQ-1.16.1, REQ-1.17, REQ-1.18, REQ-2.1.1, REQ-2.1.2, REQ-
2.1.4.3, REQ-2.2.1, REQ-2.2.5, REQ-2.2.5.1, REQ-2.2.5.2, REQ-
2.2.6

23

Descriptions of UML evaluation tests, which have been developed for collaboration and

workflow components of Web portal, are presented in Table 21, Table 22:

 173

Table 21. Description of UML evaluation test T-F-CS-UML-01

Test identifier T-F-CS-UML-01
Test execution conditions 1. Tested language: UML.

2. Tool to produce specifications: MagicDraw UML 10.0.
3. Requirements should be modelled by groups: collaboration requirements, workflow
requirements.
4. Requirements should be modelled directly (without using flexibility mechanisms).

Expected results Elementary characteristics under testing: ontological sufficiency, ontological
adequacy, epistemological sufficiency, epistemological adequacy, expressibility,
reasoning power, composability, selective power, generalitive power.

Quality characteristic Requirements Should be
tested by:

Ontological sufficiency
Ontological adequacy

REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-
3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.2, REQ-
3.1.1.1.9.3, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5, REQ-3.1.1.1.9.6,
REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-3.1.1.1.10.1, REQ-
3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-3.1.1.1.10.4, REQ-3.1.1.1.11,
REQ-3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13, REQ-
3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2, REQ-3.1.2.1, REQ-
3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.1, REQ-
3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5, REQ-
3.1.2.1.5.1, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-3.1.2.1.6.2, REQ-
3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-3.1.2.1.8.1, REQ-
3.1.2.1.8.2, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.2, REQ-3.2.1.3,
REQ-3.2.1.4, REQ-3.2.1.5, REQ-3.2.1.6, REQ-3.2.1.7, REQ-
3.2.1.7.1, REQ-4.1, REQ-4.1.1, REQ-4.1.2, REQ-4.2, REQ-4.2.1,
REQ-4.2.1.1, REQ-4.3, REQ-4.4, REQ-4.5, REQ-4.5.1, REQ-4.5.2,
REQ-4.5.3, REQ-4.5.3.1, REQ-4.6, REQ-4.6.1, REQ-4.6.1.1, REQ-
4.6.3, REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-4.7.1.2, REQ-4.7.2,
REQ-4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-4.8.3.1, REQ-
4.9, REQ-4.9.1

85

Epistemological
sufficiency
Epistemological adequacy

REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-
3.1.1.1.6, REQ-3.1.2.1, REQ-3.1.2.1.3, REQ-3.1.2.1.6, REQ-
3.1.2.1.8, REQ-3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1.1, REQ-4.3,
REQ-4.4.1, REQ-4.6.2, REQ-4.6.3

16

Expressibility REQ-3.1.1.1.10.4, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13.2, REQ-
3.1.2.1.3, REQ-3.1.2.1.4, REQ-3.1.2.1.6, REQ-3.1.2.1.8.2, REQ-
3.2.1.5, REQ-4.2, REQ-4.3, REQ-4.4.1, REQ-4.6.3, REQ-4.7.1,
REQ-4.7.2, REQ-4.8.3.1

15

Reasoning power REQ-3.1.1, REQ-3.1.2, REQ-3.2.1, REQ-3.1.1.1.9.6, REQ-
3.1.1.1.9.7, REQ-3.1.1.1.10.3, REQ-3.1.2.1.3.2, REQ-3.1.2.1.5,
REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-4.1.1, REQ-4.7.1, REQ-4.3,
REQ-4.6.1

14

Composability REQ-3.1.1.1.2, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5,
REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-
3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1,
REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.1, REQ-3.1.2.1.3.2,
REQ-3.1.2.1.5, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.2.1.1, REQ-
3.2.1.2, REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.7, REQ-3.2.1.7.1,
REQ-4.2.1, REQ-4.3, REQ-4.7.1.1, REQ-4.7.1.2, REQ-4.5, REQ-
4.5.3.1, REQ-4.6, REQ-4.6.1, REQ-4.6.1.1

33

Selective power REQ-3.1.1.1.8, REQ-3.1.2.1.5.2, REQ-3.1.2.1.3, REQ-3.2.1.1, REQ-
4.3, REQ-4.4.1, REQ-4.6.1, REQ-4.6.3, REQ-4.7.2, REQ-4.8.1,
REQ-4.8.3.1, REQ-4.9

12

Generalitive power REQ-3.1, REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2,
REQ-3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.8, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-
3.1.1.1.9.2, REQ-3.1.1.1.9.3, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5,
REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-
3.1.1.1.10.1, REQ-3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-

87

 174

Test identifier T-F-CS-UML-01
3.1.1.1.10.4, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13,
REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2, REQ-3.1.2.1,
REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.1,
REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5,
REQ-3.1.2.1.5.1, REQ-3.1.2.1.5.2, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1,
REQ-3.1.2.1.6.2, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8,
REQ-3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2, REQ-3.2.1, REQ-
3.2.1.1, REQ-3.2.1.2, REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5,
REQ-3.2.1.6, REQ-3.2.1.7, REQ-3.2.1.7.1, REQ-4.1, REQ-4.1.1,
REQ-4.1.2, REQ-4.2, REQ-4.2.1, REQ-4.2.1.1, REQ-4.4, REQ-
4.4.1, REQ-4.5, REQ-4.5.1, REQ-4.5.2, REQ-4.5.3, REQ-4.5.3.1,
REQ-4.6, REQ-4.6.1, REQ-4.6.1.1. REQ-4.6.2, REQ-4.7, REQ-
4.7.1, REQ-4.7.1.1, REQ-4.7.1.2, REQ-4.8, REQ-4.8.1, REQ-4.8.2,
REQ-4.8.3, REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

Table 22. Description of UML evaluation test T-F-CS-UML-02

Test identifier T-F-CS-UML-02
Test execution conditions 1. Tested language: UML.

2. Tool to produce specifications: MagicDraw UML 10.0.
3. Requirements should be modelled by groups: collaboration requirements, workflow
requirements.
4. Requirements should be modelled using language flexibility mechanisms.

Expected results Elementary characteristics under testing: extensibility, adaptability, universality.
Quality characteristic Requirements Should be

tested by:
Extensibility REQ-3.1.1.1.9.2, REQ-3.1.1.1.9.3, REQ-3.1.1.1.9.6, REQ-

3.1.1.1.10.1, REQ-3.1.1.1.10.3, REQ-3.1.1.1.13.2, REQ-3.1.1.1.8,
REQ-3.1.1.1.9.3, REQ-3.1.1.1.10.1, REQ-3.1.2.1.5.2, REQ-4.2,
REQ-4.2.1, REQ-4.2.1.1, REQ-4.7.1.2, REQ-4.8.1

13

Adaptability REQ-3.1.1.1, REQ-3.1.1.2, REQ-3.1.1.3, REQ-3.1.1.1.9.3, REQ-
3.1.1.1.10.1, REQ-3.1.2.1, REQ-3.1.2.2, REQ-4.8.1, REQ-4.8.2,
REQ-4.8.3.1

10

Universality REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-3.1.1.1.3, REQ-
3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-3.1.2.1, REQ-
3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.6, REQ-3.1.2.1.6.2, REQ-
3.1.2.1.8, REQ-3.2.1.1, REQ-3.2.1.3, REQ-3.2.1.6, REQ-4.2, REQ-
4.2.1, REQ-4.3, REQ-4.4, REQ-4.4.1, REQ-4.6.3

22

Descriptions of UML evaluation tests have been combined into description of suite of quality

evaluation tests TS-F-UML-MagicDraw (Table 23). The number of requirements, which should

be used to test the characteristics of functionality, has been calculated summarising requirements

used for this aim in the tests of the suite:

Table 23. Description of suite of UML evaluation tests TS-F-UML-MagicDraw

Test suite identifier TS-F-UML-MagicDraw
Quality characteristic Tests Should be

tested by:
Ontological sufficiency T-F-IAS-UML-01, T-F-CS-UML-01 139
Ontological adequacy T-F-IAS-UML-01, T-F-CS-UML-01 139
Epistemological sufficiency T-F-IAS-UML-01, T-F-CS-UML-01 31
Epistemological adequacy T-F-IAS-UML-01, T-F-CS-UML-01 31
Expressibility T-F-IAS-UML-01, T-F-CS-UML-01 30
Reasoning power T-F-IAS-UML-01, T-F-CS-UML-01 26
Composability T-F-IAS-UML-01, T-F-CS-UML-01 45
Selective power T-F-IAS-UML-01, T-F-CS-UML-01 18

 175

Generalitive power T-F-IAS-UML-01, T-F-CS-UML-01 137
Extensibility T-F-IAS-UML-02, T-F-CS-UML-02 24
Adaptability T-F-IAS-UML-02, T-F-CS-UML-02 23
Universality T-F-IAS-UML-02, T-F-CS-UML-02 45

5.4.6.2. Description of Z Evaluation Tests

Descriptions of Z evaluation tests, which have been developed for content management and

search components of Web portal, are presented in Table 24, Table 25:

Table 24. Description of Z evaluation test T-F-IAS-Z-01

Test identifier T-F-IAS-Z-01
Test execution conditions 1. Tested language: Z.

2. Tool to produce specifications: Z/EVES 2.1.
3. Requirements should be modelled by groups: content management requirements,
search requirements.
4. Requirements should be modelled directly (without using flexibility mechanisms).

Expected results Elementary characteristics under testing: ontological sufficiency, ontological
adequacy, epistemological sufficiency, epistemological adequacy, expressibility,
reasoning power, composability, selective power, generalitive power.

Quality characteristic Requirements Should be
tested by:

Ontological sufficiency
Ontological adequacy

REQ-1.1, REQ-1.2, REQ-1.5, REQ-1.6, REQ-1.7, REQ-1.12, REQ-
1.13, REQ-1.13.1, REQ-1.13.2, REQ-1.13.3, REQ-1.13.4, REQ-
1.14, REQ-1.15, REQ-1.16, REQ-1.16.1, REQ-16.2, REQ-1.17,
REQ-1.18, REQ-2.1.2, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.1.2.3,
REQ-2.1.3, REQ-2.1.4, REQ-2.1.4.1, REQ-2.1.4.2, REQ-2.1.4.3,
REQ-2.2.1, REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-2.2.2.3,
REQ-2.2.2.4, REQ-2.2.2.5, REQ-2.2.2.6, REQ-2.2.3, REQ-2.2.4,
REQ-2.2.5, REQ-2.2.5.1, REQ-2.2.5.2, REQ-2.2.5.3, REQ-2.2.5.4,
REQ-2.2.5.5, REQ-2.2.5.6, REQ-2.2.5.7, REQ-2.2.5.8, REQ-2.2.5.9,
REQ-2.2.6, REQ-2.2.6.1, REQ-2.2.6.2, REQ-2.2.6.3, REQ-2.2.6.4,
REQ-2.2.6.5

54

Epistemological
sufficiency
Epistemological adequacy

REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.11, REQ-2.1.2, REQ-2.1.3,
REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.3, REQ-2.2.5.1, REQ-2.2.5.4

11

Expressibility REQ-1.1, REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.5, REQ-1.6, REQ-
1.7, REQ-1.8, REQ-1.9.1, REQ-1.10.1, REQ-1.11, REQ-1.12, REQ-
1.12.1, REQ-1.13, REQ-1.13.2, REQ-1.13.3, REQ-1.13.4, REQ-
1.13.5, REQ-1.13.6, REQ-1.14, REQ-1.15, REQ-1.16, REQ-1.16.1,
REQ-16.2, REQ-1.17, REQ-1.17.1, REQ-1.18, REQ-2.1.1, REQ-
2.1.2, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.1.2.3, REQ-2.1.3, REQ-
2.1.4, REQ-2.1.4.1, REQ-2.1.4.2, REQ-2.1.4.3, REQ-2.2.1, REQ-
2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-2.2.2.3, REQ-2.2.2.4, REQ-
2.2.2.5, REQ-2.2.2.6, REQ-2.2.3, REQ-2.2.4, REQ-2.2.5, REQ-
2.2.5.1, REQ-2.2.5.2, REQ-2.2.5.3, REQ-2.2.5.4, REQ-2.2.5.5,
REQ-2.2.5.6, REQ-2.2.5.7, REQ-2.2.5.8, REQ-2.2.5.9, REQ-2.2.6,
REQ-2.2.6.1, REQ-2.2.6.2, REQ-2.2.6.3, REQ-2.2.6.4, REQ-2.2.6.5

63

Reasoning power REQ-1.1, REQ-1.3, REQ-1.4, REQ-1.5, REQ-1.6, REQ-1.7, REQ-
1.12.1, REQ-1.14, REQ-1.15, REQ-1.16, REQ-1.16.1, REQ-1.17,
REQ-1.18, REQ-2.1.1, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.1.4,
REQ-2.1.4.2, REQ-2.2.1, REQ-2.2.2.5, REQ-2.2.2.6, REQ-2.2.5,
REQ-2.2.5.8, REQ-2.2.5.9, REQ-2.2.6

25

Composability REQ-1.1, REQ-1.5, REQ-1.6, REQ-1.7, REQ-1.14, REQ-1.15,
REQ-1.16, REQ-1.16.1, REQ-1.17, REQ-1.18, REQ-2.1.1, REQ-
2.2.1, REQ-2.2.5, REQ-2.2.6

14

Selective power REQ-1.16.2, REQ-1.17, REQ-1.17.1, REQ-2.1.2, REQ-2.1.2.1,
REQ-2.1.2.2, REQ-2.1.2.3, REQ-2.2.2, REQ-2.2.2.6, REQ-2.2.5.3,
REQ-2.2.6.1

11

Generalitive power REQ-1.9, REQ-1.9.1, REQ-1.10, REQ-1.10.1, REQ-1.12, REQ- 48

 176

Test identifier T-F-IAS-Z-01
1.12.1, REQ-1.13, REQ-1.13.1, REQ-1.13.2, REQ-1.13.3, REQ-
1.13.4, REQ-1.13.5, REQ-1.13.6, REQ-1.16, REQ-1.16.1, REQ-
1.16.2, REQ-1.17.1, REQ-2.1.2, REQ-2.1.2.1, REQ-2.1.2.2, REQ-
2.1.2.3, REQ-2.1.4, REQ-2.1.4.1, REQ-2.1.4.2, REQ-2.1.4.3, REQ-
2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-2.2.2.3, REQ-2.2.2.4, REQ-
2.2.2.5, REQ-2.2.2.6, REQ-2.2.5, REQ-2.2.5.1, REQ-2.2.5.2, REQ-
2.2.5.3, REQ-2.2.5.4, REQ-2.2.5.5, REQ-2.2.5.6, REQ-2.2.5.7,
REQ-2.2.5.8, REQ-2.2.5.9, REQ-2.2.6, REQ-2.2.6.1, REQ-2.2.6.2,
REQ-2.2.6.3, REQ-2.2.6.4, REQ-2.2.6.5

Table 25. Description of Z evaluation test T-F-IAS-Z-02

Test identifier T-F-IAS-Z-02
Test execution conditions 1. Tested language: Z.

2. Tool to produce specifications: Z/EVES 2.1.
3. Requirements should be modelled by groups: content management requirements,
search requirements.
4. Requirements should be modelled using language flexibility mechanisms.

Expected results Elementary characteristics under testing: extensibility, adaptability, universality.
Quality characteristic Requirements Should be

tested by:
Extensibility REQ-1.8, REQ-1.9.1, REQ-1.10.1, REQ-1.12.1, REQ-1.13, REQ-

1.13.1, REQ-1.13.5, REQ-1.13.6
8

Adaptability REQ-1.16.2, REQ-2.1.2, REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.2.5,
REQ-2.2.2.6

6

Universality REQ-1.1, REQ-1.5, REQ-1.6, REQ-1.7, REQ-1.14, REQ-1.15,
REQ-1.16, REQ-1.16.1, REQ-1.17, REQ-1.18, REQ-2.1.1, REQ-
2.2.1, REQ-2.2.5, REQ-2.2.6

14

Descriptions of Z evaluation tests, which have been developed for collaboration and

workflow components of Web portal, are presented in Table 26, Table 27:

Table 26. Description of Z evaluation test T-F-CS-Z-01

Test identifier T-F-CS-Z-01
Test execution conditions 1. Tested language: Z.

2. Tool to produce specifications: Z/EVES 2.1.
3. Requirements should be modelled by groups: collaboration requirements, workflow
requirements.
4. Requirements should be modelled directly (without using flexibility mechanisms).

Expected results Elementary characteristics under testing: ontological sufficiency, ontological
adequacy, epistemological sufficiency, epistemological adequacy, expressibility,
reasoning power, composability, selective power, generalitive power.

Quality characteristic Requirements Should be
tested by:

Ontological sufficiency
Ontological adequacy

REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-
3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.2, REQ-
3.1.1.1.9.3, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5, REQ-3.1.1.1.9.6,
REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-3.1.1.1.10.1, REQ-
3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-3.1.1.1.10.4, REQ-3.1.1.1.11,
REQ-3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13, REQ-
3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2, REQ-3.1.2.1, REQ-
3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.1, REQ-
3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5, REQ-
3.1.2.1.5.1, REQ-3.1.2.1.5.2, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-
3.1.2.1.6.2, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-
3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.2,
REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5, REQ-3.2.1.6, REQ-3.2.1.7,

87

 177

Test identifier T-F-CS-Z-01
REQ-3.2.1.7.1, REQ-4.1, REQ-4.1.1, REQ-4.1.2, REQ-4.2, REQ-
4.2.1, REQ-4.2.1.1, REQ-4.3, REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-
4.5.1, REQ-4.5.2, REQ-4.5.3, REQ-4.5.3.1, REQ-4.6, REQ-4.6.1,
REQ-4.6.1.1, REQ-4.6.3, REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-
4.7.1.2, REQ-4.7.2, REQ-4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3,
REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

Epistemological
sufficiency
Epistemological adequacy

REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-
3.1.2.1.3.3, REQ-3.1.2.1.6, REQ-3.1.2.1.6.2, REQ-3.1.2.1.8, REQ-
3.2.1.5, REQ-3.2.1.6, REQ-4.2, REQ-4.3, REQ-4.5.2, REQ-4.5.3

14

Expressibility REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-
3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.8, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-
3.1.1.1.9.2, REQ-3.1.1.1.9.3, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5,
REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-
3.1.1.1.10.1, REQ-3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-
3.1.1.1.10.4, REQ-3.1.1.1.11, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1,
REQ-3.1.1.1.13, REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2,
REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-
3.1.2.1.3.1, REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-
3.1.2.1.5, REQ-3.1.2.1.5.1, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-
3.1.2.1.6.2, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-
3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.2,
REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5, REQ-3.2.1.6, REQ-3.2.1.7,
REQ-3.2.1.7.1, REQ-4.1, REQ-4.1.1, REQ-4.1.2, REQ-4.2, REQ-
4.3, REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-4.5.2, REQ-4.5.3, REQ-
4.6, REQ-4.6.1, REQ-4.6.1.1, REQ-4.6.3, REQ-4.7, REQ-4.7.1,
REQ-4.7.1.1, REQ-4.7.1.2, REQ-4.7.2, REQ-4.8, REQ-4.8.1, REQ-
4.8.2, REQ-4.8.3, REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

83

Reasoning power REQ-3.1.1, REQ-3.1.2, REQ-3.1.1.1.2, REQ-3.1.1.1.4, REQ-
3.1.1.1.5, REQ-3.1.1.1.6, REQ-3.1.1.1.9, REQ-3.1.1.1.9.6, REQ-
3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-3.1.1.1.10.3, REQ-3.1.1.1.11,
REQ-3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13, REQ-3.1.2,
REQ-3.1.2.1.2, REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4,
REQ-3.1.2.1.5, REQ-3.1.2.1.5.1, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8,
REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.5, REQ-4.1, REQ-4.1.2, REQ-
4.3, REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-4.5.1, REQ-4.5.2, REQ-
4.5.3, REQ-4.6.1, REQ-4.6.3, REQ-4.7, REQ-4.7.1, REQ-4.7.1.1,
REQ-4.7.1.2, REQ-4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-
4.8.3.1, REQ-4.9, REQ-4.9.1

49

Composability REQ-3.1.1, REQ-3.1.1.1.2, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-
3.1.1.1.6, REQ-3.1.1.1.9, REQ-3.1.1.1.10, REQ-3.1.1.1.11, REQ-
3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13, REQ-3.1.2, REQ-
3.1.2.1.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5.1, REQ-
3.1.2.1.8, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.5, REQ-4.1, REQ-
4.1.2, REQ-4.3, REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-4.5.1, REQ-
4.5.2, REQ-4.5.3, REQ-4.6.1, REQ-4.6.3, REQ-4.7, REQ-4.8, REQ-
4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

39

Selective power REQ-3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.8, REQ-3.1.1.1.10, REQ-3.1.1.1.10.4, REQ-
3.1.1.1.11, REQ-3.1.1.1.13, REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2,
REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.1, REQ-3.1.2.1.3.3,
REQ-3.1.2.1.4, REQ-3.2.1.2, REQ-3.2.1.1, REQ-3.2.1.2, REQ-
3.2.1.4, REQ-3.2.1.5, REQ-4.3, REQ-4.4, REQ-4.4.1, REQ-4.6,
REQ-4.6.1, REQ-4.7, REQ-4.7.2, REQ-4.8, REQ-4.8.1, REQ-4.8.2,
REQ-4.8.3.1, REQ-4.9

34

Generalitive power REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-
3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.8, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-
3.1.1.1.9.2, REQ-3.1.1.1.9.3, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5,
REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-
3.1.1.1.10.1, REQ-3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-

84

 178

Test identifier T-F-CS-Z-01
3.1.1.1.10.4, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13,
REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2, REQ-3.1.2.1,
REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.1,
REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5,
REQ-3.1.2.1.5.1, REQ-3.1.2.1.5.2, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1,
REQ-3.1.2.1.6.2, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8,
REQ-3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1, REQ-3.2.1.1, REQ-
3.2.1.2, REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5, REQ-3.2.1.6,
REQ-3.2.1.7, REQ-3.2.1.7.1, REQ-4.1.1, REQ-4.1.2, REQ-4.2,
REQ-4.2.1, REQ-4.2.1.1, REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-
4.5.1, REQ-4.5.2, REQ-4.5.3, REQ-4.5.3.1, REQ-4.6, REQ-4.6.1,
REQ-4.6.1.1. REQ-4.6.2, REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-
4.7.1.2, REQ-4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-4.8.3.1,
REQ-4.9, REQ-4.9.1

Table 27. Description of Z evaluation test T-F-CS-Z-02

Test identifier T-F-CS-Z-02
Test execution conditions 1. Tested language: Z.

2. Tool to produce specifications: Z/EVES 2.1.
3. Requirements should be modelled by groups: collaboration requirements, workflow
requirements.
4. Requirements should be modelled using language flexibility mechanisms.

Expected results Elementary characteristics under testing: extensibility, adaptability, universality.
Quality characteristic Requirements Should be

tested by:
Extensibility REQ-3.1.1.1.9, REQ-3.1.1.1.9.3, REQ-3.1.1.1.10, REQ-3.1.1.1.10.1,

REQ-3.1.2.1.3, REQ-3.1.2.1.8, REQ-3.2.1.1, REQ-4.2, REQ-4.2.1,
REQ-4.2.1.1

10

Adaptability REQ-3.1.1.1, REQ-3.1.1.2, REQ-3.1.1.3, REQ-3.1.2.1, REQ-3.1.2.2,
REQ-4.8.1, REQ-4.8.2, REQ-4.8.3.1

8

Universality REQ-3.1.1, REQ-3.1.1.1.2, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-
3.1.1.1.6, REQ-3.1.1.1.9, REQ-3.1.1.1.10, REQ-3.1.1.1.11, REQ-
3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13, REQ-3.1.2, REQ-
3.1.2.1.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5.1, REQ-
3.1.2.1.8, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.5, REQ-4.1, REQ-
4.1.2, REQ-4.3, REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-4.5.1, REQ-
4.5.2, REQ-4.5.3, REQ-4.6.1, REQ-4.6.3, REQ-4.7, REQ-4.8, REQ-
4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

39

Descriptions of Z evaluation tests have been combined into description of suite of quality

evaluation tests TS-F-Z-EVES (Table 28). The number of requirements, which should be used to

test the characteristics of functionality, has been calculated summarising requirements used for

this aim in the tests of the suite:

Table 28. Description of suite of Z evaluation tests TS-F-Z-ZEVES

Test suite identifier TS-F-Z-ZEVES
Quality characteristic Tests Should be

tested by:
Ontological sufficiency T-F-IAS-Z-01, T-F-CS-Z-01 141
Ontological adequacy T-F-IAS-Z-01, T-F-CS-Z-01 141
Epistemological sufficiency T-F-IAS-Z-01, T-F-CS-Z-01 25
Epistemological adequacy T-F-IAS-Z-01, T-F-CS-Z-01 25
Expressibility T-F-IAS-Z-01, T-F-CS-Z-01 146
Reasoning power T-F-IAS-Z-01, T-F-CS-Z-01 74
Composability T-F-IAS-Z-01, T-F-CS-Z-01 53

 179

Selective power T-F-IAS-Z-01, T-F-CS-Z-01 45
Generalitive power T-F-IAS-Z-01, T-F-CS-Z-01 132
Extensibility T-F-IAS-Z-02, T-F-CS-Z-02 18
Adaptability T-F-IAS-Z-02, T-F-CS-Z-02 14
Universality T-F-IAS-Z-02, T-F-CS-Z-02 53

5.4.7. Testing

This section provides the results of UML and Z testing. In every test for every sub-

characteristic of functionality successfully specified requirements are provided.

5.4.7.1. UML Testing

The results of UML testing by tests T-F-IAS-UML-01, T-F-IAS-UML-02, T-F-CS-UML-01,

T-F-CS-UML-02 are presented in Table 29, Table 30, Table 31, Table 32:

Table 29. UML evaluation test T-F-IAS-UML-01

Test identifier T-F-IAS-UML-01
Test execution conditions 1. Tested language: UML.

2. Tool to produce specifications: MagicDraw UML 10.0.
3. Requirements should be modelled by groups: content management requirements,
search requirements.
4. Requirements should be modelled directly (without using flexibility
mechanisms).

Expected results Elementary characteristics under testing: ontological sufficiency, ontological
adequacy, epistemological sufficiency, epistemological adequacy, expressibility,
reasoning power, composability, selective power, generalitive power.

Quality characteristic Specified requirements Tested by 15:
Ontological sufficiency REQ-1.1, REQ-1.2, REQ-1.3, REQ-1.5, REQ-1.6, REQ-1.7,

REQ-1.9, REQ-1.10, REQ-1.11, REQ-1.12, REQ-1.13, REQ-
1.13.2, REQ-1.13.3, REQ-1.13.4, REQ-1.16, REQ-1.16.1, REQ-
1.16.2, REQ-1.18, REQ-2.1.1, REQ-2.1.2, REQ-2.1.2.1, REQ-
2.1.2.2, REQ-2.1.2.3, REQ-2.1.3, REQ-2.1.4, REQ-2.1.4.2, REQ-
2.1.4.3, REQ-2.2.1, REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-
2.2.2.3, REQ-2.2.2.4, REQ-2.2.2.5, REQ-2.2.2.6, REQ-2.2.3,
REQ-2.2.4, REQ-2.2.5, REQ-2.2.5.1, REQ-2.2.5.2, REQ-2.2.5.3,
REQ-2.2.5.4, REQ-2.2.5.5, REQ-2.2.5.6, REQ-2.2.5.7, REQ-
2.2.5.8, REQ-2.2.5.9, REQ-2.2.6, REQ-2.2.6.1, REQ-2.2.6.2,
REQ-2.2.6.3, REQ-2.2.6.4, REQ-2.2.6.5

53

Ontological adequacy REQ-1.1, REQ-1.2, REQ-1.3, REQ-1.5, REQ-1.7, REQ-1.9,
REQ-1.10, REQ-1.11, REQ-1.12, REQ-1.13, REQ-1.13.2, REQ-
1.13.3, REQ-1.13.4, REQ-1.16, REQ-1.16.1, REQ-1.16.2, REQ-
1.18, REQ-2.1.2, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.1.2.3, REQ-
2.1.3, REQ-2.1.4, REQ-2.1.4.2, REQ-2.1.4.3, REQ-2.2.2, REQ-
2.2.2.1, REQ-2.2.2.2, REQ-2.2.2.3, REQ-2.2.2.4, REQ-2.2.2.5,
REQ-2.2.2.6, REQ-2.2.3, REQ-2.2.4, REQ-2.2.5.1, REQ-2.2.5.2,
REQ-2.2.5.3, REQ-2.2.5.4, REQ-2.2.5.5, REQ-2.2.5.6, REQ-
2.2.5.7, REQ-2.2.5.8, REQ-2.2.5.9, REQ-2.2.6.1, REQ-2.2.6.2,
REQ-2.2.6.3, REQ-2.2.6.4, REQ-2.2.6.5

49

Epistemological sufficiency REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.8, REQ-1.9.1, REQ-1.10.1,
REQ-1.11, REQ-2.1.3, REQ-2.1.4.1, REQ-2.2.2, REQ-2.2.2.1,

14

15 Number of to the group Gξ of N(ξ) belonging requirements, which were tested by the characteristic ξ. In other

words, it is the number of successfully specified requirements. It shows how many requirements from the

requirements that belong to the group Gξ (see 5.4.6) were specified using the particular specification language

(UML or Z).

 180

Test identifier T-F-IAS-UML-01
REQ-2.2.3, REQ-2.2.5.1, REQ-2.2.5.4

Epistemological adequacy REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.8, REQ-1.9.1, REQ-1.10.1,
REQ-1.11, REQ-2.1.3, REQ-2.1.4.1, REQ-2.2.2, REQ-2.2.2.1,
REQ-2.2.3, REQ-2.2.5.1, REQ-2.2.5.4

14

Expressibility REQ-1.4, REQ-1.13, REQ-1.14, REQ-1.15, REQ-2.1.2.2, REQ-
2.2.2.5, REQ-2.2.5, REQ-2.2.5.6, REQ-2.2.5.8, REQ-2.2.5.9,
REQ-2.2.6.2, REQ-2.2.6.3

12

Reasoning power REQ-1.3, REQ-1.4, REQ-1.15, REQ-2.1.2.1, REQ-2.1.2.2, REQ-
2.2.1, REQ-2.2.2.6, REQ-2.2.5.8, REQ-2.2.5.9

9

Composability REQ-1.5, REQ-1.15, REQ-2.1.2, REQ-2.1.2.1, REQ-2.1.2.2,
REQ-2.1.2.3, REQ-2.1.3, REQ-2.2.2, REQ-2.2.2.5, REQ-2.2.2.6,
REQ-2.2.3

11

Selective power REQ-1.16.2, REQ-1.17, REQ-2.1.2.1 3
Generalitive power REQ-1.9, REQ-1.9.1, REQ-1.10, REQ-1.10.1, REQ-1.12, REQ-

1.12.1, REQ-1.13, REQ-1.13.2, REQ-1.13.3, REQ-1.13.4, REQ-
1.13.5, REQ-1.13.6, REQ-1.16, REQ-1.16.1, REQ-1.16.2, REQ-
1.17.1, REQ-2.1, REQ-2.1.2, REQ-2.1.2.1, REQ-2.1.2.2, REQ-
2.1.2.3, REQ-2.1.4, REQ-2.1.4.1, REQ-2.1.4.3, REQ-2.2, REQ-
2.2.2, REQ-2.2.2.1, REQ-2.2.2.5, REQ-2.2.2.6, REQ-2.2.5, REQ-
2.2.5.1, REQ-2.2.5.2, REQ-2.2.5.3, REQ-2.2.5.4, REQ-2.2.5.5,
REQ-2.2.5.6, REQ-2.2.5.7, REQ-2.2.5.8, REQ-2.2.5.9, REQ-
2.2.6, REQ-2.2.6.1, REQ-2.2.6.2, REQ-2.2.6.3, REQ-2.2.6.4,
REQ-2.2.6.5

45

Table 30. UML evaluation test T-F-IAS-UML-02

Test identifier T-F-IAS-UML-02
Test execution conditions 1. Tested language: UML.

2. Tool to produce specifications: MagicDraw UML 10.0.
3. Requirements should be modelled by groups: content management requirements,
search requirements.
4. Requirements should be modelled using language flexibility mechanisms.

Expected results Elementary characteristics under testing: extensibility, adaptability, universality.
Quality characteristic Specified requirements Tested by:
Extensibility REQ-1.10.1, REQ-1.13, REQ-1.13.5, REQ-1.13.6, REQ-1.15, REQ-

2.1.2, REQ-2.1.3, REQ-2.2.2, REQ-2.2.3
9

Adaptability REQ-1.10.1, REQ-1.13.5, REQ-1.13.6, REQ-1.16.2, REQ-2.1.2,
REQ-2.1.2.3, REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-2.2.2.6

10

Universality REQ-1.1, REQ-1.4, REQ-1.5, REQ-1.6, REQ-1.7, REQ-1.8, REQ-
1.9.1, REQ-1.10.1, REQ-1.11, REQ-1.14, REQ-1.15, REQ-1.16,
REQ-1.16.1, REQ-1.17, REQ-1.18, REQ-2.1.2, REQ-2.1.4.3, REQ-
2.2.1, REQ-2.2.5, REQ-2.2.5.1, REQ-2.2.5.2, REQ-2.2.6

22

Table 31. UML evaluation test T-F-CS-UML-01

Test identifier T-F-CS-UML-01
Test execution conditions 1. Tested language: UML.

2. Tool to produce specifications: MagicDraw UML 10.0.
3. Requirements should be modelled by groups: collaboration requirements, workflow
requirements.
4. Requirements should be modelled directly (without using flexibility mechanisms).

Expected results Elementary characteristics under testing: ontological sufficiency, ontological
adequacy, epistemological sufficiency, epistemological adequacy, expressibility,
reasoning power, composability, selective power, generalitive power.

Quality characteristic Specified requirements Tested by:
Ontological sufficiency REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-

3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.2, REQ-

82

 181

Test identifier T-F-CS-UML-01
3.1.1.1.9.4, REQ-3.1.1.1.9.5, REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7,
REQ-3.1.1.1.10, REQ-3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-
3.1.1.1.10.4, REQ-3.1.1.1.11, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1,
REQ-3.1.1.1.13, REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2,
REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-
3.1.2.1.3.1, REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-
3.1.2.1.5, REQ-3.1.2.1.5.1, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-
3.1.2.1.6.2, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-
3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.2,
REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5, REQ-3.2.1.6, REQ-3.2.1.7,
REQ-3.2.1.7.1, REQ-4.1, REQ-4.1.1, REQ-4.1.2, REQ-4.2, REQ-
4.2.1.1, REQ-4.3, REQ-4.4, REQ-4.5, REQ-4.5.1, REQ-4.5.2, REQ-
4.5.3, REQ-4.5.3.1, REQ-4.6, REQ-4.6.1, REQ-4.6.1.1, REQ-4.6.3,
REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-4.7.1.2, REQ-4.7.2, REQ-
4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-4.8.3.1, REQ-4.9,
REQ-4.9.1

Ontological adequacy REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-
3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.2, REQ-
3.1.1.1.9.4, REQ-3.1.1.1.9.5, REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7,
REQ-3.1.1.1.10, REQ-3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-
3.1.1.1.10.4, REQ-3.1.1.1.11, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1,
REQ-3.1.1.1.13, REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2,
REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-
3.1.2.1.3.1, REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-
3.1.2.1.5, REQ-3.1.2.1.5.1, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-
3.1.2.1.6.2, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-
3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.2,
REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5, REQ-3.2.1.6, REQ-3.2.1.7,
REQ-3.2.1.7.1, REQ-4.1, REQ-4.1.1, REQ-4.1.2, REQ-4.2, REQ-
4.4, REQ-4.5, REQ-4.5.1, REQ-4.5.2, REQ-4.5.3, REQ-4.5.3.1,
REQ-4.6.1.1, REQ-4.6.3, REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-
4.7.1.2, REQ-4.8, REQ-4.8.1, REQ-4.8.3, REQ-4.8.3.1, REQ-4.9,
REQ-4.9.1

77

Epistemological
sufficiency

REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-
3.1.1.1.6, REQ-3.1.2.1, REQ-3.1.2.1.3, REQ-3.1.2.1.6, REQ-
3.1.2.1.8, REQ-3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1.1, REQ-4.3,
REQ-4.4.1, REQ-4.6.2, REQ-4.6.3

16

Epistemological adequacy REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-
3.1.1.1.6, REQ-3.1.2.1, REQ-3.1.2.1.3, REQ-3.1.2.1.6, REQ-
3.1.2.1.8, REQ-3.1.2.1.8.1, REQ-3.2.1.1, REQ-4.3, REQ-4.4.1,
REQ-4.6.2, REQ-4.6.3

15

Expressibility REQ-3.1.1.1.10.4, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13.2, REQ-
3.1.2.1.3, REQ-3.1.2.1.4, REQ-3.1.2.1.6, REQ-3.2.1.5, REQ-4.2,
REQ-4.3, REQ-4.6.3, REQ-4.7.1, REQ-4.7.2, REQ-4.8.3.1

13

Reasoning power REQ-3.1.1, REQ-3.1.2, REQ-3.2.1, REQ-3.1.1.1.9.6, REQ-
3.1.1.1.9.7, REQ-3.1.1.1.10.3, REQ-3.1.2.1.3.2, REQ-3.1.2.1.7.1,
REQ-3.1.2.1.8, REQ-4.1.1, REQ-4.7.1, REQ-4.3, REQ-4.6.1

13

Composability REQ-3.1.1.1.2, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5,
REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-
3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1,
REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.2, REQ-3.1.2.1.7,
REQ-3.1.2.1.7.1, REQ-3.2.1.1, REQ-3.2.1.2, REQ-3.2.1.3, REQ-
3.2.1.4, REQ-3.2.1.7, REQ-3.2.1.7.1, REQ-4.3, REQ-4.5, REQ-
4.5.3.1, REQ-4.6, REQ-4.6.1, REQ-4.6.1.1

28

Selective power REQ-3.1.1.1.8, REQ-3.1.2.1.5.2, REQ-3.1.2.1.3, REQ-3.2.1.1, REQ-
4.3, REQ-4.4.1, REQ-4.6.1, REQ-4.6.3, REQ-4.7.2, REQ-4.8.1,
REQ-4.9

11

Generalitive power REQ-3.1, REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2,
REQ-3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.2, REQ-

83

 182

Test identifier T-F-CS-UML-01
3.1.1.1.9.4, REQ-3.1.1.1.9.5, REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7,
REQ-3.1.1.1.10, REQ-3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-
3.1.1.1.10.4, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13,
REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2, REQ-3.1.2.1,
REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.1,
REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5.1,
REQ-3.1.2.1.5.2, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-3.1.2.1.6.2,
REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-3.1.2.1.8.1,
REQ-3.1.2.1.8.2, REQ-3.2, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.2,
REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5, REQ-3.2.1.6, REQ-3.2.1.7,
REQ-3.2.1.7.1, REQ-4.1, REQ-4.1.1, REQ-4.1.2, REQ-4.2, REQ-
4.2.1, REQ-4.2.1.1, REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-4.5.1,
REQ-4.5.2, REQ-4.5.3, REQ-4.5.3.1, REQ-4.6, REQ-4.6.1, REQ-
4.6.1.1. REQ-4.6.2, REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-
4.7.1.2, REQ-4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-4.8.3.1,
REQ-4.9, REQ-4.9.1

Table 32. UML evaluation test T-F-CS-UML-02

Test identifier T-F-CS-UML-02
Test execution conditions 1. Tested language: UML.

2. Tool to produce specifications: MagicDraw UML 10.0.
3. Requirements should be modelled by groups: collaboration requirements, workflow
requirements.
4. Requirements should be modelled using language flexibility mechanisms.

Expected results Elementary characteristics under testing: extensibility, adaptability, universality.
Quality characteristic Specified requirements Tested by:
Extensibility REQ-3.1.1.1.9.2, REQ-3.1.1.1.9.3, REQ-3.1.1.1.9.6, REQ-

3.1.1.1.10.1, REQ-3.1.1.1.10.3, REQ-3.1.1.1.13.2, REQ-3.1.1.1.8,
REQ-3.1.1.1.9.3, REQ-3.1.1.1.10.1, REQ-3.1.2.1.5.2, REQ-4.2,
REQ-4.2.1, REQ-4.7.1.2, REQ-4.8.1

14

Adaptability REQ-3.1.1.1, REQ-3.1.1.2, REQ-3.1.1.3, REQ-3.1.1.1.9.3, REQ-
3.1.1.1.10.1, REQ-3.1.2.1, REQ-3.1.2.2, REQ-4.8.1, REQ-4.8.2,
REQ-4.8.3.1

10

Universality REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-3.1.2.1, REQ-
3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.6, REQ-3.1.2.1.6.2, REQ-
3.1.2.1.8, REQ-3.2.1.1, REQ-3.2.1.3, REQ-3.2.1.6, REQ-4.2, REQ-
4.2.1, REQ-4.3, REQ-4.4, REQ-4.4.1, REQ-4.6.3

18

UML evaluation tests have been combined into suite of quality evaluation tests TS-F-UML-

MagicDraw (Table 33), and for every sub-characteristic of functionality total number of

successfully specified requirements have been calculated by summarisation of the results of

UML testing:

Table 33. Suite of UML evaluation tests TS-F-UML-MagicDraw

Test suite identifier TS-F-UML-MagicDraw
Quality characteristic Tests Tested by:
Ontological sufficiency T-F-IAS-UML-01, T-F-CS-UML-01 135
Ontological adequacy T-F-IAS-UML-01, T-F-CS-UML-01 126
Epistemological sufficiency T-F-IAS-UML-01, T-F-CS-UML-01 30
Epistemological adequacy T-F-IAS-UML-01, T-F-CS-UML-01 29
Expressibility T-F-IAS-UML-01, T-F-CS-UML-01 25
Reasoning power T-F-IAS-UML-01, T-F-CS-UML-01 22
Composability T-F-IAS-UML-01, T-F-CS-UML-01 39
Selective power T-F-IAS-UML-01, T-F-CS-UML-01 14

 183

Generalitive power T-F-IAS-UML-01, T-F-CS-UML-01 128
Extensibility T-F-IAS-UML-02, T-F-CS-UML-02 23
Adaptability T-F-IAS-UML-02, T-F-CS-UML-02 20
Universality T-F-IAS-UML-02, T-F-CS-UML-02 40

5.4.7.2. Z Testing

The results of Z testing by tests T-F-IAS-Z-01, T-F-IAS-Z-02, T-F-CS-Z-01, T-F-CS-Z-02

are presented in Table 34, Table 35, Table 36, Table 37:

Table 34. Z evaluation test T-F-IAS-Z-01

Test identifier T-F-IAS-Z-01
Test execution conditions 1. Tested language: Z.

2. Tool to produce specifications: Z/EVES 2.1.
3. Requirements should be modelled by groups: content management requirements,
search requirements.
4. Requirements should be modelled directly (without using flexibility mechanisms).

Expected results Elementary characteristics under testing: ontological sufficiency, ontological
adequacy, epistemological sufficiency, epistemological adequacy, expressibility,
reasoning power, composability, selective power, generalitive power.

Quality characteristic Specified requirements Tested by:
Ontological sufficiency REQ-1.1, REQ-1.2, REQ-1.5, REQ-1.6, REQ-1.7, REQ-1.12, REQ-

1.13, REQ-1.13.2, REQ-1.13.3, REQ-1.13.4, REQ-1.14, REQ-1.15,
REQ-1.16, REQ-1.16.1, REQ-16.2, REQ-1.17, REQ-1.18, REQ-
2.1.2, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.1.2.3, REQ-2.1.3, REQ-
2.1.4, REQ-2.1.4.1, REQ-2.1.4.2, REQ-2.1.4.3, REQ-2.2.1, REQ-
2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-2.2.2.3, REQ-2.2.2.4, REQ-
2.2.2.5, REQ-2.2.2.6, REQ-2.2.3, REQ-2.2.4, REQ-2.2.5, REQ-
2.2.5.1, REQ-2.2.5.2, REQ-2.2.5.3, REQ-2.2.5.4, REQ-2.2.5.5,
REQ-2.2.5.6, REQ-2.2.5.7, REQ-2.2.5.8, REQ-2.2.5.9, REQ-2.2.6,
REQ-2.2.6.1, REQ-2.2.6.2, REQ-2.2.6.3, REQ-2.2.6.4, REQ-2.2.6.5

53

Ontological adequacy REQ-1.1, REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.5, REQ-1.6, REQ-
1.7, REQ-1.13, REQ-1.13.3, REQ-1.14, REQ-1.15, REQ-1.16,
REQ-1.16.1, REQ-1.17, REQ-1.18, REQ-2.1.2, REQ-2.1.2.3, REQ-
2.1.3, REQ-2.1.4.1, REQ-2.1.4.2, REQ-2.1.4.3, REQ-2.2.1, REQ-
2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-2.2.2.3, REQ-2.2.2.4, REQ-
2.2.2.5, REQ-2.2.2.6, REQ-2.2.5, REQ-2.2.5.1, REQ-2.2.5.4, REQ-
2.2.5.5, REQ-2.2.5.6, REQ-2.2.6, REQ-2.2.2.6.5

36

Epistemological
sufficiency

REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.11, REQ-2.1.2, REQ-2.2.2,
REQ-2.2.2.1, REQ-2.2.3, REQ-2.2.5.1, REQ-2.2.5.4

10

Epistemological adequacy REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.8, REQ-1.11, REQ-2.2.2,
REQ-2.2.2.1, REQ-2.2.5.1

8

Expressibility REQ-1.1, REQ-1.2, REQ-1.3, REQ-1.4, REQ-1.5, REQ-1.6, REQ-
1.7, REQ-1.8, REQ-1.9.1, REQ-1.10.1, REQ-1.11, REQ-1.12, REQ-
1.12.1, REQ-1.13.4, REQ-1.13.5, REQ-1.13.6, REQ-1.14, REQ-
1.15, REQ-1.16, REQ-1.16.1, REQ-16.2, REQ-1.17, REQ-1.17.1,
REQ-1.18, REQ-2.1.2, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.1.2.3,
REQ-2.1.3, REQ-2.1.4, REQ-2.1.4.1, REQ-2.1.4.2, REQ-2.1.4.3,
REQ-2.2.1, REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.2.6, REQ-2.2.3,
REQ-2.2.4, REQ-2.2.5, REQ-2.2.5.1, REQ-2.2.5.2, REQ-2.2.5.3,
REQ-2.2.5.4, REQ-2.2.5.5, REQ-2.2.5.6, REQ-2.2.5.7, REQ-2.2.5.8,
REQ-2.2.5.9, REQ-2.2.6, REQ-2.2.6.1, REQ-2.2.6.2, REQ-2.2.6.3,
REQ-2.2.6.4, REQ-2.2.6.5

55

Reasoning power REQ-1.1, REQ-1.3, REQ-1.4, REQ-1.5, REQ-1.6, REQ-1.7, REQ-
1.14, REQ-1.15, REQ-1.16, REQ-1.16.1, REQ-1.17, REQ-1.18,
REQ-2.1.1, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.1.4, REQ-2.2.1,
REQ-2.2.2.5, REQ-2.2.2.6, REQ-2.2.5, REQ-2.2.5.8, REQ-2.2.5.9,
REQ-2.2.6

23

Composability REQ-1.1, REQ-1.5, REQ-1.6, REQ-1.7, REQ-1.14, REQ-1.15, 13

 184

Test identifier T-F-IAS-Z-01
REQ-1.16, REQ-1.16.1, REQ-1.17, REQ-1.18, REQ-2.2.1, REQ-
2.2.5, REQ-2.2.6

Selective power REQ-1.16.2, REQ-1.17, REQ-1.17.1, REQ-2.1.2, REQ-2.1.2.1,
REQ-2.1.2.2, REQ-2.1.2.3, REQ-2.2.2, REQ-2.2.2.6, REQ-2.2.5.3,
REQ-2.2.6.1

11

Generalitive power REQ-1.9, REQ-1.9.1, REQ-1.10, REQ-1.10.1, REQ-1.12, REQ-
1.12.1, REQ-1.13, REQ-1.13.3, REQ-1.13.4, REQ-1.13.5, REQ-
1.13.6, REQ-1.16, REQ-1.16.1, REQ-1.16.2, REQ-1.17.1, REQ-
2.1.2, REQ-2.1.2.1, REQ-2.1.2.2, REQ-2.1.2.3, REQ-2.1.4, REQ-
2.1.4.1, REQ-2.1.4.3, REQ-2.2.2, REQ-2.2.2.1, REQ-2.2.2.2, REQ-
2.2.2.3, REQ-2.2.2.4, REQ-2.2.2.5, REQ-2.2.2.6, REQ-2.2.5, REQ-
2.2.5.1, REQ-2.2.5.2, REQ-2.2.5.3, REQ-2.2.5.4, REQ-2.2.5.5,
REQ-2.2.5.6, REQ-2.2.5.7, REQ-2.2.5.8, REQ-2.2.5.9, REQ-2.2.6,
REQ-2.2.6.1, REQ-2.2.6.2, REQ-2.2.6.3, REQ-2.2.6.4, REQ-2.2.6.5

45

Table 35. Z evaluation test T-F-IAS-Z-02

Test identifier T-F-IAS-Z-02
Test execution conditions 1. Tested language: Z.

2. Tool to produce specifications: Z/EVES 2.1.
3. Requirements should be modelled by groups: content management requirements,
search requirements.
4. Requirements should be modelled using language flexibility mechanisms.

Expected results Elementary characteristics under testing: extensibility, adaptability, universality.
Quality characteristic Specified requirements Tested by:
Extensibility REQ-1.8, REQ-1.9.1, REQ-1.10.1, REQ-1.12.1, REQ-1.13.5, REQ-

1.13.6
6

Adaptability REQ-2.2.2.1, REQ-2.2.2.5 2
Universality REQ-1.1, REQ-1.5, REQ-1.7, REQ-1.14, REQ-1.15, REQ-1.16,

REQ-1.16.1, REQ-1.17, REQ-1.18, REQ-2.2.1, REQ-2.2.5, REQ-
2.2.6

12

Table 36. Z evaluation test T-F-CS-Z-01

Test identifier T-F-CS-Z-01
Test execution conditions 1. Tested language: Z.

2. Tool to produce specifications: Z/EVES 2.1.
3. Requirements should be modelled by groups: collaboration requirements, workflow
requirements.
4. Requirements should be modelled directly (without using flexibility mechanisms).

Expected results Elementary characteristics under testing: ontological sufficiency, ontological
adequacy, epistemological sufficiency, epistemological adequacy, expressibility,
reasoning power, composability, selective power, generalitive power.

Quality characteristic Specified requirements Tested by:
Ontological sufficiency REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-

3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.2, REQ-
3.1.1.1.9.4, REQ-3.1.1.1.9.5, REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7,
REQ-3.1.1.1.10, REQ-3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-
3.1.1.1.10.4, REQ-3.1.1.1.11, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1,
REQ-3.1.1.1.13, REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2,
REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-
3.1.2.1.3.1, REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-
3.1.2.1.5, REQ-3.1.2.1.5.1, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-
3.1.2.1.6.2, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-
3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.2,
REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5, REQ-3.2.1.6, REQ-3.2.1.7,
REQ-3.2.1.7.1, REQ-4.1, REQ-4.1.1, REQ-4.1.2, REQ-4.2, REQ-

81

 185

Test identifier T-F-CS-Z-01
4.3, REQ-4.4, REQ-4.5, REQ-4.5.1, REQ-4.5.2, REQ-4.5.3, REQ-
4.5.3.1, REQ-4.6, REQ-4.6.1, REQ-4.6.1.1, REQ-4.6.3, REQ-4.7,
REQ-4.7.1, REQ-4.7.1.1, REQ-4.7.1.2, REQ-4.7.2, REQ-4.8, REQ-
4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

Ontological adequacy REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-
3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.5, REQ-3.1.1.1.10, REQ-
3.1.1.1.10.2, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13.1,
REQ-3.1.1.1.13.2, REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-3.1.2.1.2,
REQ-3.1.2.1.3, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5,
REQ-3.1.2.1.5.1, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-3.1.2.1.6.2,
REQ-3.1.2.1.8, REQ-3.1.2.1.8.1, REQ-3.2.1.3, REQ-3.2.1.4, REQ-
3.2.1.5, REQ-3.2.1.6, REQ-4.1, REQ-4.1.2, REQ-4.2, REQ-4.3,
REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-4.5.1, REQ-4.5.2, REQ-4.5.3,
REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-4.7.1.2, REQ-4.8, REQ-
4.8.3, REQ-4.9

51

Epistemological
sufficiency

REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-
3.1.2.1.6, REQ-3.1.2.1.6.2, REQ-3.1.2.1.8, REQ-3.2.1.5, REQ-
3.2.1.6, REQ-4.2, REQ-4.3, REQ-4.5.2, REQ-4.5.3

13

Epistemological adequacy REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-
3.1.2.1.6, REQ-3.1.2.1.6.2, REQ-3.2.1.5, REQ-3.2.1.6, REQ-4.2,
REQ-4.3

10

Expressibility REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-
3.1.1.1.7, REQ-3.1.1.1.8, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-
3.1.1.1.9.2, REQ-3.1.1.1.9.3, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5,
REQ-3.1.1.1.9.6, REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-
3.1.1.1.10.1, REQ-3.1.1.1.10.2, REQ-3.1.1.1.10.3, REQ-
3.1.1.1.10.4, REQ-3.1.1.1.11, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1,
REQ-3.1.1.1.13, REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2,
REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-
3.1.2.1.3.1, REQ-3.1.2.1.3.2, REQ-3.1.2.1.4, REQ-3.1.2.1.5, REQ-
3.1.2.1.5.1, REQ-3.1.2.1.6, REQ-3.1.2.1.6.1, REQ-3.1.2.1.6.2, REQ-
3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-3.1.2.1.8.1, REQ-
3.1.2.1.8.2, REQ-3.2.1, REQ-3.2.1.1, REQ-3.2.1.2, REQ-3.2.1.3,
REQ-3.2.1.4, REQ-3.2.1.6, REQ-3.2.1.7, REQ-3.2.1.7.1, REQ-4.1,
REQ-4.1.1, REQ-4.1.2, REQ-4.2, REQ-4.3, REQ-4.4, REQ-4.4.1,
REQ-4.5, REQ-4.5.2, REQ-4.5.3, REQ-4.6, REQ-4.6.1, REQ-
4.6.1.1, REQ-4.6.3, REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-
4.7.1.2, REQ-4.7.2, REQ-4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3,
REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

77

Reasoning power REQ-3.1.1, REQ-3.1.2, REQ-3.1.1.1.2, REQ-3.1.1.1.4, REQ-
3.1.1.1.5, REQ-3.1.1.1.6, REQ-3.1.1.1.9, REQ-3.1.1.1.9.6, REQ-
3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-3.1.1.1.10.3, REQ-3.1.1.1.11,
REQ-3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13, REQ-3.1.2,
REQ-3.1.2.1.2, REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.5.1,
REQ-3.1.2.1.7.1, REQ-3.1.2.1.8, REQ-3.2.1, REQ-3.2.1.1, REQ-
3.2.1.5, REQ-4.1, REQ-4.1.2, REQ-4.3, REQ-4.4, REQ-4.4.1, REQ-
4.5, REQ-4.5.1, REQ-4.5.2, REQ-4.5.3, REQ-4.6.1, REQ-4.6.3,
REQ-4.7, REQ-4.7.1, REQ-4.7.1.1, REQ-4.7.1.2, REQ-4.8, REQ-
4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

47

Composability REQ-3.1.1, REQ-3.1.1.1.2, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-
3.1.1.1.6, REQ-3.1.1.1.9, REQ-3.1.1.1.10, REQ-3.1.1.1.11, REQ-
3.1.1.1.12, REQ-3.1.1.1.12.1, REQ-3.1.1.1.13, REQ-3.1.2, REQ-
3.1.2.1.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-3.1.2.1.5.1, REQ-
3.2.1, REQ-3.2.1.1, REQ-3.2.1.5, REQ-4.1, REQ-4.1.2, REQ-4.3,
REQ-4.4, REQ-4.4.1, REQ-4.5, REQ-4.5.1, REQ-4.5.2, REQ-4.5.3,
REQ-4.6.1, REQ-4.6.3, REQ-4.7, REQ-4.8, REQ-4.8.1, REQ-4.8.2,
REQ-4.8.3, REQ-4.8.3.1, REQ-4.9, REQ-4.9.1

38

Selective power REQ-3.1.1.1.3, REQ-3.1.1.1.4, REQ-3.1.1.1.5, REQ-3.1.1.1.6, REQ-
3.1.1.1.7, REQ-3.1.1.1.8, REQ-3.1.1.1.10, REQ-3.1.1.1.10.4, REQ-
3.1.1.1.11, REQ-3.1.1.1.13, REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2,

32

 186

Test identifier T-F-CS-Z-01
REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4,
REQ-3.2.1.2, REQ-3.2.1.1, REQ-3.2.1.2, REQ-3.2.1.4, REQ-3.2.1.5,
REQ-4.3, REQ-4.4.1, REQ-4.6, REQ-4.6.1, REQ-4.7, REQ-4.7.2,
REQ-4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3.1, REQ-4.9

Generalitive power REQ-3.1.1, REQ-3.1.1.1, REQ-3.1.1.1.1, REQ-3.1.1.1.2, REQ-
3.1.1.1.7, REQ-3.1.1.1.9, REQ-3.1.1.1.9.1, REQ-3.1.1.1.9.2, REQ-
3.1.1.1.9.3, REQ-3.1.1.1.9.4, REQ-3.1.1.1.9.5, REQ-3.1.1.1.9.6,
REQ-3.1.1.1.9.7, REQ-3.1.1.1.10, REQ-3.1.1.1.10.2, REQ-
3.1.1.1.10.3, REQ-3.1.1.1.10.4, REQ-3.1.1.1.12, REQ-3.1.1.1.12.1,
REQ-3.1.1.1.13, REQ-3.1.1.1.13.1, REQ-3.1.1.1.13.2, REQ-3.1.2,
REQ-3.1.2.1, REQ-3.1.2.1.1, REQ-3.1.2.1.2, REQ-3.1.2.1.3, REQ-
3.1.2.1.3.1, REQ-3.1.2.1.3.2, REQ-3.1.2.1.3.3, REQ-3.1.2.1.4, REQ-
3.1.2.1.5, REQ-3.1.2.1.5.1, REQ-3.1.2.1.5.2, REQ-3.1.2.1.6, REQ-
3.1.2.1.6.1, REQ-3.1.2.1.6.2, REQ-3.1.2.1.7, REQ-3.1.2.1.7.1, REQ-
3.1.2.1.8, REQ-3.1.2.1.8.1, REQ-3.1.2.1.8.2, REQ-3.2.1, REQ-
3.2.1.1, REQ-3.2.1.2, REQ-3.2.1.3, REQ-3.2.1.4, REQ-3.2.1.5,
REQ-3.2.1.6, REQ-3.2.1.7, REQ-3.2.1.7.1, REQ-4.1.1, REQ-4.1.2,
REQ-4.2, REQ-4.2.1, REQ-4.2.1.1, REQ-4.4, REQ-4.4.1, REQ-4.5,
REQ-4.5.1, REQ-4.5.2, REQ-4.5.3, REQ-4.5.3.1, REQ-4.6, REQ-
4.6.1, REQ-4.6.1.1. REQ-4.6.2, REQ-4.7, REQ-4.7.1, REQ-4.7.1.1,
REQ-4.7.1.2, REQ-4.8, REQ-4.8.1, REQ-4.8.2, REQ-4.8.3, REQ-
4.8.3.1, REQ-4.9, REQ-4.9.1

78

Table 37. Z evaluation test T-F-CS-Z-02

Test identifier T-F-CS-Z-02
Test execution conditions 1. Tested language: Z.

2. Tool to produce specifications: Z/EVES 2.1.
3. Requirements should be modelled by groups: collaboration requirements, workflow
requirements.
4. Requirements should be modelled using language flexibility mechanisms.

Expected results Elementary characteristics under testing: extensibility, adaptability, universality.
Quality characteristic Specified requirements Tested by:
Extensibility REQ-3.1.1.1.9, REQ-3.1.1.1.10, REQ-3.1.2.1.3, REQ-3.1.2.1.8,

REQ-3.2.1.1, REQ-4.2
6

Adaptability REQ-3.1.1.1, REQ-3.1.2.1, REQ-4.8.1, REQ-4.8.2 4
Universality REQ-3.1.1, REQ-3.1.1.1.9, REQ-3.1.1.1.10, REQ-3.1.1.1.12, REQ-

3.1.1.1.12.1, REQ-3.1.1.1.13, REQ-3.1.2, REQ-3.2.1, REQ-4.1,
REQ-4.1.2, REQ-4.7, REQ-4.8, REQ-4.8.1, REQ-4.8.3, REQ-4.9

15

Z evaluation tests have been combined into suite of quality evaluation tests TS-F-Z-EVES

(Table 38), and for every sub-characteristic of functionality total number of successfully

specified requirements have been calculated by summarisation of the results of Z testing:

Table 38. Suite of Z evaluation tests TS-F-Z-ZEVES

Test suite identifier TS-F-Z-ZEVES
Quality characteristic Tests Tested by:
Ontological sufficiency T-F-IAS-Z-01, T-F-CS-Z-01 134
Ontological adequacy T-F-IAS-Z-01, T-F-CS-Z-01 87
Epistemological sufficiency T-F-IAS-Z-01, T-F-CS-Z-01 23
Epistemological adequacy T-F-IAS-Z-01, T-F-CS-Z-01 18
Expressibility T-F-IAS-Z-01, T-F-CS-Z-01 132
Reasoning power T-F-IAS-Z-01, T-F-CS-Z-01 70
Composability T-F-IAS-Z-01, T-F-CS-Z-01 51
Selective power T-F-IAS-Z-01, T-F-CS-Z-01 43
Generalitive power T-F-IAS-Z-01, T-F-CS-Z-01 123

 187

Extensibility T-F-IAS-Z-02, T-F-CS-Z-02 12
Adaptability T-F-IAS-Z-02, T-F-CS-Z-02 6
Universality T-F-IAS-Z-02, T-F-CS-Z-02 27

5.4.8. Interpretation of the Results of UML and Z Functionality Testing

5.4.8.1. Evaluation of Elementary Characteristics of Functionality

It can be seen from the quality evaluation tests that for all characteristics of functionality the

frequency q(ξi) with which the feature L(ξi) of the language L described by characteristic ξi will

become necessary specifying the population of Web portals is equal to 1, because for all

characteristics at least one requirement in the group G(ξi) is mandatory or alternative. The only

characteristic, for which q(ξi) should be calculated is extensibility of Z specification language

(the test T-F-IAS-Z-02), because for extensibility all to the group G(ξi) belonging requirements

are optional. Let‘s demonstrate how the expected frequency q(ξi) has been calculated. First of all,

expected frequency qi(ξi) for every requirement ri, which belong to the group G(ξi) has been

calculated. In order to define qi(ξi) for the ri, it is necessary to start from the initial node of the

feature model and proceed down the feature model up to the terminal feature that generates ri

(see 4.2.3.7). For example, requirement REQ-1.8 (Portal Pt content items CntItm could be

classified into library items LbItm and document items DocItm.) has been derived from the

features, which are presented in Table 39.

Table 39. Features for requirement REQ-1.8

Level in generic
feature model

Feature Type Developer
Portal
(see 5.4.4.1)

ILP portal
(see 5.4.4.2)

HKU portal
(see 5.4.4.3)

… … … … … …
1.2.1 Item Mandatory Yes Yes Yes
1.2.1.1 Library item Optional Yes Yes No
1.2.1.1.1 Image Optional Yes Yes No
1.2.1.1.2 Static text Optional Yes Yes No
1.2.1.1.3 Banner Optional No Yes No
1.2.1.1.4 Video Optional No Yes No
1.2.1.2 Document item Optional No Yes Yes
1.2.1.2.1 File .DOC Optional No Yes Yes
1.2.1.2.2 File .PDF Optional No Yes Yes
… … … … …

It is necessary to start from feature 1.2.1.2.2 and proceed until terminal feature 1.2.1, which

generates requirement REQ-1.8. Features 1.2.1.1.3 and 1.2.1.1.4 are present in 1 from 3 Web

portals, while all the other features (1.2.1.1, 1.2.1.1.1, 1.2.1.1.2, 1.2.1.2, 1.2.1.2.1, 1.2.1.2.2) are

present in 2 from 3 Web portals. Feature 1.2.1 is mandatory, thus its expected frequency, with

which this feature will become necessary specifying generic Web portal is equal to 1. Thus, qi(ξi)

= 1/3*1/3*2/3*2/3*2/3*2/3*2/3*2/3*1 = 0,009.

 188

Expected frequencies qi(ξi) for all the other to the group G(ξi) belonging requirements have

been calculated in the analogous way, that is analysing the corresponding features of every Web

portal under experiment and identification of expected frequencies for every feature (see

4.2.3.7):

• for requirement REQ-1.9.1 qi(ξi) = 1/3*1/3*2/3*2/3*2/3 = 0,0313;

• for requirement REQ-1.10.1 qi(ξi) = 2/3*2/3*2/3 = 0,2904;

• for requirement REQ-1.12.1 qi(ξi) = 2/3*2/3*2/3*1 = 0,2904;

• for requirement REQ-1.13.5 qi(ξi) = 1/3*1/3*1/3 = 0,0359;

• for requirement REQ-1.13.6 qi(ξi) = 3/3*3/3*3/3 = 0,2904.

Expected frequencies q(ξi) for extensibility of Z specification language has been calculated

by the formula (2):

1315,0

)2904,01)(0359,01)(2904,01)(2904,01)(0313,01)(009,01(1))ξ(q1(1)q(ξ
1

ii

=

=−−−−−−−=−−= ∏
=

ξn

i

i

To calculate the value of q(ξi) for extensibility of Z specification language for the whole suite

of evaluation tests taking into account all tests included into this suite the formula analogous to

the formula (2) has been used once again:

1)11)(11)(1315,01)(11(1))ξ(q1(1)q(ξ
1

ii =−−−−−=−−= ∏
=

ξn

i

i
.

The results of the evaluation of the expected frequency q(ξi) with which the feature L(ξi) of

the language L described by characteristic ξi will become necessary specifying the population of

Web portals are presented in Table 40.

Table 40. Results of q(ξi) evaluation for suites of quality evaluation test

Elementary characteristic, (ξξξξ) Z evaluation for suite TS-
TS-F-Z-ZEVES,
q(ξξξξi)

UML evaluation for suite
TS-F-UML-MagicDraw,
q(ξξξξi)

Ontological sufficiency 1 1
Epistemological sufficiency 1 1
Expressibility 1 1
Reasoning power 1 1
Composability 1 1
Ontological adequacy 1 1
Epistemological adequacy 1 1
Selective power 1 1
Generalitive power 1 1
Universality 1 1
Adaptability 1 1
Extensibility 1 1

The expected frequency p(ξi) with which L(ξi) will be sufficient specifying the current

population of Software Systems has been calculated for the whole suite of quality evaluation

 189

tests by the formula (3). For example, the value of p(ξi) for UML ontological sufficiency ξi has

been calculated comparing total number N+(ξi) of successfully specified to the group G(ξi)

belonging requirements (see the suite TS-F-UML-MagicDraw) to the total number of

requirements N(ξi), which were planned to test for this characteristic and were indicated in the

descriptions of the corresponding quality evaluation tests (see 5.4.6).

The results of the evaluation of the expected frequency p(ξi) with which the feature L(ξi) of

the language L described by characteristic ξi will be sufficient specifying the population of Web

portals are presented in (Table 41):

Table 41. Results of p(ξi) evaluation for suites of quality evaluation test

Elementary characteristic, (ξξξξ) UML evaluation for suite
TS-F-UML-MagicDraw,
p(ξξξξi)

Z evaluation for suite TS-
TS-F-Z-ZEVES,
p(ξξξξi)

Ontological sufficiency 135/139=0,9712 134/141=0,9504
Ontological adequacy 126/139=0,9065 87/141=0,617
Epistemological sufficiency 30/31=0,9677 23/25=0,92
Epistemological adequacy 29/31=0,9355 18/25=0,72
Expressibility 25/30=0,8333 132/146=0,9041
Reasoning power 22/26=0,8462 70/74=0,9459
Composability 39/45=0,8666 51/53=0,9623
Selective power 14/18=0,7777 43/45=0,9555
Generalitive power 128/137=0,9343 123/132=0,9318
Extensibility 23/24=0,9583 12/18=0,6666
Adaptability 20/23=0,8696 6/14=0,4286
Universality 40/45=0,8888 27/53=0,5094

The evaluation for every elementary characteristic (expected frequency p(ξ) with which L(ξi)

will become necessary specifying the current population of Software Systems) has been

calculated as a production of expected frequencies q(ξi) and p(ξi) (Table 42):

Table 42. Results of elementary characteristics evaluation

Elementary characteristic, (ξξξξ) Evaluation for UML,
p(ξξξξ)=p(ξξξξi)*q(ξξξξi)

Evaluation for Z,
p(ξξξξ)=p(ξξξξi)*q(ξξξξi)

Ontological sufficiency 0,9712 0,9504
Ontological adequacy 0,9065 0,617
Epistemological sufficiency 0,9677 0,92
Epistemological adequacy 0,9355 0,72
Expressibility 0,8333 0,9041
Reasoning power 0,8462 0,9459
Composability 0,8666 0,9623
Selective power 0,7777 0,9555
Generalitive power 0,9343 0,9318
Extensibility 0,9583 0,6666
Adaptability 0,8696 0,4286
Universality 0,8888 0,5094

 190

5.4.8.2. Aggregation of Elementary Characteristics

The values of high-level functionality characteristics have been calculated using in 4.2.4.4

developed aggregation techniques. The high-level functionality characteristics are: semantic

sufficiency, completeness, expressive adequacy, suitability, and flexibility.

Semantic sufficiency has been calculated using technique to aggregate orthogonal sub-

characteristics ξ1 (ontological sufficiency) and ξ2 (epistemological sufficiency) of different

importance (see formula (36)): p(ξ) = (1-q(ξ1)(1-p(ξ1)))(1-q(ξ2)(1-p(ξ2))). It was considered that

the expected frequency q(ξ1) with which ξ1 will become necessary for any project P is equal to 1

and the expected frequency q(ξ2) with which ξ2 will become necessary for any project P is 0,8.

Completeness has been calculated using technique to aggregate orthogonal sub-

characteristics ξ1 (semantic sufficiency), ξ2 (expressibility), ξ3 (reasoning power) and ξ4

(composability) of different importance (see formula (36)): p(ξ) = (1-q(ξ1)(1-p(ξ1)))(1-q(ξ2)(1-

p(ξ2)))(1-q(ξ3)(1-p(ξ3)))(1-q(ξ4)(1-p(ξ4))). It was considered that the expected frequencies q(ξ1)

and q(ξ2) with which ξ1 and ξ2 accordingly will become necessary for any project P are equal to

1, the expected frequency q(ξ3) with which ξ3 will become necessary for any project P is 0,7, and

the expected frequency q(ξ4) with which ξ4 will become necessary for any project P is also 0,7.

Expressive adequacy has been calculated using technique to aggregate orthogonal sub-

characteristics ξ1 (ontological adequacy), ξ2 (epistemological adequacy), ξ3 (selective power)

and ξ4 (generalitive power) of different importance (see formula (36)): p(ξ) = (1-q(ξ1)(1-

p(ξ1)))(1-q(ξ2)(1-p(ξ2)))(1-q(ξ3)(1-p(ξ3)))(1-q(ξ4)(1-p(ξ4))). It was considered that the expected

frequencies q(ξ1) and q(ξ2) with which ξ1 and ξ2 accordingly will become necessary for any

project P are equal to 1, the expected frequency q(ξ3) with which ξ3 will become necessary for

any project P is 0,6, and expected frequency q(ξ4) with which ξ4 will become necessary for any

project P is 0,5.

Suitability has been calculated using technique to aggregate orthogonal sub-characteristics ξ1

(completeness) and ξ2 (expressive adequacy) (see formula (35)): p(ξ) = p(ξ1)p(ξ2).

Flexibility has been calculated using technique to aggregate non-orthogonal alternative sub-

characteristics ξ1 (universality), ξ2 (adaptability) and ξ3 (extensibility) (see formula (38)): p(ξ) =

p(ξ1)q(ξ1)+p(ξ2)q(ξ2)+p(ξ3)q(ξ3)–p(ξ1)q(ξ1)p(ξ2)q(ξ2)p(ξ3)q(ξ3). It was considered consider that

the expected frequency q(ξ1) with which ξ1 will become necessary for any project P is 0,5, the

expected frequency q(ξ2) with which ξ2 will become necessary for any project P is 0,6, and the

expected frequency q(ξ3) with which ξ3 will become necessary for any project P is 0,8.

 191

And, finally, functionality has been calculated using technique to aggregate non-orthogonal

supplementary sub-characteristics ξ1 (suitability) and ξ2 (flexibility) (see formula (37)): p(ξ) =

p(ξ1)+p(ξ2)q(ξ2) = p(ξ1)+p(ξ2)(1-p(ξ1)) = p(ξ1)+p(ξ2)-p(ξ1)p(ξ2).

Table 43 has the results of all functionality characteristics evaluation, and the overall

evaluation of UML and Z functionality.

Table 43. Results of functionality evaluation

Level Characteristic Elementary/
Aggregated

Aggregation
technique

Evaluation for
UML

Evaluation
for Z

1. Functionality Aggregated Technique to
aggregate
non-orthogonal
supplementary sub-
characteristics

0,9502 0,7149

1.1 Suitability Aggregated Technique to
aggregate orthogonal
sub-characteristics of
the same importance

0,4531 0,3146

1.1.1 Completeness Aggregated Technique to
aggregate orthogonal
sub-characteristics of
different importance

0,6378 0,7534

1.1.1.1 Semantic sufficiency Aggregated Technique to
aggregate orthogonal
sub-characteristics of
different importance

0,9461 0,8896

1.1.1.1.1 Ontological sufficiency Elementary - 0,9712 0,9504
1.1.1.1.2 Epistemological

sufficiency
Elementary - 0,9677 0,92

1.1.1.2 Expressibility Elementary - 0,8333 0,9041
1.1.1.3 Reasoning power Elementary - 0,8462 0,9459
1.1.1.4 Composability Elementary - 0,8666 0,9623
1.1.2 Expressive adequacy Aggregated Technique to

aggregate orthogonal
sub-characteristics of
different importance

0,7104 0,4176

1.1.2.1 Ontological adequacy Elementary - 0,9065 0,617
1.1.2.2 Epistemological

adequacy
Elementary - 0,9355 0,72

1.1.2.3 Selective power Elementary - 0,7777 0,9555
1.1.2.4 Generalitive power Elementary - 0,9343 0,9318
1.2 Flexibility Aggregated Technique to

aggregate non-
orthogonal alternative
sub-characteristics

0,9089 0,5841

1.2.1 Universality Elementary - 0,8888 0,5094
1.2.2 Adaptability Elementary - 0,8696 0,4286
1.2.3 Extensibility Elementary - 0,9583 0,6666

Thus, the experiment demonstrates that, although the ontological and epistemological

adequacies of the Z language are relatively low, it has high enough semantic sufficiency. The

flexibility of the Z language is very low, but it is partly compensated by its relatively high

completeness. On the other hand, although UML 2.0 has high enough ontological and

 192

epistemological adequacies its expressive adequacy is not very high, because of the relatively

low selective power. The composability of UML 2.0 and its reasoning power also are lower than

of the Z language. UML 2.0 has higher extensibility than of the Z language. On the other hand, Z

language is more expressible and allows expressing more classes of formulas than UML 2.0.

5.5. Conclusions

First of all, carried out experiment demonstrates that in the dissertation proposed framework

to evaluate internal quality can be used to evaluate functional characteristics of specification

languages (for example, UML and Z). From the evaluation of UML and Z functionality it can be

concluded that both these languages can be successfully used to specify functional requirements

of generic Web portal. Although the evaluation of functionality for Z is lower, than for UML,

mathematical background of Z makes it more complete language. That means that it can be

successfully used to specify all the main components of the linguistic system (concepts,

composite concepts, statements, and reasoning apparatus) (see section 4.2.1.2), because

expressibility of Z allows expressing more classes of formulas than UML, high semantic

sufficiency and high composability of Z means that it can be used to specify most of in the

requirements present basic concepts and to construct composite concepts, high reasoning power

of Z means that is can be successfully used to derive new statements about properties of concepts

and their compositions. However, Z has limited expressive adequacy, and, thus, in this language

created specifications are very hard to read for the users who are unfamiliar with Z mathematical

background. This is one of the main reasons why Z is not widely used in practice. UML

graphical notation, which has separate constructs for almost every concept, composite concept

and statement, makes specifications visual and usable even for the users, who do not know all

the peculiarities of this specification language. Besides, UML is much more flexible language,

its universality, adaptability and extensibility mechanisms allow expressing concepts, composite

concepts or statements, which could not be specified directly, using existing language constructs.

Another conclusion that follows from the results of experimental evaluation is that even

evaluation of the particular aspects of the particular specification language allows identification

of shortcomings and strengths of the current specification languages, and preparing of

recommendations how to use the particular language in more appropriate way as well as how to

improve it. Thus, we conclude that a long-time research program for evaluation of specification

languages quality is purposeful, because such program will significantly contribute to the entire

theory of specification, and even programming languages.

 193

6. Conclusions

1. All in scientific literature proposed approaches to evaluate quality of specification

languages are incomplete, because they propose neither theoretical ground for

separation and evaluation of quality characteristics, nor precise metrics for their

measurement or scale for the interpretation and aggregation of the results of

measurements. At the moment, no commonly accepted agreement exists about the

collection of specification language internal quality characteristics, their names and

their taxonomy. It is true for programming languages, too. An attempt to develop the

taxonomy of quality characteristics and their measurement procedures is made in

quality model based approach. However, this taxonomy is not enough systematic and

exhaustive, and the proposed quality model itself is only sketched. Even the proposed

quality characteristics are not precisely defined, and it is not proposed how exactly they

should be measured. Besides, language characteristics and supporting tools

characteristics are considered together.

2. It follows from the results of comparative analysis is that none of known approaches

pays attention to relativism of quality concept and dependency on the particular project

requirements and peculiarities. No approach exists, in which quality in use is separated

from internal quality, and which proposes exhaustive procedure to evaluate quality in

use. Thus, we conclude that none of known approaches is mature enough theoretically

and is not developed enough to be used in practice to evaluate quality of a specification

language.

3. The framework to evaluate specification languages quality should be based on the

appropriate quality model, because it ensures obtaining of objective evaluation results.

This requires having an exhaustive taxonomy. In known approaches to evaluate quality

of specification languages only first small steps are made in this direction. The most

valuable results that can be used for the further research have been obtained in

ontological categories based approach and quality model-based approach.

4. Internal quality of a specification language L describes the quality that is independent

from any context of use. Because of the imprecise nature of quality characteristics, it is

reasonable to define such quality as the expected frequency with which the language L

will satisfy the requirements of any imaginable project P. In an analogous way can be

defined also all characteristics of internal quality, including elementary ones.

5. Because characteristics of internal quality of the language L form a large hierarchical

structure F, in order to evaluate internal quality it is necessary to aggregate sub-

characteristics through the whole structure F. Thus, techniques of aggregation depend

 194

on the kind of dependences among characteristics that are aggregated. There exist four

kinds of such dependencies: characteristics are orthogonal (independent) and all are

required for any project; characteristics are orthogonal but not all are required for any

project; characteristics supplement the one that is required for any project; and none of

the characteristics is required for any project. In the first case the characteristics can be

aggregated properly using a kind of t-norm, in the second case using a kind of weighted

t-norm, in the third case using a kind of t-conorm, and in the fourth case using a kind of

weighted t-conorm. In order to minimise possible deviations generated by shortcomings

of the particular metric (suite of quality evaluation tests) or by inaccuracy of the

particular measurement, the mean with weights that are determined dynamically should

be calculated. For this aim the dissertation proposes the heuristic, which can be seen as

a kind of combination of arithmetic and winsorised means.

6. The dissertation proposes a systematic evaluation of quality in use on the basis of

measurements of internal quality. Such approach can be used to evaluate the quality of

the specification language in the context of the particular project, i.e. considering the

high-level quality requirements formulated by the users of the particular system in the

form of quality goals.

7. The main characteristic of internal quality – functionality– is analysed in the

dissertation, and it is concluded that evaluation of the elementary characteristics of

functionality is a hard and complicated task, which requires relatively high time and

labour overheads. Many and long-time efforts are needed to do sampling, develop

suites of tests, test language and interpret obtained results. Besides, some difficulties of

theoretical character should be overcome. The theory of problem frames is relatively

new and still not sufficiently elaborated. There are no any well-grounded methods for

framing and sampling particular category of systems. Too little is known how to

eliminate the impact of human factor to results of evaluation procedure. Thus, the

systematic evaluation clarifies deep internal structure of each evaluated language as

well as of specification languages in general and provides valuable experience that

could be used during construction of new specification languages. We hope the

proposed approach to evaluate internal quality will contribute both to the research on

evaluation of the quality of existing specification languages and to the development of

new ones.

8. Carried out experiment demonstrates that in the dissertation proposed framework to

evaluate internal quality can be used to evaluate functional characteristics of

specification languages (for example, UML and Z). From the evaluation of UML and Z

 195

functionality it can be concluded that both these languages can be successfully used to

specify functional requirements of generic Web portal.

9. It can be concluded from the results of experimental evaluation that even evaluation of

the particular aspects of the particular specification language allows identification of

shortcomings and strengths of the current specification languages, and preparing of

recommendations how to use the particular language in more appropriate way as well

as how to improve it. Thus, we conclude that a long-time research program for

evaluation of specification languages quality is purposeful, because such program will

significantly contribute to the entire theory of specification, and even programming

languages.

 196

Bibliography
[BXR96] A. D. Belchior, G. Xexéo, A. R. C. da Rocha (1996). Evaluating software quality requirements using

fuzzy theory. In Proceedings of International Conference on IS Analysis and Synthesis „(ISAS) 96“. July
22-26, Orlando, USA.

[BHS96] M.J. Bolanos, L.D. Hernandez, A. Salmeron (1996). Numerical Experimentation and Comparison of
Fuzzy Integrals. Mathware & Soft Computing, 3(5), 309-319.

[BBC98] P. Botella, X. Burgués, J.P. Carvallo, X. Franch, J.A. Pastor, C. Quer (1998). Towards a Quality
Model for the Selection of ERP Systems. In A. Cechich, M. Piattini, A. Vallecillo (Eds.), Component-Based

Software Quality: Methods and Techniques. Lecture Notes in Computer Science, 2693, Springer-Verlag,
225-245.

[Bra02] I.K. Bray (2002). An Introduction to Requirements Engineering. Addison-Wesley.

[BK03] I.K. Bray, K. Cox (2003). The Simulator; Another, Elementary Problem Frame ? In Pre-Proceedings of the

9th International Workshop on Requirements Engineering – Foundation For Software Quality, In

conjunction with CAiSE'03. Klagenfurt/Velden, Austria. pp. 101-104. Available at: http://crinfo.univ-
paris1.fr/REFSQ/03/papers/REFSQ03-PreProceedings.pdf, [Accessed September, 2006].

[Bun77] M. Bunge (1977). Treatise on Basic Philosophy, Vol. 3: Ontology I: The Furniture of the World, Reidel,
Boston.

[CG05a] A. Caplinskas, J. Gasperovic (2005). Techniques to aggregate the characteristics of internal quality of an
IS specification language. Informatica, 16(4), 519-540. Available at:
http://www.vtex.lt/informatica/Contents.htm, [Accessed September, 2006].

[CG05b] A. Caplinskas, J., Gasperovic (2005). Functionality of information systems specification language:
concept, evaluation methodology, and evaluation problems. In O. Vasilecas, A. Caplinskas, W.
Wojtkowski, W.G. Wojtkowsky, S. Wrycza, and J. Zupancic (Eds.), Information Systems Development.

Advances in Theory, Practice and Education. Kluwer Plenum Publishers. pp. 341-351. Available at:
http://www.springer.com/sgw/cda/frontpage/0,11855,5-170-22-45084311-
detailsPage%253Dppmmedia%257CaboutThisBook%257CaboutThisBook,00.html, [Accessed September,
2006].

[CG05c] A. Caplinskas, J. Gasperovic (2005). An Approach to Evaluate Quality in Use of IS Specification
Language. In J. Barzdins, and A. Caplinskas (Eds.), Frontiers in Artificial Intelligence and Applications,
Vol. 118. IOS Press, Amsterdam, pp. 152-166. Available at: http://www.iospress.nl/, [Accessed September,
2006].

[CG04] A. Caplinskas, J., Gasperovic (2004). A taxonomy of characteristics to evaluate specification languages.
Computer Science and Information Technologies (Acta Universitatis Latviensis), Vol. 672, pp. 321-336.

[CLV02] A. Caplinskas, A. Lupeikiene, O. Vasilecas (2002). A framework to analyse and evaluate Information
Systems specification languages. Lecture Notes in Computer Science, 2435, 248-262.

[CM75] A.K. Chandra, Z. Manna (1975). The power of programming features. Journal of Programming

Languages,1, 219-232.

[Ch92] R. M. Chisholm (1992). The basic ontological categories. In K. Muligan (Ed.), Language, Truth, and

Ontology, Kluwer Academic Publishers.

[Ch96] R.M. Chisholm (1996). A Realistic Theory of Categories: An Essay on Ontology. Cambridge University
Press.

[CNM99] L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos (1999). Non-functional requirements in software

engineering. Kluwer Academic Publishers.

[Cle94] D. Clegg, B. Richard (1994). Case Method Fast-Track. A RAD Approach. Addison Wesley.

[Co77] G. Cochran. (1977). Sampling techniques. 3rd ed. John Wiley and Sons.

[CW98] R.M. Colomb, R. Weber (1998). Completeness and Quality of Ontology for an IS. In N. Guarino (Ed.),
Proceedings of the conference Formal Ontology in IS „FOIS’98“. Trento, Italy, 6-8 June 1998. IOS Press,
Amsterdam. pp. 207-217.

[Det00] M. Detyniecki (2000) Mathematical Aggregation Operators and their Application to Video Querying. Phd.
thesis, Universite Pierre & Marie Curie.

[DP85] D. Dubois, H. Prade (1985). A Review of Fuzzy Set Aggregation Connectives. Information Sciences, 36,
85-121.

[Dur93] R. Durrett (1993). The Essentials of Probability (Statistics). Duxbury Press.

[EPA92] Environmental Protection Agency (1992). Statistical Training Course for Ground-Water Monitoring

Data Analysis, EPA/530-R-93-003, Office of Solid Waste, Washington, DC.

 197

[EPA96] Environmental Protection Agency (1996). Guidance for Data Quality Assessment, EPA/600-R-96-084,
Office of Research and Development, Washington, DC.

[Fel90] M. Felleisen (1990). On the expressive power of programming languages. In N. Jones (Ed.), Proceedings of

the 3rd European Symposium on Programming „ESOP '90“. Copenhagen, Denmark, Vol. 432. Springer-
Verlag, New York, pp. 134 – 151. Available at:
http://citeseer.ist.psu.edu/cache/papers/cs/633/ftp:zSzzSzftp.cs.indiana.eduzSzpubzSzscheme-
repositoryzSzdoczSzpubszSzexpress.pdf/felleisen90expressive.pdf/, [Accessed September, 2006].

[Ful96] R. Fullér (1996). OWA operators in decision making. In C. Carlsson (Ed.), Exploring the Limits of Support

Systems, TUCS General Publications, No. 3, Turku Center for Computer Science, Åbo, pp. 85-104.

[Ful05] R. Fullér (2005). Neural Fuzzy Systems. Lectures. Abo Academy.

[Gas06a] J. Gasperovič (2006). Evaluation of the functionality of UML and Z languages. Technical Report IMI-
SED-06-01, Software Engineering Department, Institute of Mathematics and Informatics, Vilnius,
Lithuania, 242 p. Available at: http://www.mii.lt/files/IMI_sed_06_01_Gasperovic.pdf, [Accessed
November, 2006]

[Gas06b] J. Gasperovič (2006). Development of representative examples to evaluate IS specification language
functionality characteristics (in Lithuanian). The paper is submitted for publication to the “Lithuanian

Mathematical Journal”.

[Gas04] J. Gasperovič (2004). Specification language quality evaluation procedure. Lithuanian Mathematical

Journal, 44 (spec. no.), 271-275 (in Lithuanian).

[GC06] J. Gasperovic, A. Caplinskas (2006). Methodology to Evaluate the Functionality of Specification
Languages. Informatica, 17(3), 309-330.

[GC05a] J. Gasperovič, A. Čaplinskas (2005). Specification languages quality evaluation problems. Information

sciences, 34, 268-271 (in Lithuanian).

[GC05b] J. Gasperovič, A. Čaplinskas (2005). Specific in aggregation of characteristics describing internal
quality of IS specification language. Lithuanian Mathematical Journal, 45 (spec. no.), 133-138 (in
Lithuanian).

[GC03a] J. Gasperovič, A. Čaplinskas (2003). Information systems specification languages quality evaluation. In
Proceedings of the Conference “Information Technologies 2003”, Kaunas, Technology, p. VI-1 - VI-10 (in
Lithuanian).

[GC03b] J. Gasperovič, A. Čaplinskas (2003). Comparative analysis methods in informatics. Lithuanian

Mathematical Journal, 43 (spec. no.), 223-227 (in Lithuanian).

[GC03c] J. Gasperovič, A. Čaplinskas (2003). Information systems specification languages comparative analysis
methods. Information sciences, 26, 104-107 (in Lithuanian).

[GOY98] M. Grabisch, S.A. Orlovski, R.R. Yager (1998). Fuzzy aggregation of numerical preferences. In R.
Slowinski. (Ed.), The Handbook of Fuzzy Sets Series, Vol. 4: Fuzzy Sets in Decision Analysis, Operations
Research and Statistics. Kluwer Academic Press, pp. 31-68.

[GR99] P. Green, M. Rosemann (1999). An Ontological Analysis of Integrated Process Modeling. In M. Jarke, A.
Oberweis (Eds.), Advanced IS Engineering. Lecture Notes in Computer Science, 1626, Springer-Verlag,
Berlin Heidelberg New York, 225–240.

[GR00a] P. Green, M. Rosemann (2000). Integrated Process Modelling: An Ontological Evaluation, IS, 25 (2), 73-
87.

[GR00b] P. Green. M. Rosemann (2000). Integrating multi-perspective views into ontological analysis.
Proceedings of the International Conference on IS „OCIS 2000“, Brisbane, Australia, December 11-13.

[Gua98] N. Guarino (1998). Formal Ontology and IS. In N. Guarino (Ed.), Proceedings of the conference Formal

Ontology in IS “FOIS’98”. Trento, Italy, 6-8 June 1998. IOS Press, Amsterdam. pp. 3-15.

[Gui05] G. Guizzardi (2005). Ontological foundations for structural conceptual models. Universal Press. 410 p.

[Gur99] C.A. Gurr (1999). Effective Diagrammatic Communication: Syntatic, Semantic and Pragmatic Issues.
Journal of Visual Languages and Computing, 10, 317-342.

[Gur98] C.A. Gurr (1998). On the isomorphism, or lack of it, of representations. In K. Mariot, B. Meyer (Eds.),
Theory of Visual Languages, Chap. 10, Springer, Berlin.

[ILP03] ILP Indiana Learning Portal Conceptual Functional Requirements. (2003). Requirements specification
document, Haverstick Consulting. Available at:
http://www.ihets.org/progserv/education/ilportal/documents/2/DELIVERABLE_Conceptual_Functional_R
equirements_v1.0.pdf, [Accessed September, 2006]

[ISO94] ISO 8402. (1994) Quality management and quality assurance vocabulary. Second edition, 1994-04-01.

[ISO99] ISO/IEC 14598-1:1999 (1999). Information technology - Software product evaluation - Part 1: General

overview. First edition, 1999-04-15.

 198

[ISO91] ISO/IEC 9126 (1991). Information Technology – Software Product Evaluation – Quality Characteristics

and Guidelines for their Use. First edition, 1991-12-15, reference number ISO/IEC 9126: 1991(E).

[Jac99] D. Jackson (1999). Comparison of Object Modelling Notations: Alloy, UML and Z. MIT Lab for Computer
Science. Available at: http://geyer.lcs.mit.edu/~dnj/pubs/alloy~comparison.pdf, [Accessed August, 2006]

[Jac02] D. Jackson (2002). Micromodels of Software: Lightweight Modelling and Analysis with Alloy. MIT Lab for
Computer Science. Available at: http://alloy.mit.edu/alloy2website/, [Accessed August, 2006]

[JW96] D. Jackson, J. Wing (1996). Lightweight formal methods. IEEE Computer, April 1996, 21-22. Available
at: http://geyer.lcs.mit.edu/~dnj/pubs/ieee96-roundtable.html, [Accessed September, 2006]

[Jac95] M. Jackson (1995). Software Requirements and Specifications. Addison-Wesley.

[Jac01] M. Jackson (2001). Problem Frames. Addison-Wesley.

[Jac00] M. Jackson (2000). Problem Analysis and Structure. In T. Hoare, M. Broy and R. Steinbruggen (Eds.),
Engineering Theories of Software Construction, Proceedings of NATO Summer School. IOS Press,
Marktoberdorf, pp. 3-20.

[Joh98] I. Johansson. Pattern as an ontological category. In N. Guarino (Ed.), Formal Ontology in IS, IOS Press,
pp.86-94

[JD01] M. N. Johnstone, D.C. McDermid (2001). Using ontological ideas to facilitate the comparison of
reąuirements elicitation methods. Proceedings of the Twelfth Australasian Conference on IS (CD). Coffs
Harbour, NSW, Australia, December 5-7.

[JS80] N.D. Jones, D.A. Schmidt (1980). Compiler generation from denotational semantics, Lecture Notes in

Computer Science, 94, Springer Verlag.

[KCH90] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson (1990). Feature-Oriented Domain Analysis (FODA)

Feasibility Study. Technical Report CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

[KM98] M. King, B. Maegaard (1998). Issues in natural language systems evaluation. In Proceedings of the First

International Conference on Language Resources and Evaluation, May 28-30, Granada, Spain, pp. 225-
230. Availabe at: http://citeseer.nj.nec.com/514907.html, [Accessed September, 2006].

[Kle52] S. C. Kleene (1952). Introduction to Metamathematics, D. Van Nostrand Co., Inc., New York.

[KMP02] E.P. Klement, R. Mesiar, E. Pap (2002). Triangular norms. Position paper I: Basic analytical and

algebraic properties. Technical Report FLLL–TR–0208, Johannes Kepler Universität Linz, Fuzzy Logic
Laboratorium Linz-Hagenberg. Available at: http://www.flll.jku.at/research/technical_reports/flll-tr-
0208.pdf, [Accessed September, 2006].

[Kol30] A. Kolmogorov (1930). Sur la notion de moyenne. Atti delle Reale Accademia Nazionale dei Lincei Mem.
Cl. Sci. Mat. Mnatur. Sez. 12, pp. 323-343 (in French).

[Kr01a] J. Krogstie (2001). A semiotic approach to quality in requirements specifications. In K. Liu, R. J. Clarke,
P. B. Andersen, R.K. Stamper (Eds.), Proceedings of the IFIP TC8/WG8.1 Working Conference on

Organizational Semiotics: Evolving a Science of IS. July 23-25, Montreal, Quebec, Canada. Kluwer
Academic Publishers. pp.231-249.

[Kr01b] J. Krogstie (2001). Using a semiotic framework to evaluate UML for the development of models of high
quality. In K. Siau, T. A. Halpin (Eds.), Unified Modelling Language: Systems Analysis, Design and

Development Issues. Idea Group Publishing, Hershey, PA, USA. pp. 89-106.

[Kr03] J. Krogstie (2003). Evaluating UML using a generic quality framework. In L. Favre (Ed.), UML and the

Unified Process. Idea Group Publishing, Hershey, PA, USA. pp. 1-22.

[KS03] J. Krogstie, A. Sølvberg (2003). Information systems engineering - Conceptual modeling in a quality

perspective. Trondheim, Norway, Kompendiumforlaget.

[LSS94] O. I. Lindland, G. Sindre, A. Sølvberg (1994). Understanding Quality in Conceptual modelling. IEEE

Software, 11(2), 42-49.

[MT86] G. Mayor, E. Trillas (1986). On the representation of some Aggregation Functions. In Proceedings of the

XVIth IEEE-International Symposium on Multiple-Valued Logic, pp. 110-114.

[MK97] R. Mesiar, M. Komorníková (1997). Aggregation operators. In Proceeding of the XI Conference on

Applied Mathematics „PRIM’96“. Novi Sad, pp. 193-211.

[Mil02] J.S. Mill (2002). A System of Logic, University Press of the Pacific, Honolulu.

[MK99] S. Milton, E Kazmierczak (1999). Enriching the Ontological Foundations of Modelling in IS. In C. N. G.
Dampney et al. (Eds.), IS Foundations - Ontology, Semiotics and Practice. Macquarie University, Sydney,
Australia.

[MKK98] S. Milton, E Kazmierczak, C. Keen (1998). Comparing Data Modelling Frameworks Using Chisholm's
Ontology. In: J.A. Bartoli (Ed.), Proceedings of the 4th European Conference on IS “ECIS'98”, June 1998,
Aix-en-Provence, France, Euro-Arab Management School. pp. 260-272.

 199

[Mor01] C. Moraga (2001). Neuro-fuzzy modeling between minimum and maximum. In Proceeding of the

Workshop on Computational Intelligence, Theory and Applications. Press Technical University of Niš,
Yugoslavia.

[Myl98] J. Mylopoulos (1998). Characterizing Information Modelling Techniques. In P. Bernus, K. Mertins, G.
Schmidt (Eds.), Handbook on Architectures of IS. Springer, Berlin, pp. 17-57.

[Nil00] J. F. Nilsson. A conceptual space logic. In E. Kawaguchi et al. (Eds.), Information Modelling and

Knowledge Bases XI, IOS Press/Ohmsha, Amsterdam, pp. 26-40. Available at:
http://www.imm.dtu.dk/~jfn/publications/conceptspaces.ps, [Accessed September, 2006].

[NM06] No Magic, Inc. (2006). MagicDraw UML 11.5 User manual. Available at:
http://www.magicdraw.com/main.php?ts=navig&NMSESSID=500a881a8816599a88224a0248272c6a&cm
d_show=1&menu=download_manual&NMSESSID=500a881a8816599a88224a0248272c6a, [Accessed
September, 2006].

[OB00] J.A. O’Brien (2000). Introduction to Information Systems: Essentials for the Internetworked Enterprise,
9th ed. Irwin/McGraw-Hill, New York.

[OMG05] OMG (2005). Unified Modeling Language: Superstructure version 2.0. Document formal/05-07-04,
Object Management Group. Avalaible at: www.omg.org/docs/formal/05-07-04.pdf, [Accessed September,
2006].

[Opd97] A. L. Opdahl (1997). Applying Semantic Quality Criteria to Multi-Perspective Problem Analysis
Methods. In E. Dubois, A.L. Opdahl, K. Pohl (Eds.), Proceedings of the Third International Workshop on

Requirements Engineering: Foundations of Software Quality „REFSQ'97“. June, Barcelona, Catalonia,
Spain. pp.49-66.

[Ovc98] S. Ovchinnikov (1998). On robust aggregation procedures. In B. Bouchon-Meunier (Ed.), Aggregation and

Fusion of Imperfect Informatikon, Physic-Verlag. pp. 3-10.

[PM96] J. F. Pane, B. A. Myers (1996). Usability Issues in the Design of Novice Programming Systems. Technical
Report CMU-CS-96-132, Carnegie Mellon University, School of Computer Science, Pittsburgh. Available
at: http://www-2.cs.cmu.edu/~pane/cmu-cs-96-132.html, [Accessed January, 2004].

[PW97] J. Parsons, Y. Wand (1997). Using Objects in Systems Analysis, Communications of the ACM, 40(12),
104-110.

[Pat90] M. Q. Patton (1990). Qualitative evaluation and research methods, 2nd ed. Sage Publications, Newbury
Park, CA.

[PW89] D. Paulson and Y. Wand (1989). An automated approach to IS decomposition. Technical Report. Working
paper 89-MIS-001, Management Systems Division, Faculty of Commerce and Business Administration,
University of British Columbia, Vancouver, British Columbia, Canada.

[PT77] L.J. Peters, L.L. Trip. Comparing Software Design Methodologies, Datamation, 23(11), 89-94.

[Pfe79] P.E. Pfeiffer (1979). Concepts of Probability Theory, 2nd edition, Dover Publications.

[QJ03] QStudio® for Java (2003). The Software Health Tool for Java. QA Systems BV. The Netherlands.
Available at: http://www.qa-systems.com/welcome.html, [Accessed January, 2004].

[Raj88] V. Rajlich, J. Silva (1988). Two object oriented decomposition methods. In Proceedings of the 5th

Washington Ada symposium on Ada. Tyson's Corner, Virginia, USA. pp. 171 – 176.

[Req03] Requirement Specification: Developer Portal (2003). The draft of the requirements specification

document, Beunited organisation. Available at:
http://www.beunited.org/content/files/pubs/Dev_Portal_Spec.pdf, [Accessed September, 2006].

[Rey81] J.C. Reynolds (1981). The essence of Algol. In Jaco W. de Bakker and J. C. van Vliet (Eds.), Algorithmic

Languages, North-Holland, Amsterdam, pp. 345-372.

[RG99] M. Rosemann, P. Green (1999). Enhancing the process of ontological analysis – the “Who cares”
dimension. In C. N. G. Dampney et al. (Eds.), Proceedings of the IS Foundations Workshop: Ontology,

Semiotics and Practices. Macquarie University, Sydney, Australia.

[RG02] M. Rosemann, P. Green (2002). Developing a Meta-Model for the Bunge-Wand-Weber Ontological
Constructs. IS, 27, 75-91.

[Rud04] A. Rudys (2004). Elementary-equivalence, Lecture 21. In M.Y. Vardi (Ed.), Logic in Computer Sciences
(course material). Department of Computer Science, Rice University. Available at:
http://www.cs.rice.edu/~vardi/comp409/2001/lec21.ps, [Accessed September, 2006].

[Saa99] M. Saaltink (1999). The Z/EVES 2.0 User's Guide. TR-99-5493-06a. ORA Canada. Available at:
http://nexp.cs.pdx.edu/bart/omse/omse522-winter2002/nfp/sw/z-eves/99-5493-06a-users.pdf, [Accessed
September, 2006].

[Sch60] B. Schweizer, A. Sklar (1960). Statistical metric spaces. Pacific J. Math, 10, 313-334.

[Sch83] B. Schweizer, A. Sklar (1983). Probabilistic metric spaces, North-Holland.

 200

[Sel94] A. H. Seltveit (1994). Complexity Reduction in IS Modelling. Phd. Thesis, Trondheim, Norway, IDT, NTH.

[Sil79] W. Silvert (1979). Symmetric summation: a class of operations on fuzzy sets. IEE Transactions on Systems,
Man and Cybernetics, 9, 659-667.

[SB98] R. P. S. Simão, A.D. Belchior (1998). Quality Characteristics for Software Components: Hierarchy and
Quality Guides. In A. Cechich, M. Piattini, A. Vallecillo (Eds.), Component-Based Software Quality:

Methods and Techniques. Lecture Notes in Computer Science, 2693, Springer-Verlag, p 184-206.

[Sin90] G. Sindre (1990). HICONS: A General Diagrammatic Framework for Hierarchical Modelling. Phd. Thesis,
Trondheim, Norway, IDT, NTH.

[Son92] X. Song (1992). Comparing Software Design Methodologies through Process Modelling. Technical Report
ICS-92-48, Department of Information and Computer Science, University of California, Irvine.

[SO91] X. Song X., L.J. Osterweil (1991). Comparing design methodologies through process modelling. In M.
Dowson (Ed.), Proceedings of the 1st International Conference on Software Processing. Los Alamtos, CA:
IEEE Computer Society. pp.29-44.

[SO92] X. Song X., L.J. Osterweil (1992). A Framework for Classifying Parts of Software Design Methodologies.
In R.W. Selby (Ed.), Proceedings 2nd Irvine Software Symposium IRUS. March 1992. pp. 49-68.

[Spi92] J.M. Spivey (1992). The Z Specification Language, 2nd. ed. Prentice-Hall.

[SS76] G.L.Jr. Steele, G. J. Sussman. Lambda (1976). The ultimate imperatyve. Memo 353, MIT AI Lab.
Available at: ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-353.pdf, [Accessed September, 2006].

[Sug74] M. Sugeno (1974). Theory of fuzzy integrals and its application. Phd. Thesis, Tokyo, Institute of
Technology.

[Tro02] W. M. K. Trochim (2002). Research Methods Knowledge Base. Cornell University. Available at:
http://www.socialresearchmethods.net/kb/, [Accessed September, 2006].

[Tr73] A.S. Troelstra (1973). Metamathematical Thesis of the Intuitionistic Arithmetic and Analysis. Lecture Notes

in Mathematics, 344, Springer-Verlag.

[Wan88] Y. Wand (1988). An ontological foundation for IS design theory. In B. Pernici and A. A. Verrijn-Stuart
(Ed.), Proceedings of IFIP WG8.4 Working Conference on "Office IS: The Design Process". Elsevier
Science, North-Holland.

[WSW99] Y.Wand, V.C. Storey, R. Weber (1999). An Ontological Analysis of the Relationship Construct in
Conceptual Modelling. ACM Transactions on Database Systems, Vol. 24, No. 4, December 1999, 494-528

[WW96] Y. Wand and R. Y. Wang (1996). Anchoring data quality dimensions in ontological foundations.
Communications of the ACM, 39(11), 86–95.

[WW89a] Y. Wand, R. Weber (1989). An ontological evaluation of systems analysis and design methods. In E.D.
Falkenberg, P. Lindgreen (Eds.), Information Systems Concepts: An In-depth Analysis. IOS Press, North-
Holland, Amsterdam. pp. 79-107.

[WW89b] Y. Wand, R. Weber (1989). A Model of Control and Audit Procedure Change in Evolving Data
Processing Systems. The Accounting Review, LXIV (1), 87–107

[WW90a] Y. Wand, R. Weber (1990). An Ontological Model of an IS. IEEE Trans. Software Eng., 16(11), 1281-
1291.

[WW90b] Y. Wand, R. Weber (1990). Mario Bunge’s Ontology as a Formal Foundation for IS Concepts. In P.
Weingartner, G.J.W. Dorn (Eds.), Studies on Mario Bunge’s Treatise. Rodopi, Atlanta, pp. 123-149.

[WW91] Y. Wand, R. Weber (1991). A Unified Model of Software and Data Decomposition. J. DeGross, I.
Benbast, G. DeSanctis, C.M. Beath (Eds.), Proceedings of the Twelfth International Conference on IS. pp.
101-110.

[WW93] Y. Wand, R. Weber (1993). On the Ontological Expressiveness of IS Analysis and Design Grammars.
Journal of IS, 3(4), 217-237.

[WW95] Y. Wand, R. Weber (1995). On the Deep Structure of Information Systems. Information Systems Journal,
5, 203-223.

[Web97] R. Weber (1997). Ontological Foundations of IS, Coopers & Lybrand Accounting Research Methodology,
Monograph No. 4, Melbourne.

[WZ96] R. Weber, Y. Zhang. An Analytical Evaluation of NIAM’s Grammar for Conceptual Schema Diagrams. IS

Journal, 6(2), 1996, p. 147-170.

[Woo96] J. Woodcock, J. Davies (1996). Using Z: specification, refinement, and proof. Prentice-Hall.

[Wo83] W.A. Woods (1983). What’s important about knowledge representation. Computer, 16(10), 22-27.

[Yag88] R. R. Yager (1988). On ordered weighted averaging aggregation operators in multi-criteria decision-
making. IEE Transactions on Systems, Man and Cybernetics, 18, 183-190.

 201

[Zim80] H.J. Zimmermann, P. Zysno (1980). Latent connectives in human decision making. Fuzzy Sets and

Systems, 4, 37-51.

 202

The List of Publications

Papers in the scientific journals, included into the ISI Master Journal list:

1. J. Gasperovic, A. Caplinskas (2006). Methodology to Evaluate the Functionality of Specification

Languages. Informatica, Vol. 17, Iss. 3. p. 309-330.

2. A. Caplinskas, J. Gasperovic (2005). Techniques to aggregate the characteristics of internal quality of an

IS specification language. Informatica, Vol. 16, Iss. 4. p. 519-540. Available at:

<http://www.vtex.lt/informatica/Contents.htm>.

Papers in other referred scientific journals:

3. J. Gasperovič (2006). Development of representative examples to evaluate IS specification language

functionality characteristics. Lithuanian Mathematical Journal, 46 (spec. no.), p. 97-102 (in Lithuanian).

4. J. Gasperovič, A. Čaplinskas (2005). Specification languages quality evaluation problems. Information

sciences, vol. 34, p. 268-271 (in Lithuanian).

5. J. Gasperovič, A. Čaplinskas (2005). Specific in aggregation of characteristics describing internal quality

of IS specification language. Lithuanian Mathematical Journal, 45 (spec. no.), p. 133-138 (in Lithuanian).

6. J. Gasperovič (2004). Specification language quality evaluation procedure. Lithuanian Mathematical

Journal, 44 (spec. no.), p.271-275 (in Lithuanian).

7. J. Gasperovič, A. Čaplinskas (2003). Comparative analysis methods in informatics. Lithuanian

Mathematical Journal, 43 (spec. no.), p. 223-227 (in Lithuanian).

8. J. Gasperovič, A. Čaplinskas (2003). Information systems specification languages comparative analysis

methods. Information sciences. vol. 26, p. 104-107 (in Lithuanian).

Papers in other reviewed periodical scientific publications:

9. A. Caplinskas, J. Gasperovic (2005). An approach to evaluate quality in use of IS specification language.

Frontiers in Artificial Intelligence and Applications, Vol. 118, p. 152-166. Available at:

<http://www.iospress.nl/>.

10. A. Caplinskas, J., Gasperovic (2004). A taxonomy of characteristics to evaluate specification languages.

Computer Science and Information Technologies (Acta Universitatis Latviensis), Vol. 672, p. 321-336.

Paper in international conference proceedings, included into the ISI Proceedings list:

11. A. Caplinskas, J., Gasperovic (2005). Functionality of IS specification language: concept, evaluation

methodology, and evaluation problems. IS Development. Advances in Theory, Practice and Education,

New York: Springer, p. 341-351. Available at:

<http://www.springer.com/sgw/cda/frontpage/0,11855,5-170-22-45084311-

detailsPage%253Dppmmedia%257CaboutThisBook%257CaboutThisBook,00.html>.

Papers in the proceedings of the local scientific conference:

12. J. Gasperovič, A. Čaplinskas (2003). Information systems specification languages quality evaluation. In

Proceedings of the Conference “Information Technologies 2003”, Kaunas: Technology, p. VI-1 - VI-10 (in

Lithuanian).

 203

APPENDIXES

APPENDIX 1. Taxonomy of Quality Characteristics

1 Functionality Characteristics of a linguistic system that bears on the
existence of the set of features required specifying properties
of a system under consideration.

1.1 Suitability Characteristics of a linguistic system that bears on ability to
express statements about potential systems in a particular
realm at a certain level of granularity.

1.1.1 Completeness Characteristic of a linguistic system that bears on its ability to
describe a system under consideration sufficiently and
exhaustively.

1.1.1.1 Semantic sufficiency Characteristics of a linguistic system that bears on its ability
to specify all “things” that may be necessary for analysis or
design of a system under consideration.

1.1.1.1.1 Ontological sufficiency Characteristics of a linguistic system that bears on its ability
to conceptualise (using ontological primitives provided by
linguistic system) any system under consideration.

1.1.1.1.2 Epistemological sufficiency Characteristics of a linguistic system that bears on its ability
to express epistemological primitives, (i.e. to define
conceptual primitives on the basis of a given set of
ontological ones and to combine defined concepts further in
order to form more complex concepts).

1.1.1.2 Expressibility Characteristic of a linguistic system that bears on its ability to
express any statement about any system under consideration.

1.1.1.3 Reasoning power Characteristic of a linguistic system that bears on its ability to
derive new statements about properties of system under
consideration.

1.1.1.4 Composability Characteristic of a linguistic system that bears on its ability to
compose language constructs and features together.

1.1.2 Expressive adequacy Characteristics of a linguistic system that bears on its ability
to formulate statements about any system under consideration
in adequate terms and express them with required degree of
precision.

1.1.2.1 Ontological adequacy Characteristic of a linguistic system that bears on its ability to
express its ontological commitments within this system itself
(i.e. use adequate terms).

1.1.2.2 Epistemological adequacy Characteristic of a linguistic system that bears on its ability to
express epistemological primitives directly (i.e. use such
epistemological schemes as generalisation, aggregation, etc.)

1.1.2.3 Selective power Characteristic of a linguistic system that bears on its ability to
distinguish details with the needed degree of precision. (i.e.
describe two different instances of a concept and two
properties of an instance of a concept in a distinguishable
way).

1.1.2.4 Generalitive power Characteristic of a linguistic system that bears on its ability to
describe system at different levels of granularity (i.e. suppress
irrelevant details while preserving essential properties of the
system).

1.2 Flexibility Characteristics of a linguistic system that bears on the extent
to which a language can be adjusted to specify preliminary
not intended properties.

1.2.1 Universality Characteristic of a linguistic system that bears on the ability to
apply its constructs in different realms (i.e. real-world
systems, IS, software systems, etc.).

1.2.2 Adaptability Characteristic of a (general-purpose) language (both linguistic
system and representation system) that bears on its ability to
configure syntax and semantics to in order to adapt this
language for arbitrary realm.

 204

1.2.3 Extensibility Characteristic of a (general-purpose) language (both linguistic
system and representation system) that bears on its ability to
extend this language with new features.

2 Reliability Characteristics of a linguistic system that bear on its ability to
ensure correctness of specifications.

2.1 Preventability of errors Characteristic of a language (both linguistic system and
representation system) that bears on the number of errors in
the specification.

2.1.1 Semantic unambiguity Characteristic of a linguistic system that bears on unambiguity
of the concepts of language.

2.1.2 Notational unambiguity Characteristic of a representation system that bears on
unambiguity of the structure of language constructs.

2.1.3 Distinguishibility Characteristic of a representation system that bears on
absence of subtle distinctions in syntax, which may be
overlooked or confused.

2.1.4 Simplicity Characteristic of a language (both linguistic system and
representation system) that bears on the comprehensibility of
language.

2.1.4.1 Conceptual simplicity Characteristic of a linguistic system that bears on the
comprehensibility (including conceptual cleanliness) of the
concepts defined by language.

2.1.4.2 Functional simplicity Characteristic of a linguistic system that bears on a number of
features of language.

2.1.4.3 Representational simplicity Characteristic of a representation system that bears on the
comprehensibility (including syntactical transparency) of the
constructions of language.

2.1.5 Semantic power Characteristic of a linguistic system (level of language) that
bears on the semantic power of the concepts defined by this
system.

2.1.6 Orthogonality Characteristic of a linguistic system that bears on the degree
in which the concepts of the language interfere with each
other.

2.1.7 Uniformity Characteristic of a language (both linguistic system and
representation system) that bears on the degree of internal
standardisation of the syntax (syntactical uniformity) and the
semantic (semantic uniformity) of the construction of the
language.

2.2 Verifiability Characteristic of a linguistic system that bears on the ability
(including executability) to check correctness of produced
specifications.

3 Efficiency Characteristics of a linguistic system and a representation
system that bear on the amount of efforts needed to produce
specification.

3.1 Expressive efficiency Characteristic of a linguistic system that bears on the efforts
necessary to express the statements about the phenomena.

3.2 Representational efficiency Characteristic of a representation system that bears on efforts
necessary to represent the statements about the phenomena.

3.3 Semantic power Characteristic of a linguistic system (level of language) that
bears on the semantic power of the concepts defined by this
system.

3.4 Orthogonality Characteristic of a linguistic system that bears on the degree
in which the concepts of the language interfere with each
other.

3.5 Permissiveness Characteristic of a language (both linguistic system and
representation system) that bears on its ability to express and
represent things in several different ways.

3.6 Viscosity Characteristic of a language (both linguistic system and
representation system) that bears on the possibility to narrow
the change impact on the produced specification.

3.7 Technological efficiency Characteristics of a language (both linguistic system and
representation system) that bear on the technological
appropriateness of a language.

3.7.1 Manageability Characteristics of a language (both linguistic system and

 205

representation system) that bear on appropriateness of the
language to deal with large and complex specifications.

3.7.1.1 Decomposability Characteristic of a language (both linguistic system and
representation system) that bears on the possibility to divide
the produced specification into relatively autonomous and
independent subparts.

3.7.1.2 Genericity Characteristic of a linguistic system that bears on the
possibility to use generic types.

3.7.2 Processability Characteristic of a language (both linguistic system and
representation system) that bear on appropriateness of the
language to manipulate specifications by software.

4 Usability Characteristics of a linguistic system and a representation
system that bear on the audiences’ effort to understand and to
learn a language.

4.1 Understandability Characteristics of a linguistic system that bear on the
audiences’ effort to understand its conceptualisation.

4.1.1 Ontology Characteristic of a linguistic system that describes language
ontology.

4.1.2 Paradigm Characteristic of a linguistic system that describes
mathematical theory beyond the language.

4.1.3 Naturalness Characteristic of a linguistic system that bears on the
correspondence between the language ontology and the
common sense.

4.1.4 Semantic unambiguity See 2.1.1
4.1.5 Notational unambiguity See 2.1.2
4.1.6 Distinguishibility See 2.1.3
4.1.7 Uniformity See 2.1.7
4.2 Learnability Characteristics of a linguistic system and a representation

system that bear on the audiences’ effort for learning of
language application.

4.2.1 Simplicity See 2.1.4
4.2.2 Semantic power See 3.3
4.2.3 Naturalness See 4.1.3
4.2.4 Uniformity See 2.1.7
4.2.5 Commonality Characteristic of a language (both linguistic system and

representation system) that make the language adhere to wide-
accepted standards or conventions.

 206

APPENDIX 2. Graphical Representation of the Taxonomy of

Quality Characteristics

Denotation:

Internal quality and its sub-characteristics

Internal quality

Functionality

Reliability

Usability

Efficiency

Functionality and its sub-characteristics

 207

Reliability and its sub-characteristics

Usability and its sub-characteristics

 208

Efficiency and its sub-characteristics

