VILNIUS UNIVERSITY

Albertas
JURGELEVICIUS

Hybrid distributed computing
sharing platform

SUMMARY OF DOCTORAL DISSERTATION

Technological Sciences,
Informatics Engineering (T 007)

VILNIUS 2021

This dissertation was prepared in 2016 — 2020 at Vilnius University.
The research was supported by the Research Council of Lithuania.

Academic supervisor:

Prof. Habil. Dr. Leonidas Sakalauskas (Vilnius University,
Technological Sciences, Informatics Engineering — T 007).
Academic consultant:

Dr. Virginijus Marcinkevi¢ius (Vilnius University, Technological
Sciences, Informatics Engineering — T 007).

This doctoral dissertation will be defended in a public meeting of the
Dissertation Defence Panel:

Chairman — Prof. Habil. Dr. Julius Zilinskas (Vilnius University,
Technological Sciences, Informatics Engineering — T 007).
Members:

Prof. Dr. Saulius Gudas (Vilnius University, Technological
Sciences, Informatics Engineering — T 007),

Prof. Dr. Vacius Jusas (Kaunas University of Technology,
Technological Sciences, Informatics Engineering — T 007),

Prof. Dr. Dalius MaZeika (Vilnius Gediminas Technical University,
Technological Sciences, Informatics Engineering — T 007),

Prof. Dr. Pilar Martinez Ortigosa (The University of Almeria,
Spain, Technological Sciences, Informatics Engineering — T 007).

The dissertation shall be defended at a public meeting of the
Dissertation Defence Panel at 12 p.m. on 16™ of December 2021 in
Room 203 of the Institute of Data Science and Digital Technologies
of Vilnius University. Address: Akademijos g. 4, LT-04812, Vilnius,
Lithuania.

The summary of the doctoral dissertation was distributed on 15" of
November 2021.The text of this dissertation can be accessed at the
library of Vilnius University, as well as on the website of Vilnius
University: www.vu.lt/lt/naujienos/ivykiu-kalendorius

VILNIAUS UNIVERSITETAS

Albertas
JURGELEVICIUS

Hibridiniy paskirstyty skaiCiavimy
dalijimosi platforma

DAKTARO DISERTACIJOS SANTRAUKA

Technologijos mokslai,
Informatikos inZinerija (T 007)

VILNIUS 2021

Disertacija rengta 20162020 metais Vilniaus universitete.
Mokslinius tyrimus rémé Lietuvos mokslo taryba.

Mokslinis vadovas:
prof. habil. dr. Leonidas Sakalauskas (Vilniaus universitetas,
technologijos mokslai, informatikos inzinerija — T 007).

Mokslinis konsultantas:
dr. Virginijus Marcinkevi¢ius (Vilniaus universitetas, technologijos
mokslai, informatikos inZinerija — T 007).

Gynimo taryba:

Pirmininkas — prof. dr. Julius Zilinskas (Vilniaus universitetas,
technologijos mokslai, informatikos inzinerija — T 007).

Nariai:

prof. dr. Saulius Gudas (Vilniaus universitetas, technologijos
mokslai, informatikos inzinerija — T 007),

prof. dr. Vacius Jusas (Kauno technologijos universitetas,
technologijos mokslai, informatikos inzinerija — T 007),

prof. dr. Dalius Mazeika (Vilniaus Gedimino technikos
universitetas, technologijos mokslai, informatikos inzinerija — T 007),
prof. dr. Pilar Martinez Ortigosa (Alamerijos universitetas,
Ispanija, technologijos mokslai, informatikos inzinerija — T 007).

Disertacija ginama vieSame Gynimo tarybos posédyje 2021 m.
gruodzio mén. 16 d. 12:00 val. Vilniaus universiteto Duomeny mokslo
ir skaitmeniniy technologijy instituto 203 auditorijoje.
Adresas: Akademijos g. 4, LT-04812 Vilnius, Lietuva.

Disertacijos santrauka iSsiuntinéta 2021 m. lapkricio 15 d. Disertacija
galima perzidiréti Vilniaus universiteto bibliotekoje ir VU interneto
svetaingje adresu: https://www.vu.lt/It/naujienos/ivykiu-kalendorius

INTRODUCTION
Research field and relevance of the problem

Many modern companies and organisations are interested in collecting
and processing all available data to find various solutions to business
problems and make the best business decisions. Due to the large
amounts of data, it is no longer possible to apply traditional data
management methods and data analysis using high-performance
computational resources. Connecting to many various data resources
may eventually exceed the company's internal IT infrastructure
capacity. Companies are usually required to further increase
investments for their internal IT infrastructure development or to
purchase and integrate third-party cloud computing solutions. Since
internal IT infrastructure development is an expensive solution, it is
often easier to find external companies with the necessary
infrastructure and buy their offered solutions for an affordable price.

Distributed computing solutions allow integration of internal IT
resources for a distributed computing platform easily. However,
companies usually choose other alternatives, such as cloud computing
services. Cloud computing services provide easy to manage high-
performance computing resources and are offered for affordable prices
by well-known companies, such as:

e Microsoft',

e Amazon’,

e Google®,

e Rackspace®.

! http://azure.microsoft.com
2 http://aws.amazon.com

3 https://cloud.google.com

4 http://www.rackspace.com

Many public distributed computing projects allow the allocation of
available computing resources. However, studies show that small and
medium-sized enterprises (SMEs) consider cloud computing services
provided by third parties to be more secure than internal solutions.
Furthermore, there are no suitable platforms that would allow SMEs
to use internal IT resources to meet their business needs. There are no
solutions to combine internal IT infrastructure (including employee
PCs) into a reliable distributed computing platform.

One of the main reasons preventing companies from using internal
IT infrastructures for distributed computing tasks is caused by the
straggling task problem (also known as a long-tail problem).
Distributed computing tasks consist of several smaller tasks. Such
tasks are distributed in parallel to different machines to reduce the time
required to execute all the tasks. However, a straggling task problem
may occur during task execution in distributed hybrid computing
networks. The straggling task problem is caused by unusually slow
tasks compared to the average task execution time. Such tasks are
called stragglers. An unusually slow task is usually identified as any
task that has a 50% longer completion time than average. Stragglers
significantly impact the overall task completion time, increase
resource utilisation and decrease the system efficiency. As a result,
this problem reduces the system availability and adds additional
operating costs.

The straggling task problem has led to an increase in the number
of studies to identify causes, research task straggler prediction, and
avoidance methods. Straggler management methods can be divided
into two groups: detection and avoidance. Such methods are based on
simulations, replication, load balancing, and task scheduling.
However, most methods are designed for specific tasks or systems.

The aim and objectives of the research

The aim of the research is to create a hybrid distributed computing
platform that solves the straggling task problem in heterogeneous

6

computing networks more efficiently than the existing solutions. The
research objectives are:
e Assess the need and application possibilities of the public
distributed calculation model.
e Evaluate the existing public distributed computing model-
based platforms.
e Evaluate the existing task scheduling algorithms for
distributed hybrid computing platforms.
e Create the architecture of a distributed hybrid computing
platform and experimentally evaluate the efficiency of the
platform.

The research object and methods

Research objects:

e Public distributed computing.

e Straggling task problem.

e Task scheduling algorithms.

The main research methods are used in the dissertation — review
and experiment. The research involved using generated data sets,
monitoring computers used for calculations and their actions using
systems surveillance and computer modelling methods.

Scientific novelty

The novelty and relevance of this work:

1. Systematically examined the application of task distribution
algorithms in distributed hybrid heterogeneous computing
platforms.

2. New architecture of the distributed hybrid computing platform
proposed.

3. New task scheduling method for distributed hybrid computing
platforms proposed.

4. Proposed task scheduling method allows using task stalling

buffer in distributed computing systems more than two
clusters.

Practical significance of the work

The practical significance of the work is:

L.

Task stalling buffer that solves the straggling task problem in
a hybrid distributed computing model was applied.

New task scheduling algorithm was developed and integrated
it into a distributed hybrid computing platform. This method
reduces the total time required to complete task queues. Based
on this method, a platform was developed that combines a
public cluster and a private cluster into a single hybrid
computing platform.

Hybrid distributed computing platform that operates in
heterogeneous computing networks was developed.

Approval of the results

The results of the dissertation research have been published in 3

scientific articles:

L.

Jurgelevicius, A., Sakalauskas, L. BOINC from the View
Point of Cloud Computing, CEUR Workshop Proceedings,
1973, 2017, 61-66.

JurgeleviCius, A., Sakalauskas, L. Big data mining using
public distributed computing, Information technology and
control. ISSN 1392-124X, eISSN 2335-884X, 2018, vol.
47(2), p. 236-248, DOI: 10.5755/j01.itc.47.2.19738.
Jurgelevicius, A., Sakalauskas, L., Marcinkevicius, V. Task
stalling for a batch of task makespan minimisation in
heterogeneous multigrid computing. Computational Science
and Techniques, 2021, 8, 631-638, DOI:
10.15181/csat.v8.2103.

The author participated and presented the results in 2 national and

4 international scientific conferences:

1.

Republican conference on “Challenges of Information
Technologies in the Creative Economy” (2017, Lithuania).
Report topic: “Application of BOINC framework for big data
research”.

International conference on “BOINC: Fundamental and
Applied Science and Technology (BOINC: FAST 2017)”
(2017, Petrozavodsk, Russia). Report topic: “BOINC from the
view point of Cloud computing”.

XVIII international scientific conference “Computer
Scientists Days - 2017 (2017, Kaunas). Presentation topic:
“Big Data mining using public distributed computing”,
Republican conference on “Data Analysis Methods for
Software Systems” (2017, Druskininkai). Poster topic:
“BOINC Based Enterprise Desktop GRID”.

VII international conference on “Open International
Conference on Electrical, Electronic and Information
Sciences” (2020, Lithuania). Report topic: “Distributed
Hybrid Cloud Controller for Runbook Operations”.

4th international conference on “Innovations and Creativity”
(2020, Latvia). Report topic: “Task Stalling Buffer
Application in Grid Computing”.

Structure of the dissertation

Section 1 provides an overview of the distributed computing model,

existing private and volunteer computing solutions, and cloud
computing alternatives. Furthermore, this section presents the cloud

computing service issues, outlining the need for alternative solutions
such as public distributed computing. Section 2 overviews the existing

distributed computing platforms and their applications. This section

presents and examines the potential use of the BOINC framework to
replace cloud computing services. Finally, this section outlines

9

distributed computing platform adoption issues and possible
improvements. Section 3 presents the results of the dissertation: a
platform for hybrid distributed computing, and a modification of the
task distribution algorithm. In addition, hierarchical and non-
hierarchical task distribution algorithms are reviewed, which are
suitable to use in a hybrid distributed computing platform and solve
the straggling task problem. Section 4 presents the computer
modelling and experiment results. Finally, the conclusions of the
dissertation are presented.

This work contains 116 pages that include 43 figures and 12 tables;
the list of references consists of 114 sources.

1. DISTRIBUTED COMPUTING MODEL
1.1 Distributed computing

Distributed computing is a computer processing method in which
different parts of a program run simultaneously on multiple computers
communicating over a network. Distributed computing is a type of
partial or otherwise parallel computing. However, the latter term better
defines computing in which different parts of a program run
simultaneously on multiple processors that are part of the same
computer. Although both types of computation require the program to
be divided into segments (parts that run simultaneously), distributed
computing still needs to evaluate the different environments in which
the individual parts of the program operate. For example, individual
computers will likely have different file systems and different
hardware components.

1.2 Public distributed computing

Public distributed computing is a computational method that uses
multiple public computers in parallel to perform computations.
Communication is maintained over a network using a client-server

10

architecture, where client nodes offer their available resources to
receive new tasks from the server. The calculations are usually
performed in parallel, without affecting calculations performed on
other nodes. A distributed computing system’s primary goal is to
connect computing resources into a dynamic, open network. One of
the advantages of this model over cloud computing is that the
infrastructure required for public distributed computing can be fully
deployed and fully managed by an organisation with an IT
infrastructure. In this way, costs can be reduced by freeing businesses
from the need to purchase cloud computing services. Also, it protects
against some of the problems that arise in protecting data privacy when
using cloud computing services.

The Berkeley Open Infrastructure for Network Computing
(BOINC) is an open-source middleware software system that supports
volunteer computing and grid computing. BOINC is an excellent
example of such a computational method, where tasks that require
significant computational resources are divided into smaller tasks,
which are then distributed across multiple computers.

1.3 Volunteer computing

Volunteer computing is based on the public distributed computing
model. This method uses a client-server model, where client nodes
provide their available free resources to the server managing the
project tasks. This model depends on people and organisations
donating CPU time, networking, and storage capacity from the
computers that belong to them. In this way, computing resources can
be combined into an open, dynamic network where new nodes can be
easily added and the existing ones removed. Such infrastructure has
no additional costs and can even reduce the existing ones. Thus, this
model offers significant advantages. Also, an infrastructure based on
a distributed computing model can be created in a closed network. In
this way, the infrastructure is limited to nodes stored on the
organisation’s premises. If necessary, the calculation network can be

11

fully controlled and developed by the company’s employees. One of
the most important aspects of volunteer computing-based systems is
attracting and persuading volunteers to participate. The most popular
way to attract volunteers is by rewarding them with points for
participation. The majority of these projects use the BOINC platform,
which will be reviewed in Section 2.

1.3.1 Wikinomics

In the business environment, volunteer or crowd computing can be
seen as outsourcing business processes to third parties. This process is
also called Wikinomics. The difference between traditional business
processes and such mass collaboration is that instead of having an
organised business body explicitly designed to perform a unique
function, mass collaboration depends on individual free agents
brought together to improve business operations. This shows that mass
collaboration and volunteer computing in the business environment
are not new concepts. These methods are applied in business, and there
are platforms for this, which will be reviewed in the following
sections.

1.3.2 Extension of the volunteer computing model

Numerous research projects have been carried out to investigate how
to estimate and obtain the necessary amount of volunteer computing
resources to perform the desired computations. One of them was
presented in the EU FP7 EDGI project. The project combines BOINC
and XtreemWeb desktop clusters with cloud computing services. This
expands clusters with new on-demand resources, making this solution
similar to a SaaS cloud. System owners do not have to incur costs for
the additional resources as the volunteers provide them. Also, such a
solution improves response time in systems using a volunteer
computing model. There are more similar studies, where the volunteer

12

computing cluster resources are supplemented with resources from
cloud computing services.

Clouds@home is another cloud computing system based on
volunteer computing. This system is considered a new form of cloud
computing. The project’s goal was to create a small-scale and low-cost
cloud computing infrastructure by combining cloud and volunteer
computing models. From volunteer computers, it creates an
infrastructure similar to that of cloud computing services. The idea is
based on virtualisation technology in volunteer computing resources,
a method called “application sandboxing”. It isolates the program
inside the virtual machine (VM) and uses a wrapper to run the VM and
manage the programs running on it.

Despite efforts to improve and expand this technology, volunteer
computing is still not always considered the best way to solve resource
demand problems. However, the decision does not necessarily have to
be based on volunteers. It may be difficult or even inappropriate to try
to attract computational resources from the outside in some cases.
Datasets may contain confidential data, meaning that resource
utilisation solutions should not rely solely on volunteer computing and
should either integrate with other platforms or apply some data
protection techniques.

1.4 Private distributed computing

The private distributed computing model wuses client-server
architecture and is designed for achieving high utilisation and
performance using internal resources. Private distributed computing is
the most suitable model for enterprises and organisations because it
provides high-quality service, performance, and data security.

This model is also used in cloud computing. Data security in cloud
computing is more complicated than data security in traditional
information systems. Research shows that cloud computing provides
an increased risk level because essential services are often purchased
from third parties, making it more difficult to ensure data security and

13

privacy, ensure data and service availability, and verify compliance.
Emerging new technologies, such as the cloud of things, will create
new opportunities for business and increase the risk of attacks. It is
necessary to protect data from unauthorised access or attacks by users,
such as denial of service, data modification or forgery. First and
foremost, user security issues must be addressed to make cloud
computing suitable for private users and businesses, making the cloud
computing environment reliable. This is the most important condition
for winning user confidence for adopting this technology.

1.5 Hybrid distributed computing

Data has become one of the most critical and valued assets in today’s
rapidly changing business world. Organisations collect and use data to
evaluate key performance indicators, make informed decisions, and
set their own goals. Useful data can help find problems, increase
business efficiency, find new opportunities, and stay ahead of the
competitors. Due to the ongoing transformation of industrial
production through digitalisation (Industrial 4.0 Strategic Initiative),
the amount of data tends to increase.

Large companies typically solve hardware capacity issues by
upgrading existing or purchasing new servers and hiring additional
staff to maintain the systems. Small and medium-sized enterprises
generally do not have the financial capacity to make such investments.
Small companies purchase external cloud computing services through
various service subscriptions or on-demand service schemes in many
cases. Studies show that this makes the volunteer computing model
seem unreliable and too difficult to adopt.

While the volunteer computing model can reduce service costs, it
also lacks reliability. The required number of volunteers may not
always be available, or they will not always perform the assigned
tasks. Also, private data protection can cause additional problems.
Personal data privacy issues are particularly relevant now. As of May

14

25, 2018, companies and organisations must comply with the rules of
the General Data Protection Regulation in the European Union.

That is why at present we encounter the concept of distributed
cloud, which is one of Gartner’s top 10 strategic technology trends for
2020. Distributed cloud is the distribution of public cloud services
across different geographic locations. Although such services are not
located in physical data centres, they are still controlled and
supervised by the provider. In addition to the services provided by a
private cluster, this technology also offers the advantages of public
cloud computing services.

Despite the advantages, the distributed hybrid cloud computing
model poses a variety of challenges. One of such problems is task
scheduling and execution since it is necessary to maintain an optimal
workload between clusters. The existing task scheduling algorithms
cannot balance the workload without any additional information about
the tasks (e.g., task size, quantity, and incoming task flow). Ensuring
the security of the data and systems is also a significant challenge as
data is distributed between different devices, including servers,
personal computers, and various mobile devices such as wireless
sensor networks and smartphones.

1.6 Conclusions

The following conclusions were reached:

1. Literature review showed that the BOINC platform is widely
used and is a recommended platform for studying big data
using public distributed computing.

2. Literature review showed that to solve public distributed
computing platforms' problem of heterogeneity in
computational resources, it is necessary to examine the
architectures and applications of hybrid distributed computing
platforms.

15

2. DISTRIBUTED COMPUTING PLATFORMS AND
APPLICATIONS

2.1 Public distributed computing platforms

There are various publicly available computing solutions:
CharityEngine, GridMP, Xgrid, XtremWeb. However, the most
widely and actively used solution is called BOINC. BOINC is a high-
performance, large-scale computing platform (thousands or millions
of computers can participate in computations). It can run virtualised,
parallel, GPU-based applications. Also, it can perform data
intelligence tasks employing user devices or enterprise servers.
BOINC performs calculations only when the central processing unit
(CPU) is not in use. This solution allows organisations to use existing
employee computer resources without disrupting ongoing work
processes. As the computer processors of the company’s employee
computers are underused 99% of the time, this solution can solve the
need for additional computing resources.

2.1.1 Public distributed computing platform BOINC

BOINC is the most popular and considered almost standard software
for volunteer computing projects. BOINC is a platform designed for
volunteer and cluster computing. This solution is ideal in cases where
affordable access to significant computing resources is required, and
projects have high public interest. BOINC projects are usually
designed to solve complex scientific problems. Such projects use the
resources provided by volunteers, so project owners need to gain
public trust and interest. This is usually done by presenting that the
project is trustworthy. BOINC is based on a client-server architecture
and can be used as an example to show how a publicly distributed
computing model works.

16

2.1.2 BOINC adoption issues

Unlike cloud computing, services based on the public distributed
computing model are less reliable. This is due to the nature of the
model. The computers involved in the computations may become
unavailable at any moment, and there is no way of knowing how many
computational resources will be available. Therefore, it is not possible
to determine how long a particular task will take. It is also not known
whether the resources available at one time are sufficient to complete
the work in the required time. This type of work in a business
environment with strict project schedules is not acceptable.
Numerous studies have been published addressing these issues and
examining the combination of volunteer and cloud computing as
possible improvements or extensions to existing projects, such as
virtualisation, resource capacity and cost estimation methods.

2.1.3 Study of resource availability and energy consumption

A 28-day experiment using two randomly selected computers from
different organisations (organisation A and B) was performed to prove
the resource availability and cost reduction claims. BOINC clients
were installed on each computer and completed the tasks assigned to
them by the SETI@home project for two weeks. During that time,
power consumption and CPU idle measurements were taken using the
Performance Monitor (distributed with the Microsoft Windows 10
operating system) and an electronic power meter. The process was
then repeated without any BOINC projects. During the experiments,
workers used both computers to perform work-related tasks. As shown
in Table 1, Figures 1 and 2, computers perform very little computation
and waste available resources.

17

Table 1 Resource and power consumption statistics.

BOINC project CPU idle time Power
consumption
A | Not running 98.77% 16.61 kWh
SETI@home 65.23% 22.03 kWh
B | Not running 83.49% 1 kWh
SETI@home 26.86% 2.09 kWh
100% - — e e =S TSSoe—o —
80%
60%
40%
20%
0%
9852833388833 8853
5% %% %55 85§ 55§ 3
~ ~ ~ ~ ~ ~ M~ ~ ~ ~ ~ ~ ~ ~
S R IIIEREEERERE R E
------- 17:00-8:00 -------8:00 - 17:00 Vidurkis

Fig. 1 CPU idle time without any BOINC project tasks running in organization A.

100% . .
\ ™
A \ y SO
80% - @ _eemeeee__ e/ A I N
- 1 y
PR I 3\ ¥ | LR
’ 3 1 \
60% f \
L F] \
! AN v
40% / N\ \\\] \
_____________ 1 \\ \\ ’I,'
q
20% N
N\ !
0%
o — (oV] (a9] < LN O ~ (o] (o] o — o~ o <
i i — — — — — — — — [g\] o (o] o [o\]
]] ']]] ']] '))) ')
— — — - - — - — — - — — - - -
@ 22 QP Q2 Q@ Q2 < Q@ @ Q@ <@ Q9
~ M~ ~ ~ ~ ~ ~ ~ M~ ~ ~ ~ ~ ~ ~
- — - - — - - - — - - — - - -
O O O O O O O O o o o o o o o
o~ o~ (o] o~ o~ o~ o~ o~ o~ (o] o~ o~ o~ (o] o~

------- 17:00-8:00 -------8:00-17:00 Vidurkis

Fig. 2 CPU idle time with SETI@home project tasks running in organization A.
18

Although few computers were involved in the experiment, the
results suggest that such a solution has advantages. Employees did not
use computer resources, which allowed for additional calculations at
a low cost. Also, the calculations performed did not disrupt any work
in progress. This allows us to conclude that organisations can perform
additional big data mining and other distributed computing tasks using
a public distributed computing platform.

2.2 Private distributed computing platform Apache Mesos

Apache Mesos is one of the cluster resource management platforms.
It can manage up to 50,000 (emulated) nodes and has a surplus of less
than 4%. Apache Mesos supports a variety of task schedulers, such as
Apache Chronos. Apache Chronos is responsible for distributing tasks
based on their schedules and dependencies. However, more and more
raw tasks can cause a task scheduler error. The proposed hybrid
distributed computing platform solves this problem by limiting the
number of new incoming tasks to the Apache Mesos cluster’s number
of available resources. It should also be noted that Apache Chronos
and Apache Mesos require a secure network environment.

2.3 Software virtualisation

Software virtualisation is a technology that hides the physical resource
layer of the system from the operating system. In a heterogeneous
environment, software virtualisation allows one to perform the same
tasks on multiple computer architectures and different operating
systems.

There are many different software virtualisation technologies:
Docker, Kubernetes, Oracle VM VirtualBox, QEMU, VMware, and
many more. The proposed hybrid distributed computing platform uses
Docker and Oracle VM Virtual Box for software compatibility with
Apache Mesos, Apache Chronos and BOINC.

19

2.4 Security issues

Both public distributed computing and cloud computing models raise
similar security concerns, which include:

e system availability,

e data and system integrity,

e user authentication,

e data backup and recovery,

e ensuring data confidentiality,

e privacy and access control.

Distributed computing and cloud computing models have many
common problems. Many of them are already addressed in the cloud
computing model. However, security is still the main challenge in
volunteer computing. BOINC uses two less privileged accesses.
However, malicious programs can evade this surveillance.

Research shows that businesses and organisations are interested in
using external services, such as cloud computing, as long as there is
no serious threat to data security. However, services should be located
in the same country or trusted geographical area as the service user.

2.5 Conclusions

The results of the performed research and literature review allow us to
draw the following conclusions:

1. Big data mining tasks can be carried out at a very low cost
using the available IT infrastructure.

2. Public distributed computing model is capable of processing
large amounts of data without interfering with other ongoing
work processes.

3. Development of a public distributed computing platform can
be summarised and linked to the solution of the following
problems:

a. the computers involved in the calculations have
different architectures,

20

b. the computers involved in the calculations have
different performances,
c. the computers involved in the calculations may
become inaccessible at any time,
d. the list of tasks and the times of the tasks are not
always known in advance.
No public distributed computing platform processes big data
without using task replication or task size information to solve
the straggling task problem in heterogeneous distributed
computing networks.

3. STRAGGLING TASK PROBLEM AND SOLUTIONS

3.1 Straggling task problem causes

The leading cause of straggling task problem jams is task resource

contention. This reason becomes particularly relevant when resources
are heterogencous. However, tasks can also get stuck due to resource

failure and other reasons. There are 8 reasons for causing the
straggling task problem:

L.

NNk WD

data abstraction,

CPU utilisation,
scheduling,
inaccessible local disk,
data skew,

resource contention,
task execution,

faults.

3.2 Straggling task problem solutions

Straggling task problem solutions can be divided into two categories:
methods for detecting and avoiding stragglers (Fig. 3).

21

Straggler detection methods include various methods of modelling,
historical data analysis, and real-time system monitoring. These
methods are not suitable when there is no information about the tasks
to be performed. Task replication itself can cause the straggling task
problem in heterogeneous computing networks. Task replication and
load management techniques also require information about the
average task execution time. Therefore, the task scheduling method is
used for the proposed hybrid distributed computing platform to avoid
the straggling task problem.

Straggler Management
Techniques

[

| Straggler Detection | I Straggler Mitigation |

| Online | | Load Balancing | | Replication | | Scheduling |

Fig. 3 Straggling task problem solutions.

3.3 Task scheduling algorithms

3.3.1 Hierarchical task scheduling algorithms

There are many existing hierarchical task scheduling algorithms.
However, they assume that the task flow and system-wide service
capability always remain stable, always available to run at the
scheduled task run time or use task replication. The proposed method
of task scheduling using a task stalling buffer differs from current
solutions since it is designed to operate in a heterogeneous
environment without any simulation results or task replication.
Furthermore, the proposed method can operate without requiring any
additional information about the tasks.

22

3.3.2 Distributed task scheduling algorithms

This section provides an overview of widely used, mutually
independent task scheduling algorithms. Some of them are also used
for big data research tasks on Facebook, Yahoo, Hadoop. There are at
least five well-known task planning algorithms:

e Fair-share scheduling,

e FIFO,
e (Capacity scheduler,
e LATE,

e Round-robin.

The only algorithm that can distribute the stream of dynamic tasks
in a heterogeneous environment between two clusters is FIFO. Other
well-known task scheduling algorithms, such as Min-min, Min-max,
MCT, and Suffrage algorithms are not suitable because these
algorithms require a list of all tasks and nodes in advance. Algorithms
such as User Defined Assignment are also unsuitable because tasks
are assigned in a strict order to the machines where the tasks are
expected to be performed the quickest, without estimating whether or
not those resources are available.

3.3.3 Task stalling buffer

The task stalling buffer (Fig. 4) improves the task list’s execution time
in queuing systems with two heterogeneous servers. The task stalling
buffer reduces the load on the slow server by redirecting more tasks to
the fast server. If the fast server is busy, new tasks are added to the
stalling buffer. If the buffer is full, then the slow server receives the
task.

This method can be applied to improve the distribution of tasks
between the two clusters. It can be assumed that a private cluster will
always complete the tasks faster than a public cluster. Therefore, a task
stalling buffer can be used to reduce the number of tasks assigned to a
public cluster. This reduces the time required to complete tasks and
improves the reliability of the services provided by the platform.

23

K

M
- b
IIIIIWIIII}I%

Fig. 4 Queuing system with task stalling buffer.

Here, M is the buffer size for storing new tasks, K is the task
stalling buffer size, y; is the fast channel efficiency, pu, is the slow
channel efficiency, 1 is the fast channel, 2 is the slow channel. Then
the task stalling buffer length K can be expressed as:

K=r-(1-q, (D

where 1 is the ratio between fast and slow channel efficiencies and
q is the task execution efficiency:

r =ﬂ,
Uz

Cc

1= tm-p,y’

where c is the number of completed tasks, ¢ is the sum of the task
execution times, m is the number of fast channel nodes, and y; is the
fast channel efficiency:

:ul = Z_la (2)
1
HZ = b_ia (3)

where a, is the number of tasks performed using the fast channel
and b, is the time required to complete those tasks; a, is the number
of tasks performed using the fast channel and b, is the time required
to complete those tasks.

24

3.34 Task stalling buffer in multichannel systems

The task stalling buffer can be applied in a very similar way for
multichannel systems. The task stalling buffer shortens the task
execution time the most when the efficiency difference between the
two task processing systems is the largest. Therefore, for the
distributed computing platform with # clusters (n > 1), the tasks must
be distributed recursively between the slowest cluster (slow channel)
and the remaining n-1 clusters (fast channel). An example of the
application of a task stalling buffer in a three-channel system is shown
in Figure 5.

ﬁlTIﬁlTlﬁlrl\

Cluster no. 1 Cluster no. 2 Cluster no. 3

Fig. 5 Task stalling buffer in a 3-channel system.

1

Like in a two-channel system, M is the length of the waiting bufter,
K1 and K2 are the lengths of the task stalling buffers. The clusters
correspond to different performance channels, where Cluster No. 1 has
the lowest efficiency, and Cluster No. 3 has the highest performance
efficiency.

3.3.5 Algorithms

The following functions are required per each cluster to estimate the
length of the task stalling buffer in a hybrid distributed computing
platform:
e is available — indicates whether the cluster has free resources
that can accept the new task,
e get client count—returns the number of clients in the cluster;

25

e get busy client count — returns the number of clients in the
cluster that are assigned tasks,

o get completed task count — returns the number of tasks
performed in the cluster,

o get completed task exec time — returns the time it took for
the cluster to complete the tasks.

All of these functions can be implemented for BOINC and Apache
Mesos clusters.

3.4 Distributed hybrid cloud computing architecture

This section presents a platform architecture based on a distributed
hybrid computing model that allows performing various tasks using
internal servers (or cloud computing services) and personal
computers. The proposed platform combines public and private
computing clusters into a hybrid distributed computing network. This
platform uses a task distribution method to manage the workload
between two clusters without any additional task information. Service
reliability and task straggler problems are solved using the proposed
task distribution method based on the task stalling buffer. This way,
the described platform enables companies to reduce the cost of
services and still maintain services’ reliability.

The described platform uses open source and interoperable
technologies (all support the same software virtualisation solution).
However, it is essential to note that other compatible alternatives may
be used.

As shown in Figure 6, the proposed hybrid distributed computing
platform architecture has a two-level hierarchy with physically
distributed (hierarchical) cooperating task schedulers. At the top level
is a master scheduler that distributes tasks among lower-level clusters.
This architecture provides a dynamic and flexible framework for
performing tasks and provides more opportunities to manage service
quality. Two clusters are used to distribute tasks between company
servers and employee computers: private (managed by Apache Mesos)

26

and public (managed by BOINC). Each cluster is managed by a
scheduler specifically designed for a specific cluster environment.

Incoming task |Streaming platform| |Master scheduler
stream Distributor 1 Distributor 2
— Tasks | g Tasks
———+ = Waiting buffer Stalling buffer ‘
I |
Public computing grid \I/Private computing grid
BOINC scheduler | Apache Chronos scheduler |
BOINC client 1 BOINC client 2 BOINC client N Apache Apache Apache

Mesos Mesos Mesos

agent agent .. | agent
1 2 N
T T T

Results 2 Results

Database

Fig. 6 An architecture that connects two clusters using a two-level scheduler
hierarchy.

The top-level (master) task scheduler is the main object of research.
The reasons for selecting this particular task scheduling algorithm are
presented in Section 3.3.1.

3.5 Conclusions

This section allows us to make the following conclusions:

1. Distributed computing tasks can be performed using the
company’s internal servers and employees’ personal
computers without requiring any additional information about
the tasks.

2. It is possible to use the task stalling buffer in hybrid
distributed computing systems.

27

4. COMPUTER EXPERIMENTS AND COMPUTER
MODELLING

4.1 Computer modelling of a two-channel system

The purpose of the two-channel system computer modeling study is to
test the hypothesis that the proposed task scheduling algorithm used
in the hybrid distributed computing platform with the task stalling
buffer improves task execution time compared to the standard FIFO
algorithm.

The experiments are done using a virtual environment created
using the PHP programming language. Task execution time is
measured using the number of iterations required to complete all tasks.
Unlike real-platform experiments (presented in Section 4.3), a virtual
environment mimics an infrastructure with a more significant number
of compute nodes and can perform large amounts of experiments in a
reasonable amount of time. This environment simulates private and
public computing resources’ behaviour but does not take into account
data transmission time and changes in network load.

4.1.1 Computer modelling scenarios

The following scenarios are used to examine each task scheduling
algorithm:
e TS STS: same size tasks are sent to the platform at equal
intervals.
e TS DTS: same size tasks are sent to the platform at varying
intervals.
e TD STS: dynamic size tasks are sent to the platform at regular
intervals.
e TD DTS: dynamic size tasks are sent to the platform at
varying intervals.
Each scenario is executed using all possible numbers of tasks,
ranging from 40 to 400 tasks. The results gathered from each scenario

28

are aggregated. Sixteen agents serve the slow channel, and 8 agents
serve the fast channel. Slow channel agents have a 1000 iteration delay
before running a new task (simulating the load time of a virtual
machine) and execute tasks 10 times slower than agents serving a fast
channel.

4.1.2 Computer modelling results

The results of computer modelling are summarised in Figure 7. The
results consist of 21,660 experiments using different scenarios with
different task counts. The results show that the task scheduling
algorithm using the task stalling buffer is most efficient at the same
task flow intensity. The best result is achieved in the TS_STS scenario
— an improvement of up to 13% is obtained compared to the standard
FIFO algorithm. The results suggest that the task stalling buffer can
be applied to hybrid distributed computing platforms, and in all cases
outperform the standard FIFO algorithm.

15%

10%
5% I
0% — —
TS_STS TS_DTS TD_STS TD_DTS
W TSB-static TSB-dynamic

Fig. 7 Reduction of task execution time compared to FIFO.

4.2 Computer modelling of a multichannel system

The aim of the multichannel system computer modelling study is to
test the hypothesis that the proposed task scheduling algorithm used
in the multichannel hybrid distributed computing platform with task

29

stalling buffer improves task execution time compared to the standard
FIFO algorithm.

The research uses the same virtual environment and scenarios as in
Section 4.1. The virtual environment used for this study was set to
operate in 4 cluster mode. Additional studies were performed to verify
the efficiency of the modelled system at different cluster
performances. The results are presented in Figures 8 and 9.

15%

10%

- hi
. ml_ Hm_

TS_ST TS_DTS TD_STS TD_DTS

X

-5%
M Experimentno. 1 mExperimentno.2 ® Experiment no. 3

Fig. 8 Reduction of task execution time using static task stalling buffer (compared to
FIFO).

25%
20%
15%
10%

o | [||I
. ml | -

TS_STS TS_DTS TD_STS TD_DTS

X

M Experimentno.1 mExperimentno.2 mExperimentno.3

Fig. 9 Reduction of task execution time using dynamic task stalling buffer (compared
to FIFO).

The results of all the presented studies show that the proposed task
scheduling algorithm used in the multichannel hybrid distributed
30

computing platform with dynamic task stalling buffer improves task
execution time compared to the standard FIFO algorithm.

4.3 Platform efficiency study

This section presents the efficiency study of the proposed hybrid
distributed computing platform (presented in Section 3.4). The
experiment aims to verify that the platform efficiency study results
coincide with the experiment results from computer modelling.

43.1 Server setups

The research uses two different server setups (server setup A and B).
Two environments are used to ensure that the results of the studies will
be similar in different environments. The Setup A consists of two
separate servers running Docker containers (Fig. 10).

Master server (running Docker) Slave server 1 (running Docker)

Docker Docker Docker
container container container

Tasks | |BOINC BOINC BOINC BOINC

Scheduler |—>{Transitioner Client 1 Client N

Docker Docker Docker Docker Docker
container container container container container

Task generator, | | Tasks | | Chronos s Mesos Mesos Mesos
Scheduler Scheduler Distributor Agent 1 Agent N

Fig. 10 Server setup A.

The Server setup B is very similar to server setup A. These setups
differ in that setup B uses two secondary servers instead of one
secondary server (Fig. 11). This separates the two clusters and
provides additional resources that are used to emulate more of the
computers involved in the computations. In both configurations, the
number of emulated nodes is limited by the number of server kernels
hosting the virtual machines. Server Setup A emulates two Apache

31

Mesos agents and two BOINC clients. Server Setup B emulates two
Apache Mesos agents and four BOINC clients.

Master server (running Docker) Slave server 1 (running Docker)
Docker Docker Docker
container container container
BOINC BOINC BOINC BOINC
Tasks 1) Scheduler Transiti \I Client 1 ‘ ‘ Client N ‘

Slave server 2 (running Docker)

Docker Docker Docker
container container container Docker Docker
Task generator, | |, o | |Chronos Mesos container container
Scheduler Scheduler 3 Distributor 5 Mesos Mesos
Agent 1 Agent N

Fig. 11 Server setup B.

4.3.2 Experiment scenarios

Distributed computing tasks were performed to estimate the total task
execution time (makespan) for calculating the value of m using the
Monte Carlo method. This task requires only CPU capacity, so it
allows more accurate time estimates. This eliminates other side
effects, including network bandwidth and data storage speed. It is
essential to mention that the developed hybrid distributed computing
platform can be used to perform various types of distributed
computing tasks. The same annotations as described in Section 4.1.1
are used.

433 Experiment results using server setup A

A hundred tasks were executed using server setup A. The results show
that the task stalling buffer improves task execution time (Fig. 12).
The use of a static length task stalling buffer improves by an average
of 8.875% compared to the standard FIFO algorithm. Meanwhile, the
dynamic length task stalling buffer improves by an average of 17.63%.

32

25000
20000

15000
10000
5000
0

TS_STS TD_STS TS_DTS TD_DTS

seconds

mFIFO m TSB-static(10) TSB-dynamic

Fig. 12 The total execution time (makespan) of 100 7r value assessment tasks
generated using the Monte Carlo method.

434 Experiment results using server configuration B

The purpose of this study is to show that the use of setup B gives
similar test results as in the case of setup A. Significantly more
experiments were performed during the study to obtain reliable results,
using different amounts of tasks for each scenario: 20, 40, 60. Also,
each experiment was repeated 5 times to estimate average time
deviations and p-value.

This study uses the null hypothesis (two-sided, oo = 0.05). The aim
is to prove that the alternative hypothesis is correct with at least a 95%
probability. In this case, the null hypothesis states that the task stalling
buffer does not affect the total task execution time.

The aggregated results from 180 experiments are presented in
Tables 2 and 3. The scenarios in which the proposed algorithm
performed better than FIFO (significance a = 0.05) are highlighted in
Tables 2 and 3.

The results show a 47.3% improvement using the static-length task
stalling buffer and a 20.84% improvement using the dynamic-length
task stalling buffer compared to the standard FIFO algorithm.

33

Table 2 Task execution average makespan (seconds) using TSB-static(10) algorithm

(compared to FIFO).
Scenario | Tasks | Average | Standard | Makespan | p-value
makespan | deviation | decrease
TS STS | 20 3503.8 394.22 2.63% 0.646
40 6377.8 32.8 9.71% 0.002
60 8978.6 297.52 10.17% 0.0005
TD STS | 20 3967.4 959.76 32.09% 0.009
40 9068.4 172.92 5.76% 0.375
60 13381.8 | 393.63 10.22% 0.064
TS DTS | 20 3241.6 203 6.69% 0.063
40 6168.8 256.39 6.19% 0.021
60 9254 240.38 5.13% 0.031
TD DTS | 20 3127 824.78 47.3% 0.001
40 8690 301.94 13.43% 0.11
60 12293 1566.73 15.92% 0.032
Table 3 Task execution average makespan (seconds) using TSB-dynamic algorithm
(compared to FIFO).
Scenario | Tasks | Average | Standard | Makespan | p-value
makespan | deviation | decrease
TS STS | 20 3493 133.24 2.93% 0.342
40 6191.8 218.76 12.34% 0.0002
60 9147.8 264.42 8.48% 0.001
TD STS | 20 5016.4 117.66 14.13% 0.05
40 8759.8 257.83 8.96% 0.2
60 13256.2 | 480.22 11.06% 0.053
TS DTS | 20 3497.4 133.06 -0.67% 0.765
40 6342.2 88.81 3.56% 0.018
60 9204 118.35 5.64% 0.019
TD DTS | 20 4697 607.02 20.84% 0.008
40 9018.8 193.9 10.16% 0.192
60 13262.2 | 461.7 9.29% 0.072

34

A large-scale experiment with 200 tasks was also performed. The
results show an improvement of up to 5.86% using TSB-static (10)
and an improvement of up to 6.31% using the TSB-dynamic task
scheduling algorithm (Table 4).

Table 4 Task execution average makespan (compared to FIFO).

Algorithm Scenario Makespan (s) Makespan
decrease
FIFO TS STS 31361 -
TD STS 47502 -
TS DTS 32154 -
TD DTS 45159 -
TSB- TS STS 30504 2.73%
static(10) TD STS 44718 5.86%
TS DTS 30431 5.36%
TD DTS 44226 2.07%
TSB-dynamic | TS STS 30700 2.11%
TD STS 44504 6.31%
TS DTS 30547 5%
TD DTS 44963 0.43%

4.4 Conclusions

Computer modelling and empirical research show that the task stalling
buffer reduces the total execution time of all tasks. Computer
modelling studies show that the proposed distributed hybrid
computing platform with a task stalling buffer reduces the total task
execution time by 47.3%. The research results allow us to draw the
following conclusions:
1. The task stalling buffer can be applied to distributed hybrid
computing solutions and improve the workload balance
between two and more clusters.

35

Task queue is executed faster using task stalling buffer than
using FIFO algorithm.

The most significant improvement is achieved by running
small batches of tasks in a moderately loaded system.

When the system is heavily loaded with more significant
amounts of short tasks, the observed improvement is smaller.
The TSB-dynamic algorithm performs a sequence of
undefined tasks in a multichannel system 2.29% faster than
the TSB-static algorithm.

The TSB-static algorithm distributes an average of 24.43%
fewer tasks to the slow channel than the FIFO algorithm.

The TSB-dynamic algorithm distributes on average 3.61%
fewer tasks to the slow channel than the FIFO algorithm.

The TSB-dynamic algorithm distributes on average 21.57%
fewer tasks to the slow channel than the TSB-static algorithm.

36

CONCLUSIONS

The literature review showed that no public distributed
computing platform processes big data without using task
replication or task size information to solve the straggling
task problem in heterogeneous distributed computing
networks.

Based on the computer modelling results, the straggling task
problem in low-performance resources is effectively solved
using the developed hybrid distributed computing architecture
when the incoming task rate is constant.

A. The TSB-static algorithm distributes an average of
24.43% fewer tasks to the slow channel than the FIFO
algorithm.

B. The TSB-dynamic algorithm distributes on average
3.61% fewer tasks to the slow channel than the FIFO
algorithm.

C. The TSB-dynamic algorithm distributes on average
21.57% fewer tasks to the slow channel than the TSB-
static algorithm.

The multichannel system's computer modelling study has
shown that a non-predefined sequence of tasks is executed
2.29% faster using the dynamic-length task stalling buffer
than the static-length task stalling buffer.

The proposed hybrid distributed computing platform using the
static-length task hold buffer executes a predefined set of
tasks up to 47.3% faster than the FIFO algorithm:

A. The most significant improvement is achieved by
performing small batches of tasks in a moderately
loaded system.

B. Smaller improvement is observed when the system is
heavily loaded with large batches of short tasks.

37

PUBLICATIONS

Jurgelevicius, A., Sakalauskas, L. BOINC from the View
Point of Cloud Computing, CEUR Workshop Proceedings,
1973, 2017, 61-66.

JurgeleviCius, A., Sakalauskas, L. Big data mining using
public distributed computing, Information technology and
control. ISSN 1392-124X, eISSN 2335-884X, 2018, vol.
47(2), p. 236-248, DOI: 10.5755/j01.itc.47.2.19738.
Jurgelevicius, A., Sakalauskas, L., Marcinkevicius, V. Task
stalling for a batch of task makespan minimisation in
heterogeneous multigrid computing. Computational Science
and Techniques, 2021, 8, 631-638, DOI:
10.15181/csat.v8.2103.

38

BRIEFLY ABOUT THE AUTHOR

Albertas Jurgelevi¢ius graduated from Mykolas Birziska secondary
school (Vilnius) in 2006. In 2010 he graduated from Vilnius
University and was awarded a BA in informatics. In 2012 he graduated
from Vilnius University and was awarded an MA in informatics
engineering. He was a doctoral student at the Institute of Data Science
and Digital Technologies from 2016 to 2020. E-mail:
j-albertas@gmail.com.

39

SANTRAUKA
Tyrimy sritis ir problemos aktualumas

Daug Siuolaikiniy jmoniy ir organizacijy yra suinteresuotos rinkti
ir apdoroti kiek galima daugiau su verslo procesais susijusiy duomeny,
kuriais véliau biity galima remtis sprendziant jvairias verslo problemas
ir siekiant priimti geresnius verslo sprendimus. Tam naudojami
dirbtinio intelekto, masininio mokymosi, statistikos ir kiti ziniy
gavimo metodai. D¢l vis didéjancio duomeny kiekio nebeimanoma
igyvendinti tradiciniy duomeny valdymo ir duomeny analizés metody,
pasinaudojant jprastiniais didelio naSumo skaiciavimy istekliais.
Verslo jmonéms ir organizacijoms kaupiant ir prisijungiant prie vis
daugiau duomeny turinciy iStekliy, skaiciavimo istekliy poreikis
pradeda virSyti turimy vidiniy IT infrastruktiry galimybes. Tad
organizacijos galiausiai nebeturi pakankamai vidiniy skaifiavimo
iStekliy patenkinti paklausai. Turimi vidiniai auks$to skaiCiavimy
pajégumo iStekliai ir panaSts tradiciniai duomeny valdymo
sprendimai nebepajégia susitvarkyti su tokiais duomeny kiekiais, o
papildomo auksto skaiCiavimy pajégumo klasterio diegimas ir
priezitra gali neatitikti finansiniy galimybiy. Tokiais atvejais jmonés
linkusios arba toliau didinti investicijas j savo vidinés IT
infrastruktiiros vystyma, arba ieskoti treciyjy Saliy sprendimy.
Serveriy pirkimas ar atnaujinimas yra brangus sprendimas, tad daznai
tenka ieSkoti jmoniy, kurios turi reikiamg infrastrukttrg ir sitilo savo
sprendimus uZ prieinamg kaing.

Nors ir yra paskirstytyjy skai¢iavimy sprendimy, leidZianciy
lengvai sujungti vidinius IT isteklius j paskirstytyjy skaiciavimy
platforma, organizacijos linkusios rinktis kitas alternatyvas. Vienas i$
placiai naudojamy sprendimy — debesy kompiuterija, kurios paslaugos
nuolat ple¢iamos. AukStus skaiiavimy pajégumus sitilancios
paslaugos tampa vis pigesnés, o §iuo metu nemazai iSoriniy kompanijy
siilo debesijos ir didziyjy duomeny tyrybos sprendimus uz prieinama
kaing. Norédamos suvaldyti gaunamy duomeny srautus ir apdoroti

40

turimus duomenis, jmonés daznai naudojasi debesy kompiuterijos
paslaugomis, kurias teikia tokios gerai Zinomos jmonés kaip:

e Microsoft™ (http://azure.microsoft.com/);

e Amazon“ (http://aws.amazon.com/);

o Google* (https://cloud.google.com/);

e Rackspace® (http://www.rackspace.com/).

Tokiomis paslaugomis jmonés daznai naudojasi tvarkydamos
didZiulius turimy duomeny rinkinius. IS duomeny gautos Zinios gali
padéti priimti teisingus verslo sprendimus ir suteikti klientams
vertingos informacijos.

Tyrimai rodo, kad mazos ir vidutinés jmonés (MV]) neretai mano,
jog treciyjy Saliy teikiamos debesy kompiuterijos paslaugos yra
saugesnés uz jy paciy kuriamus techninius sprendimus, naudojancius
viding jmonés IT infrastrukttirg. Tai vercia maZzas ir vidutines jmones
dométis debesy kompiuterijos teikiamomis paslaugomis bei jy
taikymo galimybémis. Debesy kompiuterija nuolat pleciasi, nes ir
toliau teikia naSias skai¢iavimo paslaugas uz vis mazesnes kainas. Dél
Siy priezasCiy debesy kompiuterijos ir vieSyjy paskirstytyjy
skaiCiavimy sprendimai yra aktualtis MV].

Yra daugybé vieSyjy paskirstytyjy skaiciavimy projekty,
leidzianciy skirti savo turimus skaic¢iavimo iSteklius, taciau iki Siol
néra tinkamy programy, leidzian¢iy MV] panaudoti vidinius IT
iSteklius savo verslo poreikiams patenkinti — triksta jrankiy, kurie
galety paversti viding IT infrastruktirg (jskaitant darbuotojy
asmeninius kompiuterius) patikima paskirstytyjy skaiCiavimy
platforma, atliekancia duomeny analizés ir jvairias kitas skaiciavimo
iStekliy reikalaujancias uzduotis.

Viena i§ pagrindiniy problemy, neleidzian¢iy iSnaudoti jmoniy
vidiniy IT infrastruktiry, yra uzduoCiy strigimo hibridiniuose
skaiCiavimy tinkluose problema. Programos gali buti vykdomos
paskirstytyjy skaic¢iavimy sistemose, tokiose kaip duomeny centrai ir
klasteriai, naudojant istekliy valdytoja (YARN, ,,Apache Mesos®,
,Borg®, BOINC ir kt.). Vykdomaja programa sudaro kelios mazesnés

41

uzduotys, apibréztos kaip maziausi skaiCiavimo vienetai, kuriy
vykdyma prizitri iStekliy valdytojas. Tokios programos ir uzduotys
yra lygiagreciai paskirstomos skirtingiems skai¢iavimo istekliams,
siekiant paspartinti darby vykdyma. Taciau tokiu biidu vykdant
uzduotis hibridiniuose skai¢iavimo tinkluose pasitaiko uzduociy
strigimo problemy. Nejprastai 1étai atlickama uzduotis, lyginant su
vidutine uzduoties atlikimo trukme, vadinama jstrigusia. Nejprastai
léta uzduotis paprastai identifikuojama kaip bet kokia uzduotis, kurios
uzduoties atlikimo laikas yra 50 % ilgesnis uz vidutinj uzduoties
atlikimo laika darbo etape. Létai vykdomos uzduotys (angl. stragglers)
daro jtaka viso darbo atlikimo ir uzbaigimo laikui, didindamos istekliy
naudojimg, mazindamos programy naSuma, sistemos prieinamumg ir
didindamos papildomas eksploatacines islaidas. Atlikus didelio masto
gamybos sistemy analiz¢ nustatyta, kad mazdaug 4-6 % uzduoties
dalyviy neigiamai veikia daugiau kaip 50 % visy darbo viety didesnéje
sistemoje. Pastebéta, kad $is reiSkinys taip pat pasireiSkia duomeny
centruose ir daro neigiamg jtaka programy veikimui. Uzduociy
strigimo problemy pasitaiko bet kurioje lygiagreCius skaiciavimus
atliekancCioje sistemoje, o dar labiau jos iSryskéja vykdant darbus,
kurie susideda i§ daugybés uzduociy ir yra atlickami daugelyje
kompiuteriy tuo pat metu.

Tai 1émé padidéjusi tyrimy skaiiy, susijusiy su pagrindiniy
uzduoCiy strigimo priezasC¢iy analize, uzduoCiy strigimo
prognozavimu ir uzduo€iy strigimo vengimo metodais, jskaitant
simuliacijy vykdyma, replikacijg, apkrovos balansavimg ir uzduociy
tvarkarascio planavima. Kiekviename i$ iy darby daugiausia démesio
skiriama tik tam tikro pogrupio uzduociy ir sistemy taikymui.

Kity autoriy darbuose sprendziant uzduociy strigimo problema
paskirstytyjy skaiciavimy kompiuterinése sistemose bandyta
veiksmingai sumazinti neigiamg strigusiy uzduodiy poveikj. Si
problema spresta kuriant jvairius jstrigusiy uzduociy valdymo
metodus.

Istrigusiy uzduociy valdymo metodus galima suskirstyti j dvi
pagrindines klases: aptikimas ir vengimas. Istrigusiy uzduoCiy

42

aptikimas apima metodus, leidZianCius atpazinti jstrigusiy uzduociy
atsiradimg pries arba po uzduoties vykdymo skaiciavimy tinkle, pvz.,
atliekant jvykdyty uzduociy analiz¢ arba jstrigusiy uzduociy aptikima
naudojant ,NearestFit“. UzduoCiy strigimo vengimo metodais
daugiausia démesio skiriama bandymui i§vengti arba toleruoti aptikta
jstrigusig uzduotj ir minimizuoti neigiamas pasekmes, pavyzdziui,
vykdyti uzduoCiy ar iStekliy prieigos planavima, apkrovos
balansavimg ir replikavimg. UzduocCiy strigimo vengimo metody
pavyzdziai yra ,,Dolly“, GRASS, LATE ir ,,Wrangler*.

Darbo tikslas ir uzdaviniai

Tyrimo tikslas: sukurti hibridiniy paskirstytyjy skaiciavimy platforma,
veikiancig heterogeniSkuose skai¢iavimo tinkluose.
UZzdaviniai:
e jvertinti vieSyjy paskirstytyjy skai¢iavimy modelio taikymo
poreikj ir galimybes;
e jvertinti esamas vieSyjy paskirstytyjy skaiciavimy modeliu
gristas platformas;
e jvertinti esamus uzduociy paskirstymo algoritmus, skirtus
hibridiniy paskirstytyjy skai¢iavimy platformomes;
e sudaryti paskirstytyjy skaic¢iavimy platformos architektiirg ir
eksperimentiniu biidu jvertinti platformos efektyvumg.

Tyrimo objektas ir metodai

Disertacijos tyrimo objektai:

o paskirstytieji skaiiavimai;

e uzduociy jstrigimo problema;

e uzduociy paskirstymo algoritmai.

Pagrindiniai tyrimo metodai taikomi disertacijoje — analitiné
apzvalga, skaiCiuojamieji eksperimentai, statistiné duomeny analizé.
Tyrime buvo naudojami sugeneruoti duomeny rinkiniai, atliekamas
platformos imitavimas, stebimos kompiuteriy energetinés ir

43

skaiCiuojamosios apkrovos naudojant sistemy = steb&jimo ir
kompiuterinio tyrimo metodus.

Darbo naujumas

Sio darbo naujumg ir aktualumg sudaro tai, kad:

1. sistemiskai iSnagrinétas uzduociy paskirstymo algoritmy
taikymas hibridinése = heterogeniskose paskirstytyjy
skaic¢iavimy aplinkose uzduotims atlikti;

2. sukurta nauja hibridiniy paskirstytyjy skai¢iavimy platformos
architektiira;

3. pritaikytas uzduociy sulaikymo buferis uzduotims paskirstyti;

4. sukurtas metodas, leidziantis uzduoiy sulaikymo bufer]
naudoti paskirstytyjy skai¢iavimy sistemose, turinCiose
daugiau kaip du klasterius.

Darbo rezultaty praktiné reik§mé

Sio darbo rezultaty prakting reik§me sudaro tai, kad:

1. pritaikytas uzduoCiy sulaikymo buferis, skirtas uzduociy
jstrigimo problemai spresti hibridiniy paskirstytyjy
skaiCiavimy sistemose;

2. sukurtas uzduociy paskirstymo algoritmas, integruotas j
hibridiniy paskirstytyjy skai¢iavimy klasterj. Jis leidzia
sumazinti suming uzduoc¢iy vykdymo trukme. Remiantis Siuo
metodu parengta platforma, sujungianti vieSgji ir privatyjj
klasterj j hibridinj skai¢iavimy tinkla;

3. sukurta hibridiniy paskirstytyjy skai¢iavimy platforma,
veikianti heterogeniskuose skai¢iavimo tinkluose.

44

Darbo rezultaty aprobavimas

Disertacijos tyrimy rezultatai publikuoti 3 moksliniuose straipsniuose:

L.

Jurgelevicius, A., Sakalauskas, L. BOINC from the View
Point of Cloud Computing, CEUR Workshop Proceedings,
1973, 2017, 61-66;

JurgeleviCius, A., Sakalauskas, L. Big data mining using
public distributed computing, Information technology and
control. ISSN 1392-124X, eISSN 2335-884X, 2018, vol.
47(2), p. 236248, DOI: 10.5755/j01.itc.47.2.19738;
Jurgelevicius, A., Sakalauskas, L., Marcinkevicius, V. Task
stalling for a batch of task makespan minimisation in
heterogeneous multigrid computing. Computational Science
and Techniques, 2021, 8, 631-638, DOI:
10.15181/csat.v8.2103.

Autorius dalyvavo ir pristaté rezultatus 2-ose respublikinése ir 4-
iose tarptautinése mokslinése konferencijose:

L.

respublikinéje konferencijoje ,,Informaciniy technologijy
i§sukiai kurybos ekonomikoje* (2017, Lietuva). PraneSimo
tema: ,,BOINC karkaso taikymas dideliy duomeny tyrybai‘;
tarptautinéje konferencijoje ,,BOINC: Fundamental and
Applied Science and Technology (BOINC:FAST 2017)*
(2017, Petrozavodskas, Rusija). Pranesimo tema: ,,BOINC
from the view point of Cloud computing*;

XVIII tarptautinéje mokslinéje kompiuterininky
konferencijoje ,,Kompiuterininky dienos — 2017 (2017,
Kaunas). Pranesimo tema: ,,Big Data mining using public
distributed computing®;

respublikingje konferencijoje ,,Duomeny analizés metodai
programy sistemoms® (2017, Druskininkai). Stendinio
pranesimo tema: ,,BOINC Based Enterprise Desktop GRID*;
septintojoje tarptautingje konferencijoje ,,Open International
Conference on Electrical, Electronic and Information
Sciences” (2020, Lietuva). Skaityto praneSimo tema:

45

»Distributed Hybrid Cloud Controller for Runbook
Operations*;

ketvirtojoje tarptautinéje konferencijoje ,,4th International
Conference on Innovations and Creativity* (2020, Latvija).
Skaityto pranesimo tema: ,,Task Stalling Buffer Application
in Grid Computing®.

Ginamieji teiginiai

Disertacijos ginamieji teiginiai:

L.

reikalingas naujas uZzduocCiy paskirstymo algoritmas, kuris
uzduoCiy istrigimo heterogeniSkuose paskirstytyjy
skai¢iavimy tinkluose problema spresty nenaudodamas
uzduociy replikacijos ir informacijos apie uzduociy dydzius;
viesyjy paskirstytyjy skaic¢iavimy platformy skaiciavimo
iStekliy heterogeniSkumo problema mazinama taikant
pasitilytg hibridiniy paskirstytyjy skaiciavimy architekttra,
naudojancig uzduociy sulaikymo buferi;

sukurtoje hibridiniy paskirstytyjy skai¢iavimy platformoje
naudojamas uzduocCiy paskirstymo algoritmas yra efektyvus
uzduoCiy paskirstymui daugiakanalése paskirstytyjy
skaiCiavimy sistemose — sutrumpina uzduociy jvykdymo laikg
lyginant su FIFO algoritmu.

Disertacijos struktiira

1 skyriuje pateikiama paskirstytyjy skai¢iavimy modelio, esamy
privaciyjy ir savanoriSkyjy skaiCiavimy sprendimy ir debesy

kompiuterijos alternatyvy apzvalga. Be to, Siame skyriuje pateikiamos

debesy kompiuterijos paslaugy problemos, nurodant alternatyviy
sprendimy, tokiy kaip vieSyjy paskirstytyjy skai¢iavimy, poreikj. 2

skyriuje apzvelgiamos esamos paskirstytyjy skaiciavimy platformos ir
jy taikymai. Siame skyriuje pateikiamos ir nagrinéjamos galimos

BOINC platformos naudojimo galimybés siekiant pakeisti debesy

46

kompiuterijos paslaugas. Galiausiai $iame skyriuje aprasomos
paskirstytyjy skai¢iavimy platformy keliamos problemos ir sitilomi
galimi patobulinimai. 3 skyriuje pateikiami disertacijos darbo
rezultatai: hibridiniy paskirstytyjy skai¢iavimy platforma, uzduociy
paskirstymo algoritmo modifikacija. Be to, apzvelgiami hierarchiniai
ir nehierarchiniai uzduociy paskirstymo algoritmai, kurie taip pat
tinkami naudoti hibridiniy paskirstytyjy skaiciavimy platformose, ir
sprendziama uzduociy strigimo problema. 4 skyriuje pateikiami
kompiuterinio modeliavimo ir eksperimenty rezultatai. Galiausiai
pateikiamos galutinés disertacijos iSvados.

Disertacijos apimtis: 116 puslapiy, 12 lenteliy, 43 iliustracija.
Disertacijoje remtasi 114 literatiiros Saltiniy.

47

ISVADOS

Darbo iSvados:

L.

literatiros apzvalgos rezultatai parodé, kad viesyjy
paskirstytyjy skai¢iavimy platforma dideliy duomeny
apdorojimui, kurioje buty iSsprgsta uzduoCiy jstrigimo
problema heterogeniskuose paskirstytyjy skaiCiavimy
tinkluose nenaudojant uzduoCiy replikacijos arba
informacijos apie uzduociy dydzius, néra sukurta;

remiantis kompiuterinio modeliavimo rezultatais, uzduociy
jstrigimo mazo nasumo iStekliuose problema veiksmingai
sprendziama taikant sukurta hibridiniy paskirstytyjy
skai¢iavimy architektiira, kai uzduociy patekimo | sistema
srautas yra pastovus.

a. TSB-static algoritmas] létgji kanalg nukreipia
vidutiniskai 24,43 % maziau uzduociy uz FIFO
algoritma;

b. TSB-dynamic algoritmas nukreipia vidutiniskai 3,61
% maziau uzduociy uz FIFO algoritma;

c. TSB-dynamic algoritmas nukreipia vidutiniSkai
21,57 % maziau uzduociy uz TSB-static algoritma.

daugiakanalés sistemos kompiuterinio modeliavimo tyrimas
parodé¢, kad uzduoCiy paskirstymo algoritmas, naudojantis
dinaminio ilgio uZzduo¢iy sulaikymo buferj, i§ anksto
neapibrézty uzduoCiy eile jvykdo 2,29 % greiCiau uz
algoritma, naudojantj statinio ilgio uzduociy sulaikymo
buferj;

sukurta hibridiniy paskirstytyjy skai¢iavimy platforma,
naudojanti statinio ilgio uzduociy sulaikymo buferj, i§ anksto
neapibrezty uzduociy eilg jvykdo iki 47,3 % greiciau uz FIFO
algoritma:

a. reikSmingiausias pagreitéjimas pasiekiamas vykdant
maza uzduoCiy kiekj vidutiniSkai apkrautoje
sistemoje;

48

b. pastebétas maZzesnis pagreit¢jimas, kai sistema yra
labai apkrauta didesniu trumpy uzduociy kiekiu.

49

NOTES

NOTES

Albetas Jurgelevicius
HYBRID DISTRIBUTED COMPUTING SHARING PLATFORM

Summary of a Doctoral Dissertation
Technological Sciences

Informatics Engineering (T 007)
Editor Zuzana Siugaité

Albertas JurgeleviCius

HIBRIDINIU PASKIRSTYTU SKAICIAVIMU DALIJIMOSI
PLATFORMA

Daktaro disertacijos santrauka
Technologijos mokslai

Informatikos inZinerija (T 007)
Redaktoré Joriiné Rimeisyté-Nekrasiené

Vilniaus universiteto leidykla
Saulétekio al. 9, LT-10222 Vilnius
El p. info@leidykla.vu.lt
www.leidykla.vu.lt
Tirazas 40 egz.

