

VILNIUS UNIVERSITY

Andrius

VALATAVIČIUS

ENTERPRISE APPLICATION
INTEROPERABILITY EVALUATION
USING AUTONOMIC COMPUTING

SUMMARY OF DOCTORAL DISSERTATION

Natural Sciences,
Informatics N 009

VILNIUS 2019

This dissertation was prepared during 2014–2018 at Vilnius
University.

Academic supervisor:
Prof. Dr. Saulius Gudas (Vilnius University, Natural Sciences,
Informatics – N 009).

Academic consultant:
Prof. Dr. Audrius Lopata (Vilnius University, Natural Sciences,
Informatics – N 009).

The doctoral dissertation will be defended at a public meeting of the
Dissertation Defence Panel:

Chairman:
Prof. Dr. Olga Kurasova (Vilnius University, Natural Sciences,
Informatics – N 009).

Members:
Prof. Habil. Dr. Rimantas Barauskas (Kaunas University of
Technology, Natural Sciences, Informatics – N 009),
Prof. Habil. Dr. Antanas Čenys (Vilnius Gediminas Technical
University, Technology Sciences, Informatics Engineering – T 007),
Prof. Dr. Raimundas Matulevičius (University of Tartu, Natural
Sciences, Informatics – N 009),
Prof. Habil. Dr. Leonidas Sakalauskas (Vilnius University, Natural
Sciences, Informatics – N 009).

The dissertation will be defended at a public meeting of the
Dissertation Defence Panel at 13:00 p. m. on the 27th of September,
2019 in Auditorium 203 of the Institute of Data Science and Digital
Technologies of Vilnius University.
Address: Akademijos g. 4, LT-04812 Vilnius, Lithuania.
The summary of the doctoral dissertation was distributed on the 27th
of August 2019.
The text of this dissertation can be accessed at the library of Vilnius
University, as well as on the website of Vilnius University:
https://www.vu.lt/lt/naujienos/ivykiu-kalendorius

VILNIAUS UNIVERSITETAS

Andrius

VALATAVIČIUS

TAIKOMŲJŲ PROGRAMŲ
SĄVEIKUMO VERTINIMAS TAIKANT
AUTONOMINIO SKAIČIAVIMO
TECHNOLOGIJAS

DAKTARO DISERTACIJOS SANTRAUKA

Gamtos mokslai,
informatika N 009

VILNIUS 2019

Disertacija rengta 2014-2018 metais Vilniaus universitete.

Mokslinis vadovas:
prof. dr. Saulius Gudas (Vilniaus universitetas, gamtos mokslai,
informatika – N 009).

Mokslinis konsultantas:
prof. dr. Audrius Lopata (Vilniaus universitetas, gamtos mokslai,
informatika – N 009).

Gynimo taryba:

Pirmininkė:
prof. dr. Olga Kurasova (Vilniaus universitetas, gamtos mokslai,
informatika – N009).

Nariai:
prof. habil. dr. Rimantas Barauskas (Kauno technologijos
universitetas, gamtos mokslai, informatika – N009),
prof. habil. dr. Antanas Čenys (Vilniaus Gedimino technikos
universitetas, technologijos mokslai, informatikos inžinerija – T007),
prof. dr. Raimundas Matulevičius (Tartu universitetas, gamtos
mokslai, informatika – N009),
prof. habil. dr. Leonidas Sakalauskas (Vilnius universitetas, gamtos
mokslai, informatika – N009).

Disertacija ginama viešame Gynimo tarybos posėdyje 2019 m.
rugsėjo mėn. 27 d. 13 val. Vilniaus universiteto Duomenų mokslo ir
skaitmentinių technologijų instituto 203 auditorijoje.
Adresas: Akademijos g. 4, LT-08412 Vilnius, Lietuva.
Disertacijos santrauka išnagrinėta 2019 m. rugpjūčio mėn. 27 d.
Disertaciją galima peržiūrėti Vilniaus universiteto bibliotekoje ir
Vilniaus universiteto interneto svetainėje adresu:
https://www.vu.lt/naujienos/ivykiu-kalendorius

5

SUMMARY

1. INTRODUCTION

1.1. Research area

Application interoperability evaluation is required for gaining
knowledge on whether different software applications could
exchange data between one another. Application services describe
the data structure of these applications. Analysis of such application
service descriptions allows us to infer whether different applications
have some common ground from a data perspective. Syntactical and
semantical description documents of application web service were
analyzed in this research. Similarity information between operations,
objects, field names and field types were retrieved from web services
and analyzed using the edit distance, bag of words and latent
semantic analysis methods. The autonomic computing in the
theoretical part of the research presents a broader picture of
possibilities of the implemented research. The results of the
experiment only cover three parts of the autonomic component:
monitoring, analysis, and knowledge. The autonomic computing
component was introduced for analysis of the possibility of an
automating interoperability process within the dynamic business
environment.

1.2. Relevance of the problem

Application interoperability becomes the essential part for
dynamic business, growing IOT usage and ever-growing complexity
and variety of enterprise applications. Enterprise applications are
now used in almost all medium to large sized companies, and
interoperability projects are becoming relevant because of the need
to optimize business process, reduce redundant work, and increase
the efficiency of data maintenance along with different applications
within an enterprise. The challenge is that the knowledge
requirements for integrating different systems are great and there is a
high risk of failure of integration and interoperability projects. To
measure the potential of applications to be interoperable first of all
we need to evaluate their capability of interoperability.

6

In informatics, the interoperability subject is quite old and stems
from the requirement that devices, satellites or other military or civil
equipment should be able to exchange data. For example, it is
important that NASA (Di & Kobler, 2000) has satellites that are able
to communicate with the ground stations and exchange important
telemetry data. Application integration and interoperability projects
have a tendency to fail at almost 70% (Trotta, 2003; van der Bosch,
et al., 2010), mainly due to lack of knowledge of the application,
growing complexity and dynamic nature of business. The
interoperability process is analyzed and classified into different
levels: syntactic, semantic, and cross domain (Chen, et al., 2008).
Each level concerns different issues of interoperability solution.
According to (Rezaei, et al., 2014), there are different granularity
issues for interoperability; scientists had reviewed the complexity of
the subject and techniques by 2014.

1.3. The aim and tasks of the research

The goal of this research is to create a method for enterprise
application interoperability evaluation based on causal relationships
extracted by comparing architectures.

The object of this research is an enterprise whose business
process is dynamic (changing) and where the use of applications
from more than one provider might face interoperability issues such
as data redundancy and duplication of business processes.

To realize the aim of research the main tasks were established:
1. To analyze the problems of the enterprise application

integration and interoperability solutions, applied methods
and their principles.

2. To analyze the methods of the enterprise application
interoperability, their advantages and flaws, and underline
the principles of the proposed method.

3. To create enterprise application capability of an
interoperability evaluation method using business process
architecture (CIM – computation independent models) and
enterprise application architecture (PIM – platform
independent models).

4. To perform an experiment in order to prove that enterprise
applications’ interoperability can be evaluated using the

7

proposed method for detection changes in dynamic business
process and to indicate the changes of enterprise application
affecting interoperability.

1.4. Scientific novelty

1. Established theory of possibilities to computationally
evaluate enterprise applications interoperability by using
multiple data source domains, such as business process
models, autonomic computing, deep knowledge extraction
from application web service architecture descriptions.

2. Proposed the text processing method for enterprise
application interoperability capability evaluation; capability
evaluation depends on text processing methods such as edit-
distance, latent semantic analysis, bag of words.

3. Applied edit-distance methods: Levenshtein, Jaro-Winkler,
Jaccard, and Longest Common Subsequence; the achieved
results show each application capability to interoperate with
another application.

4. Applied latent semantic analysis for better semantic
extraction capabilities from application web service
architecture to better evaluate the capability of applications
to be interoperable.

1.5. Statements to be defended

1. Enterprise architecture (EA) frameworks and model-driven
architecture (MDA) can be applied when solving enterprise
application interoperability issues, by visualizing and
identifying relationships between application components
and business process causal relationships.

2. Proposed enterprise applications interoperability capability
evaluation solution is sufficient to evaluate similarities
between applications at syntactic and semantic levels.

3. It is possible to use the CIM and PIM models to evaluate
applications interoperability by extracting causal
dependencies between business processes and their
counterparts that are transformed to match application
processes.

8

4. Enterprise application interoperability evaluation solution
based on autonomic computing technologies enables
detection changes in dynamic business processes and shows
the changes affecting enterprise application interoperability.

1.6. Approbation of the research

The results of the research have been published in two peer-
reviewed journals, in seven peer-reviewed conference proceedings
and were presented and discussed in four national and international
conferences. Intermediary results and discussions were presented at
two national workshops.

1.7. Outline of the dissertation

The dissertation consists of seven chapters and a list of
references. The chapters of the dissertation are as follows:
Introduction; Review of enterprise application interoperability
solutions; Measures of enterprise application interoperability;
Application interoperability evaluation experiment description;
Results of application interoperability evaluation experiment;
Conclusions and recommendations. This work contains 83 pages that
include 28 figures and 8 tables; the list of references consists of 55
sources.

9

2. REVIEW OF ENTERPISE APPLICATION
INTEROPERABILITY SOLUTIONS

In this chapter enterprise application interoperability and
integration solutions are reviewed. Methods that solve
interoperability and integration problems are described. A list of
main interoperability problems is compiled. These methods are used
to make applications integrated or interoperable within a business
domain, but they pose an issue of high maintenance and knowledge
requirements that are sometimes so difficult that most integration
projects fail (Trotta, 2003), thus new solutions should be proposed.

It is known that integration and interoperability of applications
differ by goal business: to create a single holistic system to cover all
processes, or to effectively use multiple applications that would
efficiently exchange data and would not be limited to a single
application provider. In other words integration encompasses the
entire domain, while interoperability focuses on parts of the same
domain that should effectively exchange data and functionality
(Chen, et al., 2008).

In a dynamic organization, there could be multiple obstacles that
do not allow legacy and new applications to interoperate
automatically. Mainly these obstacles are (Fig. 1):

 Business processes change when new applications are
introduced – this causes dependent process failures, data
errors, time delays and has overall demanding requirements
for organization adaptability.

 Applications are dynamic; their schema might be changed
over time – this causes failures in schema matching,
interoperability and integration solution failures, business
process failures and time delays.

 Multiple applications are used in a single domain – this
causes data ambiguity and duplication between those
applications, and new processes appear to solve these issues,
causing higher human resource requirements.

 There are no common methods to describe collaboration
among multiple different applications – this causes
ambiguity, different application architecture strategies, new
integration protocols development or requirements for
heightened maintenance.

10

 Application changes usually impact business process.
Therefore, the previous business process models become
invalid and cannot be used for knowledge extraction – this is
caused by one-time modeling, and therefore after some time
the model could not represent the current status of an
enterprise.

 To ensure interoperability, the integration expert needs to
perform the following tasks:
o Perform schema alignment (Hophe & Woolf, 2004),

(McCann, et al., 2005) (Peukert, et al., 2012), (Rahm &
Bernstein, 2001), (Silverston, et al., 1997), (Silverston,
2011);

o Ensure record linkage and data fusion (Dzemydienė &
Naujikienė, 2009), (Kasunic, 2001)

o Ensure orchestration – the timing of each data migration;
o The choreography of application services and data

objects – sequence and order in which applications could
share data.

 Lack of skills and knowledge – this causes integration and
interoperability project delays and failures.

Fig. 1 Tree of interoperability obstacles.

11

Lack of necessary skills is a barrier to implementing
interoperability solutions. Lack of the necessary knowledge of the
applications used is also an obstacle to the implementation of
interoperability solutions. The full tree of interoperability obstacles
is represented in the Tree of interoperability obstacles figure (Fig. 1).
In earlier documents of EIF (IDABC, 2008) interoperability layers
were called barriers. Data from one system cannot be interoperable
with similar data in another system without crossing these barriers.
The five layers of interoperability are the following:

• Governance layer – decisions on interoperability structures, roles,
responsibilities policies, and agreements.

• Organizational layer – these barriers relate to the structure of an
organization and how this organization is dealing with constant
and rapid changes. Usually, the structure of every organization and
especially its processes must be discovered and evaluated. Some
integration solutions can help improve business processes and
therefore overcome the organizational barriers (Valatavičius &
Gudas, 2015).

• Legal layer – to ensure that the data will not be abused or leaked to
the public during the interoperability operations. This layer also
might include, for example, a new general data protection
regulation (GDPR) that allows people to get all related data from
business applications.

• Semantic layer – semantic or conceptual layers cover semantic
differences of information, for example, the use of different
software systems leads to semantic differences.

• Technical layer is a layer in which interface specifications,
communication medium, interconnection services, data integration
services, and other aspects are analyzed.

The interoperability domain describes the object of the
interoperability solution. As there could be multiple layers of
interoperability, a different aggregation and granularity of data are
taken into perspective. Interoperability areas investigated by other
researchers are as follows (Chen, et al., 2008): data, services,
processes, and business. The interoperability of data covers different
issues of the complex data integration from diverse sources with
different schemas. The interoperability of services covers different
issues of the heterogeneous data covered by the shell of web services
of applications that are designed and implemented independently. At

12

this level of interoperability, it might be easier to deal with different
schemas and solve semantic issues. The interoperability of processes
solves the problem of process sharing or optimizing a value chain for
a company. The processes are optimized by developing good
interoperability of services/data that are used in these processes.
Recent research showed that it might be possible to get internal
models from the business process and apply it as knowledge in
integration solutions (Valatavičius & Gudas, 2015). The
interoperability of business covers B2B integration problems and
focuses on the issues of data sharing between businesses, but all
previous interoperability options must be assured to have a
successful business.

13

3. MEASURES OF ENTERPRISE APPLICATION
INTEROPERABILITY

Various application interoperability methods are applied to
create and maintain the interoperability of enterprise applications.
The research varies among layers (e.g., organizational, legal,
semantic and technical) and levels (system specific, documented
data, aligned static data, aligned dynamic data, harmonized data) of
the conceptual interoperability model (Tolk & Muguira, 2003). Most
researchers of the integration subject use advanced methods such as
agent technologies (Cintuglu, et al., 2016; Overeinder & Verkaik,
2008) that usually cover self-describing services, which cannot be
applied in the RESTful protocol in applications. Moreover, as the
RESTful protocol becomes an increasingly popular API protocol in
business applications, this provides a difficulty to create automated
bindings between different systems. Even with a good protocol
description, usually the lack of semantics could also be a blocking
point for successful interoperability (Li, et al., 2005; Shvaiko &
Euzenat, 2011). However, sophisticated methods of the process
integration already exist, but they are not applied in the application
area (El-Halwagi, 2007). In a dynamic environment, business
processes often need optimizing; one of the examples being business
process integration (El-Halwagi, 2007; Pavlin, et al., 2009).

Some researchers underline the guidelines of measurements and
give propositions of what methods should be used, but they are not
presented in such a way that could be easily replicated. One of the
favorite inspirers of this research Kasunic (Kasunic, 2001) proposed
to evaluate systems interoperability using three views: Technical,
Operational, and Systems. A similar approach to the business and
information systems alignment measurement is introduced in
(Morkevičius, 2013).

14

Table 1. Selected systems interoperability capability measure by the
LISI method.

 a) Technical view,
Technical interoperability
scorecard.

b) Systems view,
Systems
interoperability
scorecard

Source Compliance to standards S1 S2 S3 S4

S1 ExactOnline Y Y Y G

S2 PrestaShop Y Y G Y

S3 SuiteCRM Y Y G Y

S4 NMBRS G G Y Y

The technical view table indicates that it needs more effort than

anticipated to extract metadata (Kasunic, 2001). The colors represent
the usage of standards in Table 1 above inadequate (R), marginal
(Y), or adequate (G). Conclusions: such an evaluation method could
be biased by one’s understanding of whether the system is
standardized and how easily it could integrate providing
interoperability.

The enterprise application (EA) interoperability measurement
(between services) is the basis for improving interoperability
methods. Some interoperability evaluation methods are known:
Scorecard – DoD in (Kasunic, 2001), I – Score in (Ford, et al.,
2008), and Comparison by functionality in (Dzemydienė &
Naujikienė, 2009).

These EA interoperability evaluation methods are not enough
because the assessments are obtained through questionnaires and
expert judgment. We strive to develop a method that evaluates the
characteristics of the systems being integrated without using personal
opinions or tests/questionnaires/experiences. We aim to use only
characteristics of software: metadata and systems network service
architectures. It is more reasonable to use structured (internal)
models of systems than to fill out questionnaires. We are looking for
a deterministic method that can evaluate or measure the capability of
interoperability.

15

The principles of the second order cybernetics provide the
methodological basis for the internal viewpoint and aim to disclose
internal causal relationships of the domain. In our case, we need to
explore the causal relationships between application software and
there is no access to use the questionnaires as stated by (Kasunic,
2001).

1.1. Interoperability evaluation using MDA and EA approach

Our study is based on a few assumptions. First, internal
modeling with the MDA approach help determine the influence of
domain causality to the interoperability of applications (Fig. 2).
Second, it is possible to create an architecture of interoperable
enterprise applications using only the enterprise architecture model
and data for each service for enterprise software. Another
assumption is as follows: interoperability should be evaluated by
comparing web service operation names using edit distance
calculations. The measurement of EAS interoperability capability
serves as a basis for improving interoperability methods. When
interoperability is required between these applications, how should
one know whether these systems can have interoperability at all? The
capability of interoperability of applications can be evaluated with
the help of their architectural design by comparing web service
operation names using edit distance calculations.

Fig. 2. Analysis of models from the MDA cycle to produce
interoperability capability score.

Levenshtein calculates edit distance by a minimum number of
single character edits required to change the first word into the other.
The Levenshtein algorithm was the first known method developed to
compare string distances in 1965 (Левенштейн, 1965): for a given
two strings b and a with a total character count of m and n, and for
each character pair of two strings count the minimum amount of

16

changes required to make them similar if they are not equal. The
Jaro-Winkler algorithm uses a formula out of 4 values that calculate
similarity. The Longest common subsequence edit distance
algorithm as the name suggests calculates edit distance by removing
characters, and counting how many characters are removed to leave
the longest common subsequence. The Jaccard edit distance
algorithm calculates how many similar attributes there are in the two
compared sets for an n-gram. For a given character sequence of each
string, a character matrix is formed where characters for each set
represent the total number of characters which have the same value
(matched).

String distance algorithms only provide syntactic similarity
evaluation capabilities. For semantic evaluation capabilities, we have
developed an ontology library describing data structure with
semantic meaning. The steps to calculate interoperability capability
(potentiality) are the following: 1) locate web-service reference
documentation; 2) extract and parse metadata of web service
reference files; 3) categorize the parsed metadata into operations,
methods, objects, field names, and field types; 4) select operations
and create metadata for each operation: a) get the name of the
source; b) get service name; c) extract methods GET, POST, PUT,
DELETE, PATCH, HEAD); d) extract operation to the related
method; e) strip redundant information from operation (repeating
meaningless keywords; 5) save operation metadata to Microsoft SQL
Server database; 6) using master data services and the prepared SQL
procedure scan through operations in the database table and compare
it with other operations from different source; 7) save each
comparison for a different method in a new table; 8) visualize and
explore the results.

For the following systems (OpenCart, PrestaShop, LemonStand,
NMBRS_ReportService, NMBRS_DebtorService, Zen Cart,
NMBRS_CompanyService, NMBRS_Employees, SuiteCRM,
KonaKart_StoreFront, KonaKart_Administration, MIVA,
ExactOnline) used in the experiment, we describe web service
interface protocol and complexity to extract data automatically.
According to the documentation SOAP and REST, development
should follow design recommendations, but there are already many
systems developed without SOA approach. Once a system
implements web services, it is required to have an API which is not

17

always created using common recommendations. Therefore, it is
harder to automate data extraction. Additional steps are needed to get
to the objects of web services as it is not enough to get the initial
structure described in web service for metadata analysis. During the
experiment, additional steps were taken invoking web service for
returning the list of objects related to the operations described in
SOAP WSDL files. REST web service metadata description is not
standardized, and it is more challenging to extract metadata. A lack
of a common pattern following the description of objects exists;
therefore, additional procedures to extract and parse metadata from
API are needed. The web service metadata for each system data is
extracted to the database using a custom written C# algorithm and
manual data entry from web service reference documentation. Data
storage was setup using the Microsoft SQL Server database. From
the database, data was analyzed, cleaned, and formed in such a way
that it is usable with edit distance measurement algorithms. Edit
distance algorithms were executed using Microsoft SQL Server
Master Data Services to produce enterprise software system
compatibility for interoperability result. Further results and data are
described in Section 6.

1.2. Interoperability evaluation and autonomic computing

The autonomic computing technology was presented by IBM
researcher Jeff Kephart (Kephart & Chess, 2003). The purpose of the
technology is to raise the automation level of computing solutions.
With the intention of applying the autonomic computing technology
to enterprise application integration and interoperability solution it
was discovered that there are big similarities between the autonomic
computing and elementary management cycle from business process
modeling (Gudas, 2012). The IBM autonomic computing element
consists of these components:

 Touchpoints – in this research domain it is URL
addresses to application API reference source.

 Knowledge – in this research domain it is application
web service description documents, business process
diagrams and ontology models representing the domain.

 Autonomic manager – in this research domain it is the
solution for interoperability evaluation.

18

 Managed /resources – in this research domain it is
applications that should be interoperable.

Autonomic Manager consists of five main components:
 Monitor action – which is covered in the experiment by

scanning data sources in a scheduled fashion.
 Analyze action – which is covered in the experiment by

determining interoperability score.
 Plan action – is not covered in this research.
 Execute action – is not covered in this research.
 Knowledge storage – which is covered in the experiment

by storing intermediary results from edit-distance
calculations, latent semantic analysis etc.

Autonomic computing solution is usually depicted similarly as
applied IBM autonomic computing component architecture (Fig. 3).
Monitor (M) reads data sources and analyzes their structure; then
Analyze (A) step evaluates interoperability; Plan (P) step reads
evaluation of object interoperability value and determines actions
how to exchange data; Execute (E) step would initiate another
autonomic component capable of starting data transfer between two
or more applications, which in turn affects the application by
migrating data.

Autonomic Manager

Managed element (enterprise application)

Execute
(E)

Analyze (A)
Determine similarity
between objects score

Monitor (M)
Collect API
description
documents

Element
(application API interface)

Set information
(s)

L

J

Get information
(g)

Knowledge
Transaction

(K)

Knowledge
 transaction

(K)

Knowledge
Transaction

(K)

Sensors
(endpoints)

Effectors

Plan
(P)

K

Knowledge
Transaction

(K)

Knowledge
(IM)

19

Fig. 3. IBM autonomic computing component architecture

The idea behind this solution is only valid under certain

conditions:
 Application is developed with a service-oriented

architecture in mind.
 Application has API that is properly described regarding

standards and agreements (such as SOAP, REST
protocols).

 User can provide details about the endpoint to the
interoperability solution.

The items described in autonomic computing component
architecture (Fig. 3) are only partially described in the dissertation
and covers part of it since it was out of the scope of this research.

20

4. APPLICATION INTEROPERABILITY EVALUATION
EXPERIMENT DESCRIPTION

This research is limited to enterprise applications developed
using service-oriented architecture and mostly focus on software that
uses web services and SOAP and RESTful protocol for data transfer
whose metadata is usually described using standardized documents.
Web service operations compared to multiple software system
applications for the enterprise show the difference in similarity
scoring. Randomly picked applications are presented in the table
below (Table 2). Each application has some different roles and
aspects of an enterprise. Although this research is limited to a few
applications, the intention is to expand the research to involve more
applications. The core set of applications are On-site e-commerce
applications and some on-site accounting applications.

Table 2. Randomly picked software applications for analysis
Software Application API protocol Objects Description

OpenCart REST 24 On-site e-commerce application

PrestaShop REST 49 On-site e-commerce application

LemonStand REST 76 On-site e-commerce application

NMBRS_ReportService SOAP 80 On-site accounting application

NMBRS_DebtorService SOAP 106 On-site accounting application

Zen Cart REST 208 On-site e-commerce application

NMBRS_CompanyService SOAP 444 On-site accounting application

NMBRS_Employees SOAP 1107 On-site accounting application

SuiteCRM SOAP 1426 On-site CRM application

KonaKart_StoreFront SOAP 1644 On-site e-commerce application

KonaKart_Administration SOAP 2425 On-site e-commerce application

MIVA REST 4322 Cloud e-commerce application

ExactOnline REST 6043 Cloud accounting application

For these applications and their services (Table 2), API reference

data is collected and parsed to evaluate interoperability. Microsoft
SQL Server, PostgreSQL, R, Microsoft Visual Studio, and Tableau
were used to acquire data from web services. We used Microsoft
SQL Server to collect initial data from C# script written to extract
and parse API reference descriptions. C# reference parser was good

21

for a limited amount of applications, but more time was needed to
enable it to work with a more extensive data set. C# script loaded
metadata from API, was parsed and stored in Microsoft SQL server.
Later for edit distance analysis, R script was used to determine
similarities between operations, objects, and fields of sets between
multiple applications. Data was stored into the PostgreSQL server.
The data was finally analyzed and represented using Tableau
software. The activity diagram below depicts a proposed solution of
interoperability capability analysis tool (Fig. 4).

Fig. 4. Activity diagram of the proposed solution of interoperability
capability analysis and interoperability tool.

The figure above (Fig. 4 b) depicts a simple process of analysis
agent. This agent takes part in the job done manually by a data
integration specialist. It reads the endpoint data from the endpoint
URL, acquires the reference file, and then parses it and runs
evaluation scripts; then repeats the entire process for more endpoints.
In the holistic view of software interoperability, there should be three
steps: Analysis, Monitoring and Action (interoperability), hence, the
three blocks in the activity diagram (Fig. 4). The interrelation
between the activity diagrams in a) and b) in the figure file is that the

22

subactivities of the analysis agent might be running independently
from any other agent activity, such as monitoring or interoperability.

5. RESULTS OF APPLICATION INTEROPERABILITY
EVALUATION EXPERIMENT

For each enterprise application, it is possible to gather metadata
of web service and API descriptions. Some metadata are
automatically extracted from these services (therefore can be
automated), other EA require more efforts to do the extraction, but
with careful rethinking the metadata extraction can also be
automated. Section 5 describes the interoperability capability
(potentiality) evaluation experiment of 9 different enterprise software
applications (see Section 5). Some of the applications are repeated in
the list (Table 2) because web services have several descriptions of
different packages with different endpoints. Using the metadata of
web services we counted for each system how many operations can
be carried out using its web services (Fig. 5).

The largest analyzed enterprise application is MIVA – a cloud
computing based e-commerce application. Automated parsing
determined 3,908 data related operations for this specific application.
For ExactOnline and NMBRS (employees related web service)
counted 293 and 265 operations respectively. KonaKart, ZenCart,
SuiteCRM contained a smaller number of web service operations –
below 150.

23

Fig. 5. Number of distinct operations in EA packages.

The number of distinct operations in the EA packages list
included an additional collection of metadata from Schema.org and
added background knowledge and semantics for other applications
(Fig. 5).

Considering only the number of operations that can be carried
out by EA packages, some conclusions can be drawn:

• MIVA the most extensive software package from a test set;
• MIVA contains more modules and data management points

than other systems;
• Other systems are smaller, or their web services are limited or

split (e.g., NMBRS).
There is a total of 5,323 distinct operations used in the

experiment. On average, EA has 116 operations per system provided
by their web service (excluding SchemaOrg and MIVA). The results
of the experiment are the analysis of similarity of each operation
name in each enterprise application. If the edit distance for each
operation name is high enough, this indicates that most operations
are similar in that pair of EAS packages. The results in Figure 5
summarize the outcome of the edit distance calculations for e-
commerce packages. The heatmap of possible interoperability (Fig.
6) shows the edit distance score of operations. In the Prestashop to
KonaKart_StoreFront interoperability comparison the red spots
indicate < 50 % operation similarity as opposed to other operations

24

(green); the white area indicates around 50% similarity. The red
spots also indicate a higher probability of operations being similar.
For example, PrestaShop operation “categories” matches
KonaKart_StoreFront operation “category” by 75% using an
ensemble of edit distance calculation.

Fig. 6. Operation interoperability scoring – a heatmap using the
average ensemble score of edit distance algorithms; the green spots
indicate above 50% similarities.

In the operation interoperability scoring figure (Fig. 6) the
similarity of operations of e-commerce products presented is
apparent. In this example, syntactic overlap can compare and
evaluate syntactic overlap of operations between software
applications. Results from multiple edit distance methods
(Levenshtein, Jaccard, Jaro-Winkler, Longest Common
Subsequence) are presented further in the text. An average score of
all selected methods was not in the scope of this research to evaluate
edit distance methods, but rather provide an overview of the
capability of evaluation.

25

1.3. Interoperability evaluation using ensemble method

The evaluation of the results is presented using the ensemble
method. The ensemble method is the average of all similarity scores
from the edit distance algorithms. After looking at the results from
the operation level, we see that operations of web services are similar
to each application: accounts; absences, addresses (Fig. 7). The
results of the operations interoperability scoring leads to the
following conclusions: In ExactOnline (E) and NMBRS (N) there
exist operations that are similar: E Addresses – N Address (85%); E
BankAccounts – N BankAccount (91%); E Cost centers – N
CostCenter (90%); E Cost units – N CostUnit (88%); E Departments
– N Department (90%); E Employees – N Employee (88%); E
Schedules – N Schedule (88 %).

26

Fig. 7. Similarity results greater than or equal to 65 % (Exact Online,
NMBRS).

In Exact Online (E) and NMBRS (N) there exist operations that
are confused: E Contacts – N Contract (76%); E Contacts – N
ContractPerson (72%) – they share some similar data, but they need
to be evaluated from data structure perspective for this operation; E
Contacts – N ContractV2 (70%);

Exact Online with NMBRS has 20 operations with a result
higher than 65%. We can analyze and determine thresholds by
semantic meaning trying to avoid mismatching. As can be seen,
Exact Online 285 NMBRS 130 operations have only 20 operations
possible with interoperability score > 65%. Further, Exact Online (E)
and PrestaShop (P) were compared and similarity results were above

27

or equal to 70 %. In the research results there are cases with full
similarity (100%) between a few objects: Addresses; Contacts;
Currencies; Employees; Warehouses. However, the algorithms are
not precise, so some confusion can be found, for example, at (74%):
E Projects – P products (74%).

Exact online with PrestaShop has 18 operations with a result
higher than 70 %. As can be seen, Exact Online 285 PrestaShop 72
operations have only 18 operations possible interoperability with
score > 70 %. Other results are overviewed and presented in Table 3.
The experiment confirms that it is possible to evaluate the
interoperability capability, i.e., identify the pairs of specific
operations that potentially can be interoperable.

Table 3. Count of Operations with a given score for each software
interoperability combination.
 Similarity >= 100 %

 60% 70%

E
nseble

L
evenshtein

Jaro-W
inkler

Jaccard

L
ongest

C
om

m
on

Subsequence

ExactOnline X NMBRS 40 20 - - - - -

ExactOnline X Prestashop 54 18 5 5 5 5 5

ExactOnline X SuiteCRM 48 12 - - - 8 -

NMBRS X Prestashop 11 6 1 1 1 1 1

MMBRS X SuiteCRM 7 - - - - - -

SuiteCRM X Prestashop 13 6 1 1 1 5 1

In Figure 8 the similarity of applications using different edit

distance calculations is depicted. All edit distance algorithms
determine the same similarity between the EAS (Fig. 8).

28

Fig. 8. Similarity of applications using edit distance calculations a)
Levenshtein, b) Jaro-Winkler, c) Jaccard, d) Longest common
subsequence, e) ensemble.

The scoring amplitudes are somewhat shifted (a – [13; 21], b –
[46;53], c – [2;10], d – [23;33], e – [21;29]) because of the difference
of the edit distance calculation methods. The method can compare a
different amount of procedures. The lower the percentage, the more
procedures were compare, but the score was lower because of
different amounts. It is still more important to check each
comparison method rather than looking for a difference in each of
them.

1.4. Interoperability evaluation using bag of words

Bag of words is a good model to simplify visualizations of data
that was used in the experiment. In this research the bag of words
method was used for data visualization and further decision making
on experiment steps. We also used bag of words solution to split
additive words such as “sendInvoice” so we could analyze separate
words for example “send” and “invoice” separately. This helps
determine that “send” is a verb and is used in action to the noun
“invoice” which is an object in the application that is being analyzed.
Determining and displaying bag of words helps visually see the
application similarity results. An example is given using KonaKart,
Zen Cart and Suite CRM application analysis in text analysis figures
A, B and C (Fig. 9).

29

Fig. 9. Textual analysis comparison between applications using the
bag of words method.

From the textual analysis comparison with the bag of words
method we see the larger words that have most of related operations
(Fig. 9) expressed. The operations that are verbs impact the objects
which are nouns, and we can clearly see that KonaKart (A) and Zen
Cart (B) have product an object that is possibly related. We can
certainly say that (A) and (B) share same objects and therefore can
be interoperable because we know that both applications are E-
Commerce solutions and the method above gives us a computable
objective view of the latter statement.

1.5. Interoperability evaluation using latent semantic analysis

The assumption that words in applications are semantically
similar if they repeat in the similar places of the text – that is also
known as distributed semantics. Based on this assumption, we can
use the Latent Semantic Indexing (LSI) method to improve edit-
distance method experiment results and to improve the monitoring
and analysis actions of autonomic computing component. For latent
semantic analysis we used R language version 3.5.1 and these
libraries:

 RODBC – data reading and writing
 tm – a text mining tool
 quanteda – a text analysis tool with latent semantic

analysis capability.
Experiment tests were carried out using the Latent Semantic
Analysis tool from Quanteda library package. Latent semantic

30

analysis is described in Information Retrieval, Algorithms and
Heuristics book (Grossman & Ophir, 2012).

In the first experiment we compare ExactOnline and SuiteCRM
applications, for only operations that are 100 percent match and try
to see if they are similar by adding Objects, Fields, and Field Type
information, hence the semantic knowledge about operation. We can
clearly see that ExactOnline objects are more different from
SuiteCRM package objects (Fig. 10)

Fig. 10 ExactOnline comparison to SuiteCRM structural similarity
using the LSI method.

From the ExactOnline comparison to the SuiteCRM figure it is
seen that the vectors V1 and V2 reflect the positions of the objects
on the plane (Fig. 10). The closer the objects in this plain are, the
more related semantically they are, hence increasing a total
possibility for applications to have interoperability.

31

6. CONCLUSIONS AND RECOMMENDATIONS

1. Most common problems of application integration and
interoperability were listed and compared and showed that
the most important problems are schema matching,
orchestration and choreography in interoperability solutions.

2. Review of the currently existing interoperability evaluation
methods show that they rely mostly on manual analysis,
questionnaires and there are no automated approaches to
determine whether multiple applications can be
interoperable.

3. Main analyzed interoperability evaluation methods are LISI,
I-Score, Comparison by functionality. The LISI and
Comparison by functionality methods are quite similar, but
LISI is more developed for a multiple business layer, and
comparison by functionality deeply depends on the
observer’s subjective view of the domain. The I-score
method is more technical and is closer to the topic of this
research, but it covers only a very low technical level and
does not deal with schema matching orchestration and
choreography problems.

4. The proposed solution for autonomic interoperability
evaluation was laid in the theoretical part of the dissertation.
In the proposition it was argued that multiple knowledge
sources of business domain can be used to add to the
evaluation of interoperability. The proposed method suggests
that knowledge can be gathered from business process,
application architecture description files, and other ontology
sources that could be added to the existing experiment and
compared with target application, which would allow
determining the coverage of the business layer to the
application layer and how well CIM represents software PIM
models in the enterprise architecture domain.

5. The presented experiment argues that the statement proposed
method is able to autonomically detect similarity between
applications by the highest-level using web service
description documents and edit-distance, latent semantic
analysis methods to get the quantitative evaluation of
interoperability.

32

6. Enterprise applications were analyzed and evaluated the
level of capability to be interoperable. The goal to assess
interoperability through the knowledge available by
automated algorithms has not yet been covered in the
available solutions.

7. This research opens a possibility for a machine to machine
interaction evaluation, helping people that work on
integration projects.

8. Results of the current research might be helpful as decision
support to quickly gain knowledge of compatibility between
the systems.

9. In the experiment, 13 software systems were compared by
difference edit-distance methods and give the output of
evaluation of the capability of interoperability in the form of
similarity score.

10. The negative side of such scoring is that the summary of API
operation similarity score does not provide a full picture of
similar objects and operation count difference in all
applications and might affect this scoring method.

11. Jaccard, Jaro-Winkler, Levenshtein, and Longest Common
Subsequence methods show the same separation of
interoperability measure. The methods have a different level
of precision estimating not such similar strings (below 60%).

12. Topic of the research could be expanded to investigate how
autonomic component can evaluate interoperability when its
managed application systems are not designed using service-
oriented architecture.

This research provides the basis for supporting Business Process
alignment to Application Processes and may impact the quality
of application interoperability when using business process
models. The idea is that after measuring whether software
systems are interoperable, it is possible to measure the alignment
to business processes and see which operation fall outside of the
business process model.

33

LIST OF PUBLICATIONS ON THE TOPIC OF

DISSERTATION
Chen, D., Doumeingts, G. & Vernadat, F., 2008. Architectures

for enterprise integration and interoperability: Past, present and
future. Computers in industry, 59(7), pp. 647-659.

Cintuglu, M. H., Youssef, T. & Mohammed, O. A., 2016.
Development and application of a real-time testbed for multiagent
system interoperability: A case study on hierarchical microgrid
control. IEEE Transactions on Smart Grid, 9(3), pp. 1759-1768.

David, C., 2006. Enterprise Interoperability Framework. s.l.,
EMOI-INTEROP.

Dijkman, R. et al., 20144. Similarity of business process models:
Metrics and evaluation.. Information Systems, 36(2), pp. 498-516.

Di, L. & Kobler, B., 2000. NASA standards for earth remote
sensing data. International Archives of Photogrammetry and Remote
Sensing, 33(B2; PART 2), pp. 147-155.

Dzemydienė, D. & Naujikienė, R., 2009. Elektroninių viešųjų
paslaugų naudojimo ir informacinių sistemų sąveikumo vertinimas.
Informacijos mokslai, Issue 50, pp. 267-273.

El-Halwagi, M. M., 2007. Process integration. Elsevier, Volume
7.

Fielding, R. T. & Taylor, R. N., 2000. Architectural styles and
the design of network-based software architectures. Irvine:
University of California.

Ford, T., Colombi, J., Graham, S. & Jacques, D., 2008.
Measuring system interoperability. s.l., Proceeding Cser.

Gates, B., 2013. Measuring progress. Annual Letter, Gates
Foundation. [Online]
Available at: https://www.gatesfoundation.org/Who-We-
Are/Resources-and-Media/Annual-Letters-List/Annual-Letter-2013
[Accessed 25 September 2018].

Gediminas, G., 2015. Daugiaagentinių sistemų kūrimo metodų
išvystymas nedidelio našumo įterptinių sistemų integravimui,
Vilnius: Vilnius University.

Gonzalo, N., 2001. A guided tour to approximate string
matching.. ACM computing surveys (CSUR), 1(33), pp. 31-88.

34

Grossman, D. A. & Ophir, F., 2012. Information retrieval:
Algorithms and heuristics. pringer Science & Business Media,
Volume 15.

Hophe, G. & Woolf, B., 2004. Enterprise integration patterns:
Designing, building, and deploying messaging solutions.
s.l.:Addison-Wesley Professional.

Jackob, B., Lanyon-Hogg, R., Nadgir, D. & Yassin, A., 2004. A
practical guide to the IBM autonomic computing toolkit. IBM,
Durham: International Technical Support Organization.

Kasunic, M., 2001. Measuring systems interoperability:
Challenges and opportunities. s.l.:Carnegie-Mellon Univ Pittsburgh
Pa Software Engineering Inst.

Kephart, J. O. & Chess, D. M., 2003. The vision of autonomic
computing. Computer, Volume 1, pp. 41-50.

Krajicek, J. & Krajíček, J., 1995. Bounded arithmetic,
propositional logic and complexity theory, Cambridge: Cambridge
University Press.

Li, L., Wu, B. & Yang, Y., 2005. Agent-based Ontology
Integration for Ontology-based Applications. Proceedings of the
2005 Australasian Ontology Workshop-Volume 58, Australian
Computer Society, Inc..

McCann, R. et al., 2005. Mapping maintenance for data
integration systems. s.l., VLDB Endowment, pp. 1018-1029.

Morkevičius, A., 2013. Business and information systems
alignment method based on enterprise architecture models, Kaunas:
KAUNAS UNIVERSITY OF TECHNOLOGY.

Overeinder, B. J. & Verkaik, P. D. B. F. M., 2008. Web service
access management for integration with agent systems. Proceedings
of the 2008 ACM symposium on Applied computing, pp. 1854-1860.

Pavlin, G., Kamermans, M. & Scafeş, M., 2009. Dynamic
process integration framework: Toward efficient information
processing in complex distributed systems. Intelligent Distributed
Computing III, pp. 161-174.

Peukert, E., Eberius, J. & Rahm, E., 2012. A self-configuring
schema matching system. s.l., In 2012 IEEE 28th International
Conference on Data Engineering, pp. 306-317.

Rahm, E. & Bernstein, P. A., 2001. A survey of approaches to
automatic schema matching. The VLDB Journal, 4(10), pp. 334-350.

35

Rezaei, R., Chiew, T. K. & Lee, S. P., 2014. A review on E-
business Interoperability Frameworks. Journal of Systems and
Software, Volume 93, pp. 199-216.

Shvaiko, P. & Euzenat, J., 2011. Ontology matching: state of the
art and future challenges. IEEE Transactions on knowledge and data
engineering, 1(25), pp. 158-176.

Silverston, L., 2011. The data model resource book, Volume 1: A
library of universal data models for all enterprises.. s.l.:John Wiley
& Sons.

Silverston, L., Inmon, W. H. & Graziano, K., 1997. he data
model resource book: a library of logical data models and data
warehouse designs. s.l.:John Wiley & Sons, Inc.

Tolk, A. & Muguira, J. A., 2003. The levels of conceptual
interoperability model. s.l., Citeseer, pp. 1-11.

Trotta, G., 2003. Dancing around EAI 'bear traps'. Business
Process Management (BPM) Best Practices.

Valatavičius, A. & Gudas, S., 2015. Enterprise software system
integration using autonomic computing. CEUR-WS, Issue 1420, pp.
156-163.

Valatavičius, A. & Gudas, S., 2018. Measuring Enterprise
Application Software Interoperability Capability. CEUR Workshop
Proceedings, Volume 2158, pp. 104-113.

van der Bosch, M. A., van Steenbergen, M. E., Lamaitre, M. &
Bos, R., 2010. A selection-method for Enterprise Application
Integration solutions.. nternational Conference on Business
Informatics Research, pp. 176-187.

Zinnikus, I., Hahn, C. & Fischer, K., 2008. A model-driven,
agent-based approach for the integration of services into a
collaborative business process.. International Foundation for
Autonomous Agents and Multiagent Systems, Volume 1, pp. 241-
248.

Левенштейн, В. И., 1965. Двоичные коды с исправлением
выпадений, вставок и замещений символов. Доклады Академии
наук, 163(4), pp. 845-848.

36

LIST OF PUBLICATIONS ON THE TOPIC OF DISSERTATION

The results of the research were published in two peer-reviewed
journals:

1. Valatavičius, A., Gudas, S., Apie taikomųjų programų
sąveikumo metodologiją, grindžiamą giluminėmis žiniomis.
Informacijos mokslai, 79(79), pp.83-113.

2. Publikuotas straipsnis: Gudas, S., Valatavicius, A., 2017.
Normalization of Domain Modeling in Enterprise Software
Development. Baltic Journal of Modern Computing, 5(4),
pp.329-350.

The results of the research were published in six peer-reviewed
conference proceeding journals:

1. Valatavičius, Andrius & Gudas, Saulius, 2015. Towards
business process integration using autonomic computing.
Informacinės technologijos 2015: Konferencijos pranešimų
medžiaga, pp.81–84.

2. Valatavičius, A. and Gudas, S., Apie taikomųjų programų
sąveikumo metodologiją, grindžiamą giluminėmis žiniomis.
Informacijos mokslai, 79(79), pp.83-113.

3. Valatavičius, A. and Gudas, S., 2018. Measuring Enterprise
Application Software Interoperability Capability.

4. Valatavičius, A. and Gudas, S., 2015. Enterprise software
system integration using autonomic computing. CEUR-WS.
org, 1420, pp.156-163.

5. Valatavičius, Andrius & Gudas, Saulius, 2016. Modeling
environment to maintain interoperability of enterprise
applications. Data analysis methods for software systems:
8th international workshop on data analysis methods for
software systems, Druskininkai, December 1-3, 2016,
pp.63–64.

6. Valatavičius, Andrius & Gudas, Saulius, 2017. Advanced
evaluation methods of multiple application software
interoperability. 9th International workshop on Data
Analysis Methods for Software Systems (DAMSS),
Druskininkai, Lithuania, November 30 - December 2, 2017,
p.52.

7. Valatavičius, Andrius & Gudas, Saulius, 2018. Advanced
evaluation methods of multiple application software

37

interoperability. 10th International workshop on Data
Analysis Methods for Software Systems (DAMSS),
Druskininkai, Lithuania, November 29 - December 1, 2018,
p.87.

The resulst of the research were presented at six national and

international conferences:
1. Tarptautinė konferencija: Dalyvauta Doktorantų

konsorciume BIR 2015 Estijoje tema: “Enterprise Software
System Integration using Autonomic Computing“;

2. Tarptautinė konferencija: DB&IS 2016 Latvijoje tema:
“Modelling Dynamic Enterprise Environment to Maintain
Interoperability of Applications“;

3. Tarptautinė konferencija: DAMSS „Data Analysis Methods
for Software Systems“ 2016;

4. Konferencija: XVIII tarptautinėje kompiuterininkų
konferencijoje LIKS 2017, tema: Towards deep knowledge
based interoperability of applications. Straipsnis priimtas
publikacijai žurnale „Informacijos Mokslai“;

ABOUT THE AUTHOR

Andrius Valatavičius obtained BSc degree in 2012 in the field of
Business Informatics and MCs degree in 2014 in the field of
Business Informatics, both at Vilnius University, Kaunas faculty of
humanities. He was a PhD student at Vilnius University Institute of
Data Science and Digital Technologies from 2014 to 2018. Currently
he is a freelancing data architecture specialist working on multiple
projects with UAB “Kvantas” and UAB “Intellerts”. His interests
include enteprise application integration and interoperability
methods and tools.

38

NOTES

39

NOTES

40

Andrius Valatavičius

ENTERPRISE APPLICATION INTEROPERABILITY
EVALUATION USING AUTONOMIC COMPUTING

Summary of a Doctoral Dissertation
Natural Sciences
Informatics (N 009)
Editor Zuzana Šiušaitė

Andrius Valatavičius

TAIKOMŲJŲ PROGRAMŲ SĄVEIKUMO VERTINIMAS
TAIKANT AUTONOMINIO SKAIČIAVIMO
TECHNOLOGIJAS

Daktaro disertacijos santrauka
Gamtos mokslai
Informatika (N 009)
Redaktorė Jorūnė Rimeisytė - Nekrašienė

Vilniaus universiteto leidykla
Saulėtekio al. 9, LT-10222 Vilnius

El. p. info@leidykla.vu.lt,
www.leidykla.vu.lt

Tiražas 30 egz.

