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ABSTRACT

Satellite imagery is changing how we understand and predict
economic activity worldwide. Advancements in optical satellite hardware and
lower costs for orbital rocket launches with satellite payloads increased the
demand for geospatial intelligence. Commercial satellite constellations by
Airbus Defence and Space, Maxar technologies, resulted in near-real-time,
high-resolution images, covering the entire Earth and opening doors for brand
new applications of geospatial data. Human annotators cannot manually
analyse petabytes of satellite imagery in the current computer vision research;
dealing with this problem still lacks 1) accuracy and 2) prediction speed, both
significantly important metrics for latency-sensitive industrial applications. In
the dissertation, we address both of the aforementioned challenges by
proposing improvements to the object recognition model design, training, and
complexity regularisation applicable to a range of neural networks.

The dissertation proposes a framework for optimizing a Fully
Convolutional Neural Network (FCN) architecture (UNET) designed for
accurate and fast object recognition in optical satellite imagery. We show that
this FCN exceeds existing networks’ performance with state-of-the-art speed
over multiple sensors and outperforms other proposed methods in this specific
domain of light-vehicle object class recognition in optical satellite imagery.
Its computationally light architecture delivers a fivefold improvement in
training time and a rapid prediction, essential to real-time applications. To
illustrate practical model effectiveness, we analyse it in the context of an
algorithmic trading environment.

In addition to improving and adapting the FCN, we also examine the
limitations of manually-designed neural networks. The object recognition
problem in multi-spectral satellite imagery carries unique intricate spatial
structures and dataset properties such as perspective distortion, resolution
variability, data spectrality, and other features that make it difficult for a
specific human-invented and manually designed neural network to perform
well across dispersed datasets. It requires manual recalibration and further
configuration-testing to adjust the neural network architecture to the task at
hand. The present dissertation evaluates and proposes how Automated
Machine Learning (AutoML) based techniques can be employed to solve these
limitations.

We then continue to examine the area for AutoML with particular
emphasis on Neural Architecture Search and propose the NAS-MACU type



of architecture learning framework that automatically designs and adopts
neural network architecture within the MACU backbone. Neural architecture
search is conducted at the cell-level which is a building block of reusable
neural network modules that perform a specific function such as convolutional
or recurrent operation. The constructed NAS-MACU performed exceptionally
well in a low information environment compared to manually designed
networks.

A proprietary annotated satellite imagery dataset was created,
published and open-sourced to contribute to the further development of this
research field. Research findings can be readily implemented in other object
recognition applications too.
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1 INTRODUCTION

1.1 Research context, motivation, and relevance

According to the Committee on Earth Observation Satellites (CEOS),
commercial satellite imagery will soon reach the coverage of the entire Earth,
with near-real-time frequency and high-resolution [1] [2]. Commercial
satellite constellations from Maxar technologies like RADARSAT-2 [3],
Pleiades-1 and ICESat-2 [4], Vision-1 from Airbus Defence and Space [5],
and Cartosat-3 by IRSO [6] are providing full earth visual coverage of RGB
and panchromatic imagery with a resolution close to the maximum legal
accuracy of 25 cm per pixel [7].

The growing accessibility and affordability of satellite and aerial
imagery have resulted in a significant surge in the utilization of these image
types across a wide range of applications. Industries that utilize this data
include government, military, agriculture, supply chain and finance. It enables
non-profits and governments to leverage these insights for humanitarian
purposes, including economic impact assessment of global pandemic (object
count of aircraft, lorries in supply chains, container ships), rapid forest wildfire
detection [5], time-sensitive flash flood hydraulic modelling [7], [6] precision
agriculture, environmental impact prevention for extractive industries and
surveillance for disaster relief [8]. In the financial sector, quantamental hedge
funds utilize satellite imagery as a source of intelligence for their financial
trading algorithms to generate access returns (alpha) [3]. Alpha is a measure
of the excess return generated by an investment strategy or portfolio after
accounting for risk and expected returns. In the context of quantamental hedge
funds, it represents the value added by the investment manager's skill in
exploiting market inefficiencies while adopting alternative data such as
satellite imagery. Near-real-time satellite imagery combined with computer
vision enables investment managers to leverage insights from the “ground-
truth” data to predict the price movements of financial securities in the public
stock and commodity markets. Examples of practical applications encompass
revenue prediction for companies using car count data across parking lots,
estimation of manufacturing output by analysing supply chain activity,
forecasting agricultural commodity prices through estimated crop yields, and
detection of oil supply by monitoring global oil tank lids [4].

As novel real-world use cases arise, they increase the demand for
developing high-precision and real-time computer vision techniques [9].
Human-derived analytics and data annotation are no longer economically
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viable. Based on recognised standards [10], a professional annotator can
annotate approximately 1km? to 2km? of satellite imagery per day within the
light-vehicles object class. Therefore, annotating 100km? of satellite imagery
would take approximately 50 to 100 days for a single annotator to complete
[11]. Even though substantially better than human annotators, the latest
computer vision models still require a significant amount of time (over 30
min.) to process approximately 100 km? of satellite imagery [12] with an
object recognition accuracy level [13] lower than that of professional human
annotators (<90%) [14] [15] [16].

In addition, the current body of academic research exhibits a lack of
comprehensive methodologies aimed at improving object recognition models
specifically tailored to address the intricacies inherent in satellite imagery as
a distinct data category [17] [18]. The formidable challenge stems from the
unique properties of satellite imagery as a dataset itself, including perspective
distortion, resolution variability, data spectrality, and other salient
characteristics that render conventional human-invented neural networks ill-
suited to excel in the presence of diverse and dispersed scenic elements.
Consequently, the observed limitations in both accuracy and prediction speed
contribute to an exacerbation of the bottleneck effect, impeding the seamless
integration of satellite imagery into real-world, latency-sensitive applications,
such as algorithmic trading within the financial securities domain [19].

Satellite images can now be effectively processed using Convolutional
Neural Network (CNN) models, which are popular deep learning techniques
widely employed for object detection and segmentation tasks. CNN has found
extensive application in computer vision tasks such as object segmentation,
object tracking, change detection, foreground object detection, optical flow,
pose estimation, and semantic segmentation. Among these applications,
semantic segmentation emerged as the most promising approach for
addressing the challenges posed by the nature of satellite imagery data.
Architectures like UNET [14], MACU [20] and similar manually designed
Fully Convolutional Network (FCN) architectures have shown satisfactory
results in terms of segmentation accuracy, particularly for larger objects.

Manually-designed networks refer to neural networks that are designed
by human experts. This process involves manually testing and specifying the
network architecture, the hyperparameters, and the training procedure.
Manually-designed networks use to be the predominant method to design the
neural network architectures that achieved reasonable performance on a
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variety of tasks. However, this process is difficult to design, time and
resource-intense, and entails multiple limitations.

The most important limitation is that the performance of these
architectures tends to be limited due to the narrow investigation of
architectural space. Manually designed networks typically examine only a
subset of the vast architectural space due to the finite knowledge, creativity
and recourses of the researcher. This limitation can prevent the discovery of
innovative architectures that may offer improved performance or efficiency.

Additionally, the performance of the manually-designed FCNs and
CNNs tends to diminish when applied to unseen or out-of-distribution data.
The architectural choices made during manual design may be biased towards
the training data, leading to poor performance on new, unseen samples. The
performance is also impacted when training datasets are relatively small
(known as low-information environments) resulting in continuous manual re-
calibration and configuration testing to adapt the neural network architecture
accordingly. Manual network design relies heavily on researcher expertise and
domain knowledge, requiring a deep understanding of the problem domain,
architectural principles, and relevant techniques. This expertise may not be
easily transferable, posing challenges for researchers without extensive
knowledge of network design to create optimal architectures.

In contrast, Automated Machine Learning (AutoML) and Neural
Architecture Search (NAS) techniques systematically research a broader
range of architectural configurations. This dissertation addresses the
challenges related to object recognition in satellite imagery for the light-
vehicles object class, taking into consideration its unique characteristics, the
performance limitations of manually-designed FCNs and the need for fast and
accurate object recognition across various dataset types. To tackle these
challenges, we leverage NAS as part of an AutoML framework. The NAS
technique enables us to automatically search for problem-specific CNN
architectures that maximize its performance. Through our research, by
leveraging the capabilities of AutoML and NAS, we introduce a novel NAS-
MACU neural network, surpassing the performance of manually designed
networks to date. This novel approach, NAS-MACU, specifically caters to and
can address the limitations of manually designed CNNs.
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1.2 Object of the dissertation

The scope of the dissertation is object recognition of light-vehicle class

in optical satellite imagery using Deep Learning (DL) and Automated
Machine Learning (AutoML) techniques.

1.3 Aim of the dissertation

The aim of the present thesis is to provide solutions to accurate and fast

object recognition in satellite imagery employing Deep Learning and AutoML

techniques.

1.4 Objectives of the dissertation

The following objectives were set:

1.

Conduct an in-depth literature review of wide-range of deep learning-
based methods for object recognition of satellite imagery;

Propose a deep learning-based framework for improved accuracy and
accelerated object recognition (object class: light-vehicles) in satellite
imagery including image pre-processing and fully convolutional
neural networks (FCNs) design;

Perform experimental investigation to assess the accuracy and
prediction speed of the convolutional neural network;

Perform comparative experimental analysis on the most promising
neural networks for object recognition;

Design an AutoML-based Neural Architecture Search (NAS)
technique suitable for object recognition problems in satellite imagery
that can outperform the manually-designed neural networks given
problem-specific  constraints (e.g., low-information training
environments and dataset specificities).

1.5 The scientific novelty of the research

A deep learning-based framework “Sat-Modification” was proposed
for improved accuracy and accelerated object recognition of light-
vehicle object class in satellite imagery. The framework includes
image pre-processing, pixel-frame sequencing, hyperparameters
tuning, network complexity assessment, and UNET architecture
adjustment techniques;
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An in-depth comparative analysis and experimental investigation of
the top-performing FCNs (UNET, FastFCN, DeepLab, MACU) was
conducted and the important features and components of the neural
network design were investigated enhancing the performance of the
segmentation tasks.

A novel solution (NAS-MACU) was proposed based on automated
Neural Architecture Search (NAS) and MACU network backbone
that can automatically discover well-performing cell topology
optimised for relatively small-size object recognition (e.g. light-
vehicle class) in optical satellite imagery.

1.6 Defended statements

The proposed fully convolutional neural network modification based
on UNET architecture provides lower network-specific prediction
latency for object recognition task in satellite imagery for the light-
vehicle object class as compared to other FCNs including MACU,
DeepLab and FastFCN networks.

The proposed novel NAS-MACU provides a more accurate object
recognition for light-vehicle object class in a low-information
environment as compared to the manually-designed MACU network
that was created and published by expert researchers.

1.7 Practical impact

This dissertation research process produced and open-sourced a
proprietary satellite imagery training set with labelled polygons to
enable further development in this research field. A high-quality
training set with 80 316 marked objects using QGIS geospatial
software was created using professional data annotation techniques.
Labelling and polygon coordinate generation was manually
completed by multiple professional annotators and quality cross-
checked. An extremely limited amount of publicly available high-
resolution satellite imagery datasets with labelled “light-vehicle”
object class polygons existed at the time of this research.

This work addressed two important practical limitations of satellite
imagery application in the algorithmic trading domain: high accuracy
and speed in a low-information environment. These real-life obstacles
can now be easier to solve with practical techniques suggested in the
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dissertation, such as how to measure the computational complexity of
the network to improve prediction speed; and how to apply NAS
techniques to find the network architecture with the most accurate
object prediction when the amount of training data is scarce or
expensive (i.e. in a low-information environment).

The discovery of NAS-MACU techniques has the potential to greatly
benefit scientific researchers since it significantly reduces the time
needed to find optimal neural networks for object recognition tasks in
specific problem domains, even outside of remote sensing or satellite
imagery. This translates into substantial research time savings and
domain expertise dependency reduction. It also accelerates models’
“time-to-publishing” and to production. Moreover, NAS-MACU
enhancements can be extended to other latency-sensitive industrial
and humanitarian applications.

1.8 Approbation of the research

The results of the dissertation were published in international research journals
with a citation index in the Clarivate Analytics Web of Science (CA WoS)
database:

Gudzius, P., Kurasova, O., Darulis, V., & Filatovas, E. (2021). Deep
learning-based object recognition in multispectral satellite imagery
for real-time applications. Machine Vision and Applications, 32(4), 1-
14;

Gudzius, P., Kurasova, O., Darulis, V., & Filatovas, E. (2023).
AutoML-based Neural Architecture Search for Object Recognition in
Satellite Imagery. Remote Sensing, 25(3), 15-31.

The results of the thesis were presented at the following international

conferences:

2018: International Conference on Control and Computer Vision
(ICCCV), November, Singapore;

2019: 16th ACS/IEEE International Conference on Computer
Systems and Applications, AICCSA, November, Abu Dhabi, UAE;
2019: Data Science, E-learning and Information Systems, December,
Dubai, UAE;

2022: The 8th International Conference on Machine Learning,
Optimisation, and Data Science, June, Siena, Italy.
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The results of the thesis were presented at the following national conference:
e 2017: 9th International Workshop on Data Analysis Methods for
Software Systems, December 2017, Druskininkai, Lithuania.

1.9 Visual representation of holistic dissertation research process

Objective: Propose a deep learning-based framework for improved accuracy and accelerated object
recognition in optical satellite imagery

Conducted an in-depth literature review of wide-ranging deep learning-
based methods for object recognition of satellite imagery

|
v v v

Identify the top four SOTA Identify the max legally Identify the hardest object
performing FCNs related allowed imagery resolution: recognition class (limited by
to the research problem 25cm per pixel resolution): light-vehicles

Created and

Experimental analysis on identified networks for object open-sourced a
satellite imagery

recognition problem of light-vehicles object class: UNET, T gata set with
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2 LITERATURE REVIEW

This chapter focuses on the research work done in idiosyncrasies of
satellite imagery data, CNN, FCN and AutoML models. The chapter also
covers practical industrial and humanitarian applications of satellite imagery
combined with machine learning technology.

2.1 Satellite imagery

The objects captured in satellite imagery are patches of the earth’s
surface involving land or ocean. This distinguishes it from terrestrial photos
taken by people, surveillance videos taken for safety, the output of automotive
sensors used for automatic driving, or medical images used for diagnostics.
Rich multispectral aperture, low pixel resolution, and a wide aspect ratio are
some of the unique properties of optical satellite imagery [21]. Particularly
relevant for machine learning-based object recognition is the spatial resolution
of the images. Satellite imagery typically has a lower spatial resolution than
on-ground imagery, meaning that each pixel in an image could be almost as
large as an object itself. This can make it more challenging to discern small
objects such as buildings, cargo ships, trees, or light-vehicles [22].

Another unique aspect of satellite imagery is its multispectral nature.
Satellite imagery is often captured in multiple spectral bands, including
visible, infrared, and radar. Each band provides information about different
scene characteristics, such as the objects' colour, texture, and surface
properties. The multispectral nature of satellite imagery can provide additional
information for object recognition, yet it also requires specialised pre-
processing and feature extraction techniques. Satellite imagery also often
covers larger land areas than aerial photography and can be affected by various
atmospheric conditions, such as haze and cloud cover, which can impact
image quality and make it more challenging to identify objects in the scene.
In addition, satellite imagery can be affected by geometric distortions caused
by the sensor's position and angle, leading to changes in scale, orientation, and
shape of objects in the image. These geometric distortions must be corrected
to obtain accurate object recognition results. While satellite imagery presents
unique challenges for object recognition, it also offers valuable information
that can aid in identifying and classifying objects in the scene photographed
from a 600km-800km distance in the Lower Earth Orbit (LEO).
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2.2 Semantic segmentation

Image segmentation, like image classification and object detection, is
one of the important research areas in the computer vision community. Image
segmentation differs from object recognition since object recognition aims to
find a bounding box locating the objects, while segmentation tries to find exact
boundaries by classifying pixels. The segmentation problem can be divided
into two types: semantic segmentation and instance segmentation. Semantic
segmentation can be considered a classification problem for each pixel, and it
does not distinguish different instances of the same object. On the other hand,
instance segmentation also represents a unique label for different instances of
the same object [23].

Objects such as light vehicles in satellite imagery are depicted in a
relatively small 200-pixel matrix (20 x 10 pixels) in contrast to the millions of
pixels processed in more common computer vision datasets like COCO
(Common Objects in Context), Pascal VOC (Visual Object Classes) or
ImageNet [24]. Given the resolution constraints, we deploy semantic
segmentation [21] for the light-vehicle recognition problem to capture these
rich multispectral properties. Semantic segmentation assigns a label or
category to each pixel in an image. It is used to identify groups of pixels that
represent various categories. An autonomous vehicle, for instance, must
recognise pedestrians, other cars, traffic signs, pavement, and other road
elements. It outputs the semantically interpretable category of each pixel [25]
and is more precise than object detection and scene interpretation [26].
Semantic image segmentation techniques originated from the recursive
thresholding method [27], spatially constrained k-means approach [28],
histogram-based image segmentation, non-parametric clustering, entropic
thresholding, and edge detection techniques [29]. These methods are manually
calibrated [28] [29], consequently lacking generalisation and scalability [17].

Today, better-performing solutions to the segmentation problem are
obtained with deep learning-based solutions compared to the classical
Machine Learning (ML) techniques such as Support Vector Machine (SVM)
and k-means clustering. While classical methods require feature extraction
implemented by the developer, CNN architectures combine feature extraction
and classification in the learning phase. One of the first attempts for a deep
learning-based semantic segmentation [30] is based on Fully Convolutional
Networks (FCNs). The general classification architecture with CNN consists
of convolutional and pooling layers to extract features with lower dimensions.
In the last layers of these types of networks, fully convolutional layers are
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used to make a final decision. On the other hand, in FCN, fully convolutional
layers are placed in final dense layers, resulting in the same size output as the
input image. Up-sampling is applied to be able to acquire the same resolution
frames. Different types of FCN-based architectures were developed since
2015 [31] and some of the covered FCN architectures [32] use pre-trained
classification models in the feature extraction stage.

Furthermore, the vehicle recognition problem has received a lot of
attention from researchers [33], and CNNs were popularised [34] since they
do not require prior feature extraction [17] [35]. A CNN processes data in
multiple arrays [36] for example VGG [37] and ResNet [38]; therefore, a
multiband satellite imagery dataset is well suited for it by design [39].
Considerable research has been published on implementing semantic
segmentation using various CNN architectures [33]. Nguyen et al. [40]
presented a five-layer CNN and achieved high object recognition accuracy of
91% for large urban area objects [41]. Later, Chen et al. [42] developed a
Hybrid Deep Convolutional Networks (HDCN) architecture for light-vehicle
objects and claimed the best performance at the time [42] and significantly
surpassed other Hybrid CNN structures such as Hierarchical Robust CNN
(HRCNN) using AlexNet as a backbone [35]. It demonstrated that extracting
multiscale features is critical to improving the performance of the object
detector. HDCN architecture divided the maps of the highest convolutional
and max-pooling layer of Deep Neural Network (DNN) into multiple blocks
to extract variable-scale features. Building on that work, Yu et al [43]
proposed the convolutional capsule network that delivered >90% accuracy, an
outstanding result for the vehicle recognition field [43]. A Capsule network
consists of capsules made of a group of neurons, unlike conventional CNNs
[43].

In addition, Ferdous et al. [44] introduced prediction speed criteria in
2019. They argued that Regions-CNN (RCNN) [45], Fast-RCNN [46], and
Faster-RCNN [47] are incompatible with real-time applications due to a slow
multistage regional-proposal-based approach. The architectures containing a
separate region proposal network required much computational power, and
Fast-RCNN reduced the running time of these detection networks. In the
Faster-RCNN, the Region Proposal Network (RPN) shares convolutional
features with the detection network. Thus, RPN and Fast-RCNN are merged
into a single network by sharing the convolutional features. Anchor boxes of
multiple scales and aspect ratios are used to classify and regress the bounding
boxes in the Faster-RCNN. End-to-end detection-based methods like You
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Only Look Once (YOLO) [48] and Single Shot Detectors (SSD) [49] were
suggested to increase prediction speed, yet compromising accuracy (only
89.21%) [50].

2.3 Network types and prediction speed

Shelhamer et al. [43] proposed an alternative fully convolutional
neural network that combined features from complementary resolution levels
(contextual and spatial information). The FCN architecture demonstrated the
best precision using semantic segmentation [51] and also improved parameter
optimisation and gradient flow, as discussed by Estrada et al. [52]. FCNs
applied in satellite images obtained promising results [53]. However, the main
issue of FCN is that the resolution of feature outputs is down-sampled with
several convolutional and pooling layers and therefore losing contextual data.
To eliminate this issue, FCN variants [53] introduce a skip connection from
previous layers to enhance the output (for changes in scale) and perform well
in remote sensing images. Various more advanced FCN-based approaches,
such as SegNet [54], UNET [55], and DeepLab [56], were proposed to address
this issue.

DeepLabvl architecture [57] applies a Fully Connected Conditional
Random Field (FCRF) to enhance the poor localisation property of deep
networks. Thus, it is more effective to localise segment boundaries than
previous methods. DeepLabv2 [56] architecture applies atrous convolution
(also named dilated convolution) for upsampling and Atrous Spatial Pyramid
Pooling (ASPP) to robustly segment objects at multiple scales. ASPP is a
different variant of Spatial Pyramid Pooling (SPP) proposed in the study [58]
and aims to improve the accuracy for different object scales. DeepLabv3 [59]
augments the ASPP module with image-level features encoding global context
and further boosts performance. It improves over previous DeepLab
architecture versions and achieves comparable performance with other state-
of-art architectures.

The desired output in many visual tasks, particularly in satellite imagery
and biomedical image processing, should include localisation; each pixel
should be given a class label. Thousands of training images are typically out
of reach for biomedical or satellite imagery related research. We rely on the
so-called “fully convolutional network”, a more elegant architecture that
displays how we modified and expanded this architecture to make it more
effective with fewer training images and produce more accurate
segmentations. The primary idea is to add additional layers to a typical
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convolutional neural network, replacing the pooling operators with
upsampling operators. As a result, the output resolution is increased by these
layers. High-resolution characteristics from the contracting path are mixed
with the output that was upsampled to localize. Based on the knowledge, a
subsequent convolution layer can learn to produce a more precise result. We
also have many feature channels in the upsampling section, which enables the
network to relay context information to higher-resolution layers. As a result,
the expansive path produces a U-shaped design because it is roughly
symmetric to the contracting path, which the UNET name has been derived
from. The segmentation map only comprises the pixels for which the whole
context is present in the input image. The network has no fully linked layers
and only uses the valid fraction of each convolution. By using an overlap-tile
technique, this solution enables the smooth segmentation of arbitrary huge
images. The missing context is extrapolated by mirroring the input image to
forecast the pixels in the border region of the image [14].

Even with the above-mentioned enhancements, the FCN models,
nevertheless, take considerable time (>30 min.) to process ~100km* of
satellite imagery [12] with accuracy lower or similar to [13] a professional
human annotator (~90%) [14] [15] [10] [16]. Also, current academic research
is focused on accuracy, and it lacks methods for improving object recognition
models suited for more rapid prediction and latency-sensitive use-cases [17]
[18]. This gap in research increases the bottleneck for satellite imagery
adoption in real-time applications that we are trying to address in this
dissertation.

2.4 Algorithmic trading and latency-sensitive applications

One specific latency-sensitive application of satellite imagery
combined with machine learning is in algorithmic trading in the financial
markets. It is used by hedge fund managers leveraging alternative data,
including satellite imagery [3] [19] to generate excess investment returns.
Figure 1.3 illustrates data flow in the algorithmic trading system and identifies
signal origination latency per data input to accentuate this bottleneck:

e market data (<40 min. delay);

e non-market data (<50 min. delay);

e satellite imagery (>3.5 min. delay);

e research-based metrics (no delay/pre-event).
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Figure 1.3. Signal generation bottleneck from satellite imagery data in the
algorithmic trading system. Modified with an additional layer based on Cliff
et al. [19]

The downstream analytics mentioned in the thesis and the examples
below refer to various trading activities, including high-frequency and
algorithmic trading. The count of cars in an area, obtained through real-time
object recognition, provides high-level information that can drive rapid
trading decisions. While processing speeds alone may not reach millisecond-
level trading requirements, the advantage lies in gaining timely insights for
informed decision-making. A 30-second analytical advantage can offer a
substantial competitive edge in dynamic financial markets and five examples
illustrate where this advantage could be even more significant.

The need for speed in this context is justified by the desire to
capitalize on market opportunities before other participants process the same
information. Real-time object recognition and vehicle counting enable traders
to react swiftly to market events, leading to efficient trading strategies and
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potentially significant financial gains. Therefore, the thesis justifies the need
for speed in terms of the competitive advantage it provides in rapidly evolving
financial markets. Below are specific real-world use cases where accuracy and
prediction speed provide this advantage and are worth further investment and
research.

e Geopolitical Risk Assessment: Satellite imagery enables real-time
monitoring of geopolitical events, such as political unrest, military
movements, or infrastructure changes, providing insights into potential
risks and opportunities in financial markets. Low-latency object
recognition allows for quick identification and counting of relevant
objects (e.g. light-vehicles, tanks, military equipment) enabling traders to
anticipate market shifts, execute trades faster than competitors, and
capitalize on short-term price movements driven by geopolitical factors.

e Production Facility Analysis: Satellite imagery provides a bird's-eye view
of production facilities, such as Tesla's Gigafactory, allowing for
monitoring car production numbers. Visual cues from satellite imagery,
such as the number of vehicles or components in staging areas or storage
lots, offer insights into inventory levels, potential production volumes, or
shipment activities.

e Commodities Supply and Demand: Real-time counting of vehicles at
transportation hubs, such as ports or storage facilities, with the help of
satellite imagery, provides insights into the supply and demand dynamics
of commodities. Monitoring the total number of vehicles involved in the
transportation or storage of specific commodities (e.g., oil tankers, grain
transport trucks) enables investors to anticipate shifts in supply or
demand. Low-latency vehicle counting allows for informed trading
decisions in commodities futures, options, or related stocks, capitalizing
on price movements due to changes in supply and demand.

e Natural Disasters and Insurance: High-speed prediction and assessment of
natural disasters, such as hurricanes, wildfires, or floods, using satellite
imagery aid insurance companies in estimating potential claims and
financial impact. Rapid analysis of the extent of damage and affected
areas enables informed decisions on risk exposure, claims processing, and
pricing, optimizing portfolios for profitability.

e Maritime Trading: Satellite imagery offers real-time information on
shipping activities, vessel movements, and cargo flows. Analysing
patterns in shipping routes, port activity, and changes in inventory levels
identifies opportunities in maritime logistics, international trade, and
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commodities tied to shipping, such as iron ore or coal available on CBOE
or other liquid exchanges in the form of Futures and Derivatives.

In addition to algorithmic trading, reducing computational complexity
and prediction speed in machine learning models offers significant cost and
environmental benefits. By reducing computational resource requirements
during training and prediction phases, energy consumption is minimized,
resulting in lower operational costs and a reduced carbon footprint.

It is worth emphasising that this dissertation aims to reduce neural
network-specific inference speed in particular by aiming to measure and
reduce the computational complexity of the model. Techniques such as model
compression, parameter pruning, computational complexity assessment and
efficient network architectures streamline the training process reducing
energy consumption. Prioritizing these reductions aligns with the principles
of green computing, yielding efficient and sustainable machine learning
systems. In addition to the model-architecture-specific computational
complexity reduction, other methods include model compression, hardware
acceleration, and software optimization:

e Model compression: Quantization is a technique for reducing the
precision of the model's parameters, which can significantly reduce the
model's size and speed. Pruning is a technique for removing unnecessary
connections from the model, which can also reduce the model's size and
speed. Knowledge distillation is a technique for training a smaller model
to mimic the predictions of a larger model, which can improve the
accuracy of the smaller model while also reducing its size;

e Hardware acceleration: Graphics processing units (GPUs) are well-suited
for accelerating the inference of deep learning models. Tensor processing
units (TPUs) are specialized hardware accelerators designed for deep
learning. Field-programmable gate arrays (FPGAs) can be programmed
to accelerate the inference of specific models;

e Software optimization: This can include optimizing the model's code by
using more efficient programming techniques and libraries. It can also
include optimizing the model's runtime environment by using a more
efficient runtime environment, such as a high-performance computing
(HPC) cluster.
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2.4.1 UNET-based models

Segmentation means classifying each pixel in the image. Therefore, the
output of the segmentation algorithms is a mask image of the same size as the
original image. Ronneberger et al. [14] developed FCN called UNET for
solving high-level feature extraction in biomedical image segmentation [14]
that won a competition at Symposium for Biomedical Imaging [15].
Segmentation architectures consist of two basic stages called encoding and
decoding. While the image size is reduced and compressed during the
encoding stage, the size increase process is applied to obtain the exact size
output from the decoding stage. Biomedical images share similar
dimensionality, resolution, and perspective properties with satellite imagery.
It was later realised that the overweighting model’s higher-level feature
extraction (i.e., the object's contours) improves prediction accuracy in both
dataset types [14]. Subsequently, UNET was adapted to satellite imagery by
Iglovikov et al. [60] and won 3rd place in the Kaggle competition achieving
the highest Jaccard coefficient confirming UNET’s suitability for this problem
[16]. In addition to feature extraction, the network’s ability to extract spatial
information was researched by Yuan et al. [61]. They discuss the benefits of
convolution and deconvolutions similar to the UNET structure. They also
introduced a light network structure MobileNet that suggested ideas for light
network infrastructures [61].

Besides, neural networks for image segmentation, such as UNET and
SegNet, roughly consist of encoding and decoding stages. UNET and SegNet
architectures transfer the outputs of the encoding layer to the decoding layer
by using skip connections. The encoder stage of SegNet consists of 13
convolutional layers from the VGG16 network [37]. The contribution of
SegNet is that pooling indices in the max-pooling layers at the encoding stage
are transferred to the decoding stage to perform non-linear upsampling.
However, UNET transfers the entire feature maps from the encoding layers to
the decoding layers so that it uses much memory. Different pre-trained models
could be used in the encoding stage of these networks to apply transfer
learning. UNET was originally proposed for medical images, however, it also
reveals good performance for satellite image segmentation [55]. Different
UNET-based architectures are presented in the literature, such as UNET++
[62] and UNET variants like Inception-UNET [63]. UNet++ architecture
modifies the skip connections in UNET by adding new layers between the
encoder and decoder connection. It uses dense convolutional blocks, and this
causes an increase in the number of trainable parameters and floating-point
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operations (FLOPs). Inception variants of UNET apply the inception [64]
approach differently and enhance the feature extraction stages. Using the
Inception approach in each layer increases the computational cost excessively.
Therefore, it is much more convenient not to use inception in all layers.
INCSA-UNet [65] uses inception block with DropBlock module only in the
encoding stage and adds spatial attention modules to prevent overfitting and
enhance important features by focusing on key areas, respectively. The
INCSA-UNet architecture was evaluated against Inception-based
architectures, UNet++, and classic UNET for the problem of building
segmentation from aerial images and performs well. UNet3+ [66] has fewer
parameters than UNET and applies a hybrid loss function for position and
boundary-aware segmentation maps.

Besides, the loss function is also crucial in training machine learning
models. It measures how well a machine learning model can predict the
expected output. The loss function takes in the predicted output of the model
and the ground truth and returns a value that indicates how well the model is
performing. Training a machine learning model aims to find the model
parameters that minimise the loss function. Loss functions used in image
segmentation problems typically fall into one of two categories: pixel-wise
loss functions and region-based loss functions. Pixel-wise loss functions
operate on a per-pixel basis and generally are used to predict the probability
of each pixel belonging to a certain class. Examples of pixel-wise loss
functions include binary cross-entropy and mean squared error.

On the other hand, region-based loss functions operate on a per-region
basis and are used to evaluate the performance of the segmentation model on
a larger scale. Examples of region-based loss functions include the Dice
coefficient and the Jaccard index. These loss functions are often used in
conjunction with pixel-wise loss functions to provide a complete evaluation
of the segmentation model. The Dice coefficient [67] is a measure of the
overlap between the predicted segmentation and the ground truth
segmentation. It is widely used in the training and evaluation of segmentation
models. Inception-UNet and INCSA-UNet use a Dice loss function, UNet3+
proposes a hybrid loss function, Hybrid UNET uses a binary cross-entropy
loss function, and FCAU-Net uses a combination of cross-entropy and dice
loss functions. Abraham, N., & Khan, N. M. [68] proposed a generalised focal
loss based on other Tversky indexes and compared it with the dice loss using
UNET and attention UNET architectures. They studied lesion segmentation
and aimed to address the data imbalance issue.
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Continuing with the UNET variations, UNet3+ also combines multi-
scale features by re-designing the interconnection between the encoder and
the decoder. UNet3+ is only tested on medical images. Figure 2.1 shows a
rough comparison of the three architectures: UNET, UNet++ and UNet3+.

1024 1024
(a) UNet (b) UNet++ (c) UNet 3+
(Plain skip connections) (Nested and dense skip connections) (Full-scale skip connections)

Figure 2.1. Comparison of UNET, UNet++ and UNet3+ [65]

In addition, MANet [69] is a semantic segmentation network
containing multi-scale context extraction and adaptive fusion modules. Multi-
scale context extraction module has atrous convolutions with different dilation
rates in parallel. The adaptive fusion module, inspired by “Squeeze-and-
Excitation” blocks [70], contains a channel attention mechanism to determine
more valuable features. It aims to handle the problem of different target sizes
for remote sensing images. HRNet [71] seeks to eliminate the problem of
losing spatial information in the encoding stage. It applies multi-branch
parallel convolutions and produces four feature maps at different resolutions.
TransUNet [72] and Swin-UNet [73] intend to use the power of transformers
for medical image segmentation problems. Transformers have demonstrated
great success in Natural Language Processing, and computer vision
researchers have used transformers for computer vision problems.
Transformers were first proposed for sequence-to-sequence tasks in natural
language processing by Vaswani et al. [74] in 2017. Transformers use self-
attention mechanisms; inspired by it, researchers have proposed different
CNN architectures to implement self-attention within CNN. The full-
resolution image is divided into small patches to use transformers in computer
vision tasks, and the patch sequence is passed to the transformer model. Vision
Transformer [75] achieved state-of-the-art classification accuracy by applying
a pure transformer to the sequences of image patches.

Furthermore, TransUNet is based on an attention UNet architecture,
and the TransUnet transformer encodes the image patches from a CNN feature
map as input for the transformer layer. The decoding part upsamples the
encoded features to obtain the final mask. Thus, it indicates that the
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transformer can be used as a powerful encoder for medical image
segmentation tasks. The Swin-UNet builds on top of TransUNet architecture
and uses the Swin Transformer, a type of Vision Transformer, as a backbone
to build a pure U-shaped architecture. While transformers have been
integrated into the UNET architecture in recent studies, re-designed UNet
architecture studies of enhanced skip connections are continuing. Different
feature fusion techniques and skip connections are applied to improve the
UNET architecture in the literature further. Phan et al., 2021 [76] re-designed
the decoder sub-network of UNET and proposed a multitasking architecture.
It aims to perform three tasks: lesion segmentation, boundary distance map
regression, and contour detection. It also suggests a new skip connection
module. Additionally, Lee et al. [77] tested different skip connections between
the encoder and decoder sub-networks of UNET architecture for microplastic
segmentation. A recent Hybrid UNET [78] proposed a multi-scale skip-
connected segmentation network for high-resolution satellite images. In
contrast, UNET fuses the features from the same scale between the encoder
and decoder, while Hybrid-UNet fuses coarse and fine semantic feature maps
from both the decoder and encoder sub-networks. It designs an additional
decoder sub-network and fuses features of both decoder sub-networks to
obtain a final semantic segmentation mask.

The attention UNET architectures can be considered an augmentation
of UNET architecture with attention blocks proposed in SA-Unet [79] and also
used in INCSA-Unet. SA-UNet is an UNet-based architecture containing a
spatial attention module for feature refinement and dropout blocks to prevent
overfitting. The spatial attention module helps to focus on key regions, while
channel attention is used to enhance important feature channels. The channel
attention module used in the INCSA-Unet (both spatial and channel attention
mechanisms) performs well in different architectures like MACU, SENet [80],
and DANet [81]. A multiscale UNET study [82] proposes an architecture to
merge the low-level and abstract features extracted from the shallow and deep
layers. It aims to retain detailed edge information for building segmentation
issues.

MACU [20] is another UNET-based architecture using multiscale
skip connections and asymmetric convolution blocks. The skip connection in
UNET and its variants bridges low-level and high-level features. This
approach and multiscale feature extraction make significant performance
improvements in the segmentation task. In addition to that, the attention
modules with an encoding-decoding structure have been widely used for fine-
resolution image segmentation. Multiscale skip connections at MACU
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architecture are introduced together with with channel attention blocks and
asymmetric convolution blocks built on the UNET backbone. It enhances the
standard convolution layers with the asymmetric convolution block involving
branches of the square, horizontal, and vertical kernels. The experiments on
remote sensing datasets have demonstrated the effectiveness of MACU [20].

An alternative model for capturing spatial object features similar to
MACU is the Coordinate Attention (CA) mechanism [83]. In this approach,
the spatial and channel information is captured by embedding positional
information into channel attention. FCAU-NET [84] uses the advantages of
CA in the encoding stage, Asymmetric Convolution Block (ACB) in the
decoding stage to enhance the extracted features, and Refinement Fusion
Block (RFB) to combine low- and high-level features, however, it did it result
in promising performance in the segmentation problems. Experimental results
on two remote sensing image datasets reveal that MACU outperforms [20]
architectures like FCAU-NET, PSPNet [85], and TransUNET [72], producing
a similar performance to DeepLabv3 and FastFCN that were selected for
further investigation and most promising network architectures.

2.4.2 Summary of manually designed networks

To conduct a chronological review of how manually-designed CNN,
FCN, and UNET network topologies have evolved over time, a summary of
the networks, their architecture main feature, and unique approach are
provided in Table 2.1 together with their release year.

In Table 2.1, we present a comprehensive breakdown of manually
designed neural network architectures specifically developed for semantic
segmentation. These architectures were meticulously designed to enhance the
accuracy, efficiency, contextual understanding, robustness, and generalization
capabilities of semantic segmentation tasks. Notably, these architectures
introduce novel design choices such as skip connections, attention
mechanisms, and multi-scale context extraction to enhance segmentation
accuracy. They also optimize computational efficiency and memory usage. By
capturing contextual information effectively, the architectures improve the
model's understanding of image context. The development of these
architectures represents the progression of research in semantic segmentation,
setting the foundations for further advancements in the field.
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Table 2.1 Breakdown of manually designed neural networks for semantic

segmentation

Architectures Year | Unique approached deployed

UNET [55] 2015 Use skip connections from down-sampling
layers to up-sampling

DeepLabvl [57] 2016 = Use a fully connected Conditional Random Field
(CRF)

SegNet [54] 2017 In skip connection, SegNet transfers only
pooling indices to use less memory

PSPNet [85] 2017 @ Use dilated convolutions and pyramid pooling
module

DANet [80] 2017 | Its position and channel attention modules
followed by ResNet feature extraction

UNET++ [62] 2018  Improved skip connections from down-sampling
layers to upsampling

DeepLabv2 [56] 2019 Use atrous or dilated convolution and fully
connected CRF together

MACU [86] 2019 = Has multiscale skip connections and asymmetric
convolution blocks

SA-UNET [79] 2020 = Applies spatial attention module and structured
dropout convolutional blocks within the UNET
architecture

UNET3+ [66] 2020  Modifies skip connection and fewer parameters
compared to the UNet++. Proposes hybrid loss
function

MANet [69] 2020 = Proposes adaptive fusion module with channel
attention and multi-scale context extraction
module for remote sensing images

HRNet [71] 2020 | Proposes multi-branch parallel convolutions

DeepLabv3 [59] 2021  Improved atrous spatial pyramid pooling (ASPP)

Inception-UNET [63] 2021 @ Uses Inception modules instead of standard
kernels (wider networks)

Swin-UNet [73] 2021 = Build U-shaped segmentation architecture based
on the Swin transformer block

TransUNET [72] 2021  Transformers encode the image patches in the
encoding stage

FastFCN [87] 2021  Contains fully convolutional network layers

INCSA-UNET [66] 2021 | Use drop block inside Inception modules, and
also apply attention between encoding and
decoding stages
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Architectures Year Unique approached deployed

Hybrid Unet [78] 2022  Builds a hybrid UNET with additional decoder
sub-networks and introduces high-resolution
satellite images dataset.

Lee etal. [77] 2022 | Different types of skip connections are tested for
UNET architecture to evaluate the effect of the
skip connections.

FCAU-NET [84] 2022  Contains attentions, asymmetric convolution
blocks to enhance the extracted features and
refinement fusion block (RFB) in skip
connections

2.5 AutoML and Neural Architecture Search

Pre-eminently performing neural network architectures are currently
designed by scholars and practitioners. These networks are manually tailored
to a certain type of imagery and resolution. Therefore, if the training set
topology is vastly different from what the network was based on at inception,
the performance drops even after extensive training [18]. Developing CNN
architectures and experimentation requires adjusting the CNN
hyperparameters, cell topology, and architecture modifications which can take
months and, in some cases, years to reach a satisfactory result [19]. The
research and architecture design process for semantic segmentation-related
case studies is labour-intensive as well as time and resource consuming [88].

In addition to the limitations of human researcher capabilities, another
major problem in ML for object recognition, especially in the satellite imagery
domain, is the lack of available training and test data. In satellite imagery, this
problem arises due to the low number of high-resolution optical imagery
satellites operating in the Lower Earth Orbit, high-cost constraints, and
therefore the availability of publicly available datasets required for training is
considerably limited [21].

Manually built network design includes theoretically pre-select
hyperparameters, e.g., the activation function forms, the numbers of network
layers and nodes in each layer, and connection manners between different
layers, all requiring human expertise, subjective judgment, and
experimentation. An effective neural network architecture design often
requires substantial knowledge of the particular domain and lengthy manual
trialling [89]. The process of network component experimentation can take
months and, in some cases, years to reach the required result [90] [91].
Researchers encounter limitations such as the design process being time-
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consuming and labour-intensive. This brings great difficulty when building a
high-quality machine learning system in practice and therefore limits ML
applications [22].

As a part of the AutoML, Neural Architecture Search aims to solve
this problem and make the process of purpose-built neural network design
accessible to a wide range of domains and a larger quantity of researchers.
NAS essentially aims to do tuning a neural network faster and more
effectively. Therefore, in recent years NAS has become an active research
topic [92]. Specifically, NAS represents a technique for automating the design
of artificial neural networks [25] instead of conventional hand-designed ones
[26] and has recently obtained gratifying progress [27]. NAS neuron cell-level
search space has been looked into for various broader architecture types,
including NAS-UNET [93].

The objective of NAS is to remove the manual and high-technical
knowledge requirement and do the work of a human manually tuning a neural
network significantly faster and more effectively. NAS belongs to a deep
learning methods group known as meta-learning. Meta-learning includes an
auxiliary search algorithm to design the characteristics of a neural network.
These characteristics are inside the neural network, such as activation
functions, hyperparameters, or NAS-based search space investigating the cell-
level topology.

The NAS search space is used to find the best architecture, while a
performance estimation method is used to score the performance of a network.
The cell-level search aims to examine combinations of basic building blocks,
known as “cells”, to form a larger, more complex neural network. A cell is a
small, self-contained neural network typically consisting of several layers,
such as convolutional layers, pooling layers, and normalisation layers. Cell-
level NAS algorithms work by repeatedly stacking together different
combinations of cells to form a neural network. The algorithm then evaluates
the performance of each generated architecture on a specific task, such as
image classification or object detection.

Furthermore, the algorithm uses this evaluation to guide the search for
better architectures. It involves searching for the best combination of cells to
use in the network. Cell-level NAS algorithms have the advantage of being
more computationally efficient than other NAS methods, as they only need to
search through a reduced set of possible combinations of cells. It also allows
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the search to be more focused, as it only searches for the optimal combination
of cells rather than the entire architecture.

It is worth noting that there are different ways to implement cell-level
search. Some methods use a fixed set of cells and search for the best
combination, while others generate new cells during the search. Also, the
search can be done using different optimisation techniques such as
reinforcement learning (RL) [94], evolutionary algorithm (EA) [95], Bayesian
optimisation method [96], and gradient-based method [97]. As first attempts,
most NAS algorithms were based on RL or EA. A controller produces new
architectures in RL-based methods, and the controller is updated with the
accuracy of the validation dataset as the reward. However, RL-based methods
typically require significantly higher computational resources [98]. The
gradient-based methods use the search space as a continuous space and search
the architectures based on the gradient information. The gradient-based
algorithms are more efficient than the RL-based algorithms. The EA-based
algorithms apply evolutionary computation to solve the NAS issue [99].

Hitherto, NAS research has been conducted predominantly on image
classification problems [100]. Several papers have proposed methods
introducing NAS search space for encoding-decoding-based architectures
similar to UNET for medical image segmentation. NAS-UNET [93] selects
primitive operation sets within cells by using Differentiable Architecture
Search (DARTS) [101], while C2FNAS [102] tries to find the best topology
followed by the convolution size within cells by using a topology-similarity-
based evolutionary algorithm. Figure 2.3 shows the NAS-UNET architecture
with cell-based architecture search space. NAS-UNET uses primitive
operations that performed well in the literature. It proposes two cell
architectures named DownSC and UpSC.

On the other hand, C2FNAS is proposed for 3D medical image
networks, which require a huge amount of memory. C2FNAS has two stages
for the search technique: macro-level topology search and cell-based micro-
level operations search. Macro-level search defines how the cells are
connected and stacked within an broader model architecture. In micro-level
search, the primitive operations are selected. In the research [103], the authors
first create a configuration pool from advanced classification networks for
better cell configuration instead of searching for a cell from scratch. Thus, it
prevents overgrowth of the search space caused by searching from scratch
while adding well-known methods to the search pool. However, it should be
noted that this method largerly depends on the selected network backbone
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type. Considering that different network types can give better results in
various problems, it can also cause a disadvantage depending on the problem.
The combination of both types of micro-level and macro-level search
described above is called a Mixed-Block NAS (MB-NAS), and broader model
architecture-level search is followed by cell-level search in this method. It uses
a search algorithm called Local Search [104], yet is extremely
computationally intensive and therefore contains practical implementation
limitations.

More effective approach is using cell-level search and for example
DARTS uses an efficient strategy over a continuous domain by gradient
descent. The limitation of that is that its performance often drops due to
overfitting in the search phase. To avoid it, NAS-HRIS [105], GPAS [106],
and Auto-RSISC [107], which are based on a gradient descent framework,
have been proposed for remote sensing scene classification issues. NAS-HRIS
uses the Gumbel-Max trick [108] to improve searching efficiency. NAS-HRIS
undergoes evaluation for remote sensing image segmentation problems and
demonstrates superior performance compared to existing methods in the
literature. Notably, it is recognized as the pioneering NAS study specifically
focused on high-resolution remote-sensing image segmentation. NAS-HRIS
employs a U-shaped encoder-decoder structure, wherein the encoder
architecture is searched within a cell-based search space.

GPAS utilizes a greedy and progressive search strategy to enhance the
correlation between the search and evaluation stages. On the other hand, the
auto-RSISC algorithm aims to reduce redundancy within the search space by
sampling architectures in a proportionate manner. Thus, Auto-RSISC requires
fewer computational resources, limiting the model's performance by reducing
the architecture diversity. RS-DARTS [109] adds noise to suppress the skip
connections and aims to close the gap between training and validation. It
applies the same approach as Auto-RSISC to speed up the search processing.
RS-DART demonstrates an competitive performance in remote sensing scene
classification while reducing computational overload in the search phase,
however still falling short from NAS-UNET shaped structures’ performance.
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Figure 2.3. NAS-UNET architecture with primitive operation sets of
DownSC and UpSC

The research by Weng Y et al [93] captures the recommendations for
effective semantic segmentation tasks and develops a NAS-UNET search
methodology as an effective NAS for remote sensing as depicted in Figure
2.3. Satellite imagery presents challenges such as topology variations, limited
data availability, and the need for specialized architectures. Manual network
design requires extensive expertise and time-consuming experimentation.
NAS techniques automate architecture design by investigating combinations
of self-contained neural network cells. These cells, consisting of
convolutional, pooling, and normalization layers, enable the construction of
tailored architectures for satellite imagery object recognition.

The reviewed NAS techniques, including NAS-UNET and NAS-
HRIS, address these challenges. NAS-UNET employs a differentiable
architecture search to select primitive operations within cells, enhancing
search efficiency and addressing the main objectives of the present
dissertation.

2.6 Outcome of the literature review

In conclusion, the UNET and MACU networks were selected as the
most promising architectures for conducting experimental investigations
considering the stated objectives of the dissertation. The UNET architecture,
originally developed for biomedical image segmentation, showed promising
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performance in satellite imagery as well. Its unique design, with skip
connections and upsampling operators, allows for the extraction of high-
resolution features and effective localization. UNET-based variations, such as
UNET++, Inception-UNET, and UNet3+, have further improved upon the
original architecture by introducing additional layers and enhancing feature
extraction.

On the other hand, the MACU network stands out with its multiscale
skip connections, asymmetric convolution blocks, and the integration of
attention mechanisms. MACU demonstrated superior performance in remote
sensing datasets, surpassing other architectures like FCAU-NET, PSPNet, and
TransUNET, while achieving comparable results to DeepLabv3 and FastFCN.
The inclusion of channel attention and asymmetric convolution blocks in the
UNET backbone enhances the feature extraction process and effectively
captures spatial and channel information.

Both UNET and MACU networks offer promising solutions to image
segmentation tasks, particularly in satellite imagery and biomedical image
processing. Their ability to handle high-level feature extraction, spatial
information, and multiscale context makes them suitable for accurate and
precise segmentations. By conducting experimental investigations using these
architectures, further insights can be gained into their performance and
potential improvements, ultimately advancing the field of image segmentation
and its applications in various domains.

Additionally, Neural Architecture Search (NAS) is a promising approach
in Automated Machine Learning (AutoML) that addresses the limitations of
manually designed neural network architectures. NAS automates the process
of designing neural networks, making it accessible to a wider range of
domains and researchers. By investigating combinations of basic building
blocks called "cells,” NAS constructs complex neural networks more
efficiently. It employs various optimization techniques such as reinforcement
learning, evolutionary algorithms, and gradient-based methods. NAS has been
successful in image classification and has shown potential in medical and
satellite imagery segmentation and remote sensing. Further research in NAS
and its application in AutoML holds promise for advancing machine learning
systems across diverse domains. NAS and its relative performance compared
to manual networks will be explored in more depth in this dissertation.

40



3 MANUALLY DESIGNED NEURAL NETWORKS FOR
OBJECT RECOGNITION IN SATELLITE IMAGERY

This chapter focuses on the satellite imagery data overview, the dataset’s
unique properties and limitations, and pre-processing and augmentation
techniques. Following that, the chapter covers two of this dissertation's three
most important research areas: object recognition accuracy and prediction
speed and evaluates manually designed neural network architectures such as
UNET, MACU, DeepLab and FastFCN.

3.1 Problem definition

In the present thesis, the object recognition problem is being solved.
We derive object recognition results using semantic image segmentation
metrics. Due to the low-resolution nature of satellite imagery, the semantic
segmentation technique is suitable for object recognition in satellite imagery
problems because it provides the most granular, pixel-level performance.

The object class selected for empirical investigation is “light vehicle”
class. Objects in this class are as small as 200 pixels (20 x 10-pixel matrix
compared to millions of pixels in common images sourced from the ImageNet
for example), as illustrated in Figure 3.1. Therefore, each pixel should provide
valuable information.

Figure 3.1. Semantic pixel-level segmentation of the “light vehicles” object
class in satellite imagery. Input image (left) and output image (right)
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In Figure 3.1, blue colour pixels represent the “light-vehicle” object
class recognised by the segmentation technique; red colour represents the
original annotator-marked object polygon, and white colour represents the
accurate match for per-pixel prediction. Semantic segmentation can be
considered a classification problem for each pixel since we classify it in binary
output (object within a class or no object), and it does not distinguish different
instances of the same object.

We obtain object recognition metrics from semantic image
segmentation results and overlay the segmented “light vehicle” pixels against
human annotator-derived masks (polygons) in the data sets (training,
validation, and testing datasets). Then, we derive which objects were correctly
recognised and which ones where not. There can be significant variability in
how an object can appear in different contexts, lighting conditions, angles, etc.
A lower threshold can allow for more flexibility in recognizing an object
despite these variations as well as manual annotator errors. Therefore, at least
25% of pixels of an object have to identically overlay for an object to be
considered correctly recognised.

This threshold was selected to adjust for human annotator labelling
inaccuracies in the dataset (as evident in Figure 3.1) as well as the required
minimal threshold. Upon empirical investigation (multiple levels between
15% and 40%), we discovered that objects that match 25% of the annotated
polygon are sufficient to classify that the object was correctly recognized at
the same time generating minimal false positive signals.

Once the object is correctly recognised, it is then counted as a True
Positive object (TP) or otherwise appropriately classified as either a False
Positive object (FP), False Negative object (FN), or True Negative object
(TN). Based on these fundamental numbers, other performance metrics were
also derived. Those metrics reflect performance in both semantic
segmentation and object recognition. For consistency, both semantic
segmentation and object recognition metrics are used to measure neural
network performance.
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3.2 Metrics

To quantitatively evaluate object recognition results, the following
metrics were used and derived: True Positive objects (TP), False Positive
objects (FP), True Negative objects (TN), False Negative objects (FN),
Jaccard Index, Recall, Precision, Overprediction error (FPO), and F; as the
overall accuracy metrics. The metrics are categorised into two categories; one
is for image segmentation metrics (Jaccard Index), and the second is for
derived object recognition metrics as described in Subsection 3.1. Metrics
overview:

e TP reflects the number of objects (“light vehicles™) correctly detected
as compared to the “ground truth” — the actual object in the imagery;

e FP demonstrates the number of objects (“light vehicles”) incorrectly
detected as compared to the “ground truth”;

o TN reflects the number of objects that correctly predicted an absence
of the object;

e FN demonstrates the number of objects detected being not an object
where there was an object (“light vehicle”);

Jaccard index (see Eq. (1)) is a pixel-level segmentation accuracy metric of
semantic segmentation:

TP,

(1) ]accard Lndexc = m

Where TP, is the number of “True positive pixels” in class ¢ across
the entire data set; F P, is the number of “False Positives pixels” in c; FN, —
“False Negatives” in c.

Recall (Sensitivity) is the ratio of correctly predicted objects to all
observations in the actual class (see Eq. (2)):

TP
(2) Recall = m

Precision (Positive predictive power) is the relation between true
positives and all positive predictions (see Eq. (3)):

TP
TP+FP ’

3) Precision =
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Accuracy (TPO) measures the proportion (in %) of objects correctly
detected as compared to the total number of labelled objects within the
prediction set (see Eq. (4)):

TPX100
Number of labelled objects

4) TPO =

Overprediction (FPO) measures an overprediction error, i.c., the
percentage of objects recognised by the network, not by the annotator as
compared to the total predicted objects by the network (see Eq. (5)):

FPX100
TP+FP °

(5) FPO =

F combines the precision and recall of a classifier into a single metric by
taking their harmonic mean. It is considered the best overall accuracy
performance identifier (Eq. 6):

6 F, = 2TP __ 2 x Precision * Recall
(6) 1™ 2TP+FP+FN ~—  Precision + Recall

3.3 “Sat-Modification” framework overview

To fulfil one of the primary objectives of the dissertation, which
involves proposing a framework based on deep learning and satellite imagery
modification for enhanced accuracy and expedited object recognition, we
implemented numerous advancements throughout the entirety of the pre-
processing and network design stages (i.e. “Sat-Modification framework™).
Collectively, these improvements facilitated the attainment of state-of-the-art
network performance results, thereby successfully achieving the
aforementioned objective. The entire process, from satellite imagery
acquisition (P1) to end-signal generation and delivery (P13), is depicted in
Figure 3.2. Components from P1 to P4 and P10 represent the dataset and
satellite imagery-specific processes such as data acquisition, pre-processing,
augmentation, etc. These components are described in subsections 3.2.1 —
3.2.4 inclusively.
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Figure 3.2 Schematic workflow diagram for the entire process of object
recognition in satellite imagery. Steps P5 — P10 represent the “Sat-
Modification” Framework

Components from P5 to P9 represent the areas of advancement
proposed in the thesis and are described in Section 3.2. We discuss two main
areas of research: 1) Network depth construction and feature extraction for
prediction accuracy and 2) Computational complexity analysis for Prediction
Speed.
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3.3.1 Raw satellite imagery

This section corresponds to P1 stage in Figure 3.2. The underlying
imagery in the dataset was produced by the DigitalGlobe WorldView-3
satellite and is available via an open-source raw satellite imagery database
SpaceNet. The SpaceNet database offers a large collection of multi-band high-
resolution raw imagery along with validated building footprint and road
network annotations [110]. This dataset did not provide “light vehicle” object
annotations.

(d)

Figure 3.3 Sample images produced by DigitalGlobe WorldView-3 satellite

46



A total of 250 (125 augmented as discussed in subsection 3.3.3) high-
resolution (30cm per pixel) multispectral satellite images, equivalent to 50km?
AOI of Paris (in Figure 3.3.a), Shanghai (Figure 3.3.b), Las Vegas
(Figure 3.3.c), and Khartoum (Figure 3.3.d), were used for training/validation
(80%) and testing (20%). The annotated satellite imagery dataset used in the
experimentation of the present dissertation research was derived and
augmented from the SpaceNet. However, it is important to mention that the
imagery used from the SpaceNet was raw and not annotated. The annotation
with object polygons marking was done manually in preparation for this
research and is described in detail in the next subsection 3.3.2.

3.3.2 Annotated dataset

This section corresponds to P2 stage in Figure 3.2. A total minimum
of 350 hours of manual annotation work were conducted to prepare a high-
quality training set with 80 316 labelled objects in the light-vehicles object
class. Images were annotated using QGIS geospatial imagery software
(figures 3.4 and 3.5). Labelling and polygon coordinate generation was
manually completed by multiple professional annotators and quality peer-
reviewed and cross-checked. No publicly available high-resolution satellite
imagery datasets with marked “light-vehicle” object classes existed at the time
of this research. Therefore, we open-sourced and published our in-house
developed proprietary dataset with marked polygons online to enable further
development in this research field [111]. Figures 3.4 and 3.5 demonstrate the
snapshot in the process of creating the labelled objects of the “light-vehicle”
class using QGIS.
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3.3.3 Data Augmentation

This subsection corresponds to P4 stage in Figure 3.2. Augmentation
techniques were combined to create a more diverse dataset and make the
model more robust to different conditions [112]. From the 8-band spectrum,
Coastal (400 — 452 nm) to near-infrared (NIR 866 — 954 nm), a 4-band RGB+P
(450 — 630 nm) band was applied. To expose the training to the desired
invariance and ensure the model is robust, additional data augmentation was
implemented: random brightness (30% of images in training set with random
brightness), rotation (10%), perspective distortion (10%) and Gaussian noise
addition (30%). Local contrast normalisation and pan-sharpening were
applied. An overview of the satellite imagery augmentation techniques
applied is provided below:

1. Rotation: Involves rotating the images by small angles to increase the
diversity of the training data;

2. Perspective distortion: Involves applying non-rigid geometric
transformations and perspective changes to the images;

3. Brightness and contrast adjustment: Involve adjusting the images'
brightness and contrast to increase the training data's diversity;

4. Gaussian noise: Involves adding Gaussian noise to the images to
increase the training data's diversity and make the model more robust
to noise in real-world data;

5. Weather and atmospheric conditions: Involve adding different
weather and atmospheric conditions to the images to increase the
training data's diversity and make the model more robust to different
lighting conditions.

3.3.4 Data pre-processing

This section corresponds to P9 stage in Figure 3.2. Due to practical
GPU/TPU memory limitations, training a neural network using a pixel frame
size equivalent to a full raw satellite image would cap the training batch size
to a minimum and prevent the network from training effectively. Thus,
satellite images with large Areas of Interest (AOI) are cropped into smaller
AOIs called pixel frames (also known as pixel frame patches) of the size of
(160x160 pixels) and consolidated into mosaics of the required shape and size
for training. Smaller pixel frames allow for larger training batches and wider
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context variability in each backpropagation cycle. However, a drawback of
this approach is that on frame edges it collates mixed landscapes and cropped
objects, consequently generating noise that distorts the contextual information
in the training set as per Figure 3.6.

Figure 3.6. Four unrelated scenes are artificially combined in one frame.

Used for training, it captures the partially-cut objects and scene shifts as
ground truth. Doing so distorts the object-specific and contextual
information and generates noise

Hence, to prevent the above drawback, we learned from the cropping
techniques proposed approached by Chen et al. [42] and developed a
programmatic conditional approach called “pixel frame selection” that feeds
the neural network (Figure 3.2, component P9). It is an improvement from the
method proposed by Chen et al. [42]. Via this approach, the network is trained
on selected pixel frames (small cropped images) that allow intersections for
better augmentation yet prevent duplications. We introduce the following
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three principles as described in Figure 3.7 to minimize the contextual noise
within a single frame and avoid duplicate frames:

1. Selection of 160x160 training frames randomly;

2. Rejection if a particular pixel frame falls across multiple large
satellite images;

3. Rejection if pixel frames duplicate entirely.

This approach reduced the number of incorrect object polygons and
the contextual noise in the training set, improving training accuracy and
prediction precision.

1. Random selection of
160x160 training frames

2. Reject should the pixel
frame fall on top of é

-
L]
—
. n K |
multiple satellite images \E
3. Reject if coordinates of /
the frame duplicates fully

Figure 3.7. Pixel frame selection approach for network training. The green
colour depicts valid pixel frames (patches), red colour represents rejected
frames that were excluded from the training

In addition to the solution to training, we introduce a technique called
“prediction frame sequencing” for improved prediction (Figure 3.2,
component P10). It essentially allows for the neural network to broaden the
contextualisation of the object it is classifying. Object classification is done
given at least two different backgrounds (prediction frames). In the event of
classification mismatch, the object is considered positively recognised (i.e.,
“OR” function), as illustrated in the four steps in Figure 3.8.
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Figure 3.8 Prediction frame sequencing algorithm

To assess the impact of this technique, we trained and tested two
identical neural networks on identical datasets. The first network utilised a
standard prediction function (single random step, a mnon-overlapping
prediction frame). The second network with implemented “prediction frame
sequencing” approach outperformed the first network with a 3.57% higher
object recognition accuracy rate.

3.4 Computational considerations

In addition to implementing pixel frame patches to improve contextual
variability and taking practical GPU/TPU memory limitations, [55], [113]
Ronneberger et al. [14] also suggest that to minimise the overhead and make
maximum use of the GPU and TPU memory, we should favour a large input
pixel frame over a large batch size and experiment with training batch sizes
ranging from 32 to 192. In addition to this rule, the momentum optimisation
algorithm — Adam [114], [115] was also implemented. Experiments were
conducted on the custom-built Google Cloud Platform (GCP) architecture
specifically developed for our research problem. To further experiment with
latency reduction, two leading-edge computational machines, GPU NVIDIA
Tesla P100 64GB (1 core) and TPU v3-8 128GB (8 cores), were deployed on
our GCP system.

3.5 UNET and MACU

This section corresponds to components P5 and P6 in Figure 3.2. The
present dissertation aims to address and find methods and models that perform
best in accuracy and prediction speed metrics. Based on the literature review
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and conclusion made in Chapter 2, we selected a UNET and MACU as the
prospect to be the most accurate and/or the fastest network.

3.5.1 UNET architecture advancements

In this subsection, advancements are proposed to the process of
UNET design, hyperparameters tuning, training, and complexity optimisation
to enhance prediction accuracy and speed. We propose four distinctive
architectures to derive an optimal network configuration for solving a
prediction speed and accuracy problem. To originate these proposed
configurations, we conducted quantitative experiments (see UNET
Performance subsection 3.5.3) and visual examination (Figure 3.10) [14],
[60].

UNET Model 1
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Figure 3.9. UNET Model 1 design. Input image (left) and output image
(right). The blue colour pixels represent the “light-vehicle” object class
recognised by the UNET, red represents the original annotator-marked

object contours, and white represents the accurate per-pixel prediction in the
output image (right)
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Each proposed UNET model consists of an even number of layers
plus a single fully-connected layer with a Sigmoid activation function
generating per-pixel semantic segmentation as an output (Figure 3.6). The
breakdown of hyperparameters used across all four derived UNET model
topologies is provided in Table 3.1 below.

Table 3.1 Hyperparameters of the UNET backbone implemented for all four
UNET models

Hyperparameter Value
Activation function (hidden layers) ReLU
Activation function (output layer) Sigmoid
Batch size 128
Epochs 20 - 100
Learning rate initiation 0.001
Optimizer Adam
Drop-out 0.1
Hardware NVIDIA Tesla P100 GPU
Memory 64 GB

A range of architectures with total layers from 11 to over 100 layers
were considered. However, due to the computational demands involved, a
comprehensive analysis encompassing all the available models was not
feasible. This limitation was one of the inherent motivations and that prompted
the investigation into alternative approaches, leading to the proposition of
Neural Architecture Search (NAS) techniques discussed in the following
chapters. The selected models within the target range were investigated
starting with fifteen convolutions that sequentially (in four groups) were
increased by six layers (three in the encoder and three in the decoder part) to
a total of 39 layers where any models outside of this range of complexity were
underperforming. Here are the configurations selected within the target range:

e UNET Model 1: 2] layers in total (15 conv2d)
e UNET Model 2: 27 layers in total (19 conv2d)
e UNET Model 3: 33 layers in total (23 conv2d)
e UNET Model 4: 39 layers in total (27 conv2d)
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During the encoder process, we capture semantic/contextual
information, strengthening features extraction of “what” and reducing the
“where”. Each decoder convolutional block is part of upsampling and contains
2x2 convolutions (up-convolution) that halve the number of feature channels
[52]. On the back of these upsampling operations, we recover the spatial
information and enable precise localisation, i.e., the “where”. A fully-
connected layer leverages the corresponding concatenation and outputs the
segmentation map of object classes. Rectified Linear Unit (ReLU) was
selected as an initial activation function for non-linear mapping. The drop-out
regularization technique was deployed with a 0.1 set to avoid overfitting [15]
and provided a computationally cheap way to regularise the neural network
[116] that increased the learning speed.

Given that there are no empirical methods to investigate how
effectively a network performs feature extraction, we deploy the
deconvolution-based Lucid visualisation technique [117]. We compare the
feature maps from the last layer of the convolution operation of four UNET
architectures (Figure 3.) [118]. In general, detectable objects in satellite
imagery overall have specific contours (e.g., light-vehicle, truck, ship, or
plane), which are consistent due to the perspective invariance of the camera.
Specifications of our particular dataset are detailed in the dataset overview
section and directory [111].

The Lucid visualisation method allows us to investigate how well the
network performed high-level feature extraction tasks, i.e., recognising the
object's contours, which is a crucial prediction accuracy driver. The Lucid
feature visualisation approach reinforces providing an image that “most
engages” a single feature at a time. The classifier is run on it to determine the
direction (gradients) to alter the image for a more accurate classification
(thereby minimising the loss between the prediction and the actual) starting
with a random image. Each layer has different features, and we build an image
for each one to maximise its responsiveness when averaged across all spatial
positions [117].
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Figure 3.10 (a) Feature extraction capabilities with a different depth
(UNET Model 1)
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U-net Model 2
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Figure 3.10 (b) Feature extraction capabilities with a different depth
(UNET_Model 2)
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Figure 3.10 (c) Feature extraction capabilities with a different depth
(UNET Model 3)

58



U-net Model 4

192 x 192

Figure 3.10 (d) Feature extraction capabilities with a different depth
(UNET_Model 4)

Based on visual examination, we can suggest that the object's contours
(i.e., high-level features) are more defined as the network depth increases. We
can see a gradual improvement in feature extraction at each step with the equal
depth differential (six convolutional layers) between architectures. The Lucid
visual experimentation method can be utilised in other neural networks'
performance testing since it allows us to compare performance “inside” the
network.
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3.5.2 Computational complexity

This section corresponds to component P7 in Figure 3.2. Significant
signal latency from satellite imagery is caused by slow object recognition
models (as illustrated in Figure 2.1) because complex models take time to
“scan”, detect and recognise objects in large land Areas of Interest (AOI) (e.g.,
10km? at a time). Object recognition speed is a factor of computational
complexity and power of computing [119]. For the design of efficient models,
a detailed analysis of the number of floating-point operations (FLOPs) is
required based on matrix operations such as matrix-matrix products (Figure
3.2, component P7). The product of two matrices A™*™ and C™*! needs mnl
FLOPs for multiplication operations and ml(n — 1) FLOPs for summation
operations [120]. However, to our knowledge, no conventional benchmarks
define the computational complexity of the neural network [121].

Research confirms that the number of operations in a network model
can effectively estimate inference time [122]. In addition to reducing the
prediction latency, model complexity is a critical consideration for other
reasons such as:

e Overfitting: Less complex models have less risk of overfitting, which is
when a model learns to perform very well on its training data but poorly
on unseen data. Overfitting is a common problem in machine learning,
especially with very complex models.

e Cost: Less complex models also cost less to run because they require less
computational power. This can lead to substantial savings when models
are run frequently or need to be trained on large amounts of data

e Efficiency: Less complex models require fewer operations, leading to
faster predictions. This is especially important for applications that require
real-time or near-real-time prediction.

The number of FLOPs represents how computationally expensive the
model is [88]. We customise the FLOPs approach suggested by Sehgal et al.
[88] to calculate the computational complexity of a neural network as defined
in Equation (7):
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G-FLOPs = /10° (7)
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Convolutional (Conv2D) layers Max-pooling (MaxPool) layers

Model complexity (G-FLOPs) is a sum of FLOPs for every layer,
where E is the number of conv2D layers, D, — number of output dimensions,
A.q — the size of the dimension of e layer, F, — filter in depth parameter of e
layer, H, — filter height parameter of e layer, W, — filter width parameter of e
layer, B —number of Max-pooling layers, X} — the number of filter dimensions
of layer b, Py, — the size of x dimension in layer b, Z;, — number of output
dimensions of layer b, 0y, — the size of dimension z in layer b. The Conv2D
layer count of floating-point operations depends on layer parameters count
and layer output size [119]. The MaxPool layer count of floating-point
operations depends on the size of the filter area and layer output size.
Activation functions, including ReLU operations, can be executed by a single
instruction. It was considered as one floating-point operation. Upsampling2D
only reads the data from memory and writes to a certain position in the output
using indices, and other pixels are filled by 0. The indices array always has
the same shape as the input. Concatenation is just a memory copy; hence no
floating-point operation will be conducted [123]. Index calculation might be
needed depending on the concatenation axis, however, our approach ignores
such operations. This calculation allows us to examine the relationship
between the computational cost of the network, prediction accuracy, and
prediction speed, all further examined in subsections 3.5.3 and 3.5.4.

3.5.3 UNET performance

In this subsection, we compare and contrast the performance of four
proposed UNET architectures, starting with Table 3.2.

Table 3.2. Performance results on the test set

Accuracy Overprediction Jaccard = G-FLOPs
(TPO) % (FPO) % index
UNET Model 1 | 95.33 12.01 0.6402 5.3218
UNET Model 2 | 97.67 17.83 0.6162 6.9832
UNET Model 3 | 97.01 26.45 0.5573 8.6443
UNET Model 4 | 96.70 16.60 0.6226 10.3053
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We achieved perfect object recognition accuracy (TPO) of 97.67%
with UNET Model 2. This network maintained an FPO level of 17.83% and
a 0.6162 Jaccard Index. However, a close second best, UNET Model 3,
provided a significant overprediction (FPO = 26.45%) rate. G-FLOPS metric
indicates the computational complexity, and UNET Model 2 represents
relatively light computational complexity with 6.9832 allowing an accelerated
prediction as mentioned in the previous subsection 3.5.2. Figure 3.11
compares the accuracy performance between the models as well as their
complexity.

97.6 ‘

97.4

97.2
670 UNET_Model 4 ‘ UNET Model 4

96.8
96.6

96.4 UNET Model 3

96.2
96.0
95.8

> UNET Model 1
.5 6.0 6.5 7.0 75 8.0 8.5 9.0 9.5 10.0

Figure 3.11. Comparison of performance results between UNET models (x-
axis: computational complexity (G-Flops); y-axis - prediction accuracy
(TPOs); dark red colour - highest, and blue - lowest overprediction (FPOs)

To continue enhancing the UNET Model 2 performance, we
experimented with the following activation functions within the hidden layers
and not the output layer expecting an increase in accuracy and quality (see
Table 3.3):

Table 3.3. Impact of activation function on prediction results on
UNET Model 2

Activation Accuracy Overprediction TPO/FPO | Jaccard
function (TPO) (FPO) index
ELU 96.74 18.12 5.34 0.6209
Tanh 90.81 6.09 14.92 0.5999
Softsign 86.62 5.42 15.99 0.5711
Softplus 93.76 23.17 4.05 0.5574
LeakyRelu 95.72 11.76 8.14 0.6562
PreLu 96.74 14.70 6.58 0.6364
ReLU 97.67 17.83 5.71 0.6162
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Rectified Linear Unit activation (ReLU) provided the best accuracy
(TPO) results for UNET [124]. However, the activation function that
generates the lowest level of noise (FPO = 6.09%) is a Hyperbolic Tangent
(Tanh) activation function that still provides > 90% accuracy and,
simultaneously, a high TPO/FPO ratio (14.92).

Furthermore, to optimise the network training time, we monitored the
process of the UNET Model 2 training throughout a 20-100 epoch cycle.
Training completeness was measured using three metrics, as illustrated in
Figure 3.12 below. UNET reached the peak validation accuracy at epoch 35-
40 and started to overfit. The validation loss curve (c) confirms the overfit by
reaching a minimum at 15 and rapidly increasing beyond 35 as well as Jaccard
Index plateaus beyond epoch 40. The variability of the optimal range did not
change after experimenting with other UNET models. Understanding an
optimal epoch range (35-40 epochs) minimises computational expense and re-
training time. This range (35-40 epochs) just illustrates the most optimal point
in the training cycle to avoid overtraining and save on computing costs.
Therefore, it is particularly useful in applications where models such as
algorithmic trading need to be recalibrated (retrained) frequently.

a) validation accuracy  b) validation Jaccard ¢) validation loss
Index

Figure 3.12. Training and Validation of UNET Model 2
(x-axis: number of epochs)

We compared the performance of our proposed approach with the
latest leading object recognition methods using external datasets to benchmark
our proposed approach performance. Table 3.4 provides quantitative
evaluations of the performance of our and other competing methods on two
high-resolution remote sensing image data sets: OIRDS [125] and VEDAI
[126]. Performance metrics of completeness (CPT) (also known as the
Precision metric) and correctness (CRT) (also known as the Recall metric)
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were adopted from the competing articles to ensure consistency and are

TP TP
calculated as CPT = TPiFN and CRT = P

Table 3.4. Quantitative evaluation of different leading methods

Dataset | Proposed @ Y.Yu’s H.Zhouze’s | L.Wan’s
method method [43] method [12] | method [127]
CPT  VEDAI 0.90 0.79 0.73 0.64
CPT | OIRDS 0.89 0.89 0.87 0.82
CRT | VEDAI 0.57 0.56 0.47 0.42
CRT | OIRDS 0.78 0.70 0.64 0.62
Both | VEDAI E=40 E =2000 K =3000 K =3000
and
OIRDS

Our proposed architecture achieved the highest accuracy across all
external datasets and methods in both CPT and CRT metrics. Furthermore, the
number of epochs used to train the proposed UNET Model 2 architecture was
forty (40) epochs as compared to Y. Yu’s [43] of 2 000 epochs resulting in a
significantly lower computational cost. H. Zhou’s and L. Wan’s methods used
K =3 000 algorithm iterations. K iterations are the closest comparable metrics
to E = Epochs. It can only be used as a rough comparable estimate of the
computational resources used for the training stage of these fundamentally
different methods.

3.5.4 Prediction speed

To compare its performance in practice, we conducted experiments
utilising UNET Model 2 for time-to-predict on two computational
architectures, GPU and TPU. Identical models were used intentionally. These
two computational environments and their characteristics are described in
subsection 3.4. Consequently, GPU generated faster prediction speed results
(see Table 3.5).

Table 3.5. TPU vs. GPU prediction speed for UNET Model 2

Type Frame Size Jaccard Index Time-to-predict
(10k patches, in seconds)
TPU-v8 128 x 128 0.64 20.45
TPU-v8 160 x 160 0.64 36.42
TPU-v8 192 x 192 0.63 41.49
GPU-p100 128 x 128 0.64 6.94
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Type Frame Size Jaccard Index Time-to-predict

(10k patches, in seconds)
GPU-p100 160 x 160 0.65 12.37
GPU-p100 192 x 192 0.65 20.45

One of the reasons why TPU might perform slower at the prediction
task is that TPU-v8 is designed for larger complexity computations and longer
operations compared to GPU-p100, with a much lower upfront computational
load. As confirmed by Wang et al., “TPU speedup over GPU increases with
larger CNNs” [128]. UNET Model 2 architecture works better on GPU due
to its light complexity (6.98 G-Flops). Therefore, we selected GPU as a
preferred computational engine for UNET’s rapid object recognition in real-
time applications.

A total of eight UNET configurations with two different pixel frame
parameters (128x128 and 160x160) were examined on a GPU machine to test
the relationship between three metrics: 1) object recognition accuracy (%), 2)
computational complexity (G-Flops), and 3) time it takes to predict a total of
10,000 patches of raw satellite imagery (in milliseconds).

e @

w5  UNET Model 3% . UNET Model 3

(1286128) : (160x160)
%0 UNET Model 2 oh I‘; 867

(128x128) (128x128) UNET Model 2
%5 o (160x160)
9.0 UNET Model 1

(128x128) UNET Model 4
94.5

UNET Model 1 (160x160)

04.0 (160x160)

Object recognition accuracy

7000 8000 9,000 10,000 11,0000 ' 12000 13,000 14000 15000 16,000 17,000
Prediction time (ms)

Figure 3.13. Object recognition accuracy vs. prediction speed vs.
computational complexity. X-axis - prediction speed (in milliseconds), Y-
axis - accuracy (TPO); the size of the circle - computational complexity in
G-Flops; colour scale: the red colour indicates the highest overprediction

error (FPO), blue - the lowest
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Figure 3.13 depicts a direct relationship between the number of G-Flops
in the computational architecture and prediction latency. Experiments were
conducted with all four models and two-pixel frame sizes each. The higher the
complexity, the longer it takes to predict when using an identical
computational machine. Furthermore, a larger input frame size increases
computational expense (G-Flops) in the network, slowing the prediction and
not increasing accuracy in return. We can see that the fastest CNN network is
UNET Model 2 (128x128), which generated low overprediction (FP) and
high accuracy (TP), which, as a result, is concluded as an optimal network for
this real-time application on the GPU machine.

3.6 Multi-Scale Connected and Asymmetric-Convolution-Based
network (MACU)

3.6.1 Prediction accuracy

We have conducted experiments with these four networks, MACU,
FastFCN, DeepLabv3 and UNET (formerly UNET Model 2 which is now
replaced with “UNET” for simplicity) under different batch size environments
to test their sensitivity to the quantity of the training data and also compare
their relative performance on accuracy and overprediction. This
experimentation would allow us to understand which network would
potentially be more promising backbone for further investigative NAS
research. We have adapted the networks to the Google Cloud Platform
architecture used for the experimental investigation to be compatible with the
satellite imagery dataset. We have recorded individual performance using the
metrics described below.

Table 3.6 Comparable performance of four neural networks to assess the
leading backbone in accuracy metrics

# Images  Model Jaccard Recall | Precision FPO (%) Fi

and batch Index

size

30000 &4 MACU 0.661 0.948 0.945 5.501  0.946
FastFCN 0.615 0.958 0.926 7.383  0.942
DeepLabv3 0.441 0.820 0.968 3.156 0.888
UNET 0.652 0.955 0.923 7.691  0.939

30000 & 6 MACU 0.667 0.953 0.933 6.675  0.943
FastFCN 0.506 0.828 0.972 2.833  0.894
DeepLabv3 0.538 0.918 0.950 4.993 0.934
UNET 0.658 0.960 0.919 8.099  0.939
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During this experimental investigation, we have identified that the
MACU network has the best overall performance defined by the F; score,
which is the balance between Recall and Precision across three different
information ratio/training intensity environments. In addition, MACU also
performed best in all three environments on the pixel accuracy metric, the
Jaccard index. UNET provides the best Recall, particularly useful in use cases
where the objective is to recognise the maximum universe of objects within
the given satellite imagery. The F; score is an improved representation of the
network's overall performance, especially when assessing the practical
application of the network to real-world problems. Precision allows
understanding the targeted accuracy of correctly predicted objects.

Moreover, DeepLabv3 and FastFCN have shown a modest accuracy
performance with the lowest number of objects. Yet, it is conservative and has
the lowest overprediction error in two of three information intensity scenarios.
A visual comparison between the results obtained by the four networks is
depicted in Figure 3.14.

F, performance

0.960
0.950 0946 04 0.943

0.939 0.939
0.940 0.934
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EMACU mFastFCN mDeepLabV3 = UNET

Figure 3.14 Performance (F;) comparison in two information-intensity
environments obtained by the four networks (MACU, FastFCN,
DeepLabV3, UNET)
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3.6.2 Prediction speed relative to accuracy

When comparing the two best-performing networks for accuracy
(UNET and MACU), it is important to check what are the prediction speed
performances between the two (see Table 3.7).

Table 3.7 Performance comparison for prediction speed

Object recognition metrics = Prediction Speed Quality to
(derived) (in seconds) speed ratio
Jaccard F Time-to-Predict = Accuracy/Infe
Index ! (10k patches) rence speed
MACU 0.667 0.943 121.28 0.08
FastFCN 0.506 0.894 78.00 0.12
DeepLabV3 0.538 0.934 21.61 0.23
UNET 0.656 0.939 17.53 0.54

Even though MACU provides better performance as compared to
UNET in accuracy for segmentation metric (Jaccard Index 0.667 vs 0.656)
and F; (0.943 vs 0.939), due to its more computationally complex architecture,
its prediction speed is 7 times slower (6.92x) as compared to UNET. Also, on
a relative basis, UNET has also provided a better Accuracy/Inference speed
ratio (0.52 vs 0.08). As a result, we can conclude that the proposed fully
convolutional neural network modification based on UNET architecture
provides the lowest network-specific prediction latency in satellite imagery as
compared to other FCNs including MACU, DeepLab and FastFCN networks
due to its computationally efficient architecture which is one of the defended
statements. Therefore, in latency-sensitive applications, our manually
designed UNET is the preferred choice of the model.

However, as compared to UNET, MACU would be a preferred model
of choice when the accuracy of object recognition is of higher importance than
inference speed. Also, MACU due to its better F1, Precision and
Overprediction performance results evidently is more promising backbone
network structure for further investigative research. This research, the purpose
of further SOTA accuracy performance improvements will be exploring wider
topology configurations, as part of NAS methodology. We investigate this
domain in depth in chapter 4.
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3.7 Chapter conclusions

Four UNET models were proposed and tested for best accuracy
performance, computational complexity and prediction speed. The
best-performing model was then compared to other state-of-the-art
networks for metrics comparison, and the MACU network was
selected as the most promising network architecture and the backbone
for AutoML and NAS research.

Due to its computationally efficient architecture, the proposed fully
convolutional neural network modification based on UNET
architecture provides lower network-specific prediction latency for
object recognition task in satellite imagery for “light-vehicle” object
class as compared to other FCNs including MACU, DeepLab and
FastFCN networks;

Manually-designed neural networks like UNET, MACU, and other
manually designed networks require time to build, test and calibrate
to certain problems. To address manual network limitations the next
chapter focuses on AutoML and NAS techniques to propose novel
solutions to improving the manually-designed network performance.
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4 AUTOMATED NEURAL ARCHITECTURE SEARCH FOR
OBJECT RECONGITION IN SATELLITE IMAGERY

In order to develop NAS for a certain type of network, we re-created
and adapted the top-performing convolutional neural networks to date
(MACU) (as discussed in section 2) and conducted thorough experimentation
of its performance in object recognition via semantic segmentation task on the
satellite imagery dataset. In Figure 4.1, we describe how NAS-MACU was
constructed, and in the following sections, we explain the essential algorithm
for an automated cell-topology design using the MACU backbone.

4.1 AutoML-based Neural Architecture

Automated Machine Learning offers techniques and procedures to make
customized machine learning accessible. It allows us to increase its
effectiveness and quicken the pace of Machine Learning research. Human-
machine learning specialists normally must perform the following tasks to
achieve excellent results in object recognition domain-specific tasks:

e (Clean up and pre-process the data;

e Choose and construct the proper features;

e Choose the right model category;

e Enhance the model's hyperparameters;

e Create neural network topology;

e Model post-processing in machine learning;
e C(ritically evaluate the outcomes.

The construction of neural network architecture is automated using
Neural Architecture Search. The architecture of the networks, including how
to link nodes and which operators to use, is optimised using NAS techniques.
Therefore, user-defined optimisation measures may include accuracy, model
size, or inference time to determine the best architecture for a given
application.

Conventional evolution of reinforcement-based AutoML algorithms
tends to be computationally costly due to the vast search space. As a result,
this study concentrated on investigating more effective approaches for NAS,
especially for object recognition in satellite images. Recent advancements in
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gradient-based and multi-fidelity approaches have offered a viable route and
accelerated study in these areas [93].

4.2 Proposed NAS-MACU

NAS-MACU (Neural Architecture Search with Multi-level Attention
and Cross-level Utilisation) is a neural architecture search (NAS) method that
uses a multi-level attention mechanism and cross-level utilisation to improve
the efficiency and effectiveness of the search process. The NAS-MACU
method [129] consists of three main components:

e A search space: Set of possible architectures that the NAS algorithm
will search through. The search space in NAS-MACU is defined by
the types of layers (e.g., convolutional, pooling, etc.) and their
connections.

e A search strategy: Method used by the NAS algorithm to research into
the search space. In NAS-MACU, the search strategy combines
reinforcement learning and evolutionary algorithms to guide the
search process.

e Evaluation metrics: Used to determine the performance of the
architectures found by the NAS algorithm. In NAS-MACU, the
evaluation metrics is typically a measure of accuracy on a validation
dataset.

The NAS-MACU algorithm starts by randomly generating a population
of architectures within the search space. The algorithm then guides the search
process and improves the performance of the architectures. Finally, the NAS-
MACU algorithm returns the best-performing architecture found during the
search process. This architecture can then be used as a starting point for further
fine-tuning and training on the target dataset.

NAS can be applied across multiple use cases and have auto-calibration
features that allow us to custom-cater for the problem to be considered. Then,
we applied and further developed the NAS for auto-customised best-
performing MACU network focused on optimising a search space at the
cellular level. We produced an optimised and automatically-generated NAS-
MACU neural network that was able to generate better accuracy performance.
NAS-MACU is anew approach for object recognition in multispectral satellite
imagery, which was never used before and opened multiple paths for future
research. It is also a beneficial study for the remote sensing field due to the
limitations of available training sets.
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4.2.1 Proposed NAS-MACU development process

One of the most challenging components in solving real-world object
recognition problems is to design a well-performing deep learning architecture
catered to tackle remote sensing data-specific challenges such as dispersed
scenery, variable satellite imagery resolution (e.g., 25cm per pixel — 5Sm per
pixel); type of the sensors (e.g., Optical vs Synthetic Aperture Radar [SAR]),
object class(-es), and other specificities of the training data. Our empirical
research revealed that the MACU architecture demonstrates promising
performance across various metrics when compared to other architectures
such as UNET, FastFCN, and DeepLabv3. These evaluations were conducted
on standard publicly available datasets, which were time-consuming to
construct and have inherent limitations when applied to real-world scenarios.

Notably, even a manually calibrated network without an optimized cell-
level architecture produced top-performing results. This finding suggests that
the inherent network backbone architecture itself holds promise and warrants
further investigation and experimentation. Therefore, we selected a MACU
network as a backbone so that we could further improve performance by
optimizing its cellular-level architecture.

No research or empirical study has been conducted to design and test
for NAS-MACU to date that would overcome this problem. In this chapter,
we design, implement and conduct empirical experimentation on the novel
NAS-MACU which automatically adapts to the specificities of the remote
sensing problem at hand. In order to deploy an effective NAS-MACU
network, we improved a reiterative process illustrated in Figure 4.1.
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Figure 4.1 NAS-MACU construction process

Figure 4.1 depicts the process of delivering an excellent performance,
self-designing-topology NAS-MACU network that adapts to a high dispersity
of datasets without human expertise in the problem space or manual
intervention. The NAS-MACU topology-design framework follows the
iteration cycle until it reaches maximum performance given the constraints.
Those constraints are expressed as operations (Step 2 in Figure 4.1) and are
further discussed in Subsections 4.2.2 and 4.2.3. The research on NAS focuses
on three aspects: search space (Step 3.a and 3.b in Figure 4.1), search strategy
(Step 3.a and 3.b in Figure 4.1), and performance estimation strategy (Step 3.c
in Figure 4.1).

The search space parameters shape through which architectures can be
represented. The search strategy also describes how to investigate the search
space. The objective is to find architectures with highly evaluated
performance on unseen data. Performance estimation is divided into two parts.
Firstly, the performance is evaluated to determine whether the candidate
architecture will be kept (or expanded) for the next update. Secondly,
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candidate cell architecture is added to a network stacked by the cells, and then
the final performance is evaluated on a training dataset.

4.2.2 Cell-level topology search

A directed acyclic graph (DAG) in Figure 4.2 depicts the framework
and basic structure for cell topology. Also, the diagram in Figure 4 illustrates
the example of the cell architecture searched when the intermediate nodes in
the DAG are three. We use three types of operations: down-up, normal, and
concatenate operations.
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Figure 4.2. A directed acyclic graph diagram for cell architecture. The black
arrow demonstrates a down operation; the magenta arrow depicts the normal
operation (an operation that does not reduce the dimension of the feature
map); the green arrow illustrates a concatenate operation

The input nodes Cj,_; and Cj_, are defined as the cell outputs in the
previous two layers. Every unit of intermediate nodes represents an input
image or a feature map layer. An edge defines an operation between DAG
nodes that the search space algorithm is tasked to find. The entire network
shares the resulting framework of the cell. In this research, the DAG
generation method was restricted to avoid huge search space and searched
only for cell-based architecture. After determining the best cell architecture,
the cells are stacked into a deeper network on the backbone MACU
architecture. An example of the over-parametrised cell architecture is depicted
in Figure 4.3.
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Figure 4.3 DAG diagram of the example of the cell architecture searched

In cell architecture search, we place each edge in DAG as a mixed
operation, denoted as MixO. We use N candidate operations, denoted as O =
0;, which created N parallel paths. The output of a mixed operation MixO is
defined based on weights w; and operation o; result in all paths (Eq. (7)):

Mix0(x) = YV, w;0;(x)
(7N

4.2.3 Algorithm for the generation of cell genotype

NAS helps to automatically design two types of cell architectures
called down-sampling cells (DownSC) and upsampling cells (UpSC) based on
the MACU backbone (Figure 4.4. We improved the NAS-MACU cell
genotype algorithm (see Algorithm 1 in Appendix A).

We describe the high-level logic of the underlying algorithm defining
the cell topology design and iteration process, where £ — total epochs and N —
total nodes in a cell. The algorithm corresponds to steps from 3.a to 3.d in
Figure 4.1 for the NAS-MACU construction process.

At the start of the algorithm, matrices of path weights (Weight1 and
Weight2) are initiated with random values from a normal distribution with
mean 0 and variance 1. Pleasae see the Appendix A for the logic tree of the
algorithm. Due to the nature of the NAS process, the impact of initial random
values is minimal. Weight1 is dedicated to up or down operation edges, and
Weight?2 stores values for normal operation edges (Figure 4.2). On every step
i for N nodes, n paths are sampled, and all the other paths are masked (Mask1
and Mask?2). Our method uses n=2, and the two paths are updated at each step.
The small value of n reduces the time of searching and requires less
computation. The edgesl array is created, which is a sorted array of row
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indexes from masked weight matrices (denoted as W1) and sorted by row max
weight values. Sorting uses the standard python TimSort algorithm.

The same selection process repeats for normal operations, and
gene_items?2 is appended. When the cycle is finished, the best genotype is
formatted from gene items. The process repeats on every epoch while
reaching the max number of total epochs (E) or genotype repeats, and constant
MAX _PATIENCE is reached. This constant defines maximum iteration times
when the best genotype in the last iteration is the same as in the previous
iteration and set to 40.

Table 4.1. Primitive operations by type: down, up, and normal operations
Type Operations

down_operations 'avg_pool', 'max_pool', 'down_cweight', 'down_dil conv',
'down_dep_conv', 'down_conv'

up_operations 'up_cweight', 'up_dep conv', 'up conv', 'up_dil conv'

normal_operations 'identity', 'none', 'cweight', 'dil conv', ‘'dep conv',

'shuffle_conv', 'conv'

4.2.4 MACU and NAS-MACU comparison

Based on UNET and asymmetric convolution block, multiscale
features are generated by different layers of UNET. We use a multiscale skip-
connected architecture MACU, for semantic segmentation, as illustrated in
Figure 4.4. This standard MACU design has the following advantages: (1) the
multiscale skip connections combine and realign semantic features that persist
in high and low-level feature maps with different scales; (2) the asymmetric
convolution block advances the representative capability of a standard
convolution layer.

76



X'pe

16

Figure 4.4. MACU network diagram with multiscale connectors (adapted
from [20]). The CAB represents channel attention blocks

Channel Attention Blocks (CAB) are used to decrease the enormous number
of channels coming from five feature maps of equal size and resolution and to

realign channel-wise features. Coloured dotted arrows represent the multiscale
skip connectors to each CAB.
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Figure 4.5. Proposed NAS-MACU architecture and cell topology at a high
level. Downsampling cells and upsampling cells are stacked into the MACU

network
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NAS-MACU leverages the backbone of the MACU network
described above. Within the cell structure, we implement the following
DownSC (down-sampling cell) and UpSC (upsampling cell) cells, as
illustrated in Figure 4.5. The difference between NAS-MACU and MACU is
inside the cellular level of the network layers where the cell topology is
designed automatically using NAS techniques.

4.2.5 NAS-MACU cell genotypes

As a result, we were able to conduct experimental cycles, and
different genotypes of NAS-MACU were produced. The search and
performance validation space of this experimentation was limited by the depth
of search (up to 4 and 5 levels), the number of epochs in training (up to 500),
batch size (up to 16), training duration, and several iterations to validate the
best network (each winning cell structure was stress-tested up to 500 times
that also can be expanded). These hyperparameters and limitations at each
genotype are detailed in Table 4.2. In total, eight cycles were concluded,
generating new NAS-MACU genotypes each time. The relative performance
of each genotype is showcased in Table 4.2.

The best performance was delivered by NAS-MACU-V7 and NAS-
MACU-VS8. An additional parameter specific to NAS is a cellular level depth
which represents the number of layers of operations within the cell.

78



Genotype Version

NAS-MACU-V1

NAS-MACU-V2

NAS-MACU-V3

NAS-MACU-V4

Structure
(Down Operation, Parent Node
Number)
('down_cweight', 0),
('down_conv', 1),
('down_conv', 1),
(‘conv', 2),
('down_conv', 0),
(‘conv', 3)
('down_conv', 0),
('down_deep_conv', 1),
('down_conv', 1),
(‘conv', 2),

(‘shuffle _conv', 2),
(‘conv', 3)
('down_dep_conv', 0),
('down_conv', 1),
('down_conv', 1),
(‘conv', 2),

(‘shuffle _conv', 2),
(‘conv', 3)
('down_dil_conv', 0),
('down_conv', 1),
('down_conv', 1),
(‘conv', 2),

(‘conv', 3),
(‘shuffle_conv', 2)

Structure

(Up Operations, Parent Node
Number)
(‘cweight', 0),
(‘'up_cweight', 1),
(‘identity', 0),
(‘conv', 2),
(‘shuffle _conv', 2),
(‘conv', 3)
(‘'up_cweight', 1),
('identity', 0),
(‘'up_conv’, 0),
(‘conv', 2),
(‘shuffle _conv', 2),
(‘conv', 3
(‘'up_cweight', 1),
(‘identity', 0),
(‘identity', 0),
(‘conv', 2),
(‘shuffle _conv', 2),
(‘conv', 3)
('up_conv', 1),
('identity', 0),
('identity', 0),
(‘conv', 2),
(‘shuffle _conv', 2),
('identity', 0)
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Hyperparameters

(Epochs, Batch size, Cellular level depth,
Training, Validation cycle)

Epochs 300, batch 4, depth 4, training set
1000, validation set 100, max patience not
reached

Epochs 300, batch 4, depth 4, training set
1000, validation set 100, max patience not
reached

Epochs 500, batch 4, depth 4, training set
1000, validation set 100, max patience not
reached

Epochs 500, batch 8, depth 4, training set
1000, validation set 100, max patience not
reached



Genotype Version

NAS-MACU-V5

NAS-MACU-V6

NAS-MACU-V7

NAS-MACU-V8

Structure

(Down Operation, Parent Node

Number)
('down_dep_conv', 0),
('down_conv', 1),
('down_dep conv', 1),
(‘conv', 2),

(‘shuffle _conv', 2),
(‘conv', 3)
('down_dep_conv', 0),
('down_conv', 1),
(‘shuffle _conv', 2),
('down_conv', 1),
(‘cweight!, 3),
('down_cweight', 1)
('down_cweight', 0),
('down_conv', 1),
('down_conv', 1),
(‘conv', 2),
('down_conv', 0),
(‘conv', 3)

('down_cweight', 0),
('down_conv', 1),
(‘conv', 2),
('down_conv', 1),
('down_dep_conv', 0),
(‘max_pool', 1),
(‘max_pool', 1),
(‘'identity", 3)

Structure

(Up Operations, Parent Node

Number)
(‘identity', 0),
('up_conv', 1),
(‘identity', 0),
(‘conv', 2),
(‘shuffle _conv', 2),
(‘conv', 3)
(‘conv', 0),
('up_conv', 1),
('identity', 0),
(‘shuffle _conv', 2),
(‘cweight, 3),
(‘identity', 0)
(‘'up_cweight', 1),
(‘identity', 0),
(‘identity', 0),
(‘conv', 2),
(‘conv', 3),
(‘identity', 0)
(‘conv', 0),
('up_conv', 1),
('up_conv', 1),
(‘conv', 2),
('identity', 3),
(‘conv', 2),
(‘cweight', 4),
('identity', 3)
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Hyperparameters

(Epochs, Batch size, Cellular level depth,
Training, Validation cycle)

Epochs 500, batch 32, depth 4, training set
1000, validation set 100, max patience not
reached

Epochs 500, batch 32, depth 4, training set
1000, validation set 100, max patience not
reached

Epochs 500, batch 16, depth 4, training set
2500, validation 500. Stopped after 204 max
patience reached

Epochs 500, batch 16, depth 5, training set
2500, validation set 500



During experimental evaluations, first, we tested a total of eight
different versions of NAS-MACU genotypes to select the best one. The detail
of each genotype structure, their hyperparameters, and the performance of
object recognition metrics is discussed further in this section. To derive the
most optimal NAS-MACU architecture for applications, we conducted
experiments with network configuration, complexity, and hyperparameters.
Experiments were executed on the custom-built Google Cloud Platform
architecture specifically developed for our research problem, and GPU
NVIDIA Tesla P100 64 GB (1 core) was deployed on the system.

For the first NAS-MACU-V1, we used the down operations in the
following order: (down_cweight, 0), (down_conv, 1), (down_conv, 1), (conv,
2), (down_conv, 0), (conv, 3) and (‘conv', 3), where the first value in each
operation represents the down operation and the second value represents the
parent node number. The order of UP operations is as follows: (cweight, 0),
(up_cweight, 1), (identity, 0), (conv, 2), (shuffle conv, 2), (conv, 3). The
depth of this model is set to 4 levels. The model is run for 300 Epochs, with a
total of 1100 data set images, where 1000 are for training and 100 are for the
validation set 100. It achieved a recall value of 0.949, a precision value of
0.880, and F; score of 0.913. The false positive rate for this version is
12.038%. This model performs slightly better than a simple, manually
designed MACU model, yet it does not yield the best results.

The structure of the second model NAS-MACU-V2, is based on the
following sequence Down operations: (down_conv, 0), ('down_deep conv,
1), (down_conv, 1), (conv, 2), (shuffle conv, 2), (conv, 3). The UP operations
are in the following order:(up_cweight, 1), (‘identity’, 0), (up_conv, 0), (‘conv',
2), (‘shuffle conv', 2), ('conv', 3). The depth of this model is also 4, and it is
run for a total of 300 Epochs, with a similar dataset size as V1. The model,
V2, achieved a recall value of 0.939, a precision value of 0.893, and an F1
score of 0.915. The false positive rate for this version is 10.704%. It gives
better results when compared with NAS-MACU-V1 because of introducing
the ‘deep-conv’ and ‘shuffle conv’ down operations model still does not
produce better results yet.

The third assembly of the NAS-MACU-V3 consists of
(down_dep conv, 0), (down conv, 1), (down conv, 1), (conv, 2),
(shuffle_conv, 2), and (conv, 3) down operations and (up_cweight, 1),
(identity', 0), (identity', 0), (conV', 2), (shuffle conv, 2), and (conv, 3) UP
operations. In this version, we train the model for a longer period with 500
Epochs while keeping the same batch size depth and training/validation set.
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However, by increasing the depth and tweaking the structure a little bit, we
observed a significant improvement compared to manually designed MACU.
This V3 attained a recall value 0f 0.951, a precision value of 0.901, and a false
positive rate of 9.865%. The F1 score obtained by this version is 0.926.

Thus, the NAS-MACU-V4 structure consists of (down_dep conv, 0),
(down_conv, 1), (down_conv, 1), (conv, 2), (shuffle conv, 2), (conv, 3), and
(shuffle_conv, 2) down operations and (up_conv, 1), (identity, 0), (identity,
0), (conv, 2), (shuffle conv, 2), (identity, 0) UP operations. ). Here, we
introduced (down_dil conv) at parent node 0. Also, in this model, we
increased the batch size to 8 while keeping the same number of epochs and
dataset (both training and validation) size. This version 4 attained a better false
positive percentage of 9.552% with precision and recall values of 0.945 and
0.904. The F; score obtained by this version is 0.924.

The sequence of down operation in NAS-MACU-VS5 structure is in
the following order: (down_dep conv, 0), (down conv, 1), (down_dep conv,
1), (conv, 2), (shuffle conv, 2) and (conv, 3). The collection of UP operations
is in order as (identity, 0), (up_conv, 1), (identity, 0), (conv, 2), (shuffle conv,
2), and (conv, 3). In this model version, the batch size is further increased to
32 while keeping the rest of the hyperparameters the same as in the previous
version. However, the mentioned combination of cellular-level operations and
the increase in batch size does not lead to better FPO performance. Instead,
the false positive rate increases to 17.626%, and the F; score decreases to
0.889. A similar case is with NAS-MACU-V6 where the down operation are:
('down_dep conv', 0), ('down_conv', 1), ('shuffle conv', 2), ('down_conv', 1),
(‘cweight', 3) and ('down_cweight', 1) followed by the UP operations in the
sequence (conv, 0), (up_conv, 1), (up_conv, 1), (conv, 2), (identity, 3), (conv,
2), (cweight, 4), (identity, 3). With the same hyperparameters as the V5, this
model also performs similarly to V5 by providing a high false positive
percentage of 12.835 with an F; score of 0.916.

The best-performing versions are NAS-MACU-V7 and NAS-
MACU-V8, where the batch size is reduced from 32 to 16. The training and
validation set size is increased for these two models, with 2500 samples for
training and 500 samples for validation. The cellular level down operations
for V7 are (down_cweight, 0), (down_conv, 1), (down_conv, 1), (conv, 2),
(down_conv, 0), (conv, 3). The UP operations for V7 are ('up_cweight', 1),
('identity’, 0), (identity, 0), (conv', 2), (conv', 3), and (‘identity', 0). Similarly,
the cellular level down operations for V8 are (‘down cweight', 0),
('down _conv', 1), (conv, 2), (down conv', 1), (down dep conv', 0),
(max_pool, 1), (max_pool, 1), and (identity, 3). The UP operations for V8 are
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(‘conv', 0), ('up_conv', 1), ('up_conv', 1), (‘conv', 2), (identity, 3), (conv, 2),
(cweight, 4), and (identity, 3). Both NAS-MACU-V7 and NAS-MACU-V8
obtained the best False positive percentages with values of 7.616% and
8.544%, respectively. In contrast, the F; score of NAS-MACU-VS is slightly
better than the F; score of NAS-MACU-V7, with values of 0.934 and 0931,
respectively.

After obtaining the best versions, we finalise the NAS-MACU-V8 for
further experimentation and comparison with the manually designed MACU
model. Segmentation performance evaluation of NAS-MACU-V8 compared
with MACU is done using four training set sizes across the major performance
parameters. We observed that the NAS-MACU-VS provides better results
even if the training set size is reduced.

With constrained computational capabilities, this empirical study was
carried out using the Google Cloud Platform. These capabilities might be
expanded on a bigger scale even though they were not the minimum in
computation time. We might enhance the cellular depths and broaden the
search subspace of the cell architecture, giventhe increased computing
resources available. We might also increase the constraining hyper-parameters
like Total Epochs and'"max patience" to expect further better
performance. Better performing NAS-MACU designs may be discovered
after expanding these computing resources, increasing searching capability
and diversity.

To illustrate the cell-level topology generated through the cell search
process described above, we created figures 4.6 — 4.7 to cover the NAS-
MACU cell genotypes NAS-MACU-V7 and NAS-MACU-VS. These figures
reflect a graphical representation of NAS-MACU cell genotypes. The cell can
be considered a special block where layers are piled like any other model.
These cells apply many convolution operations to get feature maps that can be
passed over to other cells. C,_; and Cj_, represent the output from previous
cells. Cy is the output of the present cell. A complete model is made by
stacking these cells in a series.
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4.3 Experimental results and discussion

4.3.1 NAS-MACU Performance Evaluation

Eight genotypes were generated on the back of the different
configurations to evaluate the performance of NAS-MACU on the full dataset,
as described in Subsection 4.2.4. Results improved across the spectrum of
metrics when comparing the NAS-MACU-V1 to NAS-MACU-V7 and NAS-
MACU-VS (Table 4.3.)

NAS-MACU-V7 and NAS-MACU-V8 showed similar performance.
NAS-MACU-VS8 achieved the best F score. Also, it is worth mentioning that
the NAS-MACU was able to uptrain itself extremely fast compared to
manually designed networks with low information intensity for training.
Hence, it was beneficial in settings where the training set is hard or expensive
to acquire (e.g., high-resolution satellite imagery). Also, our experiments
show that it takes only 15-20 epochs to reach top performance. Figure 4.8.
illustrates this performance.

vs

v7

Figure 4.8. NAS-MACU-V7 and NAS-MACU-V8 comparison by validation
accuracy. X- axis is the number of epochs; Y-axis Validation

NAS-MACU performance proved to surpass the manually designed
MACU for this particular light-vehicle object recognition task and on this
dataset. It performed especially well in the low-information intensity
environment, as illustrated in Table 4.3.
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Table 4.3. Performance comparison by object recognition metrics (Recall,
Precision, FPO, F;) across genotypes
Object recognition Metrics (derived)

Genotype Version Recall Precision FPO (%) Fi

MACU 0.969 0.858 14.16 0.910
NAS-MACU-V1 0.949 0.880 12.038 0.913
NAS-MACU-V2 0.939 0.893 10.704 0.915
NAS-MACU-V3 0.951 0.901 9.865 0.926
NAS-MACU-V4 0.945 0.904 9.552 0.924
NAS-MACU-V5 0.964 0.824 17.626 0.889
NAS-MACU-V6 0.965 0.872 12.835 0.916
NAS-MACU-V7 0.957 0.924 7.616 0.931
NAS-MACU-V8 0.953 0.920 8.544 0.934

Furthermore, a few hours of AutoML work combined with GCP were
employed to compute and generate a highly efficient NAS-MACU
infrastructure. This stands in stark contrast to the lengthy duration of months
typically required by researchers and practitioners to address tasks related to
object recognition and semantic segmentation, as well as manually designing
neural networks. Additionally, the utilization of these novel AutoML
techniques enables the execution and fine-tuning of this process to achieve
superior performance across a broad spectrum of problems, encompassing
diverse object types, dataset specifications, and resolution constraints.

Table 4.4 illustrates the performance comparison of NAS-MACU-V§
and MACU across the main four performance metrics when trained using four
different training set sizes. We can see that the performance of NAS-MACU-
V8 compared to MACU increases as the training set size decreases, indicating
the superiority of NAS-MACU-V8 over MACU in low-information
environments. Information intensity environments can mostly vary by the
Training set side (# of patched images) and other parameters like number of
Epochs, and the number of images within a single batch per training epoch
(Batch size). Information intensity is used to identify the quantity and
completion of the training data used for the network's supervised learning. A
training environment sufficient for a network to be sufficiently trained (i.e.,
low validation loss) is considered a high-information intensity environment.
In contrast, a low-information intensity environment is defined as conditions
where the network training data and the raining-related hyperparameters
contain less than 30,000 images as validation loss increases.
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Table 4.4. NAS-MACU-VS8 vs.

environments

Training set
size
5000

10000

20000

30000

40000

Network

MACU
NAS-MACU-V8
MACU
NAS-MACU-V8
MACU
NAS-MACU-V8
MACU
NAS-MACU-V8
MACU
NAS-MACU-V8

MACU

in the variable

information

Object recognition metrics (derived)

Recall

0.968
0.93

0.96

0.938
0.969
0.953
0.953
0.941
0.945
0.958

Precision

0.83

0.893
0.87

0.908
0.858
0.915
0.933
0.917
0.942
0.909

FPO (%)

16.96
10.67
13.03
9.17

14.16
8.54

6.675
8.321
5.788
9.075

Fi

0.894
0.911
0.913
0.923
0.910
0.934
0.943
0.929
0.943
0.933

After the empirical investigation, we can confirm that NAS-MACU-V§
outperforms the MACU network, especially once the information intensity is

reduced. The most important metrics to measure are F (overall performance)
and Precision. NAS-driven genotype outperformed human-made MACU

network in overall accuracy performance (£;) and Precision metrics in any
information constraint environment and with an increasing difference as the
training set size is reduced (Figures 4.9 and 4.10). Conducting NAS operation
took from 4h to 58h of training and search time across NAS-MACU-V1 —
NAS-MACU-V8 genotypes.
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Figure 4.9. Precision of NAS-MACU-V8 vs MACU in five different training
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Figure 4.10. F; performance of NAS-MACU-V8 vs MACU in five different

training set sizes

This was done automatically and without human intervention making

this solution applicable at scale and a vast range of real-world applications.

Figure 4.11 depicts a visual representation of performance on two example
satellite images (A and B): Raw satellite imagery A (RGB, 30cm per pixel,
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Shanghai) at the top and Raw satellite imagery B (RGB, 30cm per pixel, Paris)
at the bottom. As you can see from these images, NAS-MACU-V8§
outperformed MACU particularly well when applied in a low-light scene and
when the object was similar to surroundings and darker (i.e., low-information

environment).
Raw satellite imagery A (RGB, 30cm MACU segmentation NAS-MACU segmentation
per pixel, Shanghai) performance performance

Raw satellite imagery B (RGB, 30cm MACU segmentation NAS-MACU segmentation
per pixel, Paris) performance performance

Figure 4.11. Precision performance of MACU vs NAS-MACU-VS8 in a
visual format. Blue colour pixels represent the “light-vehicle” object class
recognised by the MACU or the NAS-MACU-VS, the red colour represents
the polygon marked by the original annotator, white represents an accurate
per-pixel prediction result

In order to understand the applicability, reproducibility and reliability
of the performance results in the given dataset, we looked into the dispersity
of the experimentation outcomes for key metrics that were used to indicate
model and architecture accuracy performance (F; and Precision and Jaccard
Index).

For the sample network architectures, the average standard deviation
(SD) of F; was 0.007, and the SD of the Precision metric was 0.019, whereas
Jaccard Index had an SD of 0.026. The standard deviation represents the
amount of variation or dispersion in the dataset. In this case, it indicates that
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the performance of the sample architectures even after conducting
multiple experiments have relatively small standard deviations and are close
to the mean. Deviations of 0.007 - 0.026 indicate the reliability of the results
on the given dataset and results' reproducibility.

The actual satellite imagery dataset was also heterogeneous,
dissimilar, or varied in nature. It contained 4 cities (Paris, Las Vegas,
Khartum, Shanghai) and a variety of environments (parking on the street,
parking with trees, city centre and urban areas) and atmospheric conditions
(dispersed haze, light, perspective distortion datasets) suggesting that results
and methods are likely to be applicable and reliable once applied to other
satellite imagery datasets too.

4.4 Chapter conclusions

Chapter 4 proposes a novel approach to automated neural architecture
search (NAS) for object recognition in light-vehicle class in satellite imagery
using a CNN cell-level topology search in the MACU backbone. The NAS-
MACU network outperforms other popular manually designed networks for
object recognition in satellite imagery. The NAS procedure allows for
obtaining a new, well-performing network configuration without human
intervention.

The lack of publicly available satellite imagery data is a limitation for
effectively researching and applying deep learning models to real-world
problems. The constructed NAS-MACU performed exceptionally well in a
low-information environment compared to other popular manually designed
networks. Several NAS-MACU configurations were obtained that
outperformed the MACU network.

In all low-information cases analysed (training set size up to 20,000),
the NAS-MACU-VS8 network achieved better object recognition performance
compared to the MACU network on precision, FPO, and F; metrics. NAS-
MACU-V8 achieved the best performance according to the F; metrics (0.934)
when the training set size was 20 000, also having better precision (0.915) and
FPO (8.54) than manually-designed MACU. An effective NAS
implementation in the MACU network can self-discover the well-performing
cell topology and architecture optimized for object recognition in multi-
spectral satellite imagery.
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5 GENERAL CONCLUSIONS

Conclusion 1: The Sat-modification framework improved the accuracy
and speed of object recognition in satellite imagery

Through the incorporation of novel approaches in the Sat-
modification framework to enhance neural network capabilities, including
feature extraction, network complexity measurement, training process fine-
tuning, and prediction speed optimization, the framework yielded substantial
improvements in accuracy and efficiency. Notably, the UNET architecture
within the framework achieved an accuracy of 97.67% for the "light-vehicle"
object class. Additionally, the computationally light UNET Model 2
architecture demonstrated a remarkable fivefold improvement in training
time, enabling real-time applications. These findings demonstrate the efficacy
of the Sat-modification framework in enhancing object recognition
capabilities in the challenging domain of satellite imagery.

Conclusion 2: UNET is to be selected as the preferred FCN low inference
latency use case due to its light computational architecture

The computational complexity of object recognition models has a
significant impact on prediction latency and overall performance. The number
of floating-point operations (FLOPs) is an effective measure of computational
complexity and can be used to estimate inference time. Less complex models
not only reduce prediction latency but also mitigate issues such as overfitting,
lower costs, and improve efficiency. The UNET Model 2 demonstrated the
best performance in terms of prediction speed, yet with a high overprediction,
and relatively light complexity of 6.9832 G-FLOPs. The choice of activation
function also plays a role in performance, with ReLU providing the best
accuracy and Tanh offering the lowest noise level. Additionally, the optimal
epoch range of 35-40 epochs was identified to minimize overfitting and
computational expenses for training. The prediction speed experiments
demonstrated that the GPU outperformed the TPU for the UNET Model 2.
In direct comparison with MACU, UNET provided a nine times faster
prediction than MACU (14.22 seconds vs 112.46 seconds) and an accuracy
differential only of 2% (F; of 0.935 vs 0.949). These findings allow us to
conclude that the UNET Model 2 process using the Sat-modification
framework is to be selected as a preferred network architecture and technique
for use cases that are sensitive to inference latency such as algorithmic trading.
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Conclusion 3: MACU outperformed other manually designed networks
for overall accuracy metrics and was selected as the backbone for NAS

In this research, we conducted experiments to compare the
performance of four neural networks, namely MACU, FastFCN, UNET, and
DeepLabv3, under different information-intensity environments. The results
obtained in terms of segmentation and object recognition metrics were
analysed and compared. DeepLabv3 and FastFCN exhibit moderate accuracy
with a lower number of objects but demonstrate conservative behaviour with
lower overprediction errors. Our findings indicate that the MACU network
demonstrates the best overall performance, as measured by the F; score, across
all three information intensity environments. Based on these findings, the
MACU network is selected as the most promising architecture for further
research in AutoML and NAS.

Conclusion 4: 1. The proposed novel NAS-MACU provides more
accurate object recognition for light-vehicle object class in a low-
information environment compared to the manually expert designed
MACU network.

The development of the NAS-MACU network, incorporating
automated Neural Architecture Search (NAS) techniques, represents a notable
contribution to the field of object recognition in satellite imagery. Through
NAS, multiple configurations of the NAS-MACU network were obtained,
surpassing the performance of the manually designed MACU network,
particularly in low-information environments. Notably, NAS-MACU-V8§
achieved the best F; score of 0.934, demonstrating the effectiveness of NAS
in optimizing network architectures for light-vehicle object class recognition
in multi-spectral satellite imagery. By automating the discovery of well-
performing cell topologies, the NAS implementation in the MACU network
eliminates the need for manual intervention and streamlines the architecture
optimization process. These findings highlight the potential of NAS
techniques to significantly enhance the performance and efficiency of neural
networks in the domain of satellite imagery object recognition.

The present dissertation successfully achieved its objectives,
providing a comprehensive investigation of the proposed Sat-modification
framework, conducting a rigorous comparative analysis of neural network
architectures, building a model to assess and evaluate computational
complexity and prediction speed and designing an innovative AutoML-based
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NAS-MACU network. These contributions advanced the field of AutoML for
object recognition in satellite imagery, offering improved accuracy, prediction
speed, and automated architectures catered for the unique and dispersed
applications of object recognition in optical satellite imagery.

5.1 Future work

The effectiveness of deep learning models in addressing real-world
problems is hindered by the scarcity of publicly available satellite imagery
data. The experimental investigation in this study was conducted on the
Google Cloud Platform, utilizing limited computational resources. Although
these experiments required a significant number of computational hours,
future endeavours could benefit from increased computational resources. This
expansion would facilitate research of a broader search space for cell
infrastructure and an increase in cell depth. Moreover, it would allow for the
relaxation of constraints imposed by limiting hyperparameters such as
"max_patience" and "Total Epochs”. In addition to that, the other three
methods of improving inference latency discussed in the Introduction chapter
(Model Compression, Hardware acceleration and Software optimisation) can
be further researched to enhance the low-latency performance.

Considering the limitations associated with optical multispectral
satellite imagery, particularly concerning atmospheric and sunlight
conditions, it would be advantageous to explore research avenues involving
SAR satellite imagery. The imagery enables us to capture data through clouds,
during night time, and in the presence of haze. This exploration could
potentially lead to the adoption of improved NAS-MACU architectures.

Furthermore, there is potential for further investigation into alternative
neural network backbone architectures using NAS. The current research could
extend beyond object recognition in satellite imagery and delve into other
domains such as medical image analysis (e.g., tumour detection), aerial image
processing (e.g., semantic segmentation in UAV imagery), forensics (e.g.,
handwriting detection), autonomous machinery (e.g., machinery navigation in
specific environments), and other relevant fields.
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APPENDIX A

Algorithm 1. NAS-MACU Cell genotype generation

Generate a random initial Weights1 and Weights2 values.

1
2: fore:=1toFE

3 genotype =[]

4: n:=>2

5: start =0

6: if cell type == "down".
7 dim_change :=2

8 else:

9: dim_change := 1

10:  Maskl[0:Weights1.shape[0]] := False
11:  Mask2[0:Weights2.shape[0]] := False
12:  fori:==1toN

13: normal_op_end := start + n

14: up _or _down_op end := start + dim_ change

15: if cell type == "down':

16: Maskl[up or down op_end:normal op end] := True

17: Mask2[start:up _or _down_op_end] := True

18: else:

19: Maskl[up or down op _end + 1:normal op end] :=
True

20: Maskl [start:up _or _down_op_end] := True

21: Mask2[up or _down op end] : = True

22: Assign values to W1land W2 from Weights1 and Weights2
masked by Mask1 and Mask?2

23: edges1:= assigns the sorted array of W1 row indexes, sorted
by row max weight values.

24: L1 := edgesl.length

25: forj:=1toLl

26: k_best:= assigns the index of the biggest value from W1;

27: gene_itemsl array appends (W1ik bess
down_up operations[k_best], edge index j)

28: edges2:= assigns the sorted array of W2 row indexes, sorted
by row max weight values.

29: L2 := edges2.length
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30:
31:
32:

33:

34:
35:
36:
37:

forj:=1toL2

k_best:= assigns the index of the biggest value from W2;

gene_items2

array appends

normal_operations[k_best], edge index j)

genotype array

appended with the best

gene_items1 and gene_items?2
start = normal_op_end

n:=n+1

if genotype_repeats(genotype) > Max_Patience:

Stop training

( w2 j,k_best,

item from
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8 SUMMARY IN LITHUANIAN

Palydoviniai vaizdai kei¢ia miisy suvokimg apie visame pasaulyje
vykdoma ekonoming, geopoliting ir humanitaring veikla ir jos prognozavima.
D¢l patobuléjusios optiniy palydovy jrangos ir mazesniy orbitiniy rakety
paleidimo j orbitg sagnaudy geoerdvinio zvalgymo paslaugy pasitla ir paklausa
iSaugo. Komerciniai ,,Airbus Defence and Space® ir ,,Maxar technologies*
palydovai suteiké¢ galimybe beveik realiuoju laiku gauti didelés raiSkos
vaizdus, apimanéius visg Zeme ir atverian¢ius duris naujiems geoerdviniy
duomeny ir analitikos taikymo biidams. Taciau rankiniu biidu analizuoti
palydoviniy vaizdy petabaitus anotatoriams yra ypa¢ daug pastangy, laiko ir
1Sy reikalaujantis darbas. Naujausiuose $ig problema nagrinéjanciuose
kompiuterinés regos tyrimuose vis dar truksta duomeny apie 1) tiksluma ir 2)
prognozavimo greitj, o abu Sie rodikliai yra labai svarblis | prognozavimo
delsg jautriai reaguojanéioms uzduotims. Sioje disertacijoje sprendziame abu
minétus uzdavinius, siiilydami objekty atpaZzinimo modelio projektavimo,
mokymo ir sudétingumo reguliavimo patobulinimus, taikytinus jvairiems
neuroniniams tinklams.

Sioje disertacijoje sitiloma pilnai konvoliucinio neuroninio tinklo
(FCN) architektiiros optimizavimo sistema (UNET) tiksliam ir greitam
objekty atpazinimui daugiaspektrése palydovinése nuotraukose. Parodome,
kad FCN yra nasesnis uz zmogy, o dé¢l didelio kiekio jutikliy jo tikslumas yra
auksciausio lygio. FCN pranoksta kitus pateiktus metodus Sioje specifinéje
objekty atpazinimo daugiaspektrése palydovinése nuotraukose srityje.
Skaiciavimo pozitriu FCN architektiira nesudétinga skaiCiavimy imlumo
atzvilgiu, o tai uztikrina penkis kartus trumpesnj mokymo laika ir greitg
prognozavima, biiting norint taikyti FCN realiuoju laiku. Siekdami iliustruoti
praktinj modelio veiksmingumg, analizuojame ji finansiniy produkty
algoritminés prekybos aplinkos kontekste.

Ne tik tobuliname ir pritaikome FCN (UNET), bet ir tiriame rankiniu
bidu sukurty neuroniniy tinkly trokumus. Objekty atpaZinimo
daugiaspektrése palydovinése nuotraukose problema pasizymi unikaliomis
sudétingomis erdvinémis struktGromis ir duomeny rinkinio savybémis,
tokiomis kaip perspektyvos iSkraipymas, skiriamosios gebos kintamumas,
duomeny spektriSkumas ir kitos savybés, dél kuriy konkreciam Zmogaus
sugalvotam neuroniniam tinklui sunku pasiekti gery rezultaty. Norint
priderinti prie neuroninio tinklo architekttros, jg reikia i$ naujo kalibruoti
rankiniu baidu ir atlikti tolesnius konfigiiracijos bandymus. Sioje disertacijoje
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vertinama ir siiiloma, kaip Siuos apribojimus galima iSspresti taikant
automatiniu masininiu mokymusi (,,AutoML*) pagristus metodus.

Paskui nagrinéjame automating (AutoML) ir neurony architektiros
paieskg bei silome NAS-MACU tipo architektiirg, kuri pasalina Siuos
apribojimus automatiSkai projektuodama ir pritaikydama neurony tinklo
architektiirg lastelés lygmeniu. Sukonstruotas NAS-MACU labai gerai veikia
mazai informacijos turinCioje aplinkoje, palyginti su rankiniu biudu
suprojektuotais tinklais. Galiausiai, siekdami prisidéti prie tolesnio Sios
moksliniy tyrimy srities plétojimo, sukiiréme ir atviro Saltinio principu
pasidalinome anotuoty palydoviniy vaizdy duomeny rinkiniu su mokslininku
bendruomenéje dirbancioje Sitoje srityje. Disertacijos iSvadas ir technologija
taip pat galima nesunkiai pritaikyti sprendziant kitus objekty atpazinimo
uzdavinius.

8.1 Tyrimo sritis ir problemos aktualumas

Zemeés stebéjimo palydovy komiteto (CEOS) duomenimis, komerciniai
palydoviniai vaizdai netrukus apréps visa Zeme, bus transliuojami beveik
realiuoju laiku ir didelés raiskos [1] [2]. ,,Maxar technologies* komerciniy
palydovy konsteliacijos, RADARSAT-2 [3], ,,Pleiades-1 ir ICESat-2 [4]%,
»Airbus Defence and Space® sukurtas ,,Vision-1 [5] ir IRSO sukurtas
,Cartosat-3“ [6], savo RGB ir panchromatiniuose vaizduose, kuriy skiriamoji
geba artima didZiausiam leidziamam teisés aktuose nustatytam tikslumui, t. y.
> 25 cm vienam pikseliui [7], apima visa Zeme.

D¢l did¢jancio prieinamumo ir jperkamumo palydoviniy vaizdy ir
aerofotografijy naudojimas jvairiose srityse labai iSaugo. Siuos duomenis
naudoja vyriausybés, karinés, zemés iikio ir finansy pramonés Sakos. Tai
taipat leidzia ne pelno siekiancioms organizacijoms ir vyriausybéms
pasinaudoti Siomis jzvalgomis humanitariniais tikslais, jskaitant vertinti
pasaulinés pandemijos ekonominj poveikj (orlaiviy, sunkvezimiy tiekimo
grandinése, konteineriniy laivy skaiCiavimas), greitai aptikti misSky gaisrus
[5], atlikti laiko pozitriu jautry staigiy potvyniy hidraulinj modeliavimag [7]
[6], vykdyti tikslyji Tkininkavima, atlikti poveikio aplinkai prevencijg
gavybos pramongéje ir stebéjimg teikiant pagalba nelaimiy atveju [8]. Finansy
sektoriuje palydoviniai vaizdai naudojami kaip zvalgybos Saltinis kiekybiniy
rizikos draudimo fondy finansinés prekybos algoritmams, siekiant gauti
investicing graza (alfa) [3]. Alfa — tai investicinés strategijos ar portfelio
sukurtos perteklinés grazos matas, apskaiciuotas atsizvelgiant | rizikg ir
tikéting grazg. Kiekybiniy rizikos draudimo fondy kontekste alfa parodo
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pridéting verte, kurig sukuria investicijy valdytojo jgiidziai iSnaudoti rinkos
neefektyvuma, pritaikant alternatyvius duomenis, pavyzdziui, palydovinius
vaizdus. Beveik realiuoju laiku daryti palydoviniai vaizdai kartu su
kompiuterine rega leidzia investicijy valdytojams pasinaudoti objektyviais
duomenimis ir numatyti finansiniy vertybiniy popieriy judéjimg vieSosiose
akcijy rinkose. Praktinio pritaikymo pavyzdziai apima jmoniy pajamy
prognozavima naudojant automobiliy skai¢iavimo automobiliy stovéjimo
aikStelése duomenis, gamybos produkcijos jvertinimg analizuojant tiekimo
grandinés veikla, zemés tikio prekiy kainy prognozavimg jvertinant derliy ir
naftos pasiiilos nustatyma stebint pasaulinius naftos rezervuarus [4]. Atsiranda
vis daugiau naujy realiy naudojimo atvejy, tad did¢ja ir poreikis kurti labai
tikslius ir realiuoju laiku vykdomus kompiuterinés regos metodus [9].

Zmogaus atlickamas anotavimas reikalauja eksponentiskai daugiau
iStekliy. Remiantis Zzinomais standartais [10], profesionalus anotatorius per
dieng gali anotuoti mazdaug 1-2 km? palydoviniy vaizdy. Tad 100 km?
palydoviniy vaizdy anotavimas vienam anotatoriui uztrukty mazdaug 50—100
dieny [11]. Nors naujausi kompiuterinés regos modeliai yra gerokai greitesni,
palyginti su anotatoriais, vis tiek reikia nemaZzai laiko (daugiau kaip 30
minuciy) apdoroti mazdaug 100 kvadratiniy kilometry palydoviniy vaizdy
[12]. Be to, tokiy modeliy tikslumo lygis [13] yra panaSus j profesionaliy
anotatoriy (apie 90 %) arba net mazesnis [14] [15] [16].

Dabartiniuose akademiniuose tyrimuose triksta iSsamiy metody
objekty atpazinimo modeliams tobulinti, specialiai pritaikyty tokioms
palydoviniy vaizdy savybéms, kaip atskiros duomeny kategorijos [17] [18].
D¢l unikaliy palydoviniy vaizdy savybiy, tokiy kaip perspektyvos
iSkraipymas, skiriamosios gebos kintamumas, duomeny spektriskumas ir kt.,
pasiekti gery rezultaty jprastiems zmogaus iSrastiems neuroniniams tinklams.
Pastebeti tikslumo ir prognozavimo greiCio apribojimai vis labiau kliudo
sklandziai pritaikyti palydovinius vaizdus realiuoju laiku vykdomoms
uzduotims, pavyzdziui, algoritminei prekybai finansiniy vertybiniy popieriy
srityje [19].

Palydovinius vaizdus dabar galima veiksmingai apdoroti naudojant
konvoliucinio neuroninio tinklo (CNN) modelius, populiarius giliojo
mokymosi metodus, placiai naudojamus objekty aptikimo ir segmentavimo
uzduotims atlikti. CNN placiai taikomi tokiose kompiuterinés regos uzduotyse
kaip objekty segmentavimas, objekty sekimas, pokyciy aptikimas, pirmojo
plano objekty aptikimas, optinis srautas, pozicijos jvertinimas ir semantinis
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segmentavimas. IS S§iy uzduoCiy semantinis segmentavimas tapo
perspektyviausiu metodu, leidzianCiu spresti gamtos palydoviniy vaizdy
duomeny keliamus isstkius. UNET [14], MACU [20] ir panaSios rankiniu
btdu sukurtos pilnai konvoliucinio tinklo (FCN) architektiiros parodé
patenkinamy segmentavimo tikslumo rezultaty, ypac didesniy objekty atveju.

Tadiau pazymétina, kad yra daug dabartiniy metody limitacijy. Siy
architektiiry efektyvumas paprastai btina ribotas dél siauro architekttrinés
erdvés tyringjimo. Rankiniu budu suprojektuoti tinklai dél riboty tyréjo Ziniy,
kiirybiskumo ir iStekliy paprastai tiria tik didziulés architekttirinés erdveés
poaibj. Sis apribojimas gali neleisti atrasti naujovisky architektiiry, kurios
galéty uZztikrinti didesnj naSumg ar efektyvuma. Be to, rankiniu biidu sukurty
FCN, taikomy nematytiems arba nepaskirstytiems duomenims, naSumas
paprastai mazesnis. Rankiniu biidu atlikto projektavimo metu priimti
architektiiros sprendimai gali biiti paremti mokymo duomenimis, todél naujy,
nematyty imciy atveju rezultatai gali biiti prasti. Nasumas taip pat nukencia,
kai mokymo duomeny rinkiniai yra palyginti mazi (vadinamoji mazai
informacijos turinti aplinka), todél tenka nuolat rankiniu biidu i§ naujo
kalibruoti ir testuoti konfigiiracija, kad biity galima atitinkamai pritaikyti
neuroninio tinklo architektiira.

Rankinis tinklo projektavimas labai priklauso nuo tyréjo patirties ir
srities ziniy, todél reikia gerai iSmanyti problemine sritj, architektiiros
principus ir atitinkamus metodus. Sios Zinios gali biiti nelengvai
perduodamos, todél i§samiy tinkly projektavimo ziniy neturintiems tyréjams
kyla sunkumy kuriant optimalias architekttras. O S§tai ,,AutoML® ir
neuroninio tinklo architekttiros paieSkos (NAS) metodais galima sistemingai
tirti platesnj architektiiros konfigtiracijy spektra.

Sioje disertacijoje nagrinéjami su objekty atpaZinimu palydovinése
nuotraukose susij¢ virSuje paminéti i$Siikiai, atsizvelgiant ] unikalias
palydoviniy nuotrauky savybes, rankiniu biidu sukurty FCN naSumo
apribojimus ir poreikj greitai bei tiksliai atpazinti jvairiy kategorijy ir
duomeny rinkiniy tipy objektus. Siems is§ikiams spresti naudojame NAS kaip
automatizuoto masininio mokymosi (,,AutoML*) sistemos dalj. NAS metodas
leidzia automatiSkai ieSkoti konkreCiai problemai pritaikyty CNN
architektiiry, o tai maksimaliai padidina §io metodo nasuma. Atlikdami savo
tyrimg, pasinaudodami ,,AutoML* ir NAS galimybémis, pristatome nauja
NAS-MACU neuroninj tinklg, pranaSesnj ir naSesnj uz iki $iol rankiniu btdu
sukurtus tinklus. Sis naujas metodas, NAS-MACU, yra specialiai pritaikytas
ir gali pasalinti rankiniu biidu sukurty CNN trikumus.
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8.2 Tyrimo objektas

Sios disertacijos sritis — objekty atpazinimas palydovinése nuotraukose

naudojant giliojo mokymosi (,,Deel Learning™) ir automatinio masininio
mokymosi (,,AutoML*) metodus.

8.3 Disertacijos tikslas

Sioje disertacijoje sieckiama pateikti tikslaus ir greito objekty

atpazinimo palydovinése nuotraukose sprendimus taikant giliojo mokymosi ir
,, AutoML‘ metodus.

8.4 Disertacijos uzdaviniai

Sios disertacijai uzdaviniai:

L.

Atlikti i$samig literatiiros apZzvalgg apie jvairius giliuoju mokymusi
pagristus objekty atpazinimo palydovinése nuotraukose metodus.
Pateikti giliuoju mokymusi grindziamga sistemg tikslesniam ir spartesniam
objekty atpazinimui palydovinése nuotraukose, iskaitant iSankstinj vaizdo
apdorojima ir pilnai konvoliucinius neuroninius tinklus (FCN).

Atlikti eksperimentinj tyrima, kad jvertintume konvoliucinio neuroninio
tinklo tikslumg ir prognozavimo greit;.

Atlikti perspektyviausiy objekty atpazinimo neuroniniy tinkly lyginamaja
eksperimenting analize.

Sukurti ,,AutoML* pagrista neurony architektiiros paieSkos (NAS)
metodg, tinkantj objekty atpazinimo palydovinése nuotraukose
problemoms spresti, kuris biity pranasesnis uz rankiniu biidu
suprojektuotus neurony tinklus, atsizvelgiant j konkrecios problemos
apribojimus (pvz., mokymo aplinkg su mazai informacijos ir duomeny
rinkinio specifikg).

8.5 Mokslinis tyrimo naujumas

Siekiant padidinti tikslumg ir pagreitinti objekty atpazinimg lengvyjy
automobiliy klasé¢je palydovinése nuotraukose, pasiiilyta giliuoju
mokymusi pagrista sistema. Sistema apima iSankstinj vaizdo apdorojima,
vaizdo elementy ir kadry sekos nustatyma, hiperparametry derinima,
tinklo sudétingumo vertinima ir UNET koregavimo metodus;

Atlikta i§sami lyginamoji analiz¢ ir eksperimentinis geriausiai veikianciy
FCN (UNET, ,,FastFCN*, ,,DeepLab®, MACU) tyrimas, taip pat istirtos
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svarbios neuroninio tinklo konstrukcijos ypatybés ir komponentai,
gerinantys segmentavimo uzduociy atlikima.

Pasitilytas naujas sprendimas (NAS-MACU), pagristas automatine
neuroninio tinklo architektiiros paieska (NAS) ir MACU tinklo pagrindu,
kuris gali automatiskai atrasti gerai veikiancCig lasteliy topologija,
optimizuotg tiksliam objekty atpaZzinimui optiniuose palydoviniuose
vaizduose.

8.6 Ginamieji teiginiai

Sitloma visiskai konvoliucinio neuroninio tinklo modifikacijos principas
»Sat-Modification®, padejo sukurti UNET pagristg architekttra, kuri del
savo skaiCiavimo pozitriu efektyvios architektiiros uztikrina maziausig su
neuroninio tinklo modeliu susijusia palydoviniy vaizdy prognozavimo
delsg, palyginti su kitais FCN tinklais, jskaitant MACU, ,,DeepLab“ ir
,,FastFCN* tinklus.

Pasitilytas naujas NAS-MACU sprendimas pranoko rankiniu budu
eksperty mokslininky sukurtg ir publikuota MACU tinklg ir uZtikrina
tikslesnj objekty atpazinima lengvyjy automobiliy klas¢je ypac esant
mazai informacijos turin¢ioje aplinkoje.

8.7 Praktiné reikSmeé

Siame darbe sukurtas ir vie$ai paskelbtas originalus palydoviniy vaizdy
mokymo rinkinys su pazenklintais poligonais, skirtas toliau plétoti Sig
moksliniy tyrimy sritj. Naudojant profesionalius duomeny anotavimo
metodus ir QGIS geoerdving programing jrangg sukurtas aukstos kokybés
mokymo rinkinys su 80316 pazenklinty objekty. Zenklinimg ir poligony
koordinaciy generavimg rankiniu biidu atliko keli profesionaliis
anotatoriai, o kokybé perzitiréta ir patikrinta. Atlickant §j tyrimg nebuvo
viesai prieinamy didelés skiriamosios gebos palydoviniy vaizdy duomeny
rinkiniy su pazymétomis ,lengvyjy transporto priemoniy“ objekty
klasémis.

Siame darbe sprendziami du svarbiis praktiniai palydoviniy vaizdy
pritaikymo algoritminéje finansiniy vertybiniy popieriy prekyboje
apribojimai: prognozavimo greitis ir didelis tikslumas mazai informacijos
turin&ioje aplinkoje. Sias realias klifitis dabar galima i§spresti taikant $ioje
disertacijoje pasitlytus praktinius metodus. Pavyzdziui, metodus skirtus
iSmatuoti tinklo skai¢iavimo sudétinguma norint padidinti prognozavimo
greit]; ir taikant NAS metodus, skirtus nustatyti tiksliausiag objekty
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prognozavima uztikrinanc¢ig tinklo architektlirg, ypatingai svarbius kai

mokymo duomeny kiekis yra ribotas arba brangus.
3. NAS-MACU metody atradimas gali biiti labai naudingas mokslininkams,
nes gerokai sutrumpina laikg, reikalingg rasti optimalius neuroninius

tinklus objekty atpazinimo uzduotims konkreciose probleminése srityse.
Tai reiSkia, kad galima sutaupyti daug laiko tyrimams, sumaZinti

priklausomybe¢ nuo srities ekspertizés ir pagreitinti pateikimo rinkai laikg.
Be to, NAS-MACU patobulinimai gali buti pritaikyti ir kitoms
prognozavimo delsai jautrios pramoninéms ir humanitarinéms uzduotims.

8.8 Darbo rezultaty aprobavimas

Disertacijos rezultatai paskelbti tarptautinivose mokslo Zurnaluose,

turinCivose citavimo indeksa ,,Clarivate Analytics Web of Science (CA

WoS) duomeny bazéje:

Gudzius, P., Kurasova, O., Darulis, V., & Filatovas, E. (2021). Deep
learning-based object recognition in multispectral satellite imagery
for real-time applications. Machine Vision and Applications, 32(4),
1-14;

Gudzius, P., Kurasova, O., Darulis, V., & Filatovas, E. (2023).
AutoML-based Neural Architecture Search for Object Recognition in
Satellite Imagery. Remote Sensing, 25(3), 15-31.

Disertacijos rezultatai pristatyti Siose tarptautinése konferencijose:

2018: ,.International Conference on Control and Computer Vision
(ICCCV)* (Tarptautiné valdymo ir kompiuterinés regos konferencija
(ICCCV), lapkritis, 2018, Singapiiras;

2019: ,,16th ACS/IEEE International Conference on Computer
Systems and Applications (16-0ji ACS/IEEE tarptauting
kompiuteriy sistemy ir programy konferencija, AICCSA), lapkritis,
2019, Abu Dabis, JAE;

2019: ,Data Science, E-learning and Information Systems*
(Duomeny mokslas, el. mokymasis ir informacinés sistemos),
gruodis, 2019, Dubajus, JAE;

2022: , The 8th International Conference on Machine Learning,
Optimisation, and Data Science® (8-0ji tarptautiné¢ masiny mokymosi,
optimizavimo ir duomeny mokslo konferencija), birzelis, 2022, Siena,
Italija.
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Disertacijos rezultatai pristatyti $ioje nacionalinéje konferencijoje:

e 2017: ,9th International Workshop on Data Analysis Methods for
Software Systems* (9-toji tarptautiné konferencija ,,Duomeny
analizés metodai programy sistemoms*), gruodis, 2017 Druskininkai,
Lietuva.

8.9 Susij¢ tyrimai ir konvoliuciniai neuroniniai tinklai

Apibendrinant teigtina, kad atsizvelgiant | nustatytus disertacijos
tikslus, UNET [55] ir MACU [20] tinklai pasirinkti kaip perspektyviausios
architektiiros eksperimentiniams tyrimams atlikti. UNET architektiira, i$
pradziy sukurta biomedicininiams vaizdams segmentuoti, pasizymegjo
perspektyviais rezultatais ir palydoviniy vaizdy srityje. Jos unikalus dizainas,
praleidziamosios jungtys ir didinamieji operatoriai leidZia iSskirti didelés
skiriamosios gebos pozymius ir veiksmingai lokalizuoti. UNET pagrindu
sukurtos variacijos, tokios kaip UNET++, , Inception-UNET* ir ,,UNet3+,
dar labiau patobulino pirming architektiirg, nes jvedé papildomus sluoksnius
ir pagerino pozymiy iSskyrima.

Kita  vertus, MACU tinklas iSsiskiria  daugiapakopémis
praleidziamosiomis jungtimis, asimetriniais konvoliuciniais blokais ir
démesio mechanizmy integravimu. MACU tinklas pasieké puikiy rezultaty
nuotolinio stebéjimo duomeny rinkiniuose, pranoko kitas architektiras,
pavyzdziui, FCAU-NET, ,PSPNet”“ ir ,, TransUNET®, ir pasieké panaSiy
rezultaty kaip ,,DeepLabv3“ ir ,,FastFCN®“. ] UNET pagrinda jtraukus kanalo
démesio ir asimetrinius konvoliucinius blokus, patobulinamas poZymiy
iSskyrimo procesas ir veiksmingai fiksuojama erdviné ir kanalo informacija.

Tiek UNET, tiek MACU tinklai — perspektyviis sprendimai vaizdy
segmentavimo uzdaviniams spresti, ypa¢ palydoviniy vaizdy ir
biomedicininiy vaizdy apdorojimo srityse. Dél savo geb¢jimo apdoroti auksto
lygio objekto pozymiy iSskyrima, erdving informacija ir daugiapakopi
konteksta jie tinka tiksliam ir preciziSkam segmentavimui. Atliekant
eksperimentinius tyrimus su Siomis architektiiromis, galima gauti daugiau
informacijos apie jy veikima ir galimus patobulinimus, o tai galiausiai padés
tobulinti vaizdy segmentavimo sritj ir jos taikyma jvairiose srityse.

Be to, neurony architektiiros paieska (NAS) yra perspektyvus
automatizuoto masininio mokymosi (,,AutoML*) metodas, kuriuo
sprendziami rankiniu biidu sukurty neurony tinkly architektiiry trikumai.
NAS automatizuoja neuroniniy tinkly projektavimo procesa, todél jis tampa
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prieinamas jvairesnéms sritims ir tyréjams. Tyrinédamas pagrindiniy
statybiniy bloky, vadinamy ,,lastelémis®, derinius, NAS efektyviau konstruoja
sudétingus neuroninius tinklus. Jame taikomi jvairlis optimizavimo metodai,
tokie kaip sustiprintasis mokymasis, evoliuciniai algoritmai ir gradientais
pagristi metodai. NAS s¢kmingai veiké vaizdy klasifikavimo srityje ir parodé
savo potencialg medicininiy vaizdy segmentavimo ir nuotolinio steb&jimo
srityse. Tolesni NAS moksliniai tyrimai ir taikymas ,,AutoML® yra
perspektyviis siekiant tobulinti maSininio mokymosi sistemas jvairiose
srityse. Tai ir jo santykinj naSuma, palyginti su rankiniu bidu sukurtais
tinklais, i§samiau nagrin¢jame Sioje disertacijoje.

8.10 Sprestino uzdavinio apibrézimas

Siame darbe sprendziama objekty atpazinimo problema. Objekty
atpazinimo rezultatus gauname naudodami vaizdo semantinio segmentavimo
metrikas. D¢l palydoviniy vaizdy maZos skiriamosios gebos pobiidzio
semantinio segmentavimo metodas tinka objekty atpazinimo palydoviniuose
vaizduose problemoms spresti, nes uztikrina detaliausius, vaizdo elementy
lygmens rezultatus.

Empiriniam tyrimui pasirinkta objekty klas¢ yra ,lengvasis
automobilis“. Sios klasés objektai yra vos 200 vaizdo elementy dydzio (20 x
10 vaizdo elementy matrica, palyginti su milijonais vaizdo elementy
iprastuose vaizduose, gautuose, pavyzdziui, i§ ,,JmageNet*), kaip parodyta 3.1
paveiksliuke. Todél kiekvienas vaizdo elementas turéty suteikti vertingos
informacijos. 3.1 paveiksliuke mélynos spalvos vaizdo elementai Zymi
segmentavimo metodu atpazinta objekty klase ,lengvoji transporto
priemoné*; raudona spalva Zymi originaly anotatoriaus pazyméta objekto
poligong; balta spalva zymi tiksly atitikimg vienam vaizdo elementui.
Semantinj segmentavimg galima laikyti kiekvieno vaizdo elemento
klasifikavimo problema, nes vaizdo elementg klasifikuojame i dvejetaine
iSvest] (objektas klaséje arba néra objekto), ir jis neskiria skirtingy to paties
objekto egzemplioriy.

Objekty atpazinimo rodiklius iS§vedame i§ semantinio vaizdo
segmentavimo rezultaty. Segmentuotus ,lengvosios transporto priemonés‘
vaizdo elementus uzdengiame ant Zzmogaus anotatoriaus sukurty kaukiy
(poligony) duomeny rinkiniuose (mokymo, patvirtinimo ir testavimo
duomeny rinkiniuose). Tada nustatome, kurie objektai teisingai atpazinti, o
kurie — ne. Objektas gali atrodyti kitaip skirtinguose kontekstuose, esant
skirtingoms apsvietimo salygoms, kampams ir pan. Zemesné riba gali leisti
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lanksciau atpazinti objektg nepaisant Siy skirtumy ir rankiniu biidu dirbancio
anotatoriaus klaidy. Kad objektas biity laikomas teisingai atpazintu, bent 25
% objekto vaizdo elementy turi bati vienodai uzdengti. Si riba pasirinkta
siekiant atsizvelgti | duomeny rinkinyje esanCius Zmogaus anotatoriy
zenklinimo netikslumus (kaip matyti 3.1 paveiksliuke) ir reikiama minimalig
riba. Atlik¢ empirinj tyrima (keli lygiai nuo 15 % iki 40 %) nustatéme, kad
norint objekta klasifikuoti kaip teisingai atpazintg, pakanka, kad jis atitikty 25
% anotuoto poligono, kartu sukuriant minimalius klaidingai teigiamus
signalus. Kai objektas teisingai atpazjstamas, jis laikomas tikruoju teigiamu
objektu (TP) arba kitaip tinkamai klasifikuojamas kaip klaidingai teigiamas
objektas (FP), klaidingai neigiamas objektas (FN) arba tikrasis neigiamas
objektas (TN). Remiantis $iais pagrindiniais skaiCiais taip pat iSvesti kiti
nafumo rodikliai. Sie rodikliai atspindi ir semantinio segmentavimo, ir
objekty atpazinimo naSumg. Siekiant nuoseklumo, neuroninio tinklo na§umui
vertinti naudojamos ir semantinio segmentavimo, ir objekty atpaZzinimo
metrikos.

8.11 ,,Sat-Modification“ proceso apzvalga

Siekdami jgyvendinti vieng i§ pagrindiniy Sios disertacijos tiksly, t. y.
pasitlyti giliuoju mokymusi ir palydoviniy vaizdy modifikavimu grindziama
sistema tikslumui padidinti ir objekty atpazinimui pagreitinti, jgyvendinome
daugybe¢ patobulinimy visuose pirminio apdorojimo ir tinklo projektavimo
etapuose (t. y. ,,Sat-Modification* procese). Kartu Sie patobulinimai leido
gauti moderniausiy tinklo veikimo rezultaty ir sékmingai pasiekti minéta
tikslg. Visas procesas nuo palydoviniy vaizdy gavimo (P1) iki galutinio
signalo generavimo ir pateikimo (P13) pavaizduotas 3.2 paveiksliuke. P1-P4
ir P10 komponentai atspindi duomeny rinkinj ir su palydoviniais vaizdais
susijusius procesus, tokius kaip duomeny gavimas, pirminis apdorojimas,
papildymas ir kt. Sie komponentai aprasyti 3.2.1-3.2.4 poskyriuose.

P5-P9 komponentai yra Sioje disertacijoje sitilomos mokslinio
naujumo ir modeliy patobulinimo sritys. Aptariame dvi pagrindines tyrimy
sritis: 1) Tinklo gylio konstravimas ir pozymiy i$skyrimas prognozavimo
tikslumui uZztikrinti ir 2) Skai¢iavimo sudétingumo analizé prognozavimo
greiiui uztikrinti.

8.12 Palydoviniai vaizdai

Disertacijos 1 skyriuje daugiausia démesio skiriama objekty
atpazinimo uzduociai palydovinése nuotraukose naudojamiems duomenims ir
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iSankstinio duomeny apdorojimo metodams. Tyrime naudojamas neapdoroty
palydoviniy vaizdy duomeny rinkinys gautas i$ ,,DigitalGlobe WorldView-3*
palydovo per atvirojo kodo duomeny bazg ,,SpaceNet”. Duomeny rinkinj
sudaré didelés skiriamosios gebos daugiasluoksniai vaizdai i§ keturiy
skirtingy vietoviy: ParyZziaus, Sanchajaus, Las Vegaso ir Chartumo. Taciau
duomeny rinkinyje nebuvo ,,lengvyjy transporto priemoniy* klasés objekty
anotacijy, kurios yra tyrimo objektas.

Norint sukurti anotuotg lengvyjy transporto priemoniy klasés duomeny
rinkinj, nemazai anotavimo darby atlikta rankiniu btidu. Po maziausiai 350
valandy anotavimo darbo gautas aukstos kokybés mokomasis rinkinys su
daugiau kaip 80 000 pazymety objekty. Anotacijos atliktos naudojant QGIS
geografinio vaizdo programing jrangg, o keli profesionallis anotatoriai
uztikrino anotacijy kokybe ir tikslumg. VieSai prieinamy duomeny rinkiniy su
pazymétomis ,Jlengvyjy transporto priemoniy“ klasémis nebuvo, todél
anotuotas duomeny rinkinys buvo atviras, kad bty lengviau atlikti tolesnius
Sios srities tyrimus.

Siekiant padidinti mokymo duomeny jvairove ir patikimuma, taikomi
duomeny papildymo metodai. Sie metodai apémé pasukima, perspektyvos
iSkraipyma, rySkumo ir kontrasto koregavimg, Gauso triuk§mo prid¢jimg ir
skirtingy oro bei atmosferos salygy ivedima. Papildymo procesas padéjo
pritaikyti modelj jvairioms salygoms ir pagerinti jo veikima realaus pasaulio
scenarijuose.

Dél ribotos atminties dideli palydoviniai vaizdai apkarpyti j maZzesnius
160 x 160 vaizdo elementy dydzio mokymo kadrus. Sie vaizdo elementy
kadrai leido gauti didesnes mokymo partijas ir uztikrinti didesnj konteksto
kintamuma kiekviename atgalinio skleidimo cikle. Taciau sujungus
nesusijusias scenas j vieng kadrg, gali atsirasti triukSmo, kuris iskraipo
konteksting informacija. Siai problemai spresti sukurtas programinis salyginis
metodas ,,vaizdo elementy rémeliy atranka®. Jis apémé atsitikting mokymo
kadry atranka, kadry, kurie sutampa su keliais dideliais palydovo vaizdais,
atmetima ir visiskai besidubliuojanéiy kadry atmetima. Sis metodas sumazino
triuk8mg ir pagerino mokymo bei prognozavimo tikslumg.

Be to, siekiant pagerinti prognozavimg, sukurtas metodas, vadinamas
»prognozavimo rémy sekos nustatymu“. Tai reiskia, kad objektams
klasifikuoti reikia atsizvelgti i bent du skirtingus fonus (prognozavimo
rémus). Nesutampant klasifikacijai objektas laikomas teigiamai atpazintu.
Lyginamieji eksperimentai parodé, kad jgyvendinus prognozavimo kadry

120



sekos nustatyma objekty atpazinimo tikslumas buvo 3,57 % didesnis,
palyginti su standartine prognozavimo funkcija.

Apskritai 1 skyriuje pateikiama iSsami neapdoroty palydoviniy vaizdy,
anotavimo proceso, duomeny papildymo metody, iSankstinio duomeny
apdorojimo metody ir jy poveikio objekty atpazinimo palydoviniuose
vaizduose uzduodiai apzvalga. Sie etapai padéjo pagrindg tolesniems
disertacijos skyriams, kuriuose daugiausia démesio skiriama automatinei
neurony architekttiros paieskai ir NAS-MACU tinklo naSumo vertinimui.

8.13 Skaiciavimo aspektai

Be vaizdo elementy kadry fragmenty jgyvendinimo kontekstiniam
kintamumui pagerinti ir praktiniy GPU/TPU atminties apribojimy [55] [113],
Ronnebergeris ir kiti [11] taip pat siiilo, kad siekdami sumazinti pridétines
iSlaidas ir maksimaliai iSnaudoti GPU ir TPU atmintj, turétume teikti
pirmenybe dideliam jvesties vaizdo elementy kadrui, o ne dideliam partijos
dydziui, ir eksperimentuoti su mokymo partijos dydziais nuo 32 iki 192. Be
Sios taisyklés, taip pat igyvendintas impulso optimizavimo algoritmas — Adam
[114], [115]. Eksperimentai buvo atlickami specialiai mtisy tyrimo problemai
sukurtoje ,,Google Cloud Platform* (GCP) architektiiroje. Siekiant toliau
eksperimentuoti su delsos mazinimu, miisy GCP sistemoje idiegtos dvi
pazangiausios skai¢iavimo masinos — GPU NVIDIA Tesla P100 64 GB (1
branduolio) ir TPU v3-8 128 GB (8 branduoliy).

8.14 Rankiniu biidu sukurti tinklai (UNET ir MACU, ,,DeepLab“ ir
,»FastFCN®)

Siame skyriuje daugiausia démesio skiriama rankiniu biidu sukurtiems
neuroniniams tinklams, kurie skirti objektams atpazinti palydovinése
nuotraukose. Apibréziama objekty atpazinimo palydovinése nuotraukose
problema ir pasirenkama konkreti objekty klas¢ ,lengvoji transporto
priemone®. Skyriuje aptariamos unikalios duomeny rinkinio savybés ir
apribojimai, taip pat iSankstinio apdorojimo ir papildymo metodai.

Skyriuje vertinamas keliy rankiniu biidu sukurty neuroniniy tinkly
architektiiry, jskaitant UNET, MACU, ,,DeepLab® ir , FastFCN®, objekty
atpazinimo tikslumas ir prognozavimo greitis. Vertinimas atlickamas
naudojant semantines vaizdo segmentavimo metrikas, kurios uZztikrina vaizdo
elemento lygmens naSumg. Objekty atpazinimo rezultatams vertinti
naudojamos $ios metrikos: tikri teigiami objektai (TP), klaidingai teigiami
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objektai (FP), tikri neigiami objektai (TN), klaidingai neigiami objektai (FN),
Jaccard indeksas, atSaukimas (Recall), tikslumas (Precision), per didelés
prognozés klaida (FPO) ir F; kaip bendro tikslumo metrika.

Siekiant padidinti tikslumg ir pagreitinti objekty atpazinima, sifiloma
,.Sat-Modification sistema. Si sistema apima i$ankstinio apdorojimo ir tinklo
projektavimo etapy patobulinimus. Pateikiama viso objekty atpazinimo
palydovinése nuotraukose proceso darbo eigos schema. Sistemos
komponentai apima tinklo gylio konstravima, pozymiy iSskyrimg
prognozavimo tikslumui uztikrinti ir skai¢iavimo sudétingumo analizg
prognozavimo greic¢iui uztikrinti.

Skyriuje taip pat aprasomi tyrime naudoti neapdoroti palydoviniai
vaizdai, gauti i§ ,,SpaceNet™“ duomeny bazés. Naudojant QGIS programing
jranga sukurtas rankiniu budu anotuotas ,lengvyjy transporto priemoniy‘
klasés objekty duomeny rinkinys. Siekiant sukurti jvairesnj duomeny rinkinj,
taikyti duomeny papildymo metodai, o siekiant iSspresti GPU / TPU atminties
apribojimus ir pagerinti mokymo tikslumg bei prognozavimo tikslumg —
pirminio duomeny apdorojimo metodai.

Aptariami skai¢iavimo aspektai, pavyzdziui, vaizdo elementy rémeliy
démiy naudojimas, partijos dydziai ir Adamo optimizavimo algoritmas.
Skyrius baigiamas dviejy pasirinkty neuroniniy tinkly architekttiry — UNET ir
MACU - jvertinimu ir jy naSumu tikslumo ir prognozavimo grei¢io poziiiriu.

Apskritai Siame skyriuje pateikiama iSsami rankiniu biidu sukurty
neuroniniy tinkly, skirty objektams atpazinti palydovinése nuotraukose,
apzvalga, apimanti tokius aspektus kaip tikslumo vertinimas, skai¢iavimo
sudétingumas, duomeny rinkinio savybés, pirminis apdorojimas, papildymas
ir sitiloma ,,Sat-Modification® sistema.

8.15 Skai¢iavimo sudétingumas

Siame skyriuje daugiausia démesio skiriama objekty atpaZinimo
modeliy vertinimui ir analizei, atsizvelgiant i jy tiksluma ir skai¢iavimo
sudétinguma. Aptariama didelé prognozés signalo delsa, kurig sukelia léti
objekty atpazinimo modeliai, pabréziant skaiCiavimo sudétinguma ir
skaiCiavimo galig kaip veiksnius, turin¢ius jtakos objekty atpazinimo greiciui.
Kaip skaic¢iavimo sudétingumo matas jvedamas slankiojo kablelio operacijy
skaicius (FLOP).
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Skyriuje pateikiamas modelio kompleksisSkumui skaiciuoti pritaikytas
neuroninio tinklo skai¢iavimo sudétingumo apskaiciavimo metodas, pagrjstas
FLOP skai¢iumi. Modelio sudétingumas apibréziamas kaip kiekvieno tinklo
sluoksnio FLOP skai¢iy suma. Modelio sudétingumo svarba aptariama
atsizvelgiant j perteklinj pritaikyma, sgnaudas ir efektyvuma.

Keturiy sitlomy UNET architektiiry veikimas lyginamas taikant
tikslumo, per didelio prognozavimo, Jaccard indekso ir skaiCiavimo
sudétingumo  kriterijus. UNET Model 2 pasickia didziausiag objekty
atpazinimo tikslumg (TPO) — 97,67 %, o jo skaiciavimo sudétingumas
palyginti nedidelis (6,9832 G-FLOPS). Siekiant pagerinti UNET Model 2
veikimg, iSbandomos jvairios aktyvacijos funkcijos. Nustatyta, kad ReLU
aktyvacijos funkcija uztikrina geriausius tikslumo rezultatus, o hiperbolinio
tangento (Tanh) aktyvacijos funkcija sumazina perteklinj prognozavimg ir
iSlaiko aukstag TPO / FPO santykj. Analizuojamas UNET Model 2 mokymo
procesas ir nustatomas optimalus 35-40 epochy intervalas, siekiant iSvengti
perteklinio tinklo persimokymo ir sumazinti skaiciavimo sgnaudas. Sitilomas
metodas lyginamas su kitais populiariais objekty atpazinimo metodais
naudojant iSorinius duomeny rinkinius. Sililoma architektiira pasiekia
didziausig tikslumg visuose duomeny rinkiniuose ir metoduose, tuo pat metu
naudodama gerokai maziau epochy ir sumazindama skai¢iavimo sanaudas.

Prognozavimo greicio eksperimentai atlickami naudojant GPU ir TPU
skaiCiavimo architektiras. D¢l mazesnio skaiiavimo sudétingumo
UNET Model 2 prognozavimo grei¢io GPU lenkia TPU. Analizuojamas
rySys tarp objekty atpazinimo tikslumo, skai¢iavimo sudétingumo ir
prognozavimo greicio. Nustatyta, kad UNET Model 2 su 128 x 128 vaizdo
elementy dydzio kadru yra optimalus tinklas realiuoju laiku vykdomoms
uzduotims, nes uztikrina didel;j tikslumg, Zemg perteklinio prognozavimo lygj
ir didelj prognozavimo greiti GPU procesoriuje. Apskritai Siame skyriuje
pateikiama iSsami objekty atpazinimo modeliy analizé, atsizvelgiant i jy
tikslumg ir skaiCiavimo sudétinguma. ISvados padeda suprasti, kaip efektyviai
kurti modelius ir rasti kompromisg tarp tikslumo ir skaiciavimo istekliy
realiuoju laiku vykdomoms uzduotims.

8.16 Daugialypés jungties ir asimetrine konvoliucija pagristas tinklas
(MACU)

Sioje disertacijoje atlikome eksperimentus su keturiais neuroniniais
tinklais (MACU, ,,FastFCN“, UNET ir ,DeepLabv3‘) trijose skirtingo
informacijos intensyvumo aplinkose, kad jvertintume jy prognozavimo
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tikslumg ir skaiciavimo sudétingumg. Tinklai pritaikyti ,,Google Cloud
Platform* architektiirai ir iSbandyti su palydoviniy vaizdy duomeny rinkiniu.
Tinklus vertinome remdamiesi segmentavimo ir objekty atpazinimo
metrikomis, gautomis i§ eksperimentiniy rezultaty.

IS 3.5 lenteléje pateikty rezultaty matyti, kad MACU pasizymejo
geriausiais bendrais rezultatais visose aplinkose, vertinant pagal F; balg.
UNET geriausiai pasirodé pagal atSaukimo rodiklj, todél tinka tais atvejais,
kai palydovinése nuotraukose labai svarbu nustatyti kuo daugiau objekty. F;
balas leidzia visapusiSkai jvertinti tinklo naSuma, ypac sprendziant realias
problemas, o tikslumas nurodo teisingai nuspétus objektus.

Be to, ,DeepLabv3“ ir ,FastFCN*“ parodé nedidelio tikslumo
rezultatus, kai objekty skaiius maziausias, taCiau jy prognozés
konservatyvios, o perteklinio prognozavimo klaida maZiausia dviejuose i$
trijy informacijos intensyvumo scenarijy. 3.14 pav. pateiktas vizualus keturiy
tinkly gauty rezultaty lyginimas. 3.6 lentel¢je palyginome UNET ir MACU
prognozavimo greitj ir tikslumg. Nors MACU pranoko UNET pagal tiksluma,
jo architektiira buvo sudétinga skai¢iavimo poziiiriu, todél prognozavimo
greitis buvo 6,92 kartus létesnis uz UNET. Tad MACU labiau tinka j tiksluma
orientuotoms uzduotims, o UNET dél savo nedidelio skai¢iavimo
sudétingumo geriau veikia prognozavimo delsai jautriuose scenarijuose.

Apibendrinant galima teigti, kad MACU pasirinktas kaip
perspektyviausia tinklo architekttira ir pagrindas tolesniems ,,AutoML* ir
NAS metody tyrimams. Skyriuje pabréziama rankiniu biidu projektuojamy
tinkly svarba, pripazjstama, kad tokiems tinklams sukurti ir kalibruoti reikia
daug laiko. Kitame skyriuje daugiausia démesio skiriama naujiems
sprendimams naudojant ,,AutoML* ir NAS, siekiant pagerinti rankiniu biidu
projektuojamy tinkly veikimga.

8.17 Automatizuota neurony architektiiros paieSka objektams atpaZzinti

Sios disertacijos 4.2 skyriuje nagrinéjamas naujo neurony architektiiros
paieskos (NAS) metodo, vadinamo NAS-MACU (neurony architektiiros
paieska su daugiapakopiu démesiu ir kryZminiu panaudojimu), kiirimas ir
jvertinimas objektams atpazinti palydovinése nuotraukose. Skyrius
pradedamas aptariant NAS galimybes automatizuoti neuroniniy tinkly

tww—

ir masSinos mokymosi specialistai, siekdami moderniausiy objekty atpazinimo
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uzduoc€iy rezultaty, ir pristatomas NAS kaip sprendimas Siam procesui
automatizuoti ir optimizuoti.

Aprasomas siilomas NAS-MACU metodas, kuri sudaro trys
pagrindiniai komponentai: paieskos erdve, paieskos strategija ir vertinimo
metrika. Paieskos erdvé apima galimas architektiiras, kurias tiria NAS
algoritmas, o paieskos strategija sujungia sustiprinta mokymasi ir evoliucinius
algoritmus, kuriais vadovaujamasi paieskos procese. Vertinimo metrika
matuojamas NAS algoritmo rasty architektliry naSumas, paprastai naudojant
tiksluma pagal patvirtinimo duomeny rinkinj.

Toliau paaiskinamas NAS-MACU algoritmas, kuris pradedamas nuo
atsitiktinio architektiiry generavimo paieskos erdvéje. Algoritmas iteratyviai
gerina $iy architektiry naSumg ir gragzina geriausig. NAS-MACU algoritmas
pagristas lastelémis paremta architektiira, o paieska sutelkta | MACU tinklo
lastelés lygmens topologijos optimizavima.

Aprasomas NAS-MACU projektavimo procesas, pabréziami isSiikiai,
susije su giliojo mokymosi architektiiros, pritaikytos konkre¢ioms nuotolinio
steb¢jimo duomeny uzduotims, kiirimu. MACU architekttira jvardijama kaip
perspektyvus pagrindas, o NAS-MACU sieckiama optimizuoti Iasteliy
lygmens architekttirg. Skyriuje pristatomas NAS-MACU konstravimo
procesas, pabréziant savaiminio projektavimo-topologijos metoda, kuris
prisitaiko prie jvairiy duomeny rinkiniy savybiy be Zmogaus patirties ar
rankinio jsikiSimo.

Skyriuje taip pat aptariama lastelés lygio topologijos paieska, kurios
metu sukuriamas nukreiptas aciklinis grafas (DAG), vaizduojantis lgstelés
architektiira. DAG naudojamos jvairiy tipy operacijos, pavyzdziui, Zemyn,
aukStyn ir jprastos, o misSri operacija apibréZiama remiantis kandidaty
operacijy svertiniais deriniais. Pateikiamas lgstelés genotipo generavimo
algoritmas, nurodant paieskos ir atrankos proceso etapus.

Toliau pristatomas MACU ir NAS-MACU architekttry palyginimas,
iSrySkinant NAS-MACU pranaSumus automatizuojant lasteliy lygmens
architektiiros projektavima. Eksperimentiniais ciklais sukuriami jvairtis NAS-
MACU genotipai ir jvertinamas jy santykinis naSumas. ISskiriami geriausiai
veikiantys genotipai — NAS-MACU-V7 ir NAS-MACU-VS.

Apskritai Siame skyriuje parodytas NAS-MACU efektyvumas
automatiSkai projektuojant neuroniniy tinkly architektiiras objektams
atpazinti palydovinése nuotraukose. NAS-MACU metodas naudoja MACU
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pagrinda ir optimizuoja lgsteliy lygmens topologija, taikydamas paieskos ir
atrankos procesg. Rezultatai rodo NAS-MACU potencialg siekiant geresniy
tikslumo rezultaty, palyginti su rankiniu biidu sukurtomis architektiiromis.
Skyriaus pabaigoje sitilomos busimos moksliniy tyrimy kryptys ir NAS-
MACU reik§mé nuotolinio stebéjimo srityje.

8.18 Eksperimentinis tyrimas ir NAS-MACU

Sios daktaro disertacijos 4 skyriuje pristatomas naujas NAS-MACU
metodas, skirtas automatizuotai neurony architekttiros (NAS) paieskai objekty
atpazinimo uzduotyse naudojant palydovinius vaizdus. NAS-MACU
veikimas jvertintas su visu duomeny rinkiniu, naudojant astuonis skirtingus
genotipus, ir palygintas su rankiniu budu sukurtais tinklais (MACU).
Rezultatai parodeé, kad lyginant NAS-MACU-V1 su NAS-MACU-V7 ir NAS-
MACU-V8 gerokai pageréjo jvairios metrikos.

NAS-MACU-V8 pasieké geriausiag Fi rezultata ir parodé¢ panaSy
nasumg kaip ir NAS-MACU-V7. NAS-MACU metodas pademonstravo
gebéjimg greitai mokytis, kai mokymo informacijos intensyvumas nedidelis,
todél jis naudingas tais atvejais, kai gauti mokymo duomenis yra sudétinga ar
brangu, pavyzdziui, naudojant didelés skiriamosios gebos palydovinius
vaizdus. Eksperimentai parod¢, kad NAS-MACU pasieké aukSciausig naSumag
vos per 15-20 epochy.

Lyginant NAS-MACU ir MACU naSumg pagal objekty atpaZinimo
rodiklius, NAS-MACU Ssioje konkrecioje uzduotyje ir duomeny rinkinyje
pranoko MACU. Jis ypac¢ gerai veiké mazo informacijos intensyvumo
aplinkoje. ISrySkéjo NAS-MACU skaiciavimo efektyvumas, nes labai
efektyvi NAS-MACU infrastruktiira sukurta vos per kelias valandas
naudojant ,,AutoML* procesa ,,Google Cloud Platform* (GCP) platformoje.
O stai rankiniu biidu projektuoti tinklus ir atlikti objekty atpazinimo uzduotis
paprastai prireikia ménesiy.

4.4 lentel¢je pateikiamas NAS-MACU-V8 ir MACU naSumo lyginimas
esant skirtingiems mokymo aibés dydziams. Maz¢jant mokymo aibés dydziui,
NAS-MACU-V8 demonstravo geresnius rezultatus, palyginti su MACU, ypac
mazai informacijos turinCiose aplinkose. Empirinis tyrimas patvirtino, kad
NAS-MACU-V8 pranoko MACU, ypa¢ mazai informacijos turinciuose
scenarijuose. Svarbiausi rodikliai buvo F; (bendras nasumas) ir tikslumas.
NAS-MACU-V8 pranoko MACU pagal bendrg tikslumo (F;) ir tikslumo
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(Precision) rodiklius, o maz¢jant mokymo aibés dydziui nasumo atotrukis
did¢jo.

NAS procesas uztruko nuo 4 iki 58 valandy mokymosi ir paieskos
NAS-MACU-VI-NAS-MACU-VS8 genotipuose. Svarbu tai, kad NAS-
MACU sprendimas sukurtas automatiskai, be Zmogaus jsiki§imo, todé¢l yra
taikytinas pla¢iu mastu ir tinka jvairiems realiems poreikiams. 4.11
paveikslélyje pateiktas vaizdinis MACU ir NAS-MACU-V8 naSumo
lyginimas dviejuose palydoviniuose vaizduose. NAS-MACU-V8 pasieke
geresniy rezultaty nei MACU, ypac¢ prasto apSvietimo aplinkybémis.

Apibendrinant, 4 skyriuje pristatomas naujas NAS-MACU metodas,
skirtas automatizuotai neurony architektiiros paieskai objekty atpazinimo
uzduotyse naudojant palydovinius vaizdus. NAS-MACU pranoko kitus
rankiniu biidu sukurtus tinklus ir pademonstravo geresnius rezultatus mazai
informacijos turincioje aplinkoje. NAS-MACU tinklo konfigiiracijos pasieké
geresniy objekty atpaZinimo rezultaty, palyginti su MACU, o NAS-MACU-
V8 parodé geriausius rezultatus pagal F; metrikg. NAS-MACU metodas
leidzia savarankiSkai atrasti gerai veikianCias Iasteliy topologijas ir
architektiiras, optimizuotas objektams atpazinti  daugiaspektriuose
palydoviniuose vaizduose.

8.19 Apibendrinimas ir iSvados

Siame skyriuje siekiama kritiskai jvertinti numatytus disertacijos tikslus
ir parodyti, kaip Sie tikslai sékmingai jgyvendinti tiek individualiai, tiek
kolektyviai.

1 iSvada. Neuroninio tinklo modifikavimo procesas ,,Sat-modification*
pagerino objekty atpaZinimo palydoviniuose vaizduose tikslumg ir greitj.

I ,,Sat-Modification* sistemg jtraukus naujus metodus neuroniniy tinkly
galimybéms didinti, tarp jy poZymiy iSskyrima, tinklo sudétingumo matavima,
mokymo proceso derinimg ir prognozavimo grei¢io optimizavima, gerokai
pager¢jo sistemos tikslumas ir efektyvumas. Ypac svarbu, kad sistemos
UNET architektiira pasieké 97,67 % tiksluma ,lengvyjy transporto
priemoniy“ objekty klaséje. Be to, skaiCiavimo pozilriu nesudétinga
UNET Model 2 architektiira pademonstravo net penkis kartus trumpesnj
mokymo laika, tad ja galima taikyti realiuoju laiku. Sie rezultatai rodo, kad
»Sat-Modification sistema yra veiksminga didinant objekty atpazinimo
galimybes sudétingoje palydoviniy vaizdy srityje.
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2 iSvada. Dél savo lengvos skaifiavimo architektuiros UNET yra
perspektyvus modelis ypac¢ kai prognozavimo laikas yra svarbus aspektas
praktiniam uZdaviniui spresti.

Objekty atpazinimo modeliy skai¢iavimo sudétingumas turi didele
itakg prognozavimo laikui ir bendram nasumui. Slankiyjy operacijy skaicius
(FLOP) — veiksmingas skai¢iavimo sudétingumo matas, kurj galima naudoti
iSvados trukmei jvertinti. Ne tokie sudétingi modeliai sumazina ne tik
prognozavimo gaistj, bet ir perteklinj pritaikyma, sgnaudas bei didina
efektyvumg. UNET Model 2 rezultatai geriausi prognozavimo spartos
pozitriu, taCiau pastebétas perteklinis prognozavimas ir palyginti nedidelis
sudétingumas — 6,9832 G-FLOP. Veiksmingumui jtakos turi ir aktyvacijos
funkcijos pasirinkimas: ReLU wuztikrina geriausig tikslumg, o Tanh —
maziausig triuk§mo lygj. Be to, nustatytas optimalus 35—40 epochy intervalas,
kad buty kuo labiau sumazintas perteklinis pritaikymas ir mokymo
skai¢iavimo sanaudos. Prognozavimo greiCio eksperimentai parodé, kad
UNET Model 2 atveju GPU pranoko TPU. Tiesiogiai lyginant su MACU,
UNET prognozavo septynis kartus (6,92x) grei¢iau uz MACU (17,53 sek.
lyginant su 121,28 sek.), o tikslumo skirtumas sieké tik iki 1 % (F; 0,939
lyginant su 0,943). Sie rezultatai leidzia daryti i§vada, kad UNET Model 2
procesas naudojant ,,Sat-Modification* sistema yra tinkamiausia tinklo
architektiira ir metodas naudojimo atvejams, jautriai reaguojantiems ] iSvady
laika, pavyzdziui, algoritminei prekybai.

3 iSvada. MACU pranoko kitus rankiniu biidu sukurtus tinklus pagal
bendrus tikslumo rodiklius ir pasirinktas kaip NAS pagrindas.

Siame tyrime atlikome eksperimentus, sickdami palyginti keturiy
neuroniniy tinkly — MACU, ,,FastFCN®“, UNET ir ,,DeepLabv3“ — veikima
skirtingo informacijos intensyvumo aplinkose. Analizuoti ir lyginti gauti
segmentavimo ir objekty atpazinimo rodikliy rezultatai. ,,DeepLabv3® ir
,FastFCN® pasizymi vidutiniu tikslumu esant mazesniam objekty skaiciui,
taCiau iSlieka konservatyviis ir lemia maziau pervertinimo klaidy. Misy
iSvados rodo, kad MACU tinklas bendras naSumas, matuojamas F; balu, yra
geriausias visose trijose informacijos intensyvumo aplinkose. Remiantis
Siomis iSvadomis, MACU tinklas pasirinktas kaip perspektyviausia
architektiira tolesniems ,,AutoML‘ ir NAS tyrimams.

ISvada 4. Pasiilytas naujas NAS-MACU modelis uZtikrina tikslesni
objekty atpaZinima lengvosios transporto priemonés objekty klaséje,
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mazo informacijos intensyvumo aplinkoje, palyginti su rankiniu budu
sukurtu MACU tinklu,.

NAS-MACU tinklo, apimancio automatizuotus neurony architekttiros
paieskos (NAS) metodus, sukiirimas yra reikSmingas indélis | objekty
atpazinimo palydovinése nuotraukose sritj. Naudojant NAS gautos kelios
NAS-MACU tinklo konfigtracijos, pranokstancios rankiniu btdu
suprojektuoto MACU tinklo naSumg ypa¢ mazai informacijos turincioje
aplinkoje. Pazymétina, kad NAS-MACU-V8 pasieké geriausiag F; balg —
0,934, o tai jrodo NAS efektyvuma optimizuojant tinklo architekturas, skirtas
lengvyjy transporto priemoniy objekty klaséms atpazinti optinése
daugiaspektrése palydovinése nuotraukose. Automatizuodamas gerai
veikianciy tinklo lasteliy topologijy atradimg, NAS jgyvendinimas MACU
tinkle pasalina rankinio jsikiSimo poreikj ir supaprastina architekttros
optimizavimo procesa. Sios i§vados rodo NAS metody potencialg gerokai
padidinti neuroniniy tinkly naSumg ir efektyvuma palydoviniy vaizdy objekty
atpazinimo srityje.

Sioje disertacijoje sékmingai pasiekti uZsibrézti tikslai, i§samiai
iStyrus sitilomg ,,Sat-Modification* sistema, atlikus griezta neuroniniy tinkly
architektiiry lyginamaja analize, sukiirus modelj skaiciavimo sudétingumui ir
prognozavimo greiCiui jvertinti bei suprojektavus inovatyvy ,,AutoML*
pagrista NAS-MACU tinkla. Siais darbais pasiekta pazanga ,,AutoML* srityje
atpazjstant objektus palydovinése nuotraukose, uztikrinant didesnj tiksluma,
prognozavimo greitj ir automatizuotas architektiiras, pritaikytas unikalioms ir
i§sklaidytoms objekty atpazinimo optinése palydovinése nuotraukose taikymo
sritims.

8.20 Tolesni darbai

Giliojo mokymosi modeliy veiksminguma sprendziant realaus pasaulio
problemas riboja vieSai prieinamy palydoviniy vaizdy duomeny trikumas.
Siame tyrime eksperimentas atliktas ,,Google Cloud*“ platformoje, naudojant
ribotus  skai¢iavimo iSteklius. Nors atlieckant Siuos eksperimentus
skaiiavimams prireiké nemazai laiko, ateityje biity galima pasinaudoti
didesniais skaiCiavimo iStekliais. Toks iSplétimas padéty istirti platesne
lasteliy infrastruktiiros paieskos erdve ir padidinti Igsteliy gylj. Be to, tai leisty
susvelninti apribojimus, kuriuos nustato ribojantys hiperparametrai, tokie kaip
,»max_patience* ir ,,Total Epochs®. Be to, siekiant padidinti mazo vélavimo
nasuma, galima toliau tirti tris papildomus su neuroninio tinklo architektura

129



nesusijusius metodus norint gerinti modelio greitj: modelio glaudinima,
procesoriy klasteriu spartinima ir programinés jrangos optimizavima.

Atsizvelgiant | apribojimus, susijusius su optiniais daugiaspektriais
palydoviniais vaizdais, ypa¢ dél atmosferos ir saulés Sviesos salygy, biity
naudinga istirti moksliniy tyrimy galimybes naudojant sintetinés aperttiros
radaro (SAR) palydovinius vaizdus. SAR vaizdai suteikia galimybe fiksuoti
duomenis per debesis, nakties metu ir esant rukui. Atlikus Siuos tyrimus bty
galima taikyti patobulintas NAS-MACU architekttras.

Be to, galima toliau tirti alternatyvias neuroniniais tinklais pagristas
architektiiras naudojant NAS. Sie tyrimai galéty neapsiriboti vien objekty
atpazinimu palydovinése nuotraukose ir apimti kitas sritis, pavyzdZziui,
medicininiy vaizdy analiz¢ (pvz., naviky aptikimg), aerofotografijy
apdorojima (pvz., semantinj segmentavimg bepiloCiy orlaiviy vaizduose),
kriminalistika (pvz., raSysenos aptikimg), autonomines masinas (pvz., masiny
navigacijg tam tikroje aplinkoje) ir kitas atitinkamas sritis.
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