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ACRONYMS

AER Actual Error Rate

BA Bayes Analysis

BR Bayes Rule

BDF Bayes Discriminant Function
CDF Cumulative Distribution Function
DIC Deviance Information Criterion
EER Expected Error Rate

FO Focal Observation

GAM Generalized Additive Model
GLM Generalized Linear Model
GLMM Generalized Linear Mixed Model
GRF Gaussian Random Field

LDF Linear Discriminant Function

LS Least Squares

ML Maximum Likelihood

MPL Maximum Pseudo-Likelihood
MRF Markov Random Field
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PDF Probability Density Function
PLDF Plug-in LDF

PBDF Plug-in BDF

SABE Spatial Auto-Beta

SRF Spatial Random Field

STL Set of Training Locations

STLG STL with the grouped label
STLM STL with the mixed label

TLC Training Labels Configuration
TRF T-distributed Random Field
WAIC Watanabe Akaike's Information Criterion
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LIST OF SYMBOLS

The following list describes several symbols that will be later used within the
body of the document:

¢(*)
D
gk

a covariance function.

a spatial domain, of interest, D < R".

a conditional Mahalanobis distance between €, and Q,,
| Kk at spatial location s, conditional on Z, for two-class
case it is denoted as d .

an Euclid distance between two spatial locations s;,s; .

an empirical estimate of the EER, o denotes the
estimation method.

a Heaviside step function.
an indicator function.

a spatial location index.
aclass index, | k.

a testing sample size, for a different class the subscript is
added, L,.

a number of simulations.
a number of classes.

a training sample size, for a different class a the subscript
added, N,.

sites belonging to the NN of s,, upper superscript is
added to denote the class |, NNiI .

a marginal probability distribution, with (e|e) denoting a
conditional probability distribution, with (o,o) denoting a
joint probability distribution.

a probability of misclassification of the observation
Z,eQ,, for training sample realization z, 6 denotes

classification method, 6 =B,L, B denotes BDF based
method, L denotes LDF based method. With actual



parameters values ¥, it is Bayes error rate Py (W);
with estimated parameters values P , itis AER, POE (‘P)

a marginal probability mass function for class I; different
situations for parameter definitions are equivalent for

P (0) .

a conditional probability of incorrect classification, of the
observation Z; €, for training sample realization z.

a marginal density function for class I; different situations
for parameter definitions are equivalent for P(e).

an NxN matrix of spatial correlation between
components of observations Z.

a spatial correlation function.
a vector of spatial correlations between Z; and Z.
a STL, N denotes the number of the training sample, an

upper superscript | denotes class, S'N

a training sample.

a realisation of the training sample.

a discriminant function which classifies observation into

class | or k  Lk=Lml=k & denotes
classification method, 6 =B,L; B denotes BDF based
method W, ; L denotes LDF based method W, ; for two-
class case it is denoted W°'.

an N xmgq design matrix of the training sample, it is
specified by @, X,, where symbol @ denotes the

direct sum of matrices and X, is the N, xq matrix of
regressors for observations from €, | :1,_m,
an Nx1 class label vector, Y(s;) denotes class label

value in spatial location s,, in short ;.
a realisation of class label vector.



Vi

Ho,

Q,
Ed

an Nx1 random feature observation vector, Z(s,)
denotes observation value in spatial location s, in
short Z,;if i=0,itisFO Z,=Z(S,).

a realisation of feature observation vector.

a vector of regression parameters, for the data model to
describe the difference for class I; without index I, /S

denotes the vector of all regression parameters.

a marginal squared Mahalanobis distance, between €,
and Q. , =k at the spatial location s,; for two-class
case, it is denoted A?; without an upper superscript
denoted marginal Mahalanobis distance A, or A.

a log ratio of class label probabilities for Z,,

% =In(my/zy)  for  the  multiclass  case

I,k =1,m, |=k;for two-class case it is denoted as v,
7/=|n(7ré/7z02).

a conditional mean parameter for conditional distribution
of the observation Z,for training sample realisation z,
different for class |, without z; 4, denotes marginal mean
parameter for marginal distribution of the observation Z,

different for class I.
an N x N covariance matrix for observation vector Z.

a population (class) | =1,m.
a set of all unknown model parameters.

The symbol ' denotes transposed matrix and the symbol A denotes estimated
values of unknown parameters and expressions including parameter estimates
that are used in this thesis.
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INTRODUCTION

Machine Learning is a field of Artificial Intelligence, an essential component
of the growing field of data science that relies on the idea that systems can
learn from data, identify patterns and make decisions. Through statistical
approaches, algorithms are trained to make classifications or predictions,
uncovering critical insights within data mining projects.

Classification is a task that requires the use of machine learning algorithms
that learn to identify the category of new observations based on training data.
Machine learning algorithms with completely labelled data are attributed to a
supervised learning category. Two main approaches in supervised learning are
generative and discriminative (Bishop and Lasserre, 2007). The supervised
generative models try to capture the distribution of each class separately. In
short, it models how a particular class would generate input data. When a new
observation is given to these classifiers, it predicts which class would have
most likely generated the given observation. Mathematically, generative

models try to learn the joint probability distribution P(Z,Y ). Using the Bayes
rule (BR), (more in subsection 1.2) and the values of P(Z|Y) and P(Y) for

the particular class, P(Y |Z) conditional probability distribution (also called
posterior class distribution) of Y given Z, can be calculated. Here Z is called a

feature vector, Y is called a class label vector, P(Z|Y) is called the class-

conditional probability distribution of Z, and P(Y)is the probability

distribution of Y. Some of the best-known methods are Gaussian discriminant
analysis, Bayes network, Hidden Markov model (Duda R.O. et al., 2001). In
general, discriminative models try to find a decision boundary between the

different classes during the learning process, model the P (Y |Z )directly, or

learn a direct map from inputs Z to the Y. Some of the best-known methods
are logistic regression, conditional random field, Support Vector Machine,
Random Forest and others (Theodoritis and Kountroumbas, 2009). This thesis
focuses on supervised generative models and their realization algorithms for
classification problems.

The expression of P(Z|Y) depends on the choice of the probability

distribution that describes the observed feature vector Z with known class
label vector Y. Distribution is chosen considering the properties of Z values:
continuous or discrete, infinite or restricted interval of analysed values. For
example, it can be elliptical or exponential families distribution, the families

14



of distributions that are described in subsection 1.3. The expression of
P(Z|Y) also depends on whether the Z is considered independent or has a
statistical dependency that can be specified using covariance functions,

variograms, or P(Z |Y)that can be a function of Z depending on the spatial

locations of feature Z. The expression of P(Y) reflects the researcher's prior

knowledge of class labels Y. It might, for instance, depend on unobservable
factors or on the environment in which the feature Z is collected, for example,
spatial locations of feature Z. Various expressions of these functions allow to
expand the application of supervised generative models to solve different
classification problems.

Statement of the Problem

Usually, the basic assumption of independence of observations is followed
when solving classification problems using generative models (Jana and
Kumar, 2016). Spatial information plays a fundamental role in analysing and
understanding various fields of science tasks, for example, ecological,
biological processes (natural sciences), biomedicine, engineering and social
sciences. Compared with the general classification problem, spatial
classification needs to consider the location information of the data and the
interaction among variables. In this work, spatial contextual information
notation is used to define spatial information incorporation into the classifier's
structure. The spatial contextual term that is commonly used in image
classification, indicating the relationship between a classified pixel and its
neighbouring pixels is incorporated into analyses. A detailed comparison of
the spatial contextual classification methods for remote sensing image
classification is provided (Li et al., 2014). Contextual classification models
that exploit spatial information by quantifying region spatial relationships can
be used for image classification and object detection (Sun et al., 2016;
Stabingis, 2019). In this work, spatial trend models, covariation functions, and
auto-models are used to define spatial information related to the relationship
between a classified spatial location and its neighbouring spatial locations.
Auto-models is the term proposed by Besag (1974) that defined an expression
for conditional probability models of random variables with spatial
dependence (details in subsection 1.3).

Spatial contextual information incorporation into supervised generative
classification algorithms construction can be used for modelling feature value
distribution and/or class label distribution. Using such generative models for

15



classification problems in this thesis is generally called spatial contextual
classification.

Moving from independent models to models with statistical spatial
dependence another basic premise in classification problems is introduced that
require data to follow Gaussian distribution (Wang et al., 2020, Ducinskas and
Dreiziené, 2021a). This requirement is rarely implemented in real data
analysis. For this reason, the research must do some data transformations. For
example, Box-Cox power transformation is a transformation of non-Gaussian
dependent variables into a Gaussian shape. Logit and arcsine transformations
are appropriate for the data obtained from a count, and the data are expressed
as decimal fractions and percentages.

The transformed data models are more difficult to interpret, and the
transformations themselves do not necessarily translate features into Gaussian
distribution. To solve classification problems for features with spatial
contextual information with non-Gaussian distribution, new classification
methods are required that would extend the application of generative
classification algorithms.

Research Object

Supervised generative classification approach, Bayes discriminant function
(BDF), elliptical and exponential families conditional distributions.

Research Aim and Objectives

The research aims to construct supervised generative classification algorithms
based on BDF for features with spatial contextual information distributions
belonging to exponential and elliptic families.

For this aim, the following objectives should be achieved:

1. Expand the use of supervised generative classifiers based on BDF for
features model by Gaussian Random Field (GRF).

2. Construct a supervised generative classification algorithm based on
BDF for features model by T-distributed Random Field (TRF).

3. Construct supervised generative classification algorithms based on
BDF for features with spatial contextual information distributions
belonging to the exponential family.

16



Research Methods

A literature review is performed to evaluate the methods used for modelling
feature values with statistical spatial contextual information as well as to
evaluate the generative models used to solve the supervised classification
problems for models with spatial contextual information. The inclusion of
spatial contextual information in the probability distribution of feature and
class label probability is defined. The properties of the auto-models used to
describe the exponential family models are used.

The applied BDF function method is based on the ratio of the logarithms
of univariate conditional probability functions to the proposed supervised
generative classification algorithms. Expressions of error rates are obtained
for the accuracy assessment.

In empirical research, the proposed classification algorithms are
investigated using simulated and real data for the estimation of the Actual
Error Rate (AER). The unknown population parameters are estimated using
the Bayes estimator, Maximum Likelihood (ML) and Maximum Pseudo-
Likelihood (MPL) method. The critical comparison of proposed classifiers is
performed for various class label functions. Based on the properties of the
values of the real data attribute, auto-beta and zero-inflated auto-beta models
are chosen to solve the classification problem.

Scientific Contributions and Practical Value of the Research

This thesis contributes to developing a supervised generative approach for the
statistical classification of spatial data. The main contributions of this thesis
can be outlined as follows:

1. Extension to classification problem of GRF observed for parameter
estimation using Bayes Analysis (BA) method.

2. Classification problem solution for univariate TRF observation.

3. Classification problem solution of univariate random field
observation from exponential family distribution using auto-models.

4. Classification problem solution of univariate random field
observation with the Zero-Inflated Beta (ZIB) distribution.

17



Defensive Claims
The following claims are defended in this thesis:

1. Bayes Analysis (BA) method for parameter estimation gives the
advantage over the Maximum Likelihood (ML) method for
classification problem for features modeled by GRF.

2. The ML method for parameter estimation gives the advantage over
Least Squares (LS) method for the classification of univariate TRF
observation.

3. Spatial contextual classification based on BDFs has an advantage over
the one based on linear discriminant function (LDF) for beta
distribution.

4. Including the training sample elements’ spatial contextual
information-based neighbourhood system in the environment of
classification point through the class label distribution improves the
classification accuracy.

Approbation of the Results

Results obtained in this thesis were published in 5 papers: 2 papers in periodic
scientific journals indexed by Web of Science, one article in a periodic
scientific journal, and two papers in reviewed scientific conference
proceedings. The results were presented at three international and two non-
international scientific conferences. The following list presents the
publications and presentations in conferences:

Papers in periodic scientific journals indexed in The Web of Science:

[Al] Ducinskas K., Dreiziené L., Zikariené E. 2015. Multiclass
classification of the scalar Gaussian random field observation with
known spatial correlation function. Statistics and probability letters.
p. 107-114. Available online 2014-12-16.

[A2] Ducinskas K., Zikariené E. 2015. Actual error rates in classification
of the T-distributed random field observation based on plug in linear
discriminant function. Informatica. vol. 26, no. 4, p. 557-568.
https://doi.org/10.15388/Informatica.2015.64.
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Paper in a periodic scientific journal:

[A3] Zikariené E., Ducinskas K. 2021. Application of spatial auto-beta
models in statistical classification. Lietuvos matematikos rinkinys.
Proceedings of The Lithuanian Mathematical Society, 62(A), p. 36-
43. https://doi.org/10.15388/LMR.2021.252109.

Papers in peer-reviewed scientific conference proceedings:

[A4] Zikariené E., Ducinskas K. 2019. Implementation of generalized
additive models for spatial beta regression. Proceedings of the XII
International Conference. Computer data analysis and modelling:
stochastics and data science. p. 341-343.

[A5] Ducinskas K., Zikariené E., Dreiziené¢ L. 2014. Comparison of
Performances of Plug-in Spatial Classification Rules Based on
Bayesian and ML Estimators. Proceedings of the 3rd International
Conference on Pattern Recognition Applications and Methods.
p. 161-166.

Presentations in scientific conferences:

e Ducinskas K., Zikariené E., Dreizien¢ L. Comparison of
Performances of Plug-in Spatial Classification Rules Based on
Bayesian and ML Estimators. 3rd International Conference on Pattern
Recognition Applications and Methods 2014, Angers, France,
March 6-8, 2014.

e Zikariené E., Ducinskas K. Application of spatial beta regression for
modelling of the algae concentration index. Spatial statistics 2019,
Sitges, Spain, July 9-13, 2019.

e Zikariené E., Ducinskas K. Implementation of generalized additive
models for spatial beta regression. Computer data analysis and
modelling: stochastics and data science. Minsk, Belarus,
September 18-22, 2019.

e Zikariené E., Ducinskas K. Application of spatial auto-beta models in
statistical classification. Lithuanian Mathematical Society 62"
conference. June 16-17, 2021.

e Zikariené E., Dudinskas K. Supervised classification based on spatial
auto-beta models of environmental data. Computer days 2021,
Klaipéda, Lithuania, September 23- 24, 2021.
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Outline of the Doctoral Thesis

This doctoral thesis consists of the introduction, 3 chapters, conclusions,
bibliography, and summary in lithuanian language. The introduction section
provides an introduction to the research and an overview of the dissertation.
The first chapter is designated for the analysis of related works on supervised
generative classification methods and spatial data models. A Supervised
generative classification method, based on BDF, and AER expressions are
presented in the chapter. Chapter 2 presents the main results of the thesis
concerned with the proposed supervised generative classification algorithm,
based on BDF. Univariate conditional density (probability) expressions for
spatial data models are used for constructing these functions. Chapter 3
introduces the numerical experiments and applications. General conclusions
are presented after Section 3; 113 bibliographic references are included at the
end of the thesis. The dissertation consists of 150 pages, 21 figures and 10
tables.
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1. LITERATURE REVIEW OF SPATIAL CONTEXTUAL
CLASSIFICATION, CONDITIONAL ELLIPTICAL, AND
EXPONENTIAL FAMILIES DISTRIBUTIONS

In this section, a review is carried out of related works on spatial data
modelling and spatial contextual classification based on BR. The theoretical
base of the proposed supervised generative classification algorithms is
presented based on [Al], [A2], [A3].

1.1. Spatial Data Analysis and Contextual Classification

The analysis of spatially observed data is an increasingly important statistical
activity. In general, real data models in geographically approximate areas will
display spatial dependence. A general analysis of the spatial process is
presented by Banerjee and Gelfand (2003). These authors analysed the
smoothness of the spatial process characterized by the process covariance
structure in univariate and multivariate cases. Due to their mathematical
tractability, Gaussian random field (GRF) models have received the majority
of attention within the statistical modelling literature (Cressie, 1993; Diggle
and Ribeiro 2007; Chiles and Delfiner, 2012; BaltmiSkyte and Ducinskas,
2013; Gelfand and Schliep, 2016). However, according to numerous authors,
not all data behave as a realisation of Gaussian distribution (see Roislien and
Omre, 2006). While Gaussian processes are convenient to use and difficult to
criticise, particularly as random effects specifications, they are limited
because marginal distributions are always symmetric and unimodal, with
fixed tail behaviour. However, Gaussian processes can be employed to create
more flexible extensions while still retaining computational convenience.
These extensions can be used in geostatistical modelling (Gelfand and
Schliep, 2016).

A well-known insufficiency of the Gaussian distributions is their light tails.
There has been intense research in using non-Gaussian distributions to tackle
the deficiencies of the Gaussian distributions. The class of elliptically
contoured distributions is a particularly appealing family of multivariate
symmetric distributions with simple density functions and possesses
properties that provide a valuable competitor to the multivariate Gaussian
model. This family of multivariate distributions includes particular cases of
the multivariate normal, multivariate t-distribution, Pearson type Il and VI,
multivariate symmetric Kotz type distribution, scale mixtures of normal, etc.
The multivariate t-distribution is suitable for models describing the random
phenomenon involving high probability in the tails. In this respect, t-
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distribution is a beneficial model in economics, actuarial sciences, and many
other disciplines (Sutradhar and Ali, 1986).

Another motivation for considering the multivariate t-distribution is its
widely recognised capability to handle outliers more readily than multivariate
Gaussian distribution. In observing spatial phenomena, it is sometimes found
that the TDF model is advantageous whenever multiple, sparsely sampled
realisations of the random field are available. The known estimation,
discrimination, and simulation methods for independent observations from
multivariate t-distributions are reviewed by Nadarajah and Kotz (2008). Thus,
it is essential to include spatial dependencies in the prediction and
classification problem. Kim and Mallick (2003) considered spatial prediction
problems using the elliptical distribution.

Statistical analysis of non-Gaussian data is associated with exponential
family and is based on Generalized Linear Models (GLMSs). These models are
used for data where the response variable is restricted, for example, binary or
countable. GLM model is made up of a linear predictor (linear function of
explanatory variables) and two functions: the link function that describes how
the response variable mean depends on the linear predictor and the variance
function that describes how the variance depends on the mean
(Fitzmaurice et al., 2004). GLM has been proposed as an alternative model-
based approach to the analysis of presence/absence or count data (Warton
et al., 2015). One way to choose the most suitable model is to compare them.
For example, comparison of Poisson and negative binomial models is carried
out by Ducinskas et al. (2012) and Chan et al. (2021). If a dataset with a large
number of zeros and skewed distribution is considered, a mixture of
distributions is used for analysis, for example, the zero-inflated models class
(Ospina and Ferrari, 2010). Zero-Inflated Beta (ZIB) model is proposed for
metagenomics data represented as proportions analysis (Peng X. et al., 2016).
Spatially correlated observations do not satisfy the independence assumption
central to GLM theory (McCullagh and Nelder, 1989). However, Generalized
Linear Mixed Models (GLMMs) can accommodate spatial random effects and
provide a flexible means of analysing spatially correlated observations
(Breslow and Clayton, 1993, Diggle et al., 1998). GLMMs have been
intensively explored by numerous researchers. For example, Zhang (2002)
applies the spatial GLMM for the binomial model when an unobservable
spatial random process is Gaussian isotropically stationary. Very large, non-
Gaussian datasets have been considered by Sengupta and Cressie (2013). The
authors applied a GLMM consisting of a conditional exponential family
model for the data and an underlying geostatistical process for some
transformation of the mean of the data model. Dimension reduction is
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achieved, which results in substantial computational speed-ups. Spatial
regression models based on GLMM with the Bayesian approach used for
parameter estimation are considered (Cepeda and Nunez, 2013, Lagos-
Alvarez et al., 2017, Kalhory and Mahammadzadeh, 2018; Paradinas et al.,
2018). When applying GLMM, an unobservable spatial Gaussian random
process is modelled. Conditionally on an unobservable spatial random
process, the response variable is modelled as an independent process. To
obtain this independence assumption in this work, specific attention is paid to
multi-parameter auto-models. Auto-models proposed by Besag (1974) are
such a class of models that allow modelling spatial processes describing
conditional probability distributions associated with each spatial location, that
belongs to the exponential. And probability structures of the spatial process
are dependent only upon contributions from cliques containing no more than
two spatial locations (pairwise-only dependence). Based on the auto-models
conception Kaiser and Cressie (2000) address the problem of constructing and
identifying a valid joint probability density function from a set of specified
conditional densities. The authors show how relations between the joint and
the conditional densities using MRFs may be used in reverse order to construct
a valid model from the specification of conditional densities alone.

Lee et al. (2001) extend Besag's (1974) results by relaxing the pairwise-
only dependence assumption and giving a necessary form that one-parameter
exponential family conditional densities must take under more general
conditions of multiway dependence. Kaiser et al. (2002) introduce a class of
spatial models with general multi-parameter exponential family conditional
distributions. The work of these authors is extended by Hardouin and Yao
(2008) with a general parameterization of the multi-parameter auto-models.
The authors discuss auto-models with beta distribution and analysed spatial
cooperation as well as spatial competition according to suitable choices of
their parameter values.

Moving from regression models to classification tasks, it is worth noting
that Switzer (1980) is one of the first to examine the classification of spatial
data. This work is extended by Mardia (1984), comparing classification errors
when observations are considered dependent and independent. Problems of
discriminant analysis and Gaussian spatial data statistical classification has
been intensively studied by numerous authors (e.g. Klein and Press, 1992,
Shekhar et al., 2002, McLachlan, 2004, Nishii and Eguchi, 2006). However,
none of these authors pays attention to the analytical expressions of
classification errors. They are evaluated only empirically. The asymptotic
expansions in terms of the inverses of the training sample sizes for cross-
validation, apparent and plug-in error rates are proposed by Ducinskas (1995).
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An extension of the result is expansions of expected regret risk of gamma
distributions for the different parametric structures of independent
observations (Ducinskas, 1998). Ducinskas (1997) examined classification
risk, associated with uncorrelated observations and various training sampling
schemes. Saltyté (2001) and Saltyt¢ and Du¢inskas (2002) derived an
asymptotic expression of the expected classification error when classifying
observations from a Gaussian field with a continuous spatial index into two
classes with different regression mean models and general variance. These
results are extended to a multivariate space-time regression model (Saltyté-
Benth and Ducinskas, 2005). A detailed empirical comparison of different
classification procedures can be found in Atkinson and Lewis (2000), Berret
and Calder (2016).

Conde et al. (2004) examined the classification of exponentially distinct
populations with two or more classes with independent variables. Kleinman
(2004) proposed a GLMM-based approach to spatial data clustering using a
logistic regression approach. However, in practical applications in the study
of disease outbreaks, spatial dependence has been eliminated due to
computational complexity and limitations of the software used. Kauermann
et al. (2010) proposed a new classification algorithm based on factor selection
and logistic regression applied to GLMM. This algorithm also uses non-spatial
GLMMs. Berret and Calder (2016) define spatial binary classifiers based on
the probit versions of the GLM and GLMM and compare these two classifiers.
Andrews et al. (2011) proposed a classification technique of independent (or
uncorrelated) observations based on mixtures of multivariate t-distributions.

So far, the considered classification examples have assumed that no
relationship exists among the various classes. In this work, this assumption is
removed, and it is presumed that the different classes are closely related. The
first extensions for the case where the spatial correlation between Gaussian
observations, which are classified, and the observation training sample is
considered non-zero, are made by Ducinskas (2009, 2009b) and Ducinskas
and Dreiziené (2011, 2018) and Dreziené et al. (2018). The ML method is
used n these works to estimate the model’s unknown parameters. Dreiziené
(2019) proposed to assess the risk of classification when not all population
parameters are known, including anisotropy parameters. Also, a connection
between BDF for spatial lattice models and geostatistical models is discussed.
The approach for comparison and selection of spatial linear mixed models
based on a hybrid estimator of actual correct classification rates is considered.
The advantage of the proposed approach against the indicator kriging method
is shown (Dreiziené and Ducinskas, 2020).
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An approach for classifying spatial Gaussian data based on Bayesian
discriminant functions in terms of semivariograms has been developed
(Ducinskas and Dreiziené, 2021a). Universal kriging case when several
populations are specified by different regression parameters of GRF with
second-order properties is expressed in terms of semivariograms and
variances (Ducinskas and Dreiziené, 2021b).

Wakaki (1998) considered the problem of classification of observation into
one of the two multivariate elliptical populations with different mean vectors
and different covariance matrices. Batsidis and Zografos (2011) derived the
asymptotic approximation of the distribution function for the probabilities of
misclassification of elliptic random field observations. However, their
approach led to the expression containing implicit function, and they did not
explore approximations and estimators of the Expected Error Rate (EER).
Also, Batsidis (2012) studied the behaviour of the LD by comparing the
distribution function of the errors of misclassification under the truncated t
and truncated normal models.

Thompson et al. (2020) developed a supervised generative approach to the
classification of independent observations following matrix-variate t-
distribution. Matrix-variate distributions that can conveniently model matrix-
valued observations are considered in this work. The authors developed a
methodology for parameter estimation in the matrix-variate t-distribution and
extended it to discriminant analysis and classification using matrix-variate t-
distribution mixtures. There is a valid assumption that observations are
independent identically distributed realizations from t-distribution.

Contextual classification, a topic of pattern recognition, is an approach to
classification based on contextual information. Contextual means this
approach focuses on the relationship of nearby data points, also called a
neighbourhood. Contextual classification is the term often used in image
recognition. In remote sensing literature, spatial information extracted and
incorporated into classification approaches has been generally called “spatial-
contextual” image classification, indicating that the relationship between a
“target” pixel and its neighbouring pixels is incorporated into the analysis. Li
et al. (2014) divided these spatial-contextual analysis techniques into three
methodological approaches, including texture extraction, image segmentation,
object-based image analysis, and MRFs modelling. Contextual information
incorporation from sample size was discussed by numerous authors
(Song el. al., 1998, Mackowiak et al., 2021). Shekhar et al. (2002) compared
the spatial autoregressive model and MRF model in terms of spatial data
mining, where the MRF model for class labels defines spatial context when
feature values are independent. Contextual classification method based on a
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maximum posterior approach and MRF were investigated by Jackson and
Landgrebe (2002), Khedama and Belhadj-Aissa (2004) and Nishii and Eguchi
(2006). Stationary GRFs can model feature values in image classification, and
MREF can model class labels (Stabingiené and Duéinskas, 2010). The authors
analysed GRF observation classification when class label conditional
distribution depends only on labels for locations from the neighbourhood.
Performance of the BDF and performance of Plug-in BDF (PBDF) are
compared with ones ignoring spatial correlation among feature observations
(Stabingiené¢ et al., 2010). In Ducinskas and Stabingiené (2011), class labels
are modelled by RF based on 0-1 divergence, and the formula of the expected
Bayes error rate is derived. The effect of training sample size and the influence
of statistical parameters on the error rate are numerically evaluated, and the
results are generalised by Stabingiené (2012). In the dissertation of
Stabingiené (2012), the main purpose is to use BDF for GRF observation
classification in image recognition. The influence of the number of nearest
neighbours on the quality of image classification is studied. Stabingis et al.
(2014) proposed the spatial classification rule with distance. BDF and
distance-based posterior distribution for class labels are used. The study of
this proposed method for analysing the influence of noise and the choice of
neighbours of the classified spatial location is presented in the dissertation
(Stabingis, 2019). MRFs incorporate spatial-contextual information into a
classifier by modifying the discriminant function with the addition of spatial
correlation terms (Fauvel etal., 2013). Wang et al. (2020) proposed a
contextual classification method of data for smart machining based on the
Gaussian mixture model. A new family of methods is formed by combining
generative models and deep neural networks. They are called deep generative
model networks (Guo et al., 2021). Also, it should be noted that the popular
Generative Adversarial Network combines generative and discriminative
models of machine learning.

After the literature analysis, it can be concluded that spatial contextual
classification based on BDF is performed using Gaussian discriminant
functions. From the analysis of related works on the topic of spatial data
analysis, it can be concluded that other probability models, such as t-
distribution or exponential family distributions, are used to model data that do
not satisfy GRF properties. New classification methods for non-Gaussian
spatial data would allow expanding the possibilities of classification based on
BDF. The next part of this chapter presents the contextual classification rule,
based on the BR for spatial data classification constructed in this work.
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1.2. Spatial Contextual Classification Rule

Machine learning techniques aim to teach computers to complete specific
tasks without being explicitly programmed by using the collected data. The
learning is performed by using some data or observations such as examples,
direct experience, or instruction. Machine learning is usually divided into four
main types: supervised, unsupervised learning, semi-supervised, and
reinforcement learning. Supervised learning includes having a dataset with the
correct output that is used to train the system. On the other hand, unsupervised
learning includes trying to find relations among the points in the dataset
without having the correct results during training. It means the algorithm tries
to cluster points that it believes to be highly correlated under one label based
on their statistical properties only. Semi-supervised learning combines the
previous two types by training the system using a dataset containing labelled
and unlabelled data points. The goal is to improve the performance of the
model by making use of both types of data points. Last, reinforcement learning
in contrast uses trial-and-error to discover the set of actions that maximize
some cumulative reward metric (Moubayed et al. 2018).
Supervised learning holds that class membership information is completely
given. With more common methods, a machine learning algorithm is trained
on a labelled dataset in which each record includes the outcome information.
In contrast, unsupervised learning algorithms learn from a dataset without
labels. Semi-supervised machine learning is a combination of these methods.
It allows the algorithm to deduce patterns and identify relationships between
your target variable and the rest of the dataset based on the information it
already has. In semi-supervised learning, an algorithm learns from a dataset
that includes labelled and unlabelled data, usually primarily unlabelled. On
the other hand, unlabelled data may result from new data points which have
yet to be classified.

Supervised learning is a branch of machine learning algorithms in which a
function is inferred based on a labelled training sample. The training sample

is formed of a group of training examples, each of which is a pair (Z,Y )where

Z is an input vector and Y is the output value. The algorithm produces a
function that can be used for mapping future unknown inputs. In this thesis,
the focus is on supervised classification algorithms, training sample defined
as T :{(Zi,Yi )}L,where Z, is called a feature value for observation i,Y; is

called class label for observation i, Y €{1,....m} with m being a number of

classes, i is spatial location index, i =1, N, N is the number of observations.
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If m=2, the classification is called binary classification; if m>2, it is called
multiclass classification (Murphy, 2012).

Generative and discriminative models represent two different ways of
solving classification tasks. The generative models look at the training sample
elements and try to build a model of what one class feature values look like,
then look at the other class feature values and also build a separate model of
what feature values look like. Finally, to classify a new feature value, match
the new feature value with build models and see which of the built models is
more appropriate for the new feature. In general, the generative model learn
the joint probability distribution P(Z,Y) on feature values Z and class label
Y. The joint probability distribution can be written as:

P(Z,Y)=P(Z|Y)P(Y),
where P(Z|Y) is a class-conditional probability distribution function of

feature values, P(Y) is a class label distribution. If these distributions are not

known, they can also be estimated from the training sample. Having these
probability distributions, the posterior distribution on Y given Z can be
computed. Such calculation of posterior probability is called BR (Theodoritis
and Kountroumbas, 2009):
P(Z[Y)P(Y)

P(Y| )_ P(Z) !

where P(Z|Y) is a class-conditional probability distribution or likelihood

(1.1)

function, P(Y) is adistribution of class label, P(Z) is a marginal likelihood.

Given a training sample, discriminative models try to find a line or surface
that is a decision boundary that separates the training sample into a different

class. The models learn class probability distribution P(Y |Z) directly from

the space of an input (feature values) Z to the class labels Y. In the construction
of Bayes classification rule, based on BR, P(Z)is not taken into account

because it is the same for all classes, and it does not affect the decision. In this
work, a supervised generative classification algorithm is suggested as a tool
that uses BDF based on BR.

In spatial analysis context, classification refers to the process of allocating
spatial locations in an area of interest to one of several distinct classes or
groups based on feature values data associated with each spatial location. One
way of getting around the dependencies in the training samples is to select the
data locations so that they are sufficiently far apart for the correlation between
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their data vectors to be negligible. While this will improve the sampling
efficiency, it may lead to difficulties in obtaining the ground truth information
for these scattered locations. The main assumption that is held in this work is
that there is spatial statistical dependence in the data. Spatial models can be

specified for both the distribution of class label P(Y) in the neighbourhood
and the class-conditional probability distribution P(Z|Y) for the feature

values, given the class label.

1.2.1.Spatial Contextual Information in a Probability of Class Label
and in a Data Model

Denote by s,, a spatial location for observation i, and denote by Z(s;) the
feature value in spatial location, in general Z(s). Denote by
Sy ={s, eD;i=1..,N}, the Set of Training Locations (STL) where the

feature values of the training sample Z'=[Z(s,),....Z(sy)] are taken. It

specifies the spatial sampling design or spatial framework for the training
sample (Shekhar et al., 2002). Assume that S, is partitioned into a union of

m
m disjoint subsets of locations, i.e., Sy = JS"', where S"is a subset of S,
1=1

that contains N, locations of the feature values observations Z(s) from

population Q,, I =1,...,m. It shall be assumed that the deterministic spatial

sampling design and all analyses are carried out conditional on the given STL.
Feature values vector Z is considered to contain spatial location information
further in this work.

Data model. Consider a Random Field (RF) {Z (s):seDc Rd} is specified
by multivariate distributions. The primary purpose is to solve the problem of
classification of a univariate RF observation Z,=Z(s,), s, € D, to one of m
populations Q,, 1=1...,m. Following Beret and Calder (2016), the spatial
location s, of the observation to be classified is called the focal location.
Based on that, the observation Z,mentioned above is called a Focal

Observation (FO). To properly describe a model joint probability distribution
P(ZO,Z) has to be used, but this expression is not a closed form for spatial

models with the exponential family distribution (Cressie, 1993). Besag (1974)
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suggested auto-models, that describe spatial models for exponential family
distributions using conditional probability distribution expressions. It is

known that conditional Gaussian distribution for Z, given Z , is multivariate

Gaussian distribution. (Arnold et al., 2001, Anderson, 2003). The conditional
distribution of the TRF is also a multivariate t-distribution, with different
degrees of freedom (Ding, 2016). Because of this reason conditional
distributions are selected for constructing RF models.

Let R (Z,]Z =z;¥)denote a class-conditional probability mass function

for discrete distribution of Z, and p, (ZO |Z = z;‘I’) a class-conditional PDF

for a continuous distribution of Z;, given Z=z in the population €,

I=1..,m with a set of unknown model parameters ¥, describing the
probability distribution of the feature vector in each population. The main
assumption made in these studies is that the data has a spatial dependency and
the class-conditional probability density (or mass) function incorporates
information from features of neighbouring locations. The latter is also called
contextual information. Analysed feature values random field is specified by
multivariate distribution belonging to elliptical or exponential distribution
family.

Probability of class label. Probabilities of class labels implicate the prior
information the researcher has about the classification class. Let 7z' denote
the probability realisation of the class label distribution P(Y) for the

population €, . Class label distribution models a priori knowledge about

restrictions imposed on the simultaneous labelling of connected neighboring
locations. This source of information reflects statistical dependencies between
the labels of neighbouring locations. MRF theory (Kinderman and Snell,
1980) provides a convenient and consistent way to model context-dependent
information. Solberg etal. (1996) has exploited spatial context in
classification using MRF to obtain higher accuracies over their counterparts
(i.e., non-contextual classifiers). MRFs can be used to model the spatial

contextin P(Y) related to the neighbourhood of focal location s and with the

energy function (Sun et al., 2016). The advantage of the classification rule
with distance-based posterior distribution for class label against one ignoring
spatial proximity between locations is shown visually and confirmed
numerically when the stationary GRF model is considered (Stabingis et al.,
2014). Further description of the method is presented in the doctoral thesis
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(Stabingis, 2019). The obtained results show that if nearest neighbour schemes
are used for class label distribution estimation, classification accuracy is
improved.

When the class is balanced, priors are equal. An approach to efficiently
represent class labels is to form probabilities of the class label from data
samples (Theodoritis and Kountroumbas, 2009). An alternative is to assume
that probabilities depend on the location of FO and their neighbours.

In this work, the probabilities of the class labels are chosen to be estimated
using the deterministic function that includes distances between FO and their
neighbours. The proposed approach calculates the distance between a new
instance and the nearest neighbour from each class and estimates the
probabilities of the class labels using the distances. The probabilities are
inversely proportional to the distance. The general formula for the probability
for the population €3, that includes information from neighbours using inverse

distance'

jeNNl ]/du /Z j/du (1.2)

jeNN;

where d”. is the Euclid distance between sites s; and S, i,j=1..,N;
NNi:ZNNi', where NNiI are sites belonging to the Nearest

Neighbourhood (NN) set of s

include only the closest, same fixed number, neighbours from the area with
fixed distance or all training samples. NN set for the probability of class label,
and class-conditional probability density (or mass) function can be the same
or different.

The neighbourhood selection rule usually relates to the definition of the
closeness between two samples that are used to find the nearest neighbours of
the sample in question. The closeness is usually defined in terms of a distance
or similarity function. For example, Euclidean distance is the most commonly
used in any distance-based algorithm for numerical attributes. A spatial
location s; is defined as the neighbour of the spatial location s; if conditional

in population €, 1=1..,m. NN set can

distribution of Z(s;), given all other site values, depends functionally on
Z(s;), s #s;. Also, define NN, ={s; :s; isaneighbour of s,} to be the

neighbourhood set of the spatial location s, .

This probability of class label estimation function and RF models with
conditional distributions together describe spatial contextual information
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incorporation into the distribution of class label P(Y)and the class-

conditional probability distribution P(Z|Y). In this work, the spatial

contextual information notion is used to describe the spatial contextual
information incorporation into the classificatory structure. The proposed
classifier uses BDF that are formed using conditional density (probability)
function ratio logarithm.

1.2.2.A Discriminant Function and an Actual Error Rate

The classification rule, given Z =z, isdenotedas D, (e):Z —{1,...,m}. Then
the probability of misclassification of random observation Z, given z, from

the population €, by prescribed classification rule is given by (see
Anderson, 2003):

R (D, (+)) =1- PG, (0. (+), 3

where PC,Z(DZ(O)) corresponds to the conditional probability of correct
observation Z, e, classification, with a class-conditional PDF

p,(ZO|Z=z;‘P) or class-conditional  probability mass function

P (Z,|Z =z;¥). The rule minimising the probability of misclassification is

said to be the Bayes classification rule (McLachlan, 2004, Anderson, 2003)
and is denoted as D} and for the Z it could be expressed as

D?(Z,)=arg {Irzrllaﬁ}{ﬂé p(Z,|2=2¥)}, (1.4)

where W is a set of unknown model parameters, P, (Z,|Z =z;¥) is PDF

for continuous distribution in discrete P,(ZO|Z = z;‘P) is class-conditional

probability mass function. The basic rule minimizes the probability of

misclassification by maximizing the posterior probability of class label 1.
Discriminant functions are used in this thesis to represent classifiers. Let

the pairwise Bayes discriminant function (BDF) based on log-ratios be

denoted as W/ (Z,,¥). In the following, the equivalent discriminant
functions are used

. ~ P (Z,2=2¥)
W (ZO’LP)_In[pk(ZO|Z=Z;‘P)J+%k’ (1.5)
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where 3, =In(zy/z5 ), Lk=1...m, kIl. According to the expression (1.5)

the Z, , given Z =z, is allocated to the population ©, if W, (Z,,¥)>0 for
all Lk=1,...m, k=1

Then the probability of misclassification or error rate (1.3) due to the Bayes
classification rule (1.4) is called optimal or Bayes error rate (see
Anderson, 2003)

P (\P):]-_Z”(I)qu ) (1.6)
=

where  PC, =R, (W, (Z,,%)>0,k=1m,I=k) corresponds to the
conditional probability of correct classification of the observation Z, € (3, and
P, is a probability measure with P, (Z,|Z =z;¥) or R(Z,]Z =2,¥), ¥is

a set of known model parameters.

When actual values of the model parameters ¥ are known, based on the
BR minimum classification error is obtained. But in practice, model
parameters are usually not known; thus a set of unknown model parameters

W is replaced by the set of their estimates ¥ . PBDF W,kB(Zo,‘i’) is formed

by plugging the estimators of the parameters into (1.5).

One of the objectives of evaluating a discriminant function is to determine
its performance in the classification of future observations. When parameters
W are known, it is called optimal or Bayes error rate (1.6). AER is defined as
the probability that a random observation form €, is misallocated when the

rule W, (ZO,‘i’) is used. Then the actual misclassification probability or AER

can be defined. The expression for AER is derived from the Bayes error rate
(1.6) when BDF is incurred by PBDF:

P2 (¥)=1-> mPC, , (L7)
1=1

where PC, =P, (W”f‘ (ZO,‘P)ZO,k =1,m,l # k). Note that this error rate is

conditional on the estimated parameters, which in turn are determined by the
training sample.

For the two-class case, the BDF and probability of misclassification are of
the following form:

. ~ pl(ZO|Z :z;‘{’)
WE(Z,,¥)= In( pz(Zo|Z - Z;\P)J-i_;/’ (1.8)
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where y =In(z;/7; ), and Bayes error rate
2
Pe(¥)=> 7P, , (1.9)
1=1

where for 1=12 P, =P, ((—1)'WB (Z,,9)= O), corresponds to the
conditional probability of incorrect classification of the observation Z, € Q, .

PBDF W* (ZO,‘i’) is formed by plugging the estimators of the parameters

into (1.8), and AER is formed by plugging the estimators of the parameters
into (1.9).

The Expected Error Rate (EER) is obtained by averaging the AER with
respect to the distribution of the training sample and is defined as

EER = EZ(POE(\%)). (1.10)

The AER is useful in providing a guide to the performance of the plug-in
classification rule when it is formed from a training sample. It depends on
observed values of training observations as well as on their locations. The
EER is the performance measure of PBDF before a training sample is
observed, and it depends on the STLs and the location of the observation to
be classified s,. It plays a similar role as the mean squared prediction error

(MSPE) plays in evaluating the performance of the plug-in kriging predictor
(Diggle et al., 2002). MSPE and its estimators are used for the spatial sampling
design criterion for prediction (Zhu and Zhang, 2006, Zimmerman, 2006).
Finding analytical expressions for EER is a complex mathematical task. For
this reason, empirical EER estimates are calculated using AER expressions in
this work.

General BDF and AER expressions are defined so that they can be used to
construct the proposed supervised generative classification algorithm. The
proposed algorithm differs from the ones already in use by forming BDF using
conditional density expressions and class label probabilities. Conditional mass
probabilities or density function expressions for classification points are
specified by including feature values of neighbourhood spatial location. Class
label distribution is specified using probabilities of class label. To estimate
these probabilities, the contextual spatial information which is related to
classification point spatial location and neighbourhood spatial locations, is
used. Also in this work, spatial context and spatial dependence conceptions
are used interchangeably. Analysed feature values random field is specified
using multivariate distribution from elliptical or exponential families. In the
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next part of this chapter, spatial data models are described in expressions of
conditional densities and mass probability functions.

1.3. Spatial Data Models

The structure of a Bayes classifier is determined by the conditional probability
functions P(Z,|Z =2z;¥) and by the probabilities of the class label. Of the

various density functions that have been investigated, none has received more
attention than the multivariate Gaussian density. GRF have a dominant role in
spatial statistics and especially in the traditional domain of geostatistics
(Cressie, 1993, Diggle and Ribeiro 2007, Chiles and Delfiner, 2012).

Recall that Z(s) is a RF with any set of locations s,,s,,...,s, € R", the joint
distribution of Z(s,),...,Z(sy ), thatis equivalentto Z,,...,Z, , is multivariate

distribution belonging to families of elliptical or exponential distributions.
Univariate conditional probability functions for FO Z; with training sample

T =t and different vectors of unknown population parameters W are used to
describe the different distributions. Spatial dependency can affect the
performance of the allocation rule in two ways. Firstly, the observations in the
training samples are not independent, and the Probability Density Function
(PDF) incorporates the correlation between neighbouring locations. The
second way is by incorporating spatial dependency into the probabilities of

the class label. Modelling both class-conditional distribution P(Z]Y) and

class label distribution P(Y) becomes an essential task.

Modelling a class-conditional distribution P (Z |Y ) is generally considered

to be a spatial Gaussian distribution. Also, spatial GLMMs are used to model
spatial non-Gaussian data. In these models, for any spatial location s, an
unobservable spatial random process is modelled, which represents the
random effect at spatial location s of unknown or unobservable causes
unaccounted for by explanatory variables. This spatial random process is a
Gaussian stationary process. Conditionally on this process, the feature values
vector indicates an independent process (Zhang, 2002). In this work, class-

conditional distributions P(Z|Y) are modelled using spatial Gaussian and

spatial t-distribution and using auto-models for feature values with the
exponential family distribution.

Moving away from Gaussian distribution to other models, a decision is
made to choose the elliptical family t-distribution with useful analytical
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properties: random values from TRF linear combination have the same
distribution, and marginal and conditional distributions remain to obey the
same principle. The multivariate t-distribution are suitable models to
formulate and describe the random phenomenon involving high probability in
the tails. In observing spatial phenomena, it is sometimes found that the TRF
model is particularly useful whenever multiple, sparsely sampled realizations
of the random field are available.

Moving away from symmetrical distributions to expand the scope, a
decision is made to choose exponential family distributions that also describe
asymmetrical data with heavy tails. Two distributions are chosen that are
frequently used to model discrete values: Poisson and binomial. Also, two
distributions for continuous values are chosen: gamma and beta. Expressions
for classification point Z, from univariate conditional densities of the chosen

distributions are presented further in this work.
1.3.1.Elliptical Family Distributions

The broad class of elliptical distributions gives the natural generalisation of
the multivariate Gaussian distribution function. When a Gaussian process
prior is combined with a Gaussian likelihood, the resulting marginal and
conditional distributions have exact and straightforward expressions. But, if
the underlying data is not Gaussian, the conditional distribution may be
seriously misleading. A family of elliptical processes adapt to such situations.
The elliptical processes subsume the Gaussian and t-processes (Shah et al.,
2014). It is based on the elliptical distribution, a broad family of distributions
that includes the Gaussian and t-distribution, which is attractive because it can
describe fat-tailed distributions while retaining most of the Gaussian
distribution’s computational tractability (Fang et al., 1990). Boente et al.
(2014) analysed characteristics of the elliptical distribution. It is shown that
the class of elliptical distributions in the infinite-dimensional case is
equivalent to the class of scale mixtures of Gaussian distributions on the space.
Bankestad et al. (2020) performed the elliptical processes analysis on a
representation of elliptical distributions as a continuous mixture of Gaussian
distributions.

Gaussian distribution. Gaussian distribution is a continuous probability
distribution for a real-valued random variable. This distribution has two
parameters: mean and variance. One attractive feature of GRFs is that the first
two moments determine the complete distribution. This characteristic is one
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of the most popular distributions for spatial data analysis due to its flexibility,
interpretability, and probabilistic nature.

Suppose that FO Z, from class €, 1=1m has a conditional Gaussian
distribution with mean ., and variance o7. So class-conditional density
function is

1 2
P 2oz =7)=exp| (2o i) o) | fo2m. )
where conditional mean and conditional variance, for class Q, | =1m:
dh~E(Z,Jz =)= v,
(1.12)
ol =var(Z,|Z =z;%)=c"p,;
conditional standard deviation o, =\/o7 ; s =X(s,)/,, where X'(s,)is a
qx1 vector of non-random regressors for FO Z,, g is a qx1 vector of
regression parameters for class Q,1=1m; e=rR*(z~X}), &is zero-
mean stationary GRF cov{z(s,),&(s; )} =o”r(s,—s;), s5,€D, r(s)is a

spatial correlation function, o® is a marginal dispersion parameter;

B'=(B..... B,) is a 1xmgq vector of regression parameters, ¢ is a number of
regressors, m is a number of classes; p, =1-r;R™r,, I, is a vector of spatial
correlations between Z and Z, R is a matrix of spatial correlation between
components of Z. X is the N xmq design matrix for Z, it is specified by
@, X,, where symbol © denotes the direct sum of matrices and X, is the

N, x qmatrix of regressors for observations from €, 1=1,m. The model

parameter set ¥ = {ﬂ',az}.

Discriminant Function. Suppose that the FO Z,class Q,,1=1m has a
conditional Gaussian distribution specified in (1.11) with a conditional mean
w4, and conditional variance o specified in (1.12). Consider a multiclass case
m> 2. The main goal is to solve the problem of classification of FO Z,

given Z into several populations. The pairwise BDF specified in (1.5) in this
case has the following expression:

Wi (2, %) =(Zo - (15, - 245, )/2) (15, — 145, ) [ o2 + (1.13)
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where 4 , 4%, are conditional mean for populations €2, Q, , 1=k, k,| =1m,
respectively; o2 is the conditional variance for class Q| :1,_m;
Y = In(:z('j/zrg), 7y, 7y are probabilities of the class label for populations
Q,Q =k kil =1,m, respectively. Classify FO Z, to the population Q,
if W2(Z,,%)20, I 2k, 1=1m.

By replacing the conditional mean and variance into (1.13), the following
formula for the pairwise BDF is achieved.

WM?(ZOv\P):(Zo_g_ﬂlk)dlk/(o' po)"‘?/uu (1.14)
where " =X(s,)(B+B)/2 and e=rR*(z-=XB), p,=1-rR™K,,
X'(s,) is a 1xq vector of non-random regressors for FO Z; 3, are qx1

vectors of regression parameters for populations Q,, Q, 1,k =1m k=1, ¢ is
a zero-mean stationary GRF; r,is a vector of spatial correlations between Z,
and Z; o’is a dispersion parameter; R is a matrix of spatial correlation
between components of Z; d* = ug, — 4, )/Uz is a conditional Mahalanobis

distance between €, and ), at spatial location s, conditional on Z; o is a
marginal standard deviation parameter.
Let o(X; 4,0° ) be the PDF of the Gaussian distribution with mean 4 and

variance o and set ¢(x;0,1)=g(x).

Lemma 1. Due to the Bayes classification rule specified in (1.5), the Bayes
error rate (1.6) for m>2 is

Pof(‘P)Zl—Zﬂéjcﬁ(U)dU , (1.15)
1=1 B

where Bl:{u:ueRl,d'ku+(d”‘)2/2+ylk20;k:l,_m,k;tl}, d%is a

conditional Mahalanobis distance between €, and Q, at s, conditional on Z,
with conditional mean and conditional variance specified in (1.12).

Lemma 2. The AER associated with the Bayes error rate specified in (1.15)
has the following form for m> 2

P (‘i’):l—lzml::z(')éfgo(u)du ,
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where

R

B =qu:ueR"d"u+ KT > 0k =1m, 1 =k b,

o =

u~N(0.1), d"is an estimate of Mahalanobis distance between ©, and Q,

at s, conditional on Z, u*=x(s,)(B+5)/2. p,=1-rR™,

7w =In(7s /74 ); 1is a vector of spatial correlations between Z,, and Z; R is

a matrix of spatial correlation between components of Z; X is a design
matrix; ,B,& are estimates of parameters; f,o are theoretical parameter
values.

t-distribution. Visually, the t-distribution looks much like a normal
distribution; it is symmetric and bell-shaped. However, the t-distribution has
heavier tails. Heavier tails allow for a higher dispersion of variables, meaning
that it is more prone to producing values that fall far from its mean. Three
parameters describe this distribution: mean, scale parameter, and degrees of
freedom.

A random vector Z is multivariate t-distributed, denoted by
Z ~T,(«I1,v), a mean vector xcR", a positive definite NxN scaling

matrix IT, and degrees of freedom v >0 if its PDF is

N-+v

(1.16)

r(v+N)/ 2)|H|‘% [14(Z = )T Z = 4) I vV ]
h(2)= (01 2)(vn)")

where F() is the gamma function. The expression (1.16) specifies a spherical-
symmetric PDF centred at x, with IT controlling scale and multivariate
dependence while v controls the tail behaviour (Mardia et al., 1979).

Denote by r, the vector of spatial correlations between Z,and Z. Let
R=X/c? =1/ (c’(v—2)) denotes a matrix of spatial correlation of Z. The
conditional distribution of Z, given z=z in population €, is

T,(444,, @,,,v+ N) (see Roislien and Omre, 2006)

B r'((v+N)/ 2)[14- (2, _/ucl)z)z /wozv]f(vw)/z

p(Z,|Z=2;%)= Jon (1 2)w)"”

with the conditional mean function, which is linear in the training sample
observations:
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oy, =E(Z|2=2¥)=xB +a'(z2- X B) (1.17)
and the conditional scaling parameter
@y, =(v+N —2)Var(ZO|Z :Z;‘P)/(V+ N) =

2 (1.18)
= o Pl (B -2) v,

where

C(B) =L (z-xp) T (2= XB) v | (e N) 1), (L.19)

and p, =1-rja, a=R™r,, r,is a vector of spatial correlations between Z,
and Z; Ris a matrix of spatial correlation between components of Z;
,B’:(,Bl’,...,ﬂn;) is a 1x mq vector of regression parameters; X isthe N xmq

design matrix for Z; it is specified by &, X,, X, is the N,xq matrix of
regressors for observations from Q,, | =1,m; o? isa dispersion parameter; N
is a training sample size. The set of model parameters is ¥ ={#',c° v} .

Moving away from symmetrical distributions to expand the scope, a
decision is made to choose exponential family distributions that also describe
strictly bounded, asymmetrical data with heavy tails. GLMMSs can
accommodate spatial random effects and provide a flexible means of
analysing spatially correlated observations. Valid assumptions are as follows:
random effect at spatial location s is represented by an unobservable Gaussian
random process and conditional on this Gaussian random process, and the
property values are independent random variables Zhang (2002). Another
class of models that are commonly used in spatial statistics are the exponential
family auto-models. Using auto-models, independence assumption is refused,
and models are formed by applying conditional specification Kaiser et al.
(2002). For these reasons, they are chosen to model feature values from
exponential family distributions.

1.3.2.Exponential Family Auto-Models

There is extensive literature on classification in normal populations. However,
not much work has been done for the non-normal case. The exponential
distributions family is another family of distributions that will be analysed.
The Exponential family is a practically convenient and widely used unified
family of distributions. The exponential distribution is perhaps one of the most
interesting ones to be considered since it is pretty frequent to find it in practical
contexts such as reliability or survival analysis.
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Recall thata Z(s)is a RF with any set of locations s,s,,...,s, € R, the

joint distribution of Z(s,),...,Z(s ) is multivariate distribution belonging to
the exponential distributions family. Let NN, z{sj :s; is a neighbour of si}

define neighbourhoods for spatial location §;. In this work, an approach for

the conditional specification of spatial statistical models applied to spatial
lattices by Besag (1974) is considered. The method of deducting the joint
probability structure is associated with a conditional probability method. The
author examines the problems and implications of deriving the joint
probability structure associated with the spatial location variables given their
individual conditional distributions. The author's work is based on the theorem

of Hammersley and Clifford (Cressie, 1993): a spatial location s;, s; #s; is

said to be a neighbour of the spatial location s;, s; € NN;, if and only if the
function form of P(Z(s;)|Z(s;)sZ(84),Z (1), Z(Sy)) is dependent

upon the variable Z (sj ) . Any set of spatial locations that either consists of a

single spatial location or in which every spatial location is a neighbour of
every other spatial location is called a clique. Thus, in the NN situation with
pairwise dependency, there are cliques. The definition of a clique is critical to
the construction of valid MRF (Besag, 1974, Cressie, 1993). The author's

work also assumes: if Z(s,),...,Z(sy)can individually occur at sites
Siyees Sy eR?, respectively, then they can occur together. Formally, if
P(Z(s))>0 for each s, then P(Z(s,),...Z(sy))>0. This restriction is

called the positivity condition.

Hammersley—Clifford theorem gives necessary and sufficient conditions
under which a strictly positive probability distribution can be represented as Z
distributed according to MRF. It states that a probability distribution with a
strictly positive mass or density satisfies one of the Markov properties if and
only if its density can be factorised over the cliques of the graph, where the
neighbourhood structure defines the cliques. An important assumption, that is
often made in MRF modelling, is the assumption of pairwise-only
dependence. An MRF is said to have pairwise-only dependency (Cressie,
1993).

So the approach used by Besag (1974) in his development of auto-models
begins with a specification of the conditional dependencies present among a
finite set of random variables that result in a Markov random field (MRF).
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These conditional dependencies define which of the entries of the multivariate
random vector can be considered as neighbours of each other. Spatial auto-
models are constructed under two assumptions: first, the dependence between
feature values in spatial locations is pairwise. Second, the conditional
probability distribution associated with each site belongs to the exponential
family of distributions.

The univariate conditional probability distribution of random variable Z,

from class ©,,1 =1,m is (Besag, 1974):
R(Zo|Z;;¥)=exp{A},(2Z,)B,(Z0)+C(Z,)+D§(2,)}, (1.20)
where B, (e) and C(e) have specified forms, A (e) and Dj(e) are

functions of the values observed at neighbouring sites of s,. Z; is a feature

value for neighbours of the focal location s, . From these assumptions A (Zj )

A\;h(zj)zec;h"‘ z géth(Zj)' (1.22)

Z,eNN,
where 6;;=0,,, and 6, =0, s, « NN,. In general, parameters &), and 6,
differ for populations €,,1=1,m. In this work, a situation, when ¢, differ

and 6; are the same, is analysed. The expressions of the functions depend

on the properties of the distribution in question. A detailed analysis is provided
by Arnold et al. (2001).

Moller (1999) presented simulation algorithms for several spatial one-
parameter auto-models. The MRF approach is proposed in Kaiser and Cressie
(2000), where the commonly used positivity condition on the joint distribution
is relaxed. The authors analysed a spatial model using beta conditional
distributions as an exponential family of distributions with two parameters in
detail. In Kaiser et al. (2002), the authors introduce a class of spatial models
with general multi-parameter exponential family conditional distributions,
and raise the question of ensuring their compatibility with a joint distribution.
Multi-parameter auto-models and their applications are accurately studied by
Hardouin and Yao (2008). The authors analyse the competition and
cooperation properties of neighbouring spatial locations. They determine the
necessary form for multi-parameter exponential families in terms of the full
conditionals.

Below are the conditional density functions of Poisson, binomial, gamma,
and beta distributions with conditional model parameter expressions related
to auto-models. These expressions are intended to construct models for spatial
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feature values belonging to the exponential family. It is further used for BDF
construction to solve classification problems.

Auto-Poisson model. Poisson distribution is a discrete probability
distribution that expresses the probability of a given number of events
occurring in a fixed interval of time or space. This distribution has one
parameter, which indicates the average number of events in the given time
interval. A Poisson regression approach for modelling spatial autocorrelation
between geographically referenced observations (Mohebbi et al., 2011).

Suppose that Z, for the population €, | =1,m has a conditional Poisson
distribution with a conditional mean ,u(')Z dependent on the neighbouring site
values. Hence from (1.20), the Poisson conditional probability mass function
(Besag, 1974, Cressie, 1993) is

ZD
R(Z]z,: %) =exp{-s(2,) () /zO!, (1.22)

where under (1.21) and with Poisson distribution sufficient statistic for FO
B, (Z,)=B(Z,)=2, and conditional mean /4, is subject to the form:

yg,z(zj)zE(zo|zj;\{f)=exp{eg+ > eojzj}, (1.23)

Z;eNN,
where ¥ = {6{;,90 j} : 9(; is a parameter that represents large scale variation,

that is different for every class I. &, is a parameter that represents small scale

variation, that determines spatial dependency between FO and its neighbours,
with &, =0, s;  NN,.

Auto-binomial model. The binomial distribution is used when there are
precisely two mutually exclusive outcomes of a trial. These outcomes are
appropriately labelled "success" and "failure”. The binomial distribution is
used to obtain the probability of observing Z successes in N trials, with the
probability of success on a single trial.

Conditional probability mass function for the auto-binomial distribution of

Z,, given Z in the populations €, | =1m, specification (Cressie, 1993) is

i (Zolzj:‘l’)=(;°zj P (2,)° (19 (2))) (1.24)

43



where n,, is a number of trails, the number is fixed. Then, because (1.24) is

of exponential family form, and assuming pairwise-only dependence between
spatial locations from (1.20),

pgz(zj)=exp{e; + Y eojzj}/(uexp{e; + Y eojzj}} (1.25)
Z;jeNN, ZjeNN,

where p, . is a conditional success probability for each trail, different for every
class |, 6?(; is a parameter that represents large scale variation, assumed to be
different for every class I. &,; is a parameter that represents small scale
variation, that determines spatial dependency between FO and its neighbours,
with 6,; =0, s, € NNy, ¥ ={,6,;} . When n,, =1 in (1.24) and (L.25), the

relevant expressions are obtained for the autologistic model for binary data.

Auto-gamma model. Gamma distribution is a two-parameter family of
continuous probability distributions with shape and scale parameters. Both
parameters are positive real numbers.

Suppose that Z, from the population €3, | =1,m has a conditional gamma
distribution with a conditional scale parameter a('JZ different for every class |,

and a conditional shape parameter y,,, dependent upon the neighbouring site

values. Hence from (1.20), the auto-gamma conditional density function
(Besag, 1974, Cressie, 1993) is

—(a) 2o +(70,(2,)-1)InZ,
pi(Z0]2,:¥) =exp (o) 2o+ (7 (2,) 12y + (1.26)

70 (2 )In(e.) " =10 (74:(2,))
and is defined:

Y0 (Z))=6,+ 3 6,2}, (1.27)

Z;jeNN,
where @,is a parameter that represents large shape variation, and 6,; is a

parameter that represents small shape variation, that determines spatial
dependency between FO and its neighbours, with Hoj:O, SjeNNo,

¥ ={ay,.6,.0,} .

Auto-beta model. Beta distribution is a continuous probability distribution
defined on the interval (0,1). It can be parameterised by two positive shape
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parameters, that control the shape of the distribution, and also by using mean
and precision parameters (Ferrari and Cribari-Neto, 2004).

Defined initially on the unit interval (0,1) but easily extended to any finite
interval, the beta distributions are very versatile, and they can usefully model
a variety of uncertainties. Many of the finite range distributions encountered
in practice can be easily transformed into the standard distribution. They can
be fitted practically to any data representing a phenomenon in almost any field
of application. Nadarajah and Kotz (2007) provided a review of the properties
and the variations of beta distributions as well as their relationship to other
distributions.

Suppose that Z, from the population €3, | =1,m has a conditional beta
distribution with a conditional mean parameter ., and a conditional precision
parameter ¢ different for every class and dependent upon the neighbouring

site values. So from (1.20), the beta conditional density function (Besag,
1974, Cressie, 1993) is

. ) Zé%zd)z—l (1_ Zo )(1-#$z)¢\'n—1
Bl AT

where Be(o) is Euler Beta function; conditional mean and conditional

(1.28)

precision parameters expression with natural parameter is:
= E(zo\zj;w)zzlﬁ—p‘l’l_
+A+ A, (1.29)
toy =2+ Ay + Ay
Beta distributions have two sufficient statistics: B, (Z,)=In(1-Z,) and
B,(Z,)=In(Z,) so there are two natural parameters for different class I,
respectively:

Au(Z))=6~ 2 Gyin(l-2;),

Z;eNN,

Ae(Z))=0: = 2 6;n(Z;),

Z;eNN,

(1.30)

where 49(;h is a parameter that represents large shape variation; h is an index

of sufficient statistics; 6,; is a parameter that represents small shape variation,

determines spatial dependency between FO and its neighbours, with
|

6; =0, s, 2NNy, ¥ ={6'0h,90j}.
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Zero-inflated auto-beta model. This zero-inflation phenomenon is a
particular type of overdispersion, and a zero-inflated regression model has
been suggested for handling zero-inflated data. Different zero-inflated models
can be constructed depending on the distribution function needs of the feature
values. The applications of the Zero-inflated Negative Binomial (ZINB) and
Zero-inflated Poisson (ZIP) model can be found in Ridout et al. (2001), in
which these regression models are fitted to apple shoot propagation data and
also provide score statistics for testing the ZIP against the ZINB. In Osei et al.
(2022), authors fit ZIP and ZINB for cholera data and analyse the different
models with random effects, using BA method for parameter estimation.

Inflated beta regression models are discussed in Cook et al. (2008), where
the ZIB model is introduced with applications to corporate financial decisions.
In Ospina and Ferrari (2012), the authors propose a general class of regression
models for continuous proportions when the data contain zeros or ones. Liu
and Eugenio (2018) provide an extensive review study and comparison of
Bayesian and likelihood-based inferences in beta regression and ZOIB model
regressions.

Many studies involve data in fractions, rates or proportions that are
measured continuously in the open interval (0, 1) and contain zeros and ones.
In such cases, continuous distributions are not suitable for modelling the data.
Ospina and Ferrari (2010) propose mixed continuous-discrete distributions to
model data observed on [0,1), (0,1] or [0,1]. These distributions capture the
probability mass at 0, at 1 or both. For data observed on [0,1) or (0,1] a mixture
of a continuous distribution on (0, 1) and a degenerate distribution that assigns
a non-negative probability to 0 or 1 can be used. Suppose the response variable
is observed on the closed interval [0, 1]. In that case, a mixture of a continuous
distribution on (0, 1) and the Bernoulli distribution can be used, which yields
non-negative probabilities to 0 and 1. These models are special cases of the
inflated models class where the probability mass of some points exceeds what
is expected by the proposed model (Tu, 2002). The focus is on cases where
the dataset contains only zeros for practical reasons. Then it is natural to model
the data using a mixture of two distributions: a beta distribution and a
degenerate distribution in a value of 0.

Suppose that Z, from class €, I =1,m has a conditional ZIB distribution
with conditional mean parameter ut',z and conditional precision parameter

¢(')Z different for every class and dependent upon the neighbouring site values.
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Corresponding ZIB PDF with respect to the mixture of Lebesgue and
degenerative measure is given by (Osmina and Ferrari, 2010)

pi(Zo|2;:%)=ci,1 (2, =0)+
Zp#(1-2, )(Héz)v%rl (1.31)

+(1—Coz)| (Zo >0) Be(ﬂ(l,z¢(l,z;(1—ﬂ(l)z)¢(l)z)

where 0<cy, <1 is the conditional mixture parameter, and I(s) is the

indicator function. Thus ZIB distribution with exponential family structure is

described by (1.31), where AQ)(Z,-)=(A')1(Z,-) ----- At'm(zj))' and

B(Z,)=(B,(Zy) Bh(ZO))' are dimensional vectors of natural parameters

and sufficient statistics, and the following functions, depending on Z,, feature
values of neighbours and parameters:

C(2.)= (afy(z, -2,
Di(2,)=-log{rexp[ Au(2,)-Be((2,) 1A 2,) )| -
_Be(A(')l(Zj)le;%Z(Zj)le)-

To fully describe feature values for Z,ZIB distribution in class I, which has

its density function defined by (1.31), a set with such natural parameters is
chosen:

Atl)l(zj)zgclu_ Z 90182(21)’
i

A;Z(Zj):‘%z‘ Z ‘901'81(21)1

Z,0eNN, (1.32)

As(Z;)= {Iog(l ) j+Be(Aﬂ( LA, (Z,)+1)

and corresponding sufficient statistics:

B(Z,)=In(1-Z2,), B,(Z,)=In(Z,), B;(Z,)=1(Z,=0),
where @), represents large shape variation, h is an index of sufficient statistics
for beta distribution, that determines spatial dependency between FO and its
neighbours, with 6, =0, s; & NN,, ¥ ={c;,,6},.6,; .
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To properly define the model for feature values, it is necessary to choose
the best-fitting distribution, and the parameters of the model have to be set.
The parameters of the models are usually unknown, so their values in the
model are changed by estimations. Estimates are obtained after applying some
parameter estimation methods to the observation dataset. The next part of this
chapter presents the parameter methods that are chosen for the evaluation of
unknown parameters in empirical investigation.

1.3.3. Estimation of Unknown Parameters

The actual parameters are not usually known in practical applications, so they
need to be evaluated using statistical sampling. For spatial data, the adapted
classical methods, such as Maximum Likelihood (ML) and Least Squares (LS)
methods, may be used to estimate unknown parameters. There are also
specific methods, i.e., Maximum Pseudo-Likelihood (MPL) method (Cressie
1993), Bayesian method (Ducinskas and Saltyte, 2003, Clark, 2005,
King et al., 2010), which could be used for estimation of the unknown
parameters. The methodology of these methods is presented in this part of the
chapter.

Maximum Likelihood. ML estimation is a widely accepted statistical
method, with well-known optimality properties in large samples. Under mild
regularity conditions, the ML estimator is asymptotically normally
distributed, unbiased, and fully efficient. Within the spatial context, the
implementation of ML estimation is straightforward when the data is
generated by a Gaussian model. But large-sample optimality properties of ML
estimation hold much more generally than in the Gaussian setting. (Diggle and
Ribeiro, 2007). This dissertation uses the ML method for the Gaussian and t-
distribution spatial data models.

A likelihood function arises from a PDF considered as a function of its
distributional parameterization argument. While the sample is taken as a

given, the likelihood function of the parameters is often written as L(‘P|Z).

According to the likelihood principle, all of the information a given sample
provides about W is expressed in the likelihood function. In ML estimation,
the values, which maximize the probability of observing the given sample,
ie.,

¥ = argmax L(¥|z),
v

serve as a point estimate for the parameter of the distribution from which the
sample is drawn (Diggle and Ribeiro, 2007).
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When the spatial process is Gaussian, then the log-likelihood function for
training sample vector Z is (Diggle and Ribeiro, 2007):

logL(¥|Z)= —%Iog(Zﬂ)—%logM—%(Z ~-XB) THZ-Xp),

maximization of which yields the ML estimates of the model parameters.
When the spatial process is t-distribution, then the log-likelihood function for
training sample vector Z is

logL(¥|Z)= IogF(vJ;N j— Iogr(gj—glog(v)—%logﬁ—

1—V+2N log(v+(Z - XB)ITH(Z - XB)).

To find the ML estimators, the log-likelihood function is differentiated with
respect to the parameters.

—%Iog|l‘[|

Maximum Pseudo-Likelihood. Because the ML estimate is generally
difficult to compute due to the normalizing factor of the probability function
of spatial data models, several alternative estimates have been proposed.
Besag (1975) proposed the MPL, which maximizes the direct product of
conditional probabilities or conditional probability densities of the variable at
each site on those at the rest of the sites

N
Lt (‘P|Z) EH P, (Zi ‘Zj;\P) )
i=1
namely maximizing the log pseudo-likelihood
N
log Lyye, (W[2) = log py (Z,[Z;:%).
i=1

An interpretation of MPL is that it finds the parameter ‘i’ such that the
induced conditional distributions of feature values best match the empirical
conditional distributions of feature values:

¥ =arg m\gx{log(LMPL (‘P|Z))}

Many researchers have provided that under suitable conditions MPL
estimate is consistent and asymptotically normally distributed around the true
parameter value for large samples of various spatial processes (Jensen and
Moller, 1991; Mase, 1995) when examining observations from an exponential
family of distributions.
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Assume that Z(s) is a RF with conditional beta distribution observation

and s e D represents a location where the observations are taken. RF can be
described by conditional density function (1.28) with conditional mean and
conditional precision expressions (1.29), (1.30). Based on beta distribution
properties, the shape parameters have to be positive. From this condition, it

follows that A')h +1>0, h,1=1,2. Also, it is necessary for all spatial locations
s, Z(s))e(0,1). So from the condition, A")h+1>0, h,1=12, using the
expressions, 1+6,— > 6,log (1—Zj)>0 and

Z;eNN

1+¢9i'2 — Z 6’ij Iog(Zj)> 0. If Z; tends to 0, orl_, it necessarily follows

ZjeNN,
thatg, > 0. So pseudo-likelihood, which is formed by the sum of logarithmic
conditional densities specified (1.28), i.e.:

log (Lew, (¥]2)) =§Iog( pl(Zi ‘Zj;‘P))
+ i Iog(pz(zi‘zj;‘P))

i=N;+1

subject to: 1+6) —>"6; log(1-Z;)>0

i#]

1+, ->6, Iog( )

i#]
6,20
So using the optimization procedure, the estimation ¥ is obtained.

Assume that Z (S) is a RF with conditional ZIB distribution observation and

seD represents a location where the observations are taken. RF can be
described by conditional density function (1.31) with conditional mean and
conditional precision expressions (1.32). Beta distribution conditions apply to
this model. The conditions related to the conditional mixture parameter are
also valid, then it follows that A' <0. So pseudo-likelihood, which is formed
by the sum of logarithmic conditional densities specified (1.32), i.e.:
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log (Lew, (¥]2)) :illog( pl(Zi ‘Zj;‘P))

+ ZN: Iog(pz(Zi‘Zj;‘P))

i=N;+1

subject to: 1+6}, —>"6; log(1-Z;)>0
i#]
1+6), - > 6,log(Z;)>0
i#]

g,20,4' <0

So using the optimization procedure, the estimation ¥ s obtained.

Bayesian analysis. From a classical point of view, the parameters of the
models to be evaluated are considered fixed values. From a Bayesian point of
view, the model’s parameters are considered random. This way, it is assumed
that the parameters have a distribution that provides information (Clark, 2005;
King et al., 2010). Unknown parameter values are derived from the posterior
PDF, the general expression of which can be written using the BR (1.1) (Duda
etal., 2001):

P(W[Z)xcP(¥)P(Z|¥), (1.33)
where P(¥|Z)is a posterior PDF of unknown parameters ¥, P(¥') isa

prior probability of parameters ¥ P(Z|‘I’) is a likelihood function

(Gelman et al., 2003). Bayesian analysis yields an overall posterior
distribution for all model parameters. If you are interested in one specific
parameter, i.e., its marginal posterior distribution is desired, the overall
posterior distribution needs to be integrated (King et al., 2010).

Many statistical applications involve many parameters that can be
considered related or aggregated somehow due to the structure of the task. The
overall probabilistic model for the parameters must reflect their
interdependence. It is natural to model such problems hierarchically to obtain
results conditionally according to specific parameters, consisting of
probabilistic expressions of other parameters called hyperparameters. This
hierarchical approach helps to understand multiparametric problems and is
essential in developing computational strategies. (Le etal., 2006). In the
hierarchical model, the likelihood of the sample for the observed data
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P (Z |‘P) is defined for a given set of model parameters ¥, assuming that there

is a random variable with a prior distribution P(‘P|w). Here @ is a
hyperparameters vector that is unknown and has its own prior distribution

P(ZU ) The relationships between data and processes can depend on many

things. These can be spatial or temporal aspects, suggesting that modelling
can depend on where and when a process took place (Clark, 2005). Thus, the

total prior distribution of a vector (‘P,w), according to formula (1.6), is

defined as follows: P(¥,@)=P(¥|z)P(@), and the total posterior
distribution according to formula (1.33) is:
P(Y.@|Z)xP(¥,@)P(Z|¥,@)=P(Z|¥)P(V¥.@),

where the likelihood function of the sample P(Z |‘P) depends only on ¥, the

hyperparameters @ acting on the Z sample only through ¥
(Clark et al., 2006).

After analysing the parameter estimation method described above, it is
chosen to use them in empirical research for the evaluation of the parameters
of the analysed data model, as well as after performing a comparison using
different parameter estimations in solving the classification problem.

1.4. Conclusions of the Section

This section provides an overview of the works analysed by other authors. It
has been observed that the focus is on the Gaussian distribution in describing
the spatial data models and also on spatial classification based on BDF using
Gaussian discriminant functions (Stabingis, 2019, Wang et al., 2020,
Ducinskas and Dreizieng, 2021a, 2021b). From the spatial data analysis, it can
be concluded that other probability models, such as t-distribution, or
exponential family distributions, are used to model data that do not satisfy
GRF properties. New classification methods for non-Gaussian spatial data
would allow expanding the possibilities of classification based on BDF.

Also, the general expression of BDF and the AER formulas are presented
in this section. BDF expression related to the log ratio of conditional density
or probability mass functions is proposed. Conditional probability functions
analysis allows to assume that these functions can be used to create spatial
data models, which provide opportunities to construct a BDF expression for
solving classification problems. Based on these, BDF and AER formulas will
be derived for individual data models.
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Selected methods of context information incorporation into class label
probabilities calculation and data model construction are provided in this
section. That will make it possible to assess whether different class label
calculation methods and feature value models with different amounts of
constitutive information have an impact on classification accuracy.
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2. DEVELOPMENT OF SUPERVISED GENERATIVE
CLASSIFICATION ALGORITHM FOR FEATURE WITH
SPATIAL NON-GAUSSIAN DISTRIBUTION,
DISCRIMINANT FUNCTIONS AND AER EXPRESSIONS

The main focus of this work is on a supervised generative classification
algorithm based on BR. This section presents the proposed supervised
generative classifier also called the Bayesian classification rule, with class-
conditional density (or mass) functions using BDF, which is based on log-
ratios (1.5). A supervised generative classification algorithm is proposed
based on this rule. Conditional density expressions are used to include
contextual information for feature values. The entire rulemaking methodology
is formulated for FO Z, with distribution from an elliptical or exponential
family, using univariate conditional density (probability) functions described
in subsection 1.3. For the sake of simplicity, separate cases of population
selection have been examined. They can be used as basic usage cases of the
proposed classification functions. There can also be generalizations for
various parametric structures. Formulas for the probabilities of AER are
provided as well. Some results are published in articles [A2], [A3].

2.1. BDF and Error Rates for Conditional t-distribution

t-distribution. Suppose that the FO Z, class Q,, | =1,2has a conditional t-
distribution specified in (1.16) with a conditional mean , (1.17) and
conditional scaling parameter «,, setin (1.18). Under the assumption that the
populations are completely specified and for the known class label
probabilities of the populations 7z, ,set 1 =x, 3, | =12, x; isa 1xq vector
of non-random regressors for FO Z;, fis a qx1 vector of regression
parameters for class Q,, | =1,2 and assume 7' =0.5 under insignificant loss

of generality. For the pairwise case, the BDF specified in (1.8) in this case has
the expression

we (ZO’\P) = (ZO _%(:u(])-z +,u§z)—a'(z - xﬂ)j(ﬂéz _,ng )’ (21)

where, o =R™r,, 1, is a vector of spatial correlations between Z; and Z,

R is a matrix of spatial correlation between components of Z. z is a feature
values of training sample realization, Z=z, X isa N x2q design matrix for

Z, B'=(B.pB) isa 1x2q vector of regression parameters, q is a number of
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regressors, N is a training sample size, \Pz{ﬂ',az,v} is a set of model
parameters, o is a dispersion parameter, v denotes degrees of freedom.
Vector of regression parameters S'=(/f,/;) is considered unknown.

Other model parameters are considered fixed, so the unknown model
parameters set ¥ matches the regression parameters vector. Define S, (o)

and t, (») as Cumulative Distribution Function (CDF) and PDF of T,(0,1,N)
and let Az, = s — 2 >0 and A, = Auo/(a p, ) is conditional Mahalanobis

distance between Q, and (), at point s, conditional on Z (this notation is
used only in this subsection), where o is a standard deviation parameter,
0y =1-rjo, =Ry, r, is avector of spatial correlations between Z; and
Z, R is a matrix of spatial correlation between components of Z. Then the
PBDEF is obtained from the BDF by replacing the mean parameter £ with B
in the equation (2.1)

. o1 . .
WB(ZO,ﬂ):(ZO—a’(z—Xﬂ)—Ex{)H,Bj(ngﬂ), (2.2)
with H =(Iq,lq) and G =(Iq,—lq),where 1, denotes the identity matrix of

order q; zis the training sample realization, Z =z; x;is a 1xq vector of non-

random regressors for FO Z,,.

Lemma 3. The probability of misclassification (Bayes error rate) based
on BDFW?®(Z,,8) specified in (2.1) is
PR =S, (-0 1 (v 1 (V=2)£,(8)) ) (2.3)

where v denotes degrees of freedom, ¢, (,B) specified in (1.19).

Proof. The probability of misclassification for W®(Z,, ) is defined as
2

PE(B)=> 7P, where, for =12, R, =P, ((—1)'WB(ZO,ﬂ)>O|Q,) is the
1=1

conditional probability that W®(Z,,8)specified in equation (2.1)
misclassifies Z,, when it comes from €, .

If a random variable has a t-distribution, a linear transformation of a t-
distribution random variable also has a t-distribution. This property also holds
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for the conditional t-distribution (Roislien and Omre, 2006). Based on this
property and obtained W ® (ZO,,@) in (2.1) it follows that

WB(ZO,ﬂ)|QI ~T.(E, ,&o,v+N),
this expression means that conditionally from class , , W®(Z,,¥) values are
random variables with t-distribution, with conditional mean

E, =E(W®(Z,, 8)|) = (=D (Am)* 1 2,
conditional scaling parameter

@ = (+N—2)Var(W*®(Z,, B[ )/ (v+N)

= (M), (B) (v —2) I V.

where Az =14 —1£ >0, 1, is mean for population ©,1=12; v denotes
degrees of freedom; & is a dispersion parameter; N is a training sample size;
Py =1-t, a=R™r,, r, is a vector of spatial correlations between Z,and
Z, R is a matrix of spatial correlation between components of Z; Cz(ﬂ)
specified in (1.19).

From the properties of the multivariate t-distribution, it follows that in
population ©,,1=1,2:

W®(Z5,8)-E) /oy | ~T,OLN +v),
where, E, is a conditional mean, e, is a conditional scaling parameter,

v denotes degrees of freedom, N is a training sample size. Proof of the lemma
is complete.

Lemma 4. The AER for the plug-in Bayes classification rule associated with
PBDF specified in (2.2) has the following form:

RE(8) =25 (Q) 2. 2
where
Q =(-2) ((a +bB)san(4G ) /oo, (A) [N+ N T+ N=2)

a =Xpf-a'Xp, b=a'X-xH/2, B’z(ﬁl',,éz’) is an estimation of

ﬂ’:(ﬁl’,ﬂz’) is a 1x2q vector of regression parameters; H =(Iq, Iq) and
G =(Iq,—lq), I, denotes the identity matrix of order q; x; isa 1xq vector

of non-random regressors for FO Z; o’ is a dispersion parameter;
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o =1- ro'a , o= R’lr0 , I,is a vector of spatial correlations between Z and
Z, R is a matrix of spatial correlation between components of Z; gz(ﬁ)
specified in (1.19); v denotes degrees of freedom; N is a training sample size;

sgn is signum function, sgn(u)={-1ifu<0;0ifu=0; 1if u>0}.

Proof. AER for PBDF W®(Z,,3) is defined by Py ( ) Z?Z'OP where

for 1=12, P, =P, ((—1)IWB (ZO,[;’) > O|Q,) is a conditional probability
that W®(Z,,3) misclassifies z, when it comes from ¢, (conditional

probability is based on the conditional distribution of Z with conditional
mean 4, and conditional scaling parameter «,, ).

Based on the conditional t-distribution property and obtained W ® (ZO, [3)
in (2.2) it follows that
we (Zo,ﬁ)‘Ql ~T,(E.dv+N),

where conditional mean and scaling parameter expressions with estimations
of regressions parameters

é,:E( Zo,ﬂ‘Q) (2, +bB)(Ak),

=(v+N-2)var(W ( ) )/V+N)
—G(Aﬂo) (B)po(v-2)v. |

where a =X —a’XB, b=a'X-x,H/2, B is an estimation of

B'=(pB.p,) is a 1x2qvector of regression parameters; H =(Iq, q) and
G =(|q,—|q), |, denotes the identity matrix of order g ; o? is a dispersion

parameter; p,=1-rja, =R, r, is a vector of spatial correlations
between Z and Z, R is a matrix of spatial correlation between components

of Z; Auy=14—4¢ >0, w is a mean for population Q,1=12; §Z(ﬁ)

specified in (1.19), v denotes degrees of freedom, N is a training sample size.
From the properties of the multivariate t-distribution, it follows that for the
population Q,1=12:

(W®(2,.8)-& ) /Ja ~T.(0.L N +v),
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where é, is a conditional mean, ¢, is a conditional scaling parameter, with

estimations of regressions parameters described above, v denotes degrees of
freedom, N is a training sample size. Proof of the lemma is complete.

When moving from symmetric distributions to non-symmetric
distributions, the exponential family of distributions is selected and the
expressions of the BDF and AER functions for the selected distributions are
presented below.

2.2. BDF and AER for Conditional Exponential Family Distributions

Classification rules for one parameter exponential populations with
restrictions that the mean of the second population is greater than the mean of
the first population have been studied by Conde et al. (2005). Jana et al. (2014)
proposed a class of classification rules that includes the rule submitted by
Conde et al. (2005). Classification in a multi-class situation, cases of
independent observations are examined by Jana et al. (2016). An example
where such ordering among the scale parameters arises is considered. A
limited MLE and Bayes methods are used for parameter estimation (Jana and
Kumar, 2016).

Consider a 2 class case supervised classification problem. The main goal
is to solve the problem of classification of FO Z, given the training sample
T, into two populations. Assume that the training sample T distribution
belongs to the family of exponential distributions.

Auto-Poisson. Suppose that the FO Z, population Q,,1=12 has a
conditional Poisson distribution specified in (1.22). The pairwise BDF
W?®(Z,,¥) specified in (1.8) has the expression:

W®(Z,, %) =(6 - 05 )Zo — (145, — 153, )+ 7, (2.5)
where ¥ ={6}, 11y}, 4, is a conditional mean for population ©, specified in
(1.23), o, representing large scale variation, that is different for population
0, 1=12, y=In(zy/7;). By replacing the estimators of the parameters

into (1.8), PBDF W® (ZO,‘i’) is obtained.

Lemma 5. The AER for the plug-in Bayes classification rule associated with
PBDF specified in (2.5) has the following form:
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P () = 7Y exp{Zy In 22, - i, —In(Z,1)}
B,

+l (Zexp{zo In a5, — a5, —In(Z, ')}j

B,

where B, ={Z,:Z, e NU{0}W®(Z,,%)<0},
and B, ={Z,:Z,eNU{0},W®(Z,,¥)>0} are the scopes of sum,
¥ ={6;,0,;}, 6, is an estimation of a parameter that represents large scale

variation, that is different for the population Q,, 1=1,2. éoj is an estimation
of the parameter representing small scale variation, with 6,; =6,, and 6,; =0,

j & NN,, 4 isan estimation of conditional mean defined in (1.23), =, is the
probability of class label for population Q,, 1=1,2.

Proof. AER for PBDF WB(ZO,‘i’) is defined by P® ( ) Z?Z’OP where,

for 1=1,2, P,=P, ((—1)'WB(ZO,‘i’)>O|Q|) is the conditional

probability that W®(Z,,%) misclassifies Z, when it comes from ©,

(conditional probability is based on the conditional distribution of Z, with
conditional mean  4,). If Zz, is a random variable,

(6 -67)Z,— (5 — 113 )+ 7 is arandom variable as well, then AER
F’o?(‘i’)=zl‘,ﬂép.z =P, (-)((65-63) 2o~ (1 - 15 ) +7) = 0j2 )

+ 73R (((65-65) 2o~ (- 1) +7) > 0l )
Using properties of CDF for Poisson distribution, AER expression presented

in lemma 5 is received. Proof of the lemma is complete.
Auto-binomial. Suppose that FO Z population Q,, 1 =1,2 has a conditional

binomial distribution specified in (1.24) with a fixed number of trails n, and
success probability for each trail p) set in (1.25). The pairwise BDF
W?®(Z,,¥) specified in (1.8) has the expression:

WB(ZO,‘P)=ZO(0§—902)+n0(ln(1— s, )~ In(1- pgz))+y, (2.6)
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where ‘P:{Hg,pgz; I :1,2}, o) representing large scale variation, that is
different for population ©,1=12, y=In(zy/z;). By replacing the

estimators of the parameters into (1.8), PBDF W® (Zo,‘i') is obtained.

Lemma 6. The AER for the plug-in Bayes classification rule associated with
PBDF specified in (2.6) has the following form:

A n,! . A
P? (W):;zé;exp{ln{m}rzo In g, + (N, —ZO)In(l— péz)}

0 0/

|
2 In| =% 142, Inp2 +(n, ~Z,)In(1- p?
*”{Bzzexp{”{zo!(no—zo)!} o+ -2l p“)}]

where B, ={Z,:Z, e NU{0}W®(Z,,¥)<0},
and B,={Z,:Z,eNU{0}W®(Z,,¥)>0} are the scopes of sum;
{9(;, 0, J} 6} is an estimation of a parameter that represents large scale

variation, that is different for the population Q,, 1=1,2. 9 ; Is an estimation of
the parameter that represents small scale variation, with ,; =6,, and&,; =0

, j&NN,; fy, is an estimation of conditional success probability for each
trail, defined in (1.25); ) is the probability of class label for population
Q, 1=12.

Proof. AER for PBDF WB(ZO,\?) is defined by P} ( ) Z;rOP where,

for =12, F3,Z:HZ((—i)'WB(zo,\iJ)>o|QI) is the conditional

probability that WB(ZO,‘P) misclassifies Z,when it comes from

(conditional probability is based on the conditional distribution of Z, with
conditional success probability for each trail p;, and fixed number of trails
Ny).

If Z, is a random variable, then
Z,(6-65)+n,, (In(l— Py, ) —In(1- pg, )) +y is also a random variable and
AER
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POE; (\ij) = Z”(I)Fslz
— 7P, ((—1)(20(03—65)+n02 (in(1-p&,)~In(1- pgz))+7/)20|£21)
a2P, ((zo(eg—eg)moz (In(1-p3,)-In(1-p2,)) +7)> O|QZ)

using properties of CDF for binomial distribution AER expression presented
in lemma 6 is received. Proof of the lemma is complete.

Auto-gamma. Suppose that the FO Z, population Q,1=1,2 has a
conditional gamma distribution specified in (1.26) with a conditional scale
parameter «,, different for every population ©,,1=12 and a conditional

shape parameter y,, specified in (1.27). The pairwise BDF specified in (1.8)
has the expression:

o, —al, al,
WB(ZO,\P)z(_;l a20 Zy+7,,In a‘i +7, (2.7)
0270z

0z

where ¥ = {aéz,yoz, =1, 2} = |n(7[(1)/7l'§). By replacing the estimators of

the parameters into (1.8), the PBDF W ® (ZO,‘P) is obtained.

Lemma 7. The AER for the plug-in Bayes classification rule associated with
PBDF specified in (2.7) has the following form:

R (%)= mh,

where P, =P, ((—l)IW(ZO,‘i’)ZO):jH((—l)'W(u,‘i’)) p,(u)du, for
B,

=12 with B, ={u:ue(0;»)} is a scope of integration, H(-) denoted

Heaviside step function and probability measure P, based on conditional

gamma distribution with PDF p, specified in (1.26).

Auto-beta. A classifier based on the beta mixture models for strictly bounded
and asymmetrically distributed data is proposed (Ma and Leijon, 2009).

Suppose that Z, class Q,,1=12 has a conditional beta distribution
specified in (1.28) with a mean ;, and precision parameter ¢ , defined in
(1.29) using natural parameter expression form (1.30). The pairwise BDF
W?(Z,,¥) specified in (1.8) has the expression:

61



WP (2o, W)= (A= A5)In(Zo) + (A = A )In(L-Z0) + 75 (¥), (28)
where Al are the natural parameters for different population Q,,1=12,

defined in (1.30) with a set of parameters ‘Pz{@éhﬁoj}, h is a number of

sufficient statistics, ;/O(‘P)zIn{ﬂéB(aoz,boz)/ﬂgB(a()l,bm)}, B(ay by ) is
Euler Beta function with scaling parameters a,, and b,, form beta distribution
a, =A,+1, b, =A,+1, 1=12. By replacing the estimators of the
parameters into (1.8), the PBDF W ® (ZO,‘i’) is obtained.

Lemma 8. The AER for the plug-in Bayes classification rule associated with
PBDF specified in (2.8) for m =2 has the following form:

Poi(‘i’)=2i)7réf’.z , (2.9)
where I5,Z:P,Z((—l)'W(ZO,‘i’)zo)zj'H((—l)'W(u,‘i’))p,(u)du, for

1=1,2 with B Z{UZUE(O;].)} is a scope of integration and probability
measure P, based on conditional beta distribution with PDF p, specified in
(1.28).

Zero-inflated auto-beta model. Suppose that the FO Z, class €, | =1,2 has
a conditional ZIB distribution specified in (1.31) with a conditional mixture
parameter ¢, and conditional mean ;, and precision parameter ¢, from
PDF of beta distribution, defined in (1.28). The pairwise BDF W ®(Z,,¥)
specified in (1.8) has the expression:

W(){MM_H_y)

70, (Zo]2;:¥)

stz o] (-1 . @10

+(1=1(Z, =0))( Ay = A )In(Z,) +( A, - Az )In(1-Z,),
where I(-) is the indicator function. By replacing the estimators of the

parameters into (1.8), the PBDF W ® (ZO,‘i’) is obtained.

62



Lemma 9. The AER for the plug-in Bayes classification rule associated with
the PBDF specified in (2.10) has the following form:

A 2 ~
P2 (%)= mPR, 2.11)
1=1

where B, =P, ((—1)'w(zo,\if)zo)=jH((—l)'W(u,lif)) p,(u)du, for
B,

=12 with B, :{u:UG[O;l)} is a scope of integration and probability
measure P, based on conditional ZIB distribution with PDF p, specified in
(1.31).

The following subsection presents a pseudo code of the proposed
supervised generative classification algorithm. This algorithm is based on
BDF expressions defined in the subsection above for features with spatial

contextual information distributions belonging to exponential and elliptic
families.

2.3. Algorithm of Supervised Generative Classifier

In subsection 1.2. a general Bayesian classification rule and how a FO can be
classified into one of m populations using BDF are presented. The basic idea
in the supervised generative classifier is to classify FO into one of the m
populations when the decision is made according to the BDF function given
the training sample that is present. The BDF construction methodology uses a
log ratio of conditional density (or mass) functions and probabilities of class
labels. A general BDF expression is denoted in (1.5). They are formed by
incorporating the spatial contextual information of the feature values and
computing the probabilities of the class labels, where the spatial information
is incorporated using a neighbourhood scheme between the elements of the
training sample. That solves the problem of statistical spatial dependence in
the data. The obtained BDF expressions for the t-distribution and exponential
family’s Poisson, binomial, gamma, beta distribution and ZIB distribution are
presented in subsections (2.1) and (2.2). These expressions are obtained by
examining the pairwise classification problem. This subsection presents a
proposed supervised generative spatial contextual classification algorithm
based on BDF expressions.

Let T be a training sample with feature values Z, which form RF

{Z(s):se DR} and class label Y. Suppose that FO Z, is a univariate RF

observation that can be described by univariate distribution from elliptical or
exponential families distributions. Situations with the t-distribution of the
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elliptical family and the exponential family: Poisson, binomial, gamma and
beta distributions are considered, as well as the separate case of the ZIB
distribution described in more detail in subsection (1.3). The primary purpose
is to solve the problem of classifying a univariate RF observation
Z,=72(s,), 5, €D into one of m populations ©.For simplicity, the
supervised generative classification algorithm is constructed for 2 class cases.
It is chosen to perform the classification decision using BDF, W*®(Z,,¥)

(1.8), and their expressions for each of the considered discriminants are
presented in subsections (2.1) and (2.2). To obtain W ® (ZO,‘I’) expressions, a

set of model parameters, as well as the probability of class label values, are
required. They are formed by including spatial contextual information of
feature values.

First of all, the input variables are defined, namely, the data array of the
training sample, with which it is necessary to define the feature values vector
Z and the class labels vector Y. In addition to these two vectors forming the
array, there can also be a design matrix X defining the needs of the explanatory
variables. For example, spatial coordinates can be treated as explanatory
variables. Another array is the testing sample defining FOs, which consists of
a vector of feature values and also a design matrix X defining the needs of
explanatory variables for each FO. The probability of the class label
calculation method is also specified. The distribution is specified, which is
selected to describe the feature values Z.

The next stage is the calculation of probabilities of class labels. The
probabilities of the class label are estimated according to the selected method.
One of the options is a case where the probabilities between the classes are
equal. The second option is a case where they are evaluated according to the
sample size. The third option is that the probabilities are evaluated by taking
into account the neighbouring learning set observations, and their position in
space detail in subsection (1.2). Next, knowing the distribution of the attribute
values, the unknown parameters of the populations are estimated. ML, LS, BA
or MPL detail in subsection (1.3) can be used to estimate unknown parameters.
The estimated population parameters are used to calculate the BDF

W?®(Z,,¥). Having BDF expressions, we move to the FO classification stage.

Classification is performed at all points of the training sample; as a result, the
vector Y of probabilities of the class label for FOs is output. The pseudo
algorithm for the proposed supervised generative classifier is as follows:
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Algorithm 1. Supervised generative classifier

(1) INITIALIZEi=0,k=0,m=2,T, 7, 104+ S+ Teest s Tiyper Ao
pdistribution
(2) DECLARE
| # a class index
i # a FO index
k # an order of NN for lattice data
Y # Ni. x1vector of class labels for testing sample
VA # N, x1 vector of feature values for testing sample
¥ # a set of the estimates of the model parameters
N bt # a set of the estimates of the model parameters for t-
COET T distribution
we (Zi ,1}1) # BDF
NI # a number of observations in population | in the training
sample
N # a number of observations in the training sample
Ney # a number of observations in the testing sample
, # a population of class |1 =1, 2.
NN; # sites belonging to the NN of §;
NN; # sites belonging to the NN of S; for population Q,
5 # site belonging to the NN, of S;, §; #5;
s #asubset of S, that contains NN NN/ locations of Z,
from population €3, .
(3) READ
T # a training sample
Ttype # a spatial data type (lattice or geostatistical (with
continuous spatial support))
7L ethod # a class label probability method (equal probabilities,
sample size, inverse distance)
S, #STL
Toet # a testing sample
d, # an initial distance of NN; for geostatistical data
Paistribution # a training sample distribution (t-distribution, Poisson,
binomial, gamma, beta, ZIB)
4 N «— fN (T)
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(5)
(6)
(")
(8)
©)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

(19)
(20)

(21)
(22)
(23)
(24)
(25)

(26)
(27)

(28)
(29)
(30)
(31)

(32)
(33)
(34)
(35)
(36)

(37)

Nre — Ty (Ttest)
FORI«—1tom
N, < fN. (|, T)
END FOR
FORi<—1to N

IF 7

method

REPEAT
ke—k+1

dmaxmin

IF Ty, = “lattice” THEN

Test

= “inverse distance”

— fy(Teet T)

test !

max min

NN, — fyy (k.d

ELSE
IF dO 2 dmaxmin

NN,  fu (k=NULL,dy, T, T, Ty Z;)

v Ttest? type?

=NULL,T T Ty Z; )

ELSE
NN, — fy, (k=NULL,d

END IF
END IF
l—1

FORI«—1tom
S fou (S NN 1)

END FOR

WHILE §; NN, s € Si(l)’ Si(l) =
END IF
| —1
FORIl—1tom

IF 7, = “equal probabilities” THEN

method

T, T T,

maxmin? " 'test? type’Zi)

7ri' =1/m
ELSE IF 7,

method

7 =N,/N

ELSE IF

method

NN = (NN T T, Z;)

= “sample size” THEN
= “inverse distance”
l — f(NNJ,NN,,T) #(eq.12)
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(38)
(39)
(40)

(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
(51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(60)

(61)
(62)
(63)
(64)
(65)

END FOR
# Distribution of feature values is expertly evaluated

IF Pyistribution =  t-distribution” THEN

compute ¥ =y # using ML, LS in this work

t—distribution
compute W ® (Zi,‘i’) # (eq. 2.2)

ELSE IF Pyisuibution = Poisson” THEN
compute y=y # using MPL in this work

Poisson
compute W ® (Zi,‘i’) # (eq. 2.5)

ELSE IF Pyisuribution = Pinomial” THEN
compute Y=y # using MPL in this work

binomial
compute W ® (Zi,‘i’) # (eq. 2.6)
ELSE IF Pyistribution = 9amma” THEN

compute Y=y # using MPL in this work

gamma
compute W ® (Zi,‘f’) # (eq. 2.7)

ELSE IF Pyripuion = “eta” THEN
compute ¥ = ‘i’beta # using MPL in this work
compute W ® (Zi,‘f’) # (eq. 2.8)
ELSE IF Pyipyion = “ZIB” THEN
compute Y= ‘i’Z,B # using MPL in this work
compute W ® (Zi,‘f’) # (eq. 2.10)
END IF

IFW®(Z,¥)>0 THEN

Y. =1, #7,€Q)

ELSE
Y, =2, #7,€Q,

END IF
END FOR

RETURN Y

Where fy, (') calculates the dimension of the array and assigns the number of

rows in the array as the result, fy (+) divides the data array into | parts and
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counts the number of rows in each part. f, (Teq: T,Z;) calculates the

minimum distance for each FO point to the NN from each population
Q,, =12 and selects the maximum from all the minimum distances so that
the NN area defined for each FO includes observations from each population,
Fa, (K O T T T,

! ¥'max min ? test? "type?

Zi) according to the data typeTtype, whether the

NN area is defined by distance or neighbourhood order, the NN area NN, is
created for FO, which must contain observations from each population
Q,1=12, f ., (Sy,NN;,1) forms a set of STL for FO for the population

Q,1=12.f ,=(NN,T,T,.Z) forms NN area for FO for the population

Q,, 1=12. In the step (39) the array of the training sample is explored.

According to the properties of the distributions described in subsection (1.3),
the assessment is made, and the chosen from the examined ones is the best for
the description of the training sample data.

The pseudo code in Algorithm 1 describes the proposed supervised
generative classification algorithm for pairwise case based on BDF. This
algorithm can be used for the classification of features with spatial contextual
information. This algorithm can be used when features are modelled using
TRF and also when features are modelled using Poisson, binomial, gamma,
beta and ZIB distributions. Algorithm 1 allows conjoining the analysed
situations at the theoretical level and practically performing spatial data
classification in the empirical investigation.

2.4. Conclusions of the Section

This section presents BDF expressions that allow the classification of spatial
data described by non-Gaussian distributions. That is implemented by using
the proposed generative supervised classification algorithm based on BDF
expressions. This algorithm allows solving pairwise classification tasks for
data with spatial dependence, described by t-distribution from distributions of
the elliptic family, Poisson, binomial, gamma and beta, and ZIB distributions
from the exponential family. Formulas for the probabilities of AER are also
provided. They allow evaluation of the accuracy of the proposed BDF. The

following section will apply the proposed algorithm with BDF W ® (ZO,‘P) in
an empirical study.
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3. EMPIRICAL INVESTIGATION AND DISCUSSIONS

Performance study of the proposed supervised generative classification
algorithm is conducted in this section. The section consists of four parts. The
first part presents a construction part of the empirical investigation. The
second part contains empirical research conducted for simulated data model
by Gaussian distribution, t-distribution and beta distributions. In the third part,
black carrageen algae coverage in the southeastern Baltic Sea research is
performed, and the bottom identification problem is solved. The last part
contains the description of the obtained results and conclusions. Results of
empirical analysis in this thesis are published in [Al], [A2], [A3], [A4], [A5].

3.1. Construct Empirical Investigation

The research objectives are to extend supervised generative classification
based on BDF for GRF observations and to investigate the proposed
supervised generative classification algorithm, whose code is provided in
Algorithm1.

To reach the first goal, it is chosen to extend GRF classification when the
BA method is used for population parameters estimation. Also, GRF
observations classification is performed in a multiclass case by analysing the
situation when the population number m=3. In order to obtain the second
goal, a classification problem is solved for features described by t-distribution
and beta distribution belonging to the exponential family.

Bayes error rate and AER estimates are used as measures to evaluate the
performance of the discriminant function. In this work, classification error
rates are empirically estimated by simulating different initial situations and
performing a comparison. Empirical research should be divided into possible
stages: data preparation, model parameters estimation, classification problem
solving, accuracy evaluation using error rates, and analysis of the obtained
results.

Empirical research is firstly performed using simulated data. STL
structures are selected freely to satisfy specific properties: symmetry,
asymmetry, groupness or mixedness, to cover only nearest neighbours or also
include points further in the space. Then FL classification is analysed using
different parametrical structures. The parametrical structures are chosen freely
to satisfy specific trends: increasing distance between population means, and
trendy variation of covariate function parameters. Data arrays are simulated
for the chosen STL structure and population parameter sets. In the first part,
black carrageen samples statistical analysis is performed by solving the
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identification problem of the Baltic Sea bottom in the Lithuanian coastal
waters between Palanga and Sventoji. The dependence of the number of algae
with respect to the regressors is analysed.

In this section, data simulation from GRF and TRF is performed using
functions in R software. Spatial data described by beta distribution is not yet
implemented in R. For this goal, Algorithm 2 is suggested to generate spatially
dependent variable simulation for selected parametrical structures.

Algorithm 2. Get simulate spatial data sample with Beta distribution

(1) INITIALIZE D, N, M, ¥ ={B,... Bi.0.7,}
(2) DECLARE
Alh # a natural parameter, 1,h=1,2
Z #an M x N array of simulated data
Zow # a new simulated value
zje # eastern neighbour feature value
ij # western neighbour feature value
zjn # northern neighbour feature value
st # southern neighbour feature value
zi_ljs # southern neighbour in the simulation i-1
Y, # class label
(3) READ
D, # initial data array with spatial training and
testing sample locations also class labels for
training locations. An initial dataset with point
coordinates X, and X;.
N # a simulated sample size (training sample and
testing sample size)
M # a number of simulations
. {ﬂ' ﬂ' 7n } # a set of model parameters, 1 =1,2
1 Mayiin 'R
@z faray (M, N) # construct an empty M x N array
®) Y, fy (D) # generates a random value: 1 and 2, with a probability
0.5
(6) FORi«<—0TOM
(7 FORj« 1TON
(8) IFi=0THEN
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©) Z;— f
(10)  ELSE

sea (1L1) # generate random value from Beta(1,1)

(11) Z “— fnbg (Zu ! Z i-lje Dlnlt)

12

( ) ij - fnbg (le 'Z —1Jlen|t)

13

( ) Zj nbg (Z”,Z i-1jn Dlnlt)

14

( ) st - fnbg (le’z i-1js Dmlt)

(15) IF Y; =1 THEN

(16) Ai= Ty (DuZieZunZjn 2o, ¥) #(eg. 32)
(17) A, =1, (Dm,t,zle,zjw,zm,zls,\}f) #(eq. 3.3)
(18)

Z . — Beta(Ajl, ,—2) # generate value from Beta(A}1+L A}2+1)

new

(19) ELSE

(20) A=, (DirZjer Zju Z i Z s, P ) #(eq. 3.2)
(21) A, =1, (Dmn,Zje,ZJW,ZJn,ZJS,‘I’)#(eq. 3.3)
(22)

Zoow — Toua (Al AT,) # generate value from BEIG(A121+1A122+1)

new
(23) END IF
(24) Zi — Loy
(25) ENDIF
(26) END FOR
(27) END FOR
(28) RETURNZ

Typically, the data model parameters are unknown. When working with a
simulated dataset the model parameters are assumed to be unknown and
therefore need to be estimated. The available simulated data arrays are divided
into training and testing samples according to the defined STL configurations.
The population parameters of the training sample models are evaluated by
selectively applying the LS, BA, ML and MPL methods described in the (1.3)

subsection. The resulting model parameter estimates P are further used in
the expressions of the PBDF WB(ZO,‘?), that are used to solve the

classification problem.
When solving the classification problem, the probabilities of class label
evaluation choices are defined: whether the probabilities are considered equal
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for each class, whether they are calculated by sample, or whether they are
evaluated by including spatial information: the distance between the FO and
the neighbouring points of the training sample T. FO classification is
performed by applying Algorithm 1, if the distribution of feature values are
non-Gaussian. If feature values are modelled by GRF, classification is
performed by applying BDF defined in (1.13).

Bayes error rate and AER estimates are used to evaluate the accuracy of
the discriminant function in classifying future observations. The AER helps
to guide the performance of the plug-in classification rule when it is actually
formed from the training sample. It depends on observed values of training
observations as well as their locations. The EER specified in (1.10) is obtained
by averaging the AER with respect to the distribution of the training sample.
The empirical estimation of the EER:

EER" :i:POi‘i’ (¥)/m (3.1)

where Py, (‘P) are the estimates of AER, which expression depends on Z

distribution, in general, specified in (1.7), ¢ indicate discriminant function
method (B denotes Bayes, L denotes linear), M is a simulations number. It
plays a similar role to the mean squared prediction error in evaluating the
performance of the plug-in kriging predictor (Diggle et al., 2002). These facts
strengthen the motivation for deriving estimators of the AER and the EER
associated with the PBDF. For this goal, Algorithm 3 is suggested to get AER
and empirical EER estimates.

Algorithm 3. Get AER and empirical EER
(1) INITIALIZE T’Ttest ! 5’ pdistribution
(2) DECLARE

i # a FO index
j # a simulation index
Zij # feature value for FO i, in summation j
¥ # a set of estimates of the model parameters
¥ # a set of model parameters
WL(Zi,‘P) # modified LDF
W e (Zi ,‘P) # BDF
EERid # an empirical estimate of EER for FO i.
s # an empirical estimate of EER
EER P

72



po HAER

(3) READ
T # a training sample
) # AER method (Bayes, Linear)

# a training sample distribution (t-distribution, Poisson,
binomial, gamma, beta, ZIB)
# a testing sample

pdistribution

T

test

(4) Ntest - fN (Ttest)
(5) M — fM (Ttest)
© P g

i M, Ntest) # construct an empty M x N, array

array ( test

(7) compute 7ri' # using Algorithm 1 from 9 to 38 code line.
®)  compute ¥ — f, (T)
¥TT,

test )

# using Algorithm 1 from 39 to 58 code line.
) IF Pugribuion = “beta” AND & = “Linear” THEN

10 compute Wt (Zij,\i’) 1. (Zij,
(11) ENDIF

(12) FORi«1to Ny

(13) FORj«—1toM

(14) IF Pyisribuion = t-distribution” THEN
(15)

compute W B(Z.. ‘i’) — £ (Z.

ij? ij?

VT T ) # (60 3.4)

Pe . f (ﬂi',WB(z. lif),\}',Ttest) # (eq. 2.4)

ij RE ij
(16)  ELSEIF Pygyipyion = “POisson THEN
(17)

ij ij?

BY oo (7 W2 (2, %), 0T,

(18)  ELSEIF Pygsinuion = “binomial” THEN

(19) FA).B — f (ﬂ'il,WB(Z' li’)a\P’Ttest)

i e i
(20) ELSE IF gamma THEN
(21) 5 'we(z,, ¢

Pj “«— fPoBz (ﬂ'i ,W (Z \P)iqjiTtest)

i ij
(22) ELSE IF Pyingion = “eta” THEN

(23) IF 6 = “Bayes” THEN

(24) BY (ﬂ; We(Z,,

¥), 9T ) # (0. 29)
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(25) ELSE IF 6 = “Linear” THEN

(26) B 1, (”il wt ( z, ,\p),\y,pw) # (eq. 3.5)
(27) END IF

(28) ELSE IF pdistribution = “ZIB” THEN

(29) 5

ij ij?

B 1, (ﬂil,WB(Z- lif),\P,Tm) # (eq. 2.11)

(30) END IF
(31) END FOR
(32) IF 0 = “Bayes” THEN

(33) EER: « f (F}F,M) # (eq. 3.1)

(34)  ELSEIF J = “Linear” THEN

35 EER' £ (B M) # (eq. 3.2)

(36) ENDIF

(37) EER  f (ﬁ?, Ntest) # an average for all FO

(38) END FOR

©9)  RETURN EER’

The rest of this chapter describes the empirical research to be conducted in
more detail. In subsection 3.2, empirical studies for simulated data are
described in more detail according to the research stages described above.
First, the study with GRF observations is described. Second, the classification
of symmetric t-distribution observations is performed. The last subsection
describes the study on the classification of observations of the exponential
family beta distribution.

3.2. Simulated Data

Simulated datasets are used for evaluating algorithm reliability estimation.
The classification problem is created using a dataset for the Gaussian, t-
distribution and beta distributions models. Simulated datasets are divided into
training samples denoted STL and testing samples of FO with known spatial
locations and feature values. During the training stage, model parameters are
evaluated. During the testing stage, the classification based on the BDF (1.14)
for Gaussian distribution and Algorithm 1 for t-distribution and beta
distribution are wused on the testing sample. The probability of
misclassification estimators is also empirically measured. The simulations are
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performed by the package for geostatistical analysis included in statistical
computing software R.

Extension of Gaussian Models. At first, GRFs are analysed in this work to
get more familiar with the classification procedures based on BDF in use. At
this stage of the study, it is chosen to solve the classification problem for a
univariate observation from GRF using BDF (1.14), when the BA method is
used for estimating parameters of unknown populations. Also, it is compared
to the classification of FOs using BDF (1.14) when the ML method is used to
estimate the parameters of unknown populations.

Assume that Z(s) is a GRF observation and s e D represents a location
where the observations are taken. Let D — R* that denotes a spatial domain
of interest is a regular 2-dimensional lattice with unit spacing. A selected STL
S, consists of eight second-order neighbours. STL is partitioned into a union

of two disjoint subsets, i.e., S; =S® US®, where 5" is a subset of S, that
includes N, locations of the feature observations from ,, 1 =1,2. Each STL
with marked labels determines the Training Labels onfiguration (TLC),
denoted as &(S,). It is assumed that STL and TLC are fixed and TLC
configurations used in this stage are shown in Figure 3.1. Two TLC
configurations are chosen: symmetric & (S;) and asymmetric &,(S,), to
evaluate whether the TLC configuration influences error rate estimations.

FO Z,=Z(s,), where s, is the observation from GRF, and can be

described by GRF class-conditional density function (1.11) with conditional
mean and conditional variance expressions (1.12). Conditional mean

expression depends on the (marginal or non-conditional) mean 2 = x’(so),B,.
for class I. The case where the mean is constant is chosen for the analysis.
Conditional variance expression depends on marginal variance ¢ and p,
denotes a ratio between conditional and marginal variances. The case is
chosen for analysis when o =1 with the isotropic exponential covariance
function specified by ¢(d; ) =exp{-dj /¢} , where d; is the Euclid distance

between spatial locations, ¢ =3 is a range parameter.
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Figure 3.1 Two TCLs with points marked as dots and asterisks, marking
different classes.

Two training samples for different TCL (Figure 3.1) are simulated using
multivariate Gaussian distribution with the selected parameter values: with
different mean u(') and the same variance o =1, and fixed range parameter
¢=3 in class I,1=12. The marginal squared Mahalanobis distance

A? :( Ly — 1t )2 / o is used to estimate the distance between the considered

populations. Using marginal Mahalanobis, the conditional Mahalanobis
d= A/ N 0, denotes a ratio between conditional and marginal variances.

The considered variation of the marginal Mahalanobis distance is chosen
freely A=(05, 0.7, .., 1.9). Also, due to the accuracy of the estimate, two

cases of the simulated realizations M of the training sample are chosen for
comparison here, M =10° and M =10".

Brief description of the data simulation stage: GRF observations are
considered. 2 different TLC configurations are studied; for each TLC
configuration different situations are described by the marginal squared
Mahalanobis distance and simulated realizations M are selected for each
population. Once the realizations of the simulated data are available, the next
stage can be implemented: the estimation of the population parameters. Since
the parameters of the population are unknown when studying real data, for this
reason, in the expressions of the conditional mean and conditional variance
described above for all studied simulated populations, it is further chosen to
assume that the parameters of the mean £, | =1,2 and the variance parameter

o’ are considered unknown.
It is chosen to estimate population parameters using BA and ML methods.
Using the ML method, parameter estimates are obtained: £ and o based on

Zare S, =(XR’1X)XR’1Z o’ :(Z—X,BAML)' R’l(Z —X,ﬁML)/N , where X

is a N x3q design matrix for Z, R is a spatial correlation matrix and N is an
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observation number. This estimation of o is biased. The bias-adjusted ML

A

estimator of o”is 6%=67, N/(N—2q). Using the properties of the
multivariate Gaussian distribution, it is known that ﬁML ~ Ny, (,B,Zﬁ), and
G ~ 0 2k 2 /(N =20q), with 2, =0 (XR'X )_1, and q is a number of
regressors. The ML estimators of g and o are used in the discriminant

function evaluation, i.e., #= 3, , 6" =6y N/(N —20) (Duginskas, 2009).

In the BA method, the parameters are considered random, and unknown
parameter values are derived from the posterior PDF (1.33). These expressions
are calculated using the likelihood function and prior probability. In the case

under consideration, the likelihood is given by Z|8,6” ~ N, (8,0°R). There
are two unknown parameters, and the conjugate priors are chosen for the
parameters so p(ﬂ,oz): p(ﬂ‘az) p(az). Based on (Diggle, Ribeiro and
Christensen, 2002) the corresponding prior distributions of the unknown
parameters are chosen: p(ﬁ‘az) ~ Ny, (ﬂ(o),azz(o)) is the Gaussian prior
distribution for £ conditional on & with initial parameter values [)’(0) and
covariance matrix 2, p(O'Z) ~ IG(u(O),V(O)) is the prior density for o2
with shape and scale parameters u© ,V(O) , Where u® ,V(O) >0. The conjugate
prior is the Gaussian inverse-gamma and is denoted as
NIG(ﬂ(O),Z(O),u(O),V(O)) , with initial parameter values, that can be chosen
freely. In the case under consideration the following initial values are chosen:

B9 =(2-2), =% =1,,u® =50 and v =49. Combining the prior with

the likelihood gives a joint normal—inverse-gamma posterior (Diggle, Ribeiro
and Christensen, 2002):

p(p.0°)p(2]8.0)
p(Z)

p(p.0%2)= _NIG(4” 2,0
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_1\1 _
where " =(XTR‘1X (=) 1) (xTR-lz +(=) lﬂ“’)),

=0 :(XTR’IX +(z )“l)_1 g0 =y N
’ 2

VO Zy0 4 % (( B ) (zw) )‘1 B9+ ZRZ _( B9 ) (2(1) )‘1 ﬁm} |

The marginal posterior for £ in integrating out o’ is a multivariate t-

distribution p(,B|Z)~tp(ﬂ(1),Z*), where X* :(v(l)/u(l))Z(l). The marginal

posterior for &~ is p(az‘Z)~ IG(u(l),v(l)), where IG(-,-) is an inverse-
gamma distribution. So the BA of A and o® are f,, =AY and
62, = / (u(l) —1) , respectively.

Population parameters estimates obtained using BA and ML methods in
each simulation will be used to solve the supervised learning classification
problem. The task is to classify z, into one of two populations when

X'(s,) 3, = X' (S, ) 3, With &2, the classification is performed using PBDF
WB(ZO,@ ) (1.14). These expressions depend on the estimates of the
population parameters and on the probabilities of the class labels. In the case

under consideration, class label probabilities are estimated from the training
sample. In different TLCs (Figure 3.1) for & (symmetric) ) =0.5, | =12
and for &, (asymmetric) z; =0.625, z2 =0.375.

After classification using PBDF WB(ZO,‘i’), (1.14) obtain empirical
estimators of AER specified in (1.9) for each simulation. An empirical
estimator of the EER obtained by averaging AER over-runs is proposed as a

measure for comparison. The values of EER for & and for &, and different

marginal Mahalanobis distances for the simulated realizations M are presented
in Table 3.1. In all of the analysed situations with two different simulated

realizations of the training sample 10> and 10°, the error rates are achieved
smaller with bigger training samples. These results are further analysed with
an expectation that they are more accurate error estimates. Figure 3.2

represents the obtained EER values with ML and BA methods for different
configurations (10" simulations).
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Table 3.1 Values of EER for the different estimators and the TLC.

TLC ¢, S,

Method | ML | BA ML | BA ML | BA ML | BA
AWM 10° 10° 10° 10*
05 | 0352 | 0335 | 0365 | 0349 | 0359 | 0340 | 0328 | 0.315

0.7 0.275 0.262 0.277 0.256 0.310 0.280 0.257 0.239

0.9 0.195 0.177 0.201 0.180 0.196 0.182 0.189 0.171

1.1 0.143 0.123 0.140 0.122 0.143 0.119 0.136 0.118

13 0.094 0.083 0.098 0.083 0.097 0.085 0.097 0.081

15 0.067 0.053 0.067 0.055 0.061 0.051 0.066 0.053

1.7 0.049 0.035 0.047 0.036 0.044 0.034 0.047 0.035

1.9 0.034 0.024 0.033 0.024 0.033 0.024 0.032 0.023

The graph shows that the EER estimates decrease as the distance between
populations increases. Comparing the obtained estimates with respect to TLC
configurations, the estimates obtained are lower in the case of the
asymmetrical configuration, most clearly observed in the analysed situations
where the distance between populations varies from 0.5 to 1.1.

Analysing the estimates of simulated realisations of the training sample in

Table 3.1, it can be seen that for all A=(0.5, 0.7, ...,1.9) values

EER" >EER" . So it can be concluded that the BA case has an advantage
over the ML case by the EER minimum criterion. Comparing the obtained
estimates in Figure 3.2 according to parameter estimation methods, the
advantage of the BA method over the advantage of the ML method is also
visible.

The quantitative comparison of the two cases of the parameter estimators

is also made using the index «, = EERML/EERBA values. Index values for

M =10" case and &, k=12 are shown in Figure 3.3. For both TLC cases
k. and x. increases when A increases. Two growth curves with identical

behaviour are achieved.
Another interesting aspect of the study is the inclusion of information about
class label probabilities. Two situations are compared: & notes a situation

where the probabilities of a class label are equal and &, notes a situation where
the probabilities of the class label are unequal.
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Figure 3. 2 Values of EER for different TLC and parameter estimates
M =10*.

Below is a graph of the comparison in Figure 3.4, comparing the precision
of computation between ML and BA estimates. The percentage precision is
calculated according to the formula:

o =|[ER" (5)-EER (&) [EER (&)

BA estimates.

-100% , where & denotes ML or

2215 &
=1

A

Figure 3.3 Values of « for different TLC M =10,

When the classes are close to each other: A varies from 0.3 to 0.9, and
precision values vary from 13.97% to 6.45%. Estimates of calculated
classification errors decrease in size by 7°. As the parameter A values
increase from 1 to 3, the classes become more distant from each other, in
which case the precision parameter estimates vary from 0.88% to 6.16%. In
this case, the curves representing the different parameter estimates behave
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very similarly. Independent of the method of parameter estimation, it can be
concluded from the obtained results that the inclusion of prior information in
the models has estimates of interference classification errors.

The comparison of the two approaches to parameter estimation is made
based on the values of the EER incurred by the classification rule based on the

PBDF W® (Zo,lil) (1.14). The proposed optimality criterion is based on the

derived formula of the AER. The simulation experiment shows the advantage
of the BA estimation approach against the frequentist approach (ML). This
advantage is more significant for strongly separated populations (larger values
of A) than for close populations. These conclusions are valid for the
symmetric TLC and the asymmetric one.

0
03 08 13 18 23 28 A

Figure 3.4 Values of z° for different parameter estimation methods.

The comparison of the two approaches to parameter estimation is made
based on the values of the EER incurred by the classification rule based on the

PBDF w* (ZO,‘P) (1.14). The proposed optimality criterion is based on the

derived formula of the AER. The simulation experiment shows the advantage
of the BA estimation approach against the frequentist approach (ML). This
advantage is more significant for strongly separated populations (larger values
of A) than for close populations. These conclusions are valid for the
symmetric TLC and the asymmetric one. The results give us strong arguments
to expect that BA estimators of spatial population parameters could be
effectively used in spatial Gaussian data classification incurred by PBDF.
Based on the results, it can be concluded that the inclusion of prior information
in the models influences the error rate estimates, and this influence increases
significantly when the considered classes are closer to each other.

Also, GRF observations classification is performed in a multiclass case by
analysing the situation when the population number m=3. Assume that

Z(s) is a GRF observation and s< D represents a location where the
observations are taken. Let D — R? that denotes a spatial domain of interest
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is a regular 2-dimensional lattice with unit spacing. A selected STL S,

consists of twelve third-order neighbours. STL is partitioned into a union of

3
two disjoint subsets, i.e., S, =US", where s is a subset of S, that
1=1

includes N, locations of the feature observations from €, 1=1,3. All of the
simulations consider small training sample sizes, N, =4, | =1,2,3. In Figure

3.5, the points indicated by A belong to S , the points indicated by B, belong
toS®, and the points indicated by C, belong to S® . A sign x denotes the
focal location s, . In this stage of the research, it is chosen to examine the

dependence of AER estimates on the structure of STL: STL with the grouped
label (STLG) and the mixed label (STLM). It is assumed that STLG and
STLM are fixed, and configurations used in this stage are shown in Figure 3.5.

FO Z,=2Z(s,), where s, =(0,0) is the observation from GRF and can

be described by GRF class-conditional density function (1.11) with
conditional mean and conditional variance expressions (1.12). Conditional
mean expression depends on the marginal (or non-conditional) mean

ty=X(s,) for class I. The case where the mean is constant is chosen for

analysis. Conditional variance expression depends on marginal variance o?
and p,. The case is chosen for analysis when o° =1 with the isotropic

exponential covariance function specified by c(d; ) =exp{-d; /#} , where d,
is the distance between spatial location, ¢ is a range parameter.

STLG STLM

o~ o~ C

T T T T T T T T
-2 -1 0 1 2 2 1 1] 1 2

Figure 3.5 STL with different label distributions.

Two training samples for different STL (Figure 3.5) are simulated using
multivariate Gaussian distribution with the selected parameter values: with

different mean 4} and the same variance o =1, and freely selectable range
parameter ¢ equal 1,2 or 3,inclass I, 1 =1,2. A parameter b is used to define
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constant mean: g =b, gz =0 and 4 =-3b. The marginal squared
Mahalanobis distance A’ =(ﬂ$ A )/02 is used to estimate the distance

between the populations, in the case under consideration Mahalanobis
distance: A, =b, A,=4b and A, =3b. The conditional Mahalanobis
distance: d" = A, /\/p, , P, denoted a ratio between conditional and marginal

variances. Here b represents the separation between classes and is called the
separation step. The separation between classes increases with increasing of
b. Each case is simulated 1000 times.

Using the ML method, parameter estimates are obtained: £ and o based

on Z are ﬁML Z(XR_1X)XR_1Z o° :(Z - XBML) R_l(Z - XﬁA’ML)/N ,
where X isa N x3qg design matrix for Z, R is a spatial correlation matrix and

N is an observation number. The bias-adjusted ML estimator of & is
6* =67 N/(N-3q). The ML estimators of S and o are used in the

discriminant function evaluation, i.e., 5=, , 6* =&, N/(N-3q).

Population parameters estimates obtained using the ML method for each
simulation will be used to solve the supervised learning classification
problem. The task is to classify z, into one of three populations, the

classification is performed using PBDF W ® (ZO,‘P) (1.14). These expressions
depend on the estimates of the population parameters as well as on the
probabilities of the class labels. In the case under consideration class label
probabilities are equal: 7y =1/3, 1=1,2,3.

After classification using PBDF W ® (ZO,\P) (1.14) empirical estimators of
AER specified in (1.15) are obtained for each simulation. An empirical
estimator of the EER obtained by averaging AER over-runs is proposed as a

measure for comparison. The values of EER are presented for STLG and
STLM in Table 3.2.

Table 3.2 contains the EER values, which are calculated with different
levels of spatial correlation and different levels of class separation. They show

that EER decreases as the separation step increases for both STL structure
cases. Also, these values are represented graphically.
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Table 3.2 EER values for STL with different label distributions.

STL STLG STLM

b p=1 p=2 $=3 p=1 $=2 $=3
0.5 0.414882 | 0.352129 | 0.303666 | 0.425847 | 0.409503 | 0.398642
1 0.228513 | 0.167294 | 0.131867 | 0.249523 | 0.228437 | 0.221165
15 0.132704 0.08409 | 0.056355 | 0.152461 | 0.137678 | 0.139104
2 0.079256 | 0.040844 | 0,021153 | 0.100267 0.08558 | 0.082012
25 0.046043 | 0.017309 | 0.006761 | 0.063318 | 0.055167 | 0.051326
3 0.024973 0.00669 | 0.001876 | 0.040019 | 0.029397 | 0.029753
35 0.01263 | 0.002277 | 0.000398 | 0.022736 | 0.017271 0.01673
4 0.005914 | 0.000649 | 7.03E-05 | 0.012825 | 0.007675 | 0.008792
45 0.002551 | 0.000168 9.3E-06 | 0.005996 | 0.003556 | 0.003194

In Figure 3.6, the variation of EER depends on the parameters b, and also
the curves represent the situations defined by the parameter ¢ values. In this

case, the EER graphs show that as the distance between populations
increases, the error estimates obtained decrease. The different curves reflect
the different covariance functions used, differing in the range parameter ¢ .
Comparing the EER graphs for different tag structures, it can be seen that the

EER for the grouped tag structure of classes decreases as the spatial
correlation range increases.

EER

b 4 b

Figure 3.6 Values of the EER for different STL and parameter estimates.

. . STLG ST, -
For comparison, the ratio x = EER /EER is calculated in Figure 3.7.

Different covariance functions are used for the curve graphs, differing by the
range parameter ¢ . As the distance between populations increases, so does

the advantage of the clustered structure of class markers.
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Figure 3.7 Curves of x values with different ¢ .

A feature values vector Z model by GRF is investigated. During the
experiment, the classification is performed for three classes. STL with the
grouped label (STLG) and the mixed label (STLM) distributions are
investigated. The comparison of STL structures is made based on the values

of the EER incurred by the classification rule based on the PBDF W ® (ZO,‘?)
(1.14). The simulation experiment shows the advantage of STLG approach
over STLM. This advantage is more significant for strongly separated
populations (larger values of b) than for close populations. The results give us

strong arguments to expect that STLG structure of spatial population could be
effectively used in spatial Gaussian data classification incurred by PBDF.

T-distributed Random Field. After observations from GRF classification,

the TRF observations models are analysed. Assume that Z(S) is a TRF

observationand s e D represents a location where the observations are taken.
Let D<R? that denotes a spatial domain of interest is a regular 2-

dimensional lattice with unit spacing. A selected STLs S, S,,, contain 8 and
24 neighbours of focal location S,. Different STL is selected to evaluate
whether the number of neighbours influences error rate estimations. Each STL
is partitioned into a union of two disjoint subsets, i.e., Sy = SUUS?  where
N is a training sample size (in this situation equal to the number of neighbours)
S is a subset of Sy thatincludes N, locations of the feature observations

from Q,, 1=1,2. Itis assumed that STLs are fixed and configurations used in
this stage are shown in Figure 3.8.
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FO Z,=Z(s,), where s, =(1,1) is the observation from TRF and can be

described by TRF class-conditional density function with conditional mean
and conditional scaling parameter expressions (1.17) and (1.18). Conditional
mean expression depends on the (marginal or non-conditional) mean

ty =X (s,)/3.for class I. In the case where the mean is constant, variance is
known, o =1 with the isotropic exponential covariance function specified
by c(d;)=exp{-d; /¢}, where d; is the Euclid distance between spatial

points, ¢ is arange parameter that is chosen for analysis.

L] * . ] .
L . o o * L] .
o . o e o . .

Figure 3. 8 S, (left) and S,, (right) with S®, S® points that are marked as
asterisks and dots.

Two training samples for different STL (Figure 3.8) are simulated using
multivariate t-distribution with the selected parameter values: with different

mean x, which is chosen with the assumption that A = s — 12 >0, chosen

freely A:(O.5;0.7;...;1.5), different range parameter values chosen freely:

=(0.10.5;...:3.3) and the same variance o =1 inclass I,1=12. This set
¢=(

of parameters is chosen freely to study the dependence of AER estimates on
the considered population parameters. Each case is simulated 1000 times,
M =1000.

In the considered case, it is assumed that the mean parameters g, =12
are unknown. Population parameters are estimated using ML and LS methods,
to compare whether the parameter estimation method affects the classification
accuracy.
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Using the ML and LS methods, parameter ' =(3/, 3, ) estimates based on

A -1 A _
Zare [y =(XR_1X) XR7Z and f =(XX) "X Z . From the properties of
the multivariate t-distribution, it follows that
B ~Tog (ﬂ,GzRML(V—Z)/V,V)) and Bs ~ Ty (B.0°Rs (v=2)/v,V)), with v

41
denoting  degrees of freedom, where RML=(XR_1X) and

R =(XX)™XRX(XX)™ with R being a spatial correlation matrix, X being
a design matrix for Z.

Population parameters estimates obtained using ML and LS methods in
each simulation will be used to solve the supervised learning classification
problem. The task is to classify z, into one of two populations when

x'(s0 )Bl # x'(s0 )ﬁz . The classification is performed using Algorithm 1. This

algorithm depends on the estimates of the population parameters as well as on
the probabilities of the class labels. In the case under consideration, class label
probabilities are estimated from the training sample. In different STLs (Figure
3.8) 7,=05.

After classification, the empirical estimators of AER, obtained using
Algorithm 3, are specified in (2.4) for each simulation. An empirical estimator
of the EER obtained by averaging AER over-runs is proposed as a measure
for comparison. Also, Bayes error rate estimates are received, when real

parameter values are used. The values of error rates are presented for S; and
for S,,, for different marginal Mahalanobis distances and for different range
parameters ¢ in Table 3.3.

By analysing the estimates in Table 3.3, it can be concluded that both
estimators of the EER monotonically decrease when A and ¢ decreases. For

J— J— ——ML
all cases EER >EER' for S, and S,,. For all cases, both EER and

LS
EER  are more significant than P?.
From Table 3.3, it can be concluded that the ML case has an advantage

over the LS case in the sense of the minimal value of the EER . It can also be
said that the inclusion of more neighbouring points reduced the classification
error estimates.

87



88

Table 3.3 Values of P°, EER™ and EER" for various A and 0.

A 0.5 0.7 0.9 11 1.3 15
¢ | Error type S S,, S S, S S, S S,, S S,, S S,,
F’OB 0.3467 0.3467 | 0.2931 0.2930 | 0.2457 0.2456 | 0.2049 0.2048 | 0.1705 0.1704 | 0.1418 0.1417
0.1 EERML 0.3539 0.3501 | 0.3025 0.2971 | 0.2565 0.2501 | 0.2164 0.2095 | 0.1820 0.1750 | 0.1530 0.1461
EER LS | 0.3539 0.3501 | 0.3025 0.2971 | 0.2565 0.2501 | 0.2164 0.2095 | 0.1820 0.1750 | 0.1530 0.1461
F%B 0.3421 0.3426 | 0.2872 0.2879 | 0.2391 0.2399 | 0.1980 0.1989 | 0.1636  0.1645 | 0.1351 0.1360
05 EERML 0.3508 0.3470 | 0.2985 0.2932 | 0.2520  0.2457 | 0.2115 0.2048 | 0.1770 0.1702 | 0.1480 0.1414
EERLS 0.3510 0.3472 | 0.2988 0.2935 | 0.2523 0.2460 | 0.2118 0.2051 | 0.1773 0.1705 | 0.1483 0.1417
POB 0.3213 0.3210 | 0.2617 0.2615 | 0.2114 0.2111 | 0.1700 0.1698 | 0.1366 0.1366 | 0.1101 0.1101
0.9 EERML 0.3327 0.3276 | 0.2762 0.2694 | 0.2273  0.2196 | 0.1862 0.1782 | 0.1522 0.1444 | 0.1246  0.1173
EERLS 0.3338 0.3298 | 0.2775 0.2719 | 0.2288 0.2223 | 0.1876 0.1809 | 0.1536 0.1470 | 0.1259 0.1197
F%B 0.2989 0.2992 | 0.2353 0.2357 | 0.1837 0.1842 | 0.1432 0.1436 | 0.1119 0.1124 | 0.0880 0.0885
13 EERML 0.3139 0.3093 | 0.2535 0.2473 | 0.2030  0.1960 | 0.1619 0.1549 | 0.1292 0.1226 | 0.1035 0.0975
EERLS 0.3167 0.3160 | 0.2567 0.2546 | 0.2063  0.2034 | 0.1652 0.1619 | 0.1324 0.1290 | 0.1064 0.1032
R)B 0.2789 0.2792 | 0.2127 0.2130 | 0.1612 0.1614 | 0.1223 0.1224 | 0.0935 0.0934 | 0.0722 0.0720
1.7 EERML 0.2983 0.2915 | 0.2348 0.2265 | 0.1833  0.1747 | 0.1429 0.1347 | 0.1118 0.1043 | 0.0880 0.0814
EERLS 0.3032 0.3000 | 0.2401 0.2362 | 0.1886  0.1845 | 0.1479 0.1439 | 0.1162 0.1125 | 0.0918 0.0885

Continued on next page
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Table 3.3 Continued from previous page.

A 0.5 0.7 11 1.3 1.5
¢ | Error type S S, S S, S S, S S,, S S, S S,,
PP 0.2592 0.2598 | 0.1910 0.1916 | 0.1400  0.1407 | 0.1032 0.1037 | 0.0768 0.0773 | 0.0580 0.0584
2.1 EERML 0.2822 0.2719 | 0.2161 0.2047 | 0.1643  0.1531 | 0.1249 0.1147 | 0.0955 0.0866 | 0.0737  0.0662
EERLS 0.2878 0.2831 | 0.2223 0.2174 | 0.1704  0.1657 | 0.1305 0.1263 | 0.1005 0.0968 | 0.0780  0.0749
R)B 0.2447 0.2456 | 0.1759 0.1770 | 0.1261 0.1273 | 0.0911 0.0923 | 0.0668 0.0679 | 0.0498  0.0508
2.5 EERML 0.2670 0.2585 | 0.2001 0.1903 | 0.1490 0.1396 | 0.1113 0.1029 | 0.0837 0.0767 | 0.0637  0.0579
EERLS 0.2724 0.2740 | 0.2061 0.2069 | 0.1550 0.1553 | 0.1167 0.1168 | 0.0884 0.0884 | 0.0677 0.0676
PP 0.2311 0.2280 | 0.1621 0.1588 | 0.1137 0.1106 | 0.0808 0.0780 | 0.0584 0.0560 | 0.0431 0.0411
2.9 EERML 0.2549 0.2382 | 0.1867 0.1697 | 0.1362 0.1207 | 0.0999 0.0866 | 0.0742 0.0630 | 0.0560  0.0467
EERLS 0.2619 0.2566 | 0.1944 0.1885 | 0.1436 0.1376 | 0.1065 0.1008 | 0.0798 0.0745 | 0.0606  0.0558
R)B 0.2188 0.2169 | 0.1499 0.1482 | 0.1032 0.1017 | 0.0722 0.0709 | 0.0516 0.0506 | 0.0377  0.0369
3.3 EERML 0.2460 0.2315 | 0.1771  0.1623 | 0.1273 0.1139 | 0.0923 0.0809 | 0.0679 0.0584 | 0.0508 0.0430
EERLS 0.2536  0.2478 | 0.1850 0.1800 | 0.1345 0.1304 | 0.0984 0.0951 | 0.0728 0.0703 | 0.0547  0.0527

Concluded




The visual comparison of these two cases of parameter estimators is also

made by plotting the index x = EERML/EERLS values. The dependence of the
values of x the index for S,, on the distance between populations A for the
parameter ¢ is shown in Figure 3.9.

K

¢

D:S'_c_s o7 05 11 13 A 15
Figure 3.9 Curves of x values for ¢ and S,,.

When the parameter ¢ is constant, the values of the index « decreases when

the distance between populations increases. This trend is more obvious when
the analysed parameter ¢ values increase in the interval [0.5, 3.3] by 0.4. The

dependence of the values of x the index on the parameter ¢ for A is shown

in Figure 3.10. When the parameter A is constant then values of the index x
decrease when the parameter of the covariance function ¢ increases. This

trend is more obvious when the analysed distance between populations A
values increases in the interval [0.5, 1.5] by 0.2.

The simulation experiment shows the advantage of the PBDF based on the
ML estimator against the one based on the LS estimator. This advantage is
more significant for the cases with stronger spatial dependence between
observations (i. e., larger values of ¢). This conclusion is valid for the

different distances between populations A. Hence the results give us strong
arguments that often intractable ML estimators of spatial mean parameters
should be used in highly correlated spatial data modelled by TRF, and the
simpler LS estimators could replace these estimators for weakly correlated
spatial data without significant loss of the PBDF performance.
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Figure 3.10 Curves of « values for A and S,,.

Spatial auto-beta model (SABE). The next stage of work is applying the
classification procedure to observations from an exponential family of
distributions. At this stage of the study, it is chosen to solve the classification
problem for a univariate observation from beta distribution using Algorithm
1, when the auto-models are used for spatial information incorporation into
the data model.

Assume that Z(s) is a RF with conditional beta distribution observation

and se D represents a location where the observations are taken. Let

D — IR? that denotes a spatial domain of interest be a regular 2-dimensional
lattice 16x16 with unit spacing. Assume that feature values belong to the
interval (0,1) and the class label takes only the value 1 or 2. A class label for
spatial locations is assigned at random with probability 0.5. The area
comprises training and testing location sets (80% and 20%, respectively). A

selected STL S, consists of 205 spatial locations. STL is partitioned into a

union of two disjoint subsets of locations, i.e., Sy = SWUS? where SV
is a subset of S, that includes N, locations of the feature observations from

Q,, 1=1,2. Itisassumed that STL of fixed training locations with known class

labels and feature observations and testing sample with 51 spatial locations is
created. A configuration used in this stage is shown in Figure 3.11.
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Figure 3.11 STL and testing sample for the auto-beta model.

FO Z,=Z(s,), where S, is a focal location, is the observation from RF

with conditional beta distribution, and can be described by conditional density
function (1.28) with conditional mean and conditional precision expressions
(1.29), (1.30). Conditional mean and conditional precision expressions depend
on the natural parameter A, for class I, 1 =12 where h is a sufficient
statistics index. The beta distribution has two sufficient statistics, so there are
two A, expressions (1.30) for different classes I, 1=12. Two types of

parameters are used in the A, , parameters represented large shape variation,

these parameters are different for population €2, , 1=12 and parameters
represent small shape variation and spatial information between Z, and

training sample observations, which are common for population €2, , 1=1,2.
At this stage, large shape variation is chosen to be modelled using spatial
location coordinates. Values of coordinates x;,x, are included in the model
as regressors with corresponding parameters, for the population €2, , 1=1,2.
Since for beta distribution, there are h, h=1,2 natural parameter expressions
A, forclassl,1=12.itis chosen to include spatial coordinates with different

parameters in each of them i.e., ™, 8" where I is a class index, 1=1,2, h

denotes an index of sufficient statistics, h=12, and an upper second
superscript denotes a regressor index (coordinates).

In this empirical investigation, spatial dependence parameters with first-
order neighbours are used to describe small shape variations with spatial
information. First-order neighbours are chosen to define the NN set for FO,
required for the creation of auto-models (detail in subsection 1.3). First-order

neighbour scheme: each spatial location S, € D has four nearest neighbours
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spatial locations denoted as NN set:
NN, ={s, =i+(10),s, =i-(10), s, =i+(0,1), s, =i—(0,1)} with
neighbour adjustments near the boundary and S;, is a neighbour of §; form
east, n denotes north, w denotes west, s denotes south. Two parameters 7,7,

are chosen to describe spatial dependence: 7, denotes spatial dependence
between Z, and east-west direction first-order neighbours from training

sample observations and 77, denotes spatial dependence between Z, and

north-south  direction first-order neighbours from training sample
observations. The dependence of the feature values on the spatial location
coordinates and the neighbouring points’ feature values are investigated when

natural parameter values Aljh specified in (1.30) get the expressions:
11 12
A(In :ﬂl( )X1(So)+ﬂ|( )Xz (So)_

i (InfL-2,)+In(1-2,,)) -7, (n(1-2, ) +In(1-Z,), (3.2)

Al)z = ﬂ|(21)X1 (So ) + :Bl(ZZ)Xz (So )

- (In(2,,)+n(2,,))-m (In(Z,,) +In(2,,)).

(3.3)

where Xi(SO),Xz(SO) are the coordinates of spatial location for Z;

Z,=2Z (sje) is a training sample feature value that belongs to the NN set of

FO Z,. In this case a set of parameters \P:{/-,?,(m),ﬂ,(“z),nl,nz, h, 1 :1,2}.

Using (3.2) and (3.3), the conditional mean (1.29) and conditional precision
(1.30) expressions are obtained and used to define the conditional density
function (1.28) and RF observations can be simulated, choosing the
appropriate values of the model parameters. In this empirical study, RF with
conditional beta distribution observations is simulated using Algorithm 2 with
natural parameter expressions (3.2) and (3.3). A few different scenarios are
chosen that differ in model shape defined by parameter values ¥, and
parameter values are chosen freely. Two types of parametrical structures are
chosen: when all parameters are fixed except the class 2 regression parameters
and when the spatial dependency parameter that describes the effects of the
north-south neighbourhood points is changing. Selected parameter values are
presented in Table 3.4.
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Table 3.4 Parametric structures.

Parameter | Structure
181 A B ﬂl = l4

A , .
B ﬂz 2(1,1, ﬂ2(21),ﬁz(22)),ﬂ§21) :,Bz(zz)lﬂ _ ﬂz(zz) _ﬂl(zz)
£ =0.5;1;2;3;4;5;6;7;8;9;19; 29;39; 49

B =(112,2)
n A T :11772 =2
B m=1.1"=[n, —m| " =0,1,2:3,45,6;7:8,18;28,38;48

For each parameter set using Algorithm 2, feature value Z is simulated for
each point from STL, M =100. Visualisation of univariate densities for
different scenarios is presented in Figure 3.12. The class densities are defined
by structure A; with it, the classes become more distinct as the difference
between regression parameters denoted by A~ increases. The densities of the
classes are determined by structure B, and with it, the classes become less
divergent as the difference between spatial dependency parameters denoted

by 1" increases.

B
i I/ \‘
.‘"I l‘L / ‘\l\'\
/ fr\l._ _ y ' _[A:‘:;\,v;\:_
| - \ﬁ\';——-._
_ 4 o
A — | A f/\i\;aig
y W A - ——
A ,,/\\), -
- . /'.. \ .‘ s
- T ;xj—;, T (A : \-—-\ .

Figure 3.12 Univariate densities for different scenarios: structure A (left) and
structure B (right).

Population parameters estimates obtained using the MPL method in each
simulation will be used to solve the supervised learning classification
problem. This work focuses on the SABE and supervised classification
problem with fixed STL when training samples T are given. The task is to
classify Z, into one of two populations, the classification is performed using

Algorithm 1. PBDF WB(ZO,@) (2.8), used in Algorithm 1, depends on the
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estimates of the populations parameters and on the probabilities of the class
labels. Also, classification results are compared to the classification of FOs
using modified Linear Discriminant Function (LDF). The modified LDF
function is used where class conditional means and conditional dispersions are
used for the estimation. The modified LDF function:

1 2
ZO _:u()z_;:u()zj(’u(l)z _IUOZZ)

1 2 2_2
(72'06011 T 7 0012)

(3.4)

WL(ZO,\P)—[

+;/0(‘P),

with conditional variance o7, 1=1,2:
| |
Ho, (1_ Hoz )
1+,
where ,u('JZ , (/5(:2, | =1,2 are conditional mean and conditional precision for the

o :var(ZO‘Zj,‘P):

beta distribution specified in (1.29), 7, (W) =In(7;/z; ) . When a set of model

parameters ¥ is unknown, it is replaced by a set of its estimates ¥ . Plug-in
LDF (PLDF) WL(ZO,‘i’) is formed by plugging the estimators of the

parameters into (3.4). The AER associated with PLDF specified in (3.4) has
the following form:

P, (@)=Zzlﬂéﬁiz 1 (3.5)
where P, =P, ((—1)'W L (ZO,‘i’) > O) = [H ((—1)'W : (u‘P)) p, (u)du, with

B, = {u ‘ue (0;1)} is a scope of integration, probability measure I5IZ based on

conditional beta distribution with PDF p, specified in (1.28), | =1,2.

In the case under consideration class label probabilities are evaluated in
three different ways. First, the simplest probabilities are considered equal:
7y =0.5,1=1,2. The second way is when the probabilities are calculated

using the inverse distance function (1.2) with all training sample observations.
The third is when probabilities are calculated using inverse distance function
(1.2) for neighbour training sample observations of up to fourth-order.

After classification using Algorithm 1, the empirical estimators of AER,
obtained using Algorithm 3, specified in (2.9) for each simulation. An
empirical estimator of the EER, obtained by averaging AER over-runs is

proposed as a measure for comparison, EER (3.1). The EER® values based
on BDF for different class label probability evaluated methods and different
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population parameter structures with the simulated realizations M =100 are
presented in Figure 3.13.
In Figure 3.13 different curves reflect class label probabilities calculation

methods: structure A, where S* increases, and structure B, where spatial
dependency parameter 77" increases. According to Figure 3.13, the graph on

the left side shows that when /3" increase, EER® values decrease. It can be

concluded that populations become more separable. But the difference
between class label probability calculation methods is difficult to notice.

Figure 3.14 are presented ratios of EER® values denoted by «, the 3rd
method with 1st and 2nd. This graph shows that when the /3" increases, ratio
values decrease. It can be concluded that using the 3rd method, the
classification is more accurate. According to Figure 3.13, the graph on the
right side shows that when spatial dependency 7" increases, EER® values
increase too and classification accuracy decreases.

0,06
105 205 305 05 g* 0,000 10,000 20,000 30,000 40,000 77°

Figure 3.13 EER® values curves with different class label probability
calculations: structure A (left), structure B (right).

Figure 3.13 distinguishes a situation with the 3rd method, where class label
probabilities are evaluated using an inverse distance function (1.2) for

neighbour training sample observations of up to fourth-order. EER® values
are smaller than when probabilities are considered equal, or all training sample
observations are incorporated into the estimation.

96



3rd/1st

3rd/2nd

0,67
10,5 155 20,5 40,5 43,5 s

Figure 3.14 « values, curves with different class label probability
calculations for structure A.

FOs z, classification using WL(ZO,‘P) also is performed. The
quantitative comparison of the two cases of the parameter estimators is also
———B /———L
made using the index x, x=EER /EER values, which are shown in

Figure 3.15. In Figure 3.15. different curves reflect class label probabilities
calculation methods: Structure A, where 3" increases and structure B, where

n" increases.

BDF/LDF
1=
2nd
3rd

BDF/LDF
1=z
2nd

=

3rd
036
10 15 20 25 30 35 40 a5 7"

Figure 3.15 « curves concerning S and " values, 1st, 2nd, 3rd marks

method for class label probability estimation: structure A (first), structure B
(second).

In structure A, when /3’* =0.5,the k= EERB/EERL is greater than 1, and
LDF based classification rule W* (ZO,‘?) performs better. When 8 >1, the

Kk decreases and BDF based classification rule WB(ZO,‘P) (2.8) gains an
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advantage. In the structure A, when 77* is chosen less than 8, the « is less than

1, and BDF based classification rule performs better. When the 77* value is

selected 18 or greater, there are situations where LDF based classification rule
gains an advantage.
The Wilcoxon signed rank test is chosen to evaluate the statistical

comparison of the classification rules. This test is performed using EER
values. Wilcoxon signed rank test uses magnitude and sign of the paired
difference ranks. This procedure computes the differences between the
performance scores of two classifiers on different population parameters sets.
The results are presented in Table 3.5.

In Table 3.5, V is Wilcoxon signed rank test statistics. The null hypothesis

of this method: LDF and BDF EER values do not differ. The null hypothesis
can be rejected if the p-value is less than the selected significance level « .
Table 3.5 Wilcoxon signed rank test.

Class label probability
Structure Inverse distance Inverse distance for
Equal . . .
s with all training neighbour obs. of up to
probabilities
sample obs. fourth-order
A V =136, V =120, V =126,
(3.052e-05) (0.0007265) (0.0 02942)
B V =153 V =103.5 V =475,
(0.0003204) (0.07023) (0.1769)

According to the results in Table 3.5, it can be said that in structure A with a
rather small significance level (0.002942) LDF and BDF EER values differ
for different class label probability calculation methods. In structure B LDF
and BDF EER values differ for equal class label probability method and
when class label probabilities are estimated by inverse distance with all
training sample observations (0.07023).

The comparison of the two approaches to FO classification is made based

on the values of the EER . The proposed optimality criterion is based on the
AERs specified in (2.9) and (3.5). Based on the obtained results it can be
concluded that the inclusion of prior information related to focal locations and
training sample locations in the models influences the error rate estimates.
This influence increases significantly when the class label probabilities are
estimated using a selected NN set of training sample observations. The
simulation experiment shows the advantage of the approach based on BDF

W?®(Z,,¥) (2.8) against the approach based on modified LDF W"(Z,,¥)
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(3.4). This advantage is statistically significant for the examined parameter
sets structure A, with a difference between regression parameters £* and also

for models where spatial context information is included only in the class-
conditional probability distribution function expression.

In the next part of this chapter, the proposed classification Algorithm 1 is
applied to solve the problem with real data. The task of determining the type
of the bottom of the Baltic Sea is being solved, having algae coverage data
sample. The coverage observed values are expressed as a percentage. For this
reason, the SABE model is chosen for modelling these data.

3.3. Clasification Algorithm Application to Algae Coverage

The family of beta distributions offers a large variety of densities on bounded
intervals [a, b] or (a,b), which makes the beta models a potentially important

class of data models. These models can be applied to the analysis of rates,
proportions or concentration indices. Auto-models proposed by Besag (1974)
allow applying the properties of beta models in the study of spatial data. The
auto-beta models discussed in subsection 3.2 for simulated data at this stage
of the empirical investigation are applicable for modelling algae coverage and
solving the classification problem. The problem that is being solved is
identifying the bottom of the sea using black carrageen concentration data.
The classification problem is formed for two classes case: class 1 denotes no
presence of boulders; class 2 denotes presence of boulders.

A spatially sampled algae coverage ratio database of sampling locations
scattered in the Baltic Sea in the Lithuanian coastal waters between Palanga
and Sventoji is analysed. One of the examined algae species — black carrageen
(Furcellaria lumbricalis) — occurs in the Baltic Sea. The black carrageen
forms extensive zones of dense meadows attached to different substrates of
the underwater slope, such as gravel, cobble or boulders. The database is
provided by the Marine Research Institute of Klaipéda University. Black
carrageen concentration data used in this work is sampled at 641 spatial
locations in the southeastern Baltic Sea. The size of each area is 1 m2. Each
algae coverage collecting spatial location (geographical coordinates of the
site, wave generated orbital near-bottom velocity, Secchi depth, distance to
sand) is also extracted directly from this database. The array of data received
by the researchers is divided into two samples according to their expert
knowledge: training and testing samples. Training and testing samples are
selected to distribute the spatial locations throughout the study area. The data
is divided into training and testing samples of N =448, N, =354, N, =94
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and L=193, L =149, L, =44 spatial locations, respectively. Figure 3.16
shows the spatial positions of the sampling location.

The values of the feature of interest are the coverage ratio expressed as a
percentage. In the database, there are no feature values that have a value of
100%, so dividing the values by 100% gives observations that have values
from the interval [0,1). In this case, Z(s) is the spatial continuous

observation on a bounded interval [0,1), se D represents a spatial location,
where the observation is taken. Due to these characteristics, the beta
distribution is chosen for modelling feature values. The first stage of the work
consists of feature values modelling, analysing the dependence of the
following values on regressors: wave-generated orbital near-bottom velocity,
Secchi depth, and distance to the sand. During this stage for analysis of Z (s)

the following beta models are selected: GLM, Generalized Additive Model
(GAM) and GAM with Spatial Random Field (GAM SRF). These models
differ from each other in the chosen mean functions for beta distribution.
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Figure 3.16 Spatial position of sampling location in the Baltic Sea.

Data Modelling. Several beta regression models are developed in the initial
phase of data analysis. GLM and GAM (Zhang, 2004) have become standard
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tools for analysing the impact of covariates on possibly non-Gaussian
response variables. The only difference between GAM and GLM is that the
former permits including nonlinear smooth functions in the model. When real
data is at hand, the locations where it is picked are available. So the location
of sampling units affects the response variable, and thus there would be a
spatial correlation. A crucial question in setting up a spatial GAM for a
particular application is how to model various spatial covariate effects. The
spatial GAM is in the focus of this data modelling part. The spatial dependence
in this type of model can be considered by introducing the covariance
functions of location-specific random effects or/and implementing the smooth
spatial functions in the mean structure (Nadrabadi et al., 2018). The latter is
developed. The attention is restricted to the linear effects represented by
regressors and nonlinear smoothed spatial effects.

In the database, there are more than 70% zero values acquired by feature
values Z. In the R software, beta distribution models are created for random

variables that acquire values from an open interval (0,1) , data transformation

is necessary to be able to apply the already implemented function. For these
reasons, a simple transformation is made to modify the data by a small amount

Z"(s)=(Z(s)(N +M -1)/100+0,5)/ (N +M ). Further modelling uses the

transformed data and returns to the initial denotation: Z(s)=Z"(s), seD.

A beta regression model with different mean functions is chosen to be
examined when the logit link function is used to model the mean as a function
of covariates. The purpose of the logit link is to take a linear combination of
the covariates values of the function of covariates and convert those values to
the scale of a beta distribution mean, between O and 1. Consider that
conditionally on 4, the Z is an independent random field with the marginal

beta distribution. The model for Z, seD:

Z(s)~B(u(s).#(s)).
with marginal mean ,U(S) and marginal precision 1//(5). For the logit link
function:

logit(1(s))=xX(s) B+ (s),
where x(s) isa gqx1 vector of non-random regressors; £ isa qx1 vector of

regression  parameters, l//(S) is an unpenalised cubic spline

K
,,,(s) :ZBj (s,kj), where B, is a basis of a smoother, k; denotes a spline
j=1
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knot, K is a number of knots. This chosen model without spatial correlation
is called beta GAM. For comparison, a model with the same components is
chosen that includes spatial correlation. The model for Z, seD:

Z(s)~B(u(s).¢(s)).
for the logit link function:

logit(u(s))=x(s)B+w(s)+v(s),
where all components are equal to the model described above except the
random effect part v(s). {v(s):seD} is unobservable zero-mean
stationary GRF representing the random effects with
COV(U(S+h),U(S))=C(h) for all s,heD So v(s)~N(0,%), where

¥ is a non-diagonal covariance matrix. This model is beta GAM SRF.

The models described above are created for the analysed data to assess
whether the inclusion of spatial information affects the assessment of the
model's feasibility. To achieve this goal, Pearson residuals variograms, fitted
values and model selection criteria are analysed. Figure 3.17. shows the
sample variograms of Pearson residuals of beta GAM and beta GAM SRF.
Variogram of the model without spatial correlation indicated the presence of
spatial correlation in the residuals.

08
o
0.8
1

04
1
<@
-3
£
[+
L=

0.4

<
Sample variogram
1
<
<@

Sample variogram
©
o

0.0
o
0o
1

0 200 400 600 300 L] 200 400 600 &00
Distance Distance
Figure 3.17 Variograms of Pearson residuals: beta GAM without spatial
correlation (left), and beta GAM with spatial correlation (right).

The empirical variogram of the Pearson’s residuals from the non-spatial
model as discussed in Pfeiffer et al. (2008) indicates the presence of some
unexplained spatial variation in the residuals (Figure 3.17 left). The residual
spatial autocorrelation from the spatial model (Figure 3.17 right) gives a flatter
variogram with a smaller amount of residual variation than the non-spatial
model indicating that the spatial model has accounted for a larger amount of
the spatially correlated variation in the prevalence data than the non-spatial
model. Figure 3.18 shows fitted values versus the observed data. If the model
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performs well and the scatter is precisely on a 1:1 line, then an exact fit is
received, and the model is overfitting the data. Correlation coefficient values
for models are presented here and indicate that the model with spatial
correlation is considerably better.

This criterion is used for measuring the fit model with the given data. The
Deviance Information Criterion (DIC) is similar to Watanabe Akaike's
Information Criterion (WAIC). DICs and WAICs presented in Table 3.6 are
compared; beta GAM SRF has lower DIC and AIC values.
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Figure 3.18 Observed algae coverage plotted versus fitted values obtained by
beta GAM (left), and beta GAM SRF (right).

Table 3.6 DICs and WAICs criteria.

DIC WAIC
Beta GAM -1438.166 -1443.391
Beta GAM SRF -1521.901 -1531.754

Beta regression models without and with spatial effects are applied for the
black carrageen dataset. Validation results show that analysing algae coverage
utilising a beta regression model with random spatial random effect results in
a better fit. For this reason, when solving the classification problem, i.e.,
identifying the bottom of the Baltic sea using black carrageen concentration
data, it is decided to use spatial data models. Although GAM SRF hold one
assumption, conditionally on 4, the set Z is an independent random field.

After analysing the auto-models, it is decided to abandon this assumption and
to use SABEs and spatial zero-inflated auto-beta models for the description of

the feature values Z(s), seD.
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Classification. Auto-beta model. At this stage of the real data analysis, it is
chosen to solve the spatial classification problem: identifying the bottom of

the Baltic sea using black carrageen concentration as feature values Z(s),

seD. The classification problem is formed for two classes case: class 1
denotes no boulders; class 2 denotes boulders. Based on the fact that Z(s)

satisfies the properties of the beta distribution and also auto-models properties
it is considered that Z(s) is a RF observations with the conditional beta

distribution. So FO Z,=Z(s,), where S, is a focal location, is the
observation from RF with conditional beta distribution, and can be described
by conditional density function (1.28) with conditional mean and conditional
precision expressions (1.29), (1.30). Conditional mean and conditional
precision expressions depend on the natural parameter A\, forclass|, =12
where h is a sufficient statistics index. The beta distribution has two sufficient
statistics, so there are two A, expressions (1.30) for different classes I,

1=1,2. When compiling the models, it has been decided to include
geographical coordinates of the spatial locations, as covariates, just like SABE
for summarized data. The spatial dependence parameter 7 describes spatial
relationships between FO and training sample observations belonging to NN
of FO. The area where the data is collected D = R? is continuous and the NN
area for FO is defined by the distance. This distance is chosen based on how
far training sample observations will be considered as FO neighbours. The
dependence of the feature values on the spatial location coordinates and the
neighbouring points’ feature values are investigated when natural parameter
values A, specified in (1.30) get the expressions:
Atln = ﬂl(ll)xl (So ) + ﬂl(lZ)Xz (So ) - Z n In (1_ Zj ) )

Z;eNN,
j#0

Atl)z =ﬂ|(21)X1(SO)+,B|(22)X2(SO)— Z Uln(zj),
i
where Xl(So),Xz(So) are coordinates for Z; Z, =Z(sj) is a training sample
feature value that belongs to the NN setof FO Z; Z; e NN,, j=0. A set of
parameters is :{ﬂ,('“l),/;’,(“z),n; h,I :1,2}.

The NN areas are selected freely to analyse several situations of interest
and areas are defined at a selectable distance from the FO. In cases where the
area is 20 m, the points to be classified have no or very few neighbours. The
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distance is gradually increased, and situations, where more neighbouring
spatial location information is included in the FOs model, are examined.
Distances have been chosen by starting from 20 m and gradually increasing to
1 km. The other three distances are selected as follows. A distance is found
with which the NN field contains at least one observation from each class. In
this work, this distance is called the maxmin distance, i.e., 2852.204 m. The
other two distances are double maxmin distance and half the maxmin distance.
While analysing the data, the Euclidean distance is calculated, and the nearest
neighbour areas are shown in Figure 3.19.

20 m 50 m 100 m 500 m

1000 m 1426102 m 2852204 m 5704.408 m
Figure 3.19 Nearest neighbour areas with different distances for model
parameter estimation.

Eight SABE models and different NN areas of FOs for black carrageen
concentration modelling is compiled. Population parameters estimates are
obtained using the MPL method for the training sample in each model. The
estimates are provided in Table 3.7. They will be used to solve the supervised
classification problem, i.e. identifying the bottom of the Baltic sea.

The task is to classify Z, into one of two populations. The classification is
performed using Algorithm 1. Also, the classification results are compared to
the classification of FOs using modified LDF (3.4). In Algorithm 1 using
PBDF WB(ZO,\P) (2.8) and modified LDF (3.4) depend on the estimates of
the population parameters as well as on the probabilities of the class labels. In

the case under consideration class label probabilities are evaluated in three
different ways. First, probabilities are estimated based on the sample size:
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my =N, /N, 1=12. The second way is when the probabilities are calculated

using the inverse distance function (1.2) with all training sample observations.
The third option is when probabilities are calculated using inverse distance
function (1.2) for neighbour training sample observations of NN area for FO.
This NN area is defined by a maximum minimum distance, that is the distance
with which NN areas are formed for each FO, which contains at least one
training sample observation from each population ©,,1=1,2.

Table 3.7 Estimates of parameters.
Nearest neighbour areas

Parameter 20 50 100 500
o -7.82E-02 -6.70E-02 -5.49E-02 -0.0632
A 6.42E-03 5.51E-03 4.52E-03 0.0052
o 2.74E+00 2.20E+00 3.34E+00 2.4278
s -2.20E-01 -1.76E-01 -2.69E-01 -0.1946
o 2.41E-01 2.28E-01 2.18E-01 0.2232
Jii -1.93E-02 -1.83E-02 -1.75E-02 -0.0179
s 3.40E+00 3.11E+00 4.90E+00 3.9572
p?) -2.72E-01 -2.49E-01 -3.94E-01 -0.3172

n -2.98E+04 -4.60E+03 -111E+03 -30.8437

Nearest neighbour areas

Parameter 1000 1426.102 2852.204 5704.408
o -0.067 -0.0773 -9.71E-02 -0.097
i 0.0055 0.0063 7.96E-03 0.0079
s 2.4177 2.4879 2.67E+00 2.6778
s -0.1938 -0.1994 -2.14E-01 -0.2146
o 0.2297 0.2308 2.34E-01 0.2424
A -0.0184 -0.0185 -1.87E-02 -0.0194
s 3.954 4.0537 4.17E+00 4.3703
A -0.3169 -0.3249 -3.35E-01 -0.3503

n -13.9029 5.677 -1.07E-05 -0.0005

The maximum minimal distance has the following form:
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d

max min

=max_min (dj),
sieM sjeN =12\ Y

where di'j is a distance between FO S,S, €M and training sample

observation S;,S; € N,

After classification using Algorithm 1, the empirical estimators of AER,
obtained using Algorithm 3, are specified in (2.9) for each SABE model.
EER (3.1) values are proposed as a measure for comparison of classification

based on BDF (2.8) and modified LDF (3.4). The EER values for different
class label probability evaluated methods, and SABE models with different
NN for FOs are presented in Table 3.8.

Table 3.8 EER values for SABE models.

Class label probability
. Inv. distance, Inv. distance,
Sample size - S

Distance all training sample max min distance
of NN BDF LDF BDF LDF BDF LDF
20 8.52E-09 | 9.75E-09 | 1.09E-08 1.21E-08 | 1.60E-08 1.76E-08
50 0.001749 | 0.001715 | 0.001859 0.001861 | 0.001272 0.001322
100 1.87E-07 | 1.63E-07 | 1.83E-07 1.54E-07 | 1.90E-07 1.59E-07
500 0.001235 | 0.001218 | 0.001549 0.001402 | 0.001323 0.001542
1000 0.00109 | 0.001028 | 0.001041 0.001108 | 0.000958 0.001095
1426.102 | 0.000545 | 0.00056 | 0.000558 0.000586 | 0.00027  0.000608
2852.204 | 0.001254 | 0.001288 | 0.001312 0.001369 | 0.001514 0.00153
5704.408 | 0.001314 | 0.001364 | 0.001389 0.001423 | 0.001588 0.00162

The EER values in Table 3.8 marked in bold indicate the advantage of the
classification rule using BDF. It can be seen that the inclusion of contextual
information in the calculation of class label probabilities related to the distance
between the classified path and neighbouring locations from the training
sample highlights the advantage of using the classification rule BDF specified

in (5.13). A comparison of the ratio for the rules BDF and LDF values of EER

is given in Figure 3.20. Based on the EER values, when the distance between
the neighbours is between 20 and 50 m, the probability ratio approaches 1.
When the distance is 100 m, the ratio is more than 1, and thus the classification
rules based on LDF have the advantage. When the distance increases, the
probability ratio decreases and BDF based classification rules gain the
advantage. Also, when comparing different class label probability situations,
when the distance increases, the BDF advantage can be seen when class label
probabilities are calculated based on inverse distance, and the nearest
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neighbours are chosen on the maximum minimal distance to the different class
neighbours.

Set size v dist. Alltrain set nv. dist. Max min dist

Figure 3.20 Curves of x = EERB/EERL with respect to distance.

Based on the obtained results it can be concluded that the inclusion of prior
information related to focal locations and training sample locations in the
models influences the error rate estimates, and this influence increases
significantly when the class label probabilities are estimated using a selected
NN set of training sample observations. The simulation experiment shows the

advantage of the approach based on BDF W°®(Z,,¥) (2.8) against the
approach based on modified LDF W" (Z,,¥) (3.4).

These results are obtained for the transformed feature values Z*(s), to

accommodate beta distribution models. However, the models examined above
have not considered that there are more than 70% zero values in the data under
consideration. For this reason, the zero-inflated auto-beta model is chosen for
modelling the black carrageen dataset.

Classification. Zero-inflated auto-beta model. The initial values of the
feature range from 0 to 100. After dividing by 100, the values can be summed
up to [0,1), with more than 70% zero values. In this study, considering this
property of the data, it is chosen to apply zero-inflated regression models. For
data observed on [0,1) to model the data using a mixture of two distributions:
a beta distribution and a degenerate distribution in a value 0 are selected.

It is considered that Z(S) are RF observations with the conditional ZIB

distribution. So FO Z,=Z(s,), where S, is a focal location, is the
observation from RF with conditional ZIB distribution, and can be described
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by conditional density function (1.31) with conditional mixture parameter and
conditional PDF of beta distribution (1.28).

In order to specify the selection model for FO, it is enough to specify the
natural parameters expression A\ (1.32) for class I, 1 =1,2, where h is an
index of sufficient statistics of ZIB distribution index.

When compiling zero-inflated auto-beta models for black carrageen
concentration, it has been decided to include geographical coordinates of the
spatial locations, as covariates, just like SABE for black carrageen data. The
spatial dependence parameter 7 describes spatial relationships between FO

and training sample observations of non-zero values from the population
0, 1=12 belonging to NN of FO Z;=Z(s;)eNNy, Z;=Z(s;)#0,

Sj #Sy. The NN area for FO is defined by the distance just like for SABE
models. When modelling the conditional mixture parameter (the probability
of 0), a logistic function is chosen to include parameters A that represent
large scale variation to be different for every class I, p' represents spatial
relationships between FO and training sample observations from population

), 1=1,2 belonging to NN of FO Z; =Z(s;)e NNy, S; # Sy, 1=1,2. The

natural parameter values A, specified in (1.32) get the expressions:

A =B (50)+ A% (s5) = 2 min(1-2;),

Z;eNNg
Z;=0,j#0

AI)Z=ﬁ|(21)X1(SO)+ﬁ|(22)X2(SO)— Z Uln(zj)1

Z;jeNN}
Z,=0,j#0

Al ={Iog[ C(I)ZI J+ Be(A('Jl +1A, +1)}

1-c,,

and also mixture parameter is specified as

exp{l‘ + > p|B3(Zj)}

Z;eNNg, j#0

(1+exp{/l' + > Bs(zj)H
Z;eNNg, j#0

where Xi(SO),XZ(SO) are the coordinates of the spatial location for Z, the

|
COz =

class I,1=1,2, Z,=2 (sj) is a training sample feature value that belongs to
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the NN set of FO Z;, Z; € NNy, j#0, Bs(zj)=|(z-

J =0). In this case, a

set of parameters ¥ ={,b’;q,77,/1' o hlg=1, 2} .

The NN areas are selected freely to analyse several situations of interest
and areas are defined at a selectable distance from the FO. Distances have
been chosen at 1 km, 3 km, and 7 km. While analysing the data, the Euclidean
distance is calculated, and the nearest neighbour areas are shown in Figure
3.21.

1 km 3 km 7 km

Figure 3.21 Nearest neighbour areas with different distances for model
parameter estimation.

Compile three zero-inflated auto-beta models and different NN areas of FOs
for black carrageen concentration modelling. Population parameters estimates
are obtained using the MPL method for the training sample in each model.
The estimates are provided in Table 3.9. A more significant difference
between parameter values that differ by neighbour area can be seen between
n parameters that describe the influence of neighbouring points to the

classification point and between parameters that describe mixture parameters

Cp,. These parameter estimates are used in the PBDF W(ZO,‘i’)

z
specified in (2.10). They will be used to solve the supervised classification
problem, i.e. identifying the bottom of the Baltic sea.
The task is to classify Z, into one of two populations. The classification

is performed using Algorithm 1. In Algorithm 1 using PBDF W ® (Zo,\i’) (2.8)

depends on the estimates of the population parameters as well as on the
probabilities of the class labels. In the considered case class label probabilities
are evaluated in three different ways, the same as in the SABE model.
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Table 3.9 Estimates of parameters.

Nearest neighbour areas
Parameters 1 km 3 km 7 km all training set
ﬁl(ll) -0.998 -0.990 -0.987 -0.970
ﬂl(n) 0.084 0.083 0.083 0.080
ﬁl(Zl) -0.974 -0.974 -0.979 -0.994
ﬂl(zz) 0.090 0.091 0.088 0.088
,6'1(11) -0.987 -0.998 -0.982 -0.994
ﬂélz) 0.086 0.086 0.084 0.084
IB§21) -0.971 -0.993 -0.988 -0.992
,3;22) 0.096 0.096 0.091 0.087
n -0.035 -0.002 -0.012 -0.012
e -0.057 -0.792 -0.012 -0.108
P 0.079 0.039 0.010 0.005
22 -0.123 -0.099 -0.838 -0.996
p2 0.184 0.041 0.045 0.026

The values for the testing sample, when AER estimates are
calculated according to the BDF sign, with different class label
probability calculation methods, and zero-inflated auto-beta models
with different NN areas for feature values, are presented in Table 3.10.

Table 3.10 EER values for zero-inflated auto-beta models.

Class label probability Nearest neighbour areas

1km 3km 7 km all sample
Sample size 0.2435 0.2642 0.2487 0.2435
Inv. dist. max min 0.2021 0.2383 0.2228 0.2176
Inv. dist. all training sample | 0.2228 0.2487 0.2435 0.2383

Classification error rates can be compared between neighbour areas using
the results presented in Table 3.10. When class label probabilities are
calculated using the inverse distance function with maximum minimal
distance and the whole training sample, the classification error rates are
smaller when compared to the situation at different NN areas, and are the
lowest for the 1 km NN area. When class probabilities are calculated using the
training sample size, the lowest classification error rates are achieved using
the NN area with 1 km and the whole training sample. A study of calculating
class label probabilities using contextual information has shown that
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classification is better when taking a portion of the nearest neighbourhood
spatial location information. The lowest error rate is achieved using 1 km as
the distance for the nearest neighbour area and maximum minimal distance as
the class label probability inverse distance function. From here it can be
concluded that the NN area for class label probability calculation influences
classification errors in the studied cases.

3.4. Conclusions of the Section

This section presents the results of numerical experiments with simulated data
and the application to the real data. At first, a classification problem using a
classification rule based on GRF is analysed in a binary case. The comparison
of two approaches for parameter estimation is made based on the values of the

EER incurred by the classification rule based on the PBDF. The results give
us strong arguments to expect that BA estimators of spatial population
parameters can be effectively used in spatial Gaussian data classification
incurred by PBDF.

Also, a classification problem is analysed in a multi-class case using GRF
models. The simulation experiment shows the advantage of the STLG
approach over the STLM. This advantage is more significant for strongly
separated populations (larger values of b) than for close populations. The
results give us strong arguments to expect that the STLG structure of spatial
population could be effectively used in spatial Gaussian data classification
incurred by PBDF.

TRF are analysed, comparison of the two PBDF based ML and LS
estimators of the mean parameters is performed on the simulated values of the
empirical estimators of the ER. Hence the results give us strong arguments
that often intractable ML estimators of spatial mean parameters should be used
in highly correlated spatial data modelled by TRF, and the simpler LS
estimators can replace these estimators for weakly correlated spatial data
without significant loss of the PBDF performance.

A simulation data study is conducted to estimate and empirically compare
the BDF classifier with the LDF classifier for various parametric structures
and class label probability models. While considering the situations with
different prior probabilities, better results are achieved by including fourth-
order neighbours in calculating prior probabilities in cases when prior
probabilities are equal and when prior probabilities include all training points.

Real data analysis is performed to evaluate and empirically compare the
BDF classifier with LDF for different nearest neighbour sets of the classified
point for the SABE model and prior class probabilities models. Better results
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are obtained with minimal nearest neighbour area or nearest neighbour area
with all training set. Comparing different prior probability situations shows
that prior probability calculation using inverse distance function reduces the
classification error rate. Also, calculating prior probabilities using the inverse
distance function for a selected number of neighbours reduced the
classification error rate in contrast to using all training set points.
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GENERAL CONCLUSIONS

This work extends the application of supervised generative classification
methods for features with distributions of spatial contextual information
described by GRF and non-GRF models. An algorithm based on BDF has
been developed, which allows using supervised generative classification
models for feature values with distribution belonging to the exponential
(Poisson, binomial, gamma, beta, ZIB) and elliptical (t-distribution) families.
The conclusions obtained during the conducted research are presented below.

1. Acomparison of EER estimates, made to expand the use of supervised
generative models for the classification of GRF observations and to
investigate their effectiveness, revealed the superiority of the BA for
populations parameters estimation approach over the ML approach
when GRF observations are classified in the case of 2 classes. This
advantage is more significant for strongly separated populations than
for close populations, for the symmetric TLC as well as for the

asymmetric one. In the asymmetric TLC, the ratio EERML/EERBA

values monotonically increase from 1.0221 to 1.3938, when the
distance between populations increases from 0.5 to 1.9. The results
give strong arguments to expect that BA estimators of spatial
population parameters could be effectively used in spatial Gaussian
data classification incurred by PBDF.

2. Extending the application of supervised generative models to the
classification of GRF observations in the case of 3 classes and
investigating their effectiveness by comparing the EER estimates
showed the advantage of STLG over STLM. This advantage is more
significant for strongly separated populations than for close
populations in the studied situations with covariance functions
differing in the range parameter ¢, which takes the values 1, 2, or 3.

When ¢ =3, the ratio EERSTLG/EERSTLM values decrease from

0.7618 to 0.0029, with increasing the distance between populations.
The results give strong arguments to expect that the STLG structure
of spatial population could be effectively used in the GRF observation
classification incurred by PBDF.

3. In order to expand the use of supervised generative models for the
classification of TRF observations in the case of 2 classes and to
investigate their efficiency, the comparison of EER estimates
obtained during the application of the constructed model realization
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algorithm revealed the advantage of the ML population parameter
estimation method over the LS method. The increase of advantage is
recorded with increasing the distance between populations, as well as
when the range parameter ¢ of the covariance function increases.

When A=1.5, the ratio EERML/EERLS values decrease from 1 to

0.8159, when the range parameter ¢ of the covariance function grows

from 0.1 to 3.3. The results give strong arguments that often
intractable ML estimators of mean parameters for spatial data should
be used in highly correlated spatial data modelled by TRF, and the
simpler LS estimators can replace these estimators for weakly
correlated spatial data without significant loss of the PBDF
performance.

Setting side by side the EER estimates obtained during the application
of the constructed model realization algorithm to expand the use of
supervised generative models for the classification of features, whose
spatial distribution is described by the auto-Poisson, the auto-
binomial, the auto-gamma or the auto-beta model in the case of 2
classes and investigating their effectiveness, revealed that the model
realization algorithm based on BDF has the advantage over the
algorithm based on the modified LDF when the feature distribution is
described by the auto-beta model. This difference is statistically
significant when the classes are more separated. The ratio

—BDF /——LDF
EER /EER values decrease from 1.0018 to 0.0262, where the

difference between the regression parameters for different classes
increases from 0.5 to 49. The results provide arguments that allow us
to expect that the proposed algorithm based on BDF can be effectively
used in the classification of features whose spatial distribution is
described by the auto-beta model.

In order to evaluate the effect of including spatial information during
the calculation of class label probabilities, the comparison of EER
estimates revealed the advantage of the method where the class label
probabilities are calculated using the inverse distance function with a
defined NN area (Method 3) over the method where the probabilities

are considered equal (Method 1). The ratio EER " / EER values

decrease from 0,8608 to 0,6766. It is also confirmed by the study of
the bottom coverage data of black carrageenan algae. After
constructing the zero-inflated auto-beta model, the EER estimates are
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the lowest when neighbouring feature values within 1 km are included
in the FO distribution model. When the class label probabilities are
calculated using the inverse distance function with a defined NN area,
the EER estimate is 0.2021, and when the class label probabilities are
calculated using the training sample size, it is 0.2435. The results
provide an argument that including prior information related to FO
and training sample locations in the models reduces the classification
error.
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SUMMARY
IVADAS

Masininis mokymasis yra dirbtinio intelekto sritis, esminé augancios
duomeny mokslo srities sudedamoji dalis, kuri remiasi idéja, kad sistemos gali
mokytis i§ duomeny, nustatyti modelius ir priimti sprendimus. Taikant
statistinius metodus, algoritmai mokomi klasifikuoti arba prognozuoti,
atskleidziant svarbias duomeny savybes.

Masininio mokymosi algoritmai su visiSkai pazymétais duomenimis
priskiriami prizitrimojo mokymosi kategorijai. Prizitirimojo klasifikavimo
uzdaviniui spresti reikalingi maSininio mokymosi algoritmai, kurie iSmoksta
nustatyti naujy stebéjimy klas¢ pagal mokymo duomenis. Du pagrindiniai
prizitrimojo mokymosi modeliai: generatyviniai (angl. generative) ir
diskriminatyviniai (angl. discriminative) (Bishop ir Lasserre, 2007). Siame
darbe pagrindinis démesys skiriamas prizilirimiesiems generatyviniams
modeliams. MatematiSkai generatyviniai modeliai skirti bendro tikimybinio
skirstinio (angl. joint probability distribution) P(Z,Y ) nustatymui; ¢ia Z Zymi
pozymio reik§miy vektoriy, o Y zymi klasiy Zymiy vektoriy. Naudojant Bajeso
taisykle (angl. Bayes Rule, BR), pozymio reik§miy Z klasés salyginj tikimybinj
skirstinj (angl. class-conditional probability distribution) P(Z|[Y) ir klasés
zymiy Y tikimybinj skirstinj P(Y) , gaunamas salyginis tikimybinis skirstinys
P (Y |Z ) , kitaip — aposteriorinis klasiy zymiy skirstinys (angl. posterior class
distribution) (Duda R.O. ir kt., 2001).

P(Z |Y) iSraiska priklauso nuo tikimybinio skirstinio pasirinkimo, kuris

apraso Z su zinomu Y. Pasirinkimas atlieckamas atsizvelgiant j Z reikSmiy
savybes: tolydzios ar diskrecios reik§Smés, begalinis arba ribotas jgyjamy
reik§miy intervalas. Siame darbe nagrinéjami atvejai, kai Z skirstinys
priklauso eliptiniy arba eksponentiniy skirstiniy $eimoms. Sios eimos pla¢iau

pristatomos disertacijos 1 skyriuje. P (Z |Y ) iSraiSka taip pat priklauso nuo to,

ar Z reikSmés laikomos nepriklausomomis, ar turinéiomis statisting
priklausomybe, kurig galima apibrézti naudojant kovariacines funkcijas,
variogramas arba erdvinés priklausomybés parametrus apibréziancius rysius

tarp klasifikuojamo tasko ir jo kaimyny. P(Y) atspindi tyréjo apriorines

Zinias apie klasiy Zymes Y. Jvairios P(Z |Y) ir P(Y) israiskos leidzia igplésti
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Sve—

problemoms spresti.
Problema ir jos aktualumas

Paprastai sprendziant klasifikavimo problemas naudojant prizitirimuosius
generatyvinius modelius, vadovaujamasi stebéjimy nepriklausomumo
prielaida (Jana ir Kumar, 2016). Taciau erdviné informacija atlieka esminj
vaidmen] analizuojant ir suprantant jvairias mokslo sritis, pavyzdziui,
ekologinius, biologinius procesus (gamtos mokslus), biomedicing, inzinerija
ir socialinius mokslus. Erdviniame klasifikavime reikia atsizvelgti |
informacija apie duomeny (stebiniy) padétj erdvéje. Siame darbe erdvinés
kontekstinés informacijos savoka naudojama apibrézti erdvinés informacijos
itraukima j klasifikatoriaus struktiira. Erdvinio konteksto sgvoka, paprastai yra
naudojama vaizdy klasifikavimui, nurodant rysj tarp klasifikuojamo pikselio
ir jam gretimy pikseliy, kurie jtraukiami | modelius. Detalus erdvinio
kontekstinio klasifikavimo metody, skirty nuotolinio stebé&jimo vaizdy
klasifikavimui, palyginimas pateikiamas Li ir kt. (2014). Kontekstinio
klasifikavimo modeliai, kuriuose naudojama erdviné informacija kiekybiSkai
jvertinant erdvinius rySius, gali biiti naudojami vaizdy klasifikavimui ir
objekty aptikimui (Sun ir kt, 2016; Stabingis, 2019). Siame darbe
kovariacinés funkcijos ir auto-modeliai, kuriuos pasitlé Besag (1974),
naudojami erdvinei informacijai apibrézti, kuri susijusi su rySiu tarp
klasifikuojamo erdvés tasko ir kaimyniniy erdvés tasky. Erdvinés kontekstinés
konstrukcija gali buti atlickamas modeliuojant pozymio reikSmiy
pasiskirstyma ir (arba) klasés zymiy pasiskirstyma. Prizitrimyjy
generatyviniy modeliy su erdvine kontekstine informacija naudojimas
klasifikavimo uzdaviniams spresti Siame darbe vadinamas erdviniu
kontekstiniu klasifikavimu.

Kita klasifikavimo uzdaviniy prielaida yra ta, kad duomenys turi atitikti
Gauso skirstinj (Wang ir kt., 2020, Dreiziené¢ ir Ducinskas, 2021a). Sis
reikalavimas retai jgyvendinamas atliekant realiag duomeny analizg. Dél Sios
priezasties tyrimas turi atlikti tam tikras duomeny transformacijas.
Pavyzdziui, Box-Cox laipsnine, logit ir arcsinus transformacijos tiriamus
duomenis transformuoja taip, kad jie kuo geriau atitikty Gauso atsitiktinio
lauko (angl. Gaussian Random Field, GRF) savybes. Transformuotus
duomeny modelius yra sunkiau interpretuoti ir nebiitinai jie gerai atitinka GRF
savybes.
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Norint i$spresti klasifikavimo uzdavinius stebiniams, kurie apraSomi ne
GRF ir panaudojant erdving konteksting informacija, yra reikalingi nauji

klasifikavimo metodai, kurie praplésty priziirimojo generatyvinio
klasifikavimo algoritmy taikyma.

Tyrimo objektas

v —

Prizitrimojo generatyvinio klasifikavimo metodai (angl. supervised
generative classification approach), Bajeso diskriminantiné funkcija, (angl.
Bayes Discriminant Function, BDF), eliptiniy ir eksponentiniy Seimy
salyginiai skirstiniai (ang. elliptical and exponential families conditional
distributions).

Darbo tikslas ir uzdaviniai

Tyrimo tikslas — sukonstruoti prizitrimojo generatyvinio Kklasifikavimo
algoritmus, paremtus BDF ir skirtus poZymiams su erdvinés kontekstinés
informacijos skirstiniais, priklausanciais eksponentiniy ir eliptiniy skirstiniy
Seimoms.

Siekiant numatyto tikslo buvo suformuluoti Sie uzdaviniai:

1. praplésti prizitirimyjy generatyviniy klasifikatoriy, paremty BDF,
panaudojima pozymiams, apraSomiems GRF;

2. sukonstruoti prizitirimojo generatyvinio klasifikavimo algoritma,
paremtg BDF, pozymiams, aprasomiems T-skKirstinio atsitiktiniu
lauku (ang. T-distributed Random Field, TRF);
paremta BDF, pozymiams su erdvinés kontekstinés informacijos
skirstiniais, priklausanciais eksponentinei skirstiniy Seimai.

Tyrimo metodika

Literatiros apzvalga buvo atlikta siekiant jvertinti metodus, naudojamus
pozymio reik§miy modeliavimui su statistine erdvine kontekstine informacija,
klasifikavimo uZzdavinius duomeny modeliams su erdvine kontekstine
informacija. Darbe aprasytas erdvinés kontekstinés informacijos jtraukimas j
pozymio reikSmiy arba klasés Zzymiy tikimybinj skirstinj. Auto-modeliy
savybés panaudotos eksponentinés Seimos modeliams sudaryti. Sitilomo
generatyvinio klasifikavimo algoritmo sudarymui naudojamas BDF metodas,
paremtas vienmaciy sglyginiy tankiy (tikimybiy) funkcijy logaritmy santykiu.
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ISvestos tikrosios klaidos israiskos (angl. Actual Error Rate, AER) panaudotos
tikslumui jvertinti.

Empiriniame tyrime pasitilytieji klasifikavimo algoritmai buvo iSanalizuoti
naudojant simuliuotus ir realius duomenis, skirtus AER jvertinti. NeZzinomi
populiacijos parametrai buvo jvertinti naudojant Bajeso analizés (angl. Bayes
Analysis, BA), maksimalaus tikétinumo (angl. Maximum Likelihood, ML) ir
pseudo maksimalaus tikétinumo (angl. Maximum Pseudo-Likelihood, MPL)
metodus. Pasitlyty klasifikatoriy palyginimas atliktas panaudojant jvairias
klasiy zymiy funkcijas. Remiantis realiy duomeny pozymio reikSmiy
savybémis, auto-beta ir pertekliniy nuliy (angl. zero-inflated) auto-beta
modeliai buvo pasirinkti klasifikavimo uzdaviniui spresti.

Darbo mokslinis naujumas ir jo reikSme

erdviniy duomeny klasifikavimui. Pagrindinius Sios disertacijos indélius
galima apibudinti taip:

1. GRF stebinio klasifikavimo uzdavinio iSplétimas, parametry
vertinimui naudojant Bajeso metoda;

2. Kklasifikavimo uzdavinio sprendimas vienmaciam TRF stebiniui;

3. Kklasifikavimo uzdavinio sprendimas vienmaciam atsitiktinio lauko
stebiniui i§ eksponentinés $eimos skirstiniy, naudojant auto-modelius;

4. Klasifikavimo uzdavinio sprendimas vienmaciam Stebiniui Su
pertekliniy nuliy beta (angl. Zero-Inflated Beta, ZIB) skirstiniu.

Ginamieji teiginiai

1. BA metodas parametry vertinimui turi pranaSumg prie§ ML metoda
pozymiy, kuriy skirstinys apraSomas GRF modeliu, klasifikavimo
uzdaviniams.

2. ML metodas parametry vertinimui turi pranaSuma prie§ maziausiy
kvadraty (angl. Least Squares, LS) metoda vienmacio TRF stebinio
klasifikavimui.

3. Erdvinis kontekstinis Klasifikavimas, paremtas BDF, turi pranasuma
pries klasifikavima, paremtg tiesine diskriminantine funkcija (angl.
Linear Distriminant Function; LDF) pozymiams su beta skirstiniu.

4. Erdvinés informacijos, paremtos kaimynystés schemomis tarp
mokymosi aibés elementy, jtraukimas j naujo tasko vertinimg per
klasiy zZymiy skirstinj pagerina klasifikavimo tiksluma.
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Disertacijos strukttira ir apimtis

Disertacijg sudaro jvadas, 3 skyriai, i§vados, literatiiros sgrasas ir santrauka
lietuviy kalba. Ivade pateikiama jzanga j tyrima ir disertacijos apZvalga.
Pirmas skyrius yra skirtas darby analizei, susijusiai su prizitrimojo
generatyvinio klasifikavimo metodais bei erdviniy duomeny modeliais. Jame

v —

v —

klasifikavimo algoritmu. Siy funkcijy sudarymui naudojamos vienmaéiy
salyginiy tankiy (tikimybiy) iSraiSkos, apraSancios erdviniy duomeny
modelius. TreCiajame skyriuje pateikiami skaitiniai eksperimentai ir
pritaikymas. Bendrosios iSvados pristatomos po treciojo skyriaus.
Disertacijoje jtraukti 113 literatiiros Saltiniai; jie yra pateikti darbo pabaigoje.
Disertacijg sudaro 150 puslapiai, 21 paveiksly ir 10 lenteliy. Disertacija
parasyta angly kalba.
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1. ERDVINIO KONTEKSTINIO KLASIFIKAVIMO, SALYGINIU
ELIPTINIU IR EKSPONENTINIU SEIMU SKIRSTINIU
LITERATUROS APZVALGA

Siame skyriuje analizuojami darbai, susij¢ su erdviniy duomeny modeliavimu
ir erdviniu kontekstiniu klasifikavimu, remiantis BR temomis. Sitilomy
priziirimojo generatyvinio klasifikavimo algoritmy teorinis pagrindas
pateikiamas remiantis §iais darbais: [A1], [A2], [A3].

Erdviniy duomeny modeliavimas — tai tyrimo sritis, kai sudarant
statistinius erdviniy duomeny modelius atsizvelgiama j vietos informacija,
susijusig su tiriamu pozymiu ir jy saveika. (Banerjee ir Gelfand, 2003). GRF
modeliai, kurie apraSomi vidurkio ir kovariacinémis funkcijomis, placiai
nagrinéjami erdvinio statistinio modeliavimo literatiiroje (Cressie, 1993;
Diggle ir Ribeiro, 2007; Chiles ir Delfiner, 2012; Gelfand and Schliep, 2016).
Duomenims, turintiems daugiamatj simetrinj skirstinj, bet netenkinantiems
GRF savybiy, modeliuoti pasirinkti eliptinés Seimos skirstiniai, Kkurie
patraukliis savo tankio funkcijos iSraiSkomis (Kim ir Mallick, 2003, Boente ir
kt., 2014, Bankestad, 2020). Vienas i§ daznai sutinkamy yra t-skirstinys,
taikomas duomenims su sunkiomis ,uodegomis“ (angl. heavy tails).
Daugiamaciu atveju tai yra TRF, kuris turi naudingy analitiniy savybiy:
tiesinés kombinacijos turi t-skirstinj, o marginaliniai ir salyginiai skirstiniai
sudaromi islaikant tg patj principa (Roislien ir More, 2006, Nadarajah ir Kotz,
2008, Shah ir kt., 2014, Ding, 2016).

Kita svarbi skirstiniy Seima, taikoma statistiniam duomeny modeliavimui,
yra eksponentinés $eimos skirstiniai. Sie skirstiniai taikomi tiek tolydiems,
tiek diskretiems duomenims, turintiems simetrinj ar asimetrinj pasiskirstyma
(Zhang, 2002; Fitzmaurice ir kt., 2004, Peng X. ir kt., 2016, Chan ir kt., 2021).

Pereinant nuo erdviniy duomeny modeliavimo prie klasifikavimo
uzdaviniy, erdvinés kontekstinés informacijos sagvoka naudojama apibrézti
erdvinés informacijos jtraukimg j klasifikatoriaus struktiira. Switzer (1980)
vienas pirmyjy nagrinéjo erdviniy duomeny klasifikavima. Jo darbg pratesé
Mardia (1984), palygindamas klasifikavimo klaidas, kai stebéjimai laikomi
priklausomais ir nepriklausomais. GRF stebiniy statistinio klasifikavimo
uzdaviniai yra plac¢iai iSnagrinéti (pvz. Atkinson ir Lewis, 2000, Shekhar ir
kt., 2002, McLachlan, 2004). Taciau né vienas i§ paminéty autoriy
neanalizavo AER iSraisky. Klasifikavimo rizikg, susijusig su nekoreliuotais
steb¢jimais ir jvairiais mokymo imciy planais, tyré Ducinskas (1997). Véliau
Saltyte (2001), Saltyté ir Duéinskas (2002) pasiilé AER vidurkio
aproksimacijos formule skaliariniam geostatistiniam GRF stebiniui dviejy
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klasiy atveju. Véliau rezultatus apibendrino daugiamaciam erdvés-laiko
modeliui (Saltyté-Benth, Duginskas (2005). I$samy empirinj skirtingy
klasifikavimo procedury palyginimg galima rasti Atkinson ir Lewis (2000) bei
Berret ir Calder (2016) darbuose. Taciau visose paminétose publikacijose
buvo daroma prielaida, kad stebinys, kurj siekiama klasifikuoti (dar vadinama
fokaliniu stebiniu, (angl. Focal Observation, FO), ir mokymo imtis yra
nepriklausomi, t. y. formuojant diskriminantines funkcijas naudojami
marginaliniai FO tankiai. Sios nepriklausomumo prielaidos erdviniy duomeny
klasifikavimo uzdaviniuose pirmg kartg atsisaké K. Ducinskas (2009a,
2009b), pateikdamas klasifikavimo klaidos aproksimacijos formule, kai
nezinomos tikrosios vidurkio parametry reikSmeés bei naudojama kovariaciné
funkcija su nezinomu vieninteliu mastelio parametru, kitus parametrus laikant
zinomais. Dreiziené (2019) pasitlé klasifikavimo rizika vertinti, kai nezinomi
populiacijy parametrai, jtraukiant ir anizotropijos parametrus. Pasitlytas
erdviniy tiesiniy miSriy modeliy, paremty hibridiniu AER vertinimu,
palyginimo metodas. Nagrinétas pasiiilyto metodo pranasumas pries
indikatorinio krigingo metoda (Dreizien¢ ir Ducinskas, 2020). Buvo sukurtas
GRF stebiniy klasifikavimo metodas, paremtas BDF naudojant
semivariogramas (Ducinskas ir Dreiziené, 2021a). Taip pat nagrinétas
universalaus krigingo modelis, kai yra keletas populiacijy, apibrézty
skirtingais GRF su antros eilés regresijos parametrais; §is modelis iSreikstas
naudojant semivariogramas ir dispersijas (Duéinskas ir Dreiziené, 2021Db).

Conde ir kt. (2005) nagringjo eksponentinio skirstinio populiacijy
klasifikavimg dviejy ir daugiau klasiy atveju su nepriklausomais
kintamaisiais. Kleinman (2004) pasiilé metoda, paremtg apibendrintais
tiesiniais misriais modeliais, (angl. Generalized Linear Mixed Models,
GLMM) erdviniy duomeny klasterizavimui naudojant logistinés regresijos
modelj. Praktiskai taikant ligy protriikiy tyrime, erdviné priklausomybé buvo
pasalinta. Kauermann ir kt. (2010) pasiiilé naujg klasifikavimo algoritma,
pagrista faktoriy parinkimu ir GLMM pritaikyta logistine regresija. Sis
algoritmas taip pat naudoja neerdvinius GLMM. Kumar ir Misra (2014)
pasitlé klasifikavimo taisykles eksponentiniu skirstiniu apraSomoms
populiacijoms. Darbas prapléstas analizuojant eksponentinio skirstinio
vidurkio ir dispersijos parametrus nepriklausomy populiacijy atveju (Jana ir
Kumar, 2016; Jan ir kt., 2016).

Andrews ir kt. (2011) pasitlé nepriklausomy stebéjimy klasifikavimo
metoda, pagrista daugiamaciy t-skirstiniy miSiniais.

Batsidis ir Zografos (2011) iSvedé eliptinio atsitiktinio lauko steb¢jimy
klaidingo Kklasifikavimo tikimybiy pasiskirstymo funkcijos asimptoting
aproksimacijg. Taciau jie netyré vidutinés klaidos tikimybés (angl. Expected
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Error Eate, EER) aproksimacijy ir jver¢iy. Thompson ir kt. (2020) pasitlé
prizitirimojo generatyvinio klasifikavimo metodg nepriklausomy stebéjimy,
turin¢iy matricinj t-skirstinj (angl. matrix-variate t-distribution).

Remiantis nagrinétais literattiros Saltiniais galima daryti i§vada, kad BDF
paremtas erdvinis kontekstinis klasifikavimas yra atliekamas naudojant Gauso
diskriminantines funkcijas. Analizuojant susijusius darbus erdviniy duomeny
analizés tema, galima daryti iSvada, kad GRF savybiy netenkinantiems
duomenims modeliuoti naudojami ir kiti tikimybiy modeliai, tokie kaip t-
skirstinys, arba eksponentinés Seimos skirstiniai. Nauji erdviniy duomeny
klasifikavimo metodai leisty iSplésti prizitirimojo generatyvinio klasifikavimo
metody, paremty BDF, galimybes. Kitoje $io skyriaus dalyje pateikiama BR
pagrista kontekstinio klasifikavimo taisyklé, kurios pagrindu konstruojamas

v —

Gauso duomeny klasifikavimui.

Duomeny modelis. Nagrinéjamas atsitiktinis laukas (angl. Random Field,
RF) {Z(S):Se DcRd} aprasomas baigtiniamaciais skirstiniais (angl.
multivariate distributions). Pagrindinis tikslas yra vienmacio stebinio
Z,=2(S,), S, € D Klasifikavimas j vieng i§ m populiacijy €, , I=1...,m.
Pagal Beret ir Calder (2016) erdvés taskas s,, kuriame stebinys
klasifikuojamas, yra vadinamas fokaliniu erdvés tasku. IS to seka, kad
ankséiau aprasytas stebinys Z,yra vadinamas FO. Tegu R (Zo |Z = Z;‘P) -
salyginé¢ tikimybé, FOZ , kuris apraSomas diskreCiu skirstiniu, o
P, (ZO |Z =1, ‘P) — salyginé tankio funkcija, FO Z, kuris apraSomas tolydziu
skirstiniu, kai Z =z populiacijoje Q, |=1,...,m. Pagrindiné prielaida, kuria
remiamasi Siame darbe: duomenyse egzistuoja statistiné erdviné
priklausomybé ir salyginio tankio (tikimybés) funkcijos iSraiskos
apibréziamos jtraukiant kaimyniniy tasky pozymiy reik§mes. Si informacija
vadinama kontekstine informacija. Mokymo imties erdvés tasky aibé (angl.
Set of Training Locations, STL) t.y. S, ={seD;i=1..,N} apibrézia
mokymo imties erdving struktiirg (Shekhar ir kt., 2002).

Klasiy Zymiy tikimybés. Klasiy zymiy tikimybeés turi uzkoduota aprioring
tyréjo informacija apie klasifikavimo klases. Kai klasés subalansuotos,

paprastai klasiy zymiy tikimybés laikomos lygiomis. Sios tikimybés gali biiti
vertinamos naudojant mokymo im¢iy dydziy funkcijas. Taip pat galima daryti
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prielaida, kad klasiy zymiy tikimybés priklauso nuo FO ir jo kaimyny. Klasiy
zymiy tikimybés formulé populiacijai €, , kuri jtraukia kaimyniniy taSky
informacijq naudojant atvirkstinio atstumo funkcija, galima apibrézti taip:

S ]/du /Z J7/du 1.2)

jeNN

¢ia d; yra Euklido atstumas tarp erdvés tasky §; ir S, i, j=1

NN, = Z NNiI , Cia NN, erdves taSko S; artimiausiy kaimyny (angl.
1=1

Nearest Neighbourhood, NN) aib¢ populiacijoje €,,I =1,...,m. NN galima

apibrézti jtraukiant fiksuotg kaimyny skaiciy arba tam tikra erdvés sritimi su

fiksuotu atstumu nuo FO. NN aibés, naudojamos klasiy zZymiy tikimybiy

vertinimuli, ir sglyginio tankio funkcijy (tikimybiy) iSraiSkose; jos gali biti tos

pacios arba skirtingos.

Diskriminantiné funkcija. Taisyklé, minimizuojanti klaidingo klasifikavimo
tikimybe, yra vadinama Bajeso klasifikavimo taisykle (McLachlan, 2004,
Anderson, 2003). Tegu W ®(Z,,¥) zymi BDF dviejy klasiy atveju, paremta
santykiy logaritmu:

WB(ZO,I{,):InLpl(ZO|ZZZ;lP)J+]/’ (1.8)

pZ(ZO|Z :z;‘I’)

¢ia ¥ zymi modelio parametry rinkinj; y = |n(7ré/72'§). Pagal (1.8) z,, kai

duota Z =z yra priskiriama populiacijai €2 , jei W® (ZO,‘P) >0. Klaidingo
klasifikavimo tikimybé arba klaidos tikimybé, susijusi su Siomis
diskriminantinémis funkcijomis, uzrasoma taip (Anderson, 2003):

(%)= R, 19)

gia P, =P (( 1)'WB(ZO,‘P)20), P, tikimybinis matas, priklausantis nuo

Iz
FO Z,eQ, salyginiy klaidingo klasifikavimo tikimybiy, susijusiy su
P (Zo|2=2¥) ar R(Z,Z=2,%), 1=12.

Bajeso taisyklé yra optimali taisyklé, minimizuojanti klasifikavimo
tikimybe tais atvejais, kai populiacijos yra pilnai apibréztos. Praktiniuose
uzdaviniuose retai pasitaiko pilno populiacijy apibréztumo atvejy. Tuomet
nezinomos parametry reikSmés yra pakeiciamos jy jvertiniais ¥, gautais i$
mokymo imties. Tokiu buidu, diskriminantiné funkcija vadinama jterpta (angl.
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Plug-in) BDF (PBDF). Taigi, (1.8) formuléje nezinomas parametry reik§mes
pakeitus jy jvertiniais, gaunama W, (Zo,‘i’). Naudojant PBDF W, (Zo,‘i'),
galima apibrézti AER (Ducinskas, 2009):

RE(¥)- 278,
gia P, = P,Z((—l)'WB(ZO,‘i')ZO), 1=1,2.

EER gaunama apskaiciavus AER vidurkj, atsizvelgiant j mokymo imties
pasiskirstyma:

EER=E, (Poi (‘P)) . (1.10)

Analitiniy EER iSraisky paieSka yra sudétinga matematiné uzduotis, todél
Siame darbe empiriniai EER jverciai apskai¢iuojami naudojant AER israiskas.

Pereinant nuo Gauso skirstinio prie kity modeliy, nuspresta pasirinkti
eliptinés Seimos t-skirstinj, kuris turi naudingy analitiniy savybiy: tiesinés
kombinacijos turi tg patj pasiskirstyma, o marginaliniai ir sglyginiai skirstiniai
i8laikant tg patj principa.

Pereinant nuo simetrisky skirstiniy, siekiant iSplésti taikymo sritj,
pasirinkti eksponentinés Seimos skirstiniai, kurie apibiidina asimetrinius
duomenis su sunkiomis uodegomis. Pasirinkti daznai naudojami du diskretieji
skirstiniai: Puasono ir binominis. Taip pat pasirinkti du tolydieji skirstiniai:
gama ir beta. Erdviniy duomeny, apraSomy eksponentinés §eimos skirstiniu,
modeliavimui pasirinkti Besag (1974) pasialyti auto-modeliai, kurie sudaromi
remiantis dviem prielaidomis. Pirma, priklausomybé tarp pozymio reikSmiy
erdvés taskuose yra poriné. Antra, pozymio reikSmiy salyginis tikimybinis
pasiskirstymas priklauso eksponentinei skirstiniy Seimai. Kitame skyriuje
pateikiamos BDF ir AER israiskos, kurias sudarant naudojamos pasirinkty
skirstiniy vienmaciy salyginiy tankiy israiskos.
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2. PRIZIURIMOJO GENERATYVINIO KLASIFIKAVIMO
ALGORITMO KURIMAS POZYMIAMS SU ERDVINIU NE
GAUSO SKIRSTINIU, DISKRIMINANTINIU FUNKCIJU IR

AER ISRAISKOS

Siame darbe pagrindinis démesys skiriamas priziirimo generatyvinio
klasifikavimo algoritmui, kai klasifikavimas atlickamas naudojant BDF. Sioje
dalyje pateikiamos BDF israiskos, sudaromos naudojant salyginiy tankio
(tikimybés) funkcijy santykio logaritma, BDF bendras pavidalas pateikiamas
(1.8). Taisykliy kiirimo metodika suformuluota FO Z su pasiskirstymu i§

eliptinés arba eksponentinés Seimos, naudojant vienmates salyginio tankio
(tikimybiy) funkcijas. Paprastumo délei buvo iSnagrinéti atskiri populiacijy
atvejai, kurie gali buiti naudojami kaip baziniai sitilomy klasifikavimo funkcijy
panaudojimo pavyzdZiai. Sie pavyzdziai taip pat gali biiti apibendrinami ir
panaudojami  sprendziant klasifikavimo uzdavinius su  jvairioms
parametrinéms struktiiroms. Klasifikavimo tikslumui jvertinti iSvestos AER
israiskos. Siame skyriuje pateikti rezultatai publikuoti straipsniuose [A2],
[A3].

t-skirstinio modelis. Tegu FO Z, populiacijoje €, 1=1m turi salyginj t-
skirstinj su salyginiu vidurkiu g4, ir salyginiu mastelio parametru «,,. Dviejy
klasiy m=2 ir lygiy klasiy zymiy tikimybiy atveju, BDF apibrézta (1.8)
iSraiska Siuo atveju:

WB (ZO’\P):(ZO _%(Hél +1ngz)—06'(z - Xﬂ)j(ﬂéz _:ugz)’ (21)

Ga a=Rr ; I, yra vektorius, apibréziantis erdvine koreliacija tarp Z, ir
Z, R yra Z erdvinés koreliacijos matrica; z yra mokymo imties poZymio
reikimiy realizacijos, Z =z; X yraZ plano matrica; ' =(/3,/3,) yra 1x 2q
regresijos parametry vektorius; ( yra regresoriy skaicius; N yra mokymo
aibés dydis; ‘P={ﬂ',02,V} yra modelio parametry rinkinys; o’ yra

dispersijos parametras; v zymi laisvés laipsnius. Toliau laikoma, kad
regresijos parametrai yra nezinomi.

FO vidurkis ¢ =x.5,, 1=12, X(; yra neatsitiktiniy regresoriy vektorius
taSke s,, £, yra gx1 regresijos parametry vektorius klasei Q,,1=12. Tegu

Ay = ,ué - ,ug >0 ir sglyginis Mahalanobio atstumas A, = A, / (o- Lo ) ; Cla
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P, Zymi salyginés ir marginalinés dispersijos santykj. Tada PBDF iSraiSka

gaunama i§ BDF (2.1), vidurkio parametrus f pakeiciant jy jverciais ,B :
0 ' o 1 g Q '~ 2
WB(ZO,ﬂ):(ZO—a(z—Xﬂ)—EXOHﬂ)(XOGﬂ), 2.2)
suH =(|q, |q) ir G =(|q,—|q); cia |, yra q eilés vienetiné matrica.

Lema 3. Klaidos tikimybé, remiantis BDF W ° (Z,,¥) (2.2), apibréziama
taip:

PE(A) =S, (-8 12V 1 (v =2)C,(8)) ). (2.3)

Lema 4. AER, naudojant klaidos tikimybés israiska (2.3) ir PBDF (2.2),
galima iSreiksti taip:

Po? (:é) :gSHN (q )/21 (2.4)
gia Q =(-1) ((a, +6[;)sgn(x(;e/})/a /pog(z))J(v +N)/ (v+N-2),

kai & =x8-a'Xf, b=a'X-x,H/2; Sy(®) Zymi pasiskirstymo

funkcijg (angl. Cumulative Distribution Function; CDF) vienmacdiam t-
skirstiniui T,(0,1,N). Lemos 3 ir Lemos 4 jrodymai pateikiami disertacijos

2.1 poskyryije.

Auto-Puasono modelis. Tegu FO Z, populiacijoje ©,, 1=1,2 turi salyginj

Puasono skirstinj su salyginiu vidurkiu s,. BDF W®(Z,,¥), apibréztos
(1.8), israiska:
W (Z,, W) =(65 -6 )Zo — (115, — 113, )+ 7 » (2.5)

dia ¥ = {49('),/1('); =1 2} yra modelio parametry rinkinys; 7 =1In (ﬁé/ﬂg ) .

Lema 5. AER, susijusi su BDF (2.5), apibréziama taip:

PO? (ﬁl) = ”ézexp{zo In/[léz _/[léz - In(ZO ')}
B,

b [zexp{zo In 22— 72 —In(2, !>}J
B,
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Cia B, ={Z,:Z,eNU{0}W*®(Z,,¥)<0}
ir B, ={ZO 1 Z, eNu{O},WB(ZO,‘P)ZO} yra sumavimo sritys. Lemos 5

jrodymas pateikiamas disertacijoje 2.2 poskyryje.

Auto-Binominis modelis. Tegu Z, populiacijoje O, 1=12 turi salyginj

binomin;j skirstinj su fiksuoty bandymy skai¢iumi n, ir sékmés tikimybe

kiekvieno bandymo metu p,. BDF W®(Z,,'¥), apibréztos (1.8), israiska:
W®(Z,,%)=2,(6—6;)+n, (In(l— P, )—In(1- pgz))ﬂ/ , (2.6)

cia V¥ = {9&, P, 1=1, 2} yra modelio parametry rinkinys; 7 =1In (ﬂ'é/ﬂ'oz) .

Lema 6. AER, susijusi su BDF (2.6), apibréziama taip:

n,!

In| ———©°°~

PO?(‘?)=n32exp Lo!(no—zo)!
; +(ny = Z,)In(1- py, )

}+Zoln Py, +

.{L
+7T5| D EXP Z,}(ny —Z,)!
i +(ny = Z,)In(1- p3,)
tia B ={Z,:Z,eNU{0}W®(Z,,¥)<0}
ir B, :{ZO :Z, e NU{0} ,WB(ZO,T)ZO} yra  sumavimo  sritys,

Y= {éé,éoj} yra jvertinty modelio parametry rinkinys. Lemos 6 jrodymas
pateikiamas disertacijoje 2.2 poskyryje.

}rzoln e, +

Auto-Gama modelis. Tegu FO Z, populiacijoje €, 1=1m turi sglyginj

gama skirstinj su mastelio parametru &,, skirtingu kiekvienai klasei I, ir
formos parametru y,, . BDF, apibréztos (1.8), iSraiSka:

alz_azz azz
WB(ZO,‘P):(Ol—azO Z,+7%,,In a‘l’ +7, (2.7)

0z

gia ¥ = {aéz Vopr =1, 2} yra modelio parametry rinkinys; 7 =In (né/;zj) :
Lema 7. AER, susijusi su BDF (2.7), apibréziama taip:
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cia B, =P, (<2 W (25, %)20) = [H((-1)'W (u,¥)) p, (u)du, kai 1=1,2,

B, :{u u e(O;OO)} yra integravimo sritis, H(+) yra Heaviside Zingsniné
funkcija (angl. Heaviside step function). Lemos 7 jrodymas pateikiamas
disertacijoje 2.2 poskyryje.

Auto-beta modelis. Tegu FO Z, populiacijoje ), 1=1,2 turi salyginj beta

o . . — [ 0w .
skirstinj su vidurkiu g, ir tikslumo parametru ¢Oz apibréztais naudojant

natiiraliyjy parametry i3raiskas. BDF W ® (Z,, W), apibréztos (1.8), iSraiska:
WE(Z,, %)= (A — A )IN(Zy)+ (A — A% )IN(1-Z,) + 7, (¥), (2.8)
gia 7, (W) =In{m;Be(ay,.b;, )/ z3Be(ay.by, )}, Be(ay,by ) yra Euler Beta

funkcija su @, =A|)l+1, By =AI)2 +1; Al)h yra natiraliyjy parametry
iSraiSkos, skirtingos kiekvienai populiacijai Q, | =1,2, su parametry rinkiniu
W ; h yra beta skirstinio pakankamy statistiky (angl. sufficient statistics)
skaicius.

Lema 8. AER, susijusi su BDF (2.8), apibréziama taip:
l%?(‘i’)=iﬂél5.z : 2.9)
tia If’,Z:P,Z(( 1)'W(Z, ‘I’)>O) jH( )W (u ,‘i’))pl(u)du, kai 1=1,2;

B, ={u:u 6(0;1)} yra integravimo sritis; p, yra beta skirstinio salyginio

tankio funkcija. Lemos 8 jrodymas pateikiamas disertacijoje 2.2 poskyryje.

Pertekliniy nuliy auto-beta modelis. Tegu FO Z, populiacijoje Q,,1=1,2
turi salyginj ZIB skirstinj su miSinio parametru C(l)Z , vidurkiu g, ir tikslumo

parametru ¢, i% beta skirstinio salyginés tankio funkcijos. BDF W ® (Z,,¥)

, apibréztos (1.8), iSraiska:
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T, 1
WE (Z,, %) =1In on(2 [C%jl(zo=o)+
7[0 p2 COZ

+(1-1(2, —O))In(zl_ciz)J+
+(1=1(Z, =0))( Ay — AL )IN(Z) + (A, — AR ) In(1-Z,),

gia 1 () —indikatoriné funkcija.

Lema 9. AER, naudojantis jterptaja Bajeso klasifikavimo taisykle, susijusia
su BDF (2.10), kai m =2, apibréZziamas taip:

Pof(‘i’)=22)ﬁé|5.z (2.11)
dia B, =R, (<) W (20, ¥)20)= [H((-2) W (u, %)) p; (u)du,

B
B, :{u:u 6[0;1)} yra integravimo sritis; P, yra ZIB skirstinio salyginio

tankio funkcija, 1=1,2.

Aukscéiau pateikiamos BDF iSraiskos, leidziancios iSspresti porinio
klasifikavimo uzdavinius erdviniams duomenims, modeliuojamiems ne
Gauso skirstiniu. Tai jgyvendinama naudojant sitlomg prizidirimojo
generatyvinio klasifikavimo algoritma, pagrjsta sitilomomis BDF israiskomis.
Sitlomas algoritmas pateikiamas disertacijos 2.3 poskyryje. Taip pat
iSvedamos AER iSraiSkos, leidziancios jvertinti klasifikavimo tiksluma.
Tolesnéje dalyje pateikiami rezultatai, gauti pritaikius pasiiilyta algoritmag
atliekant empirinj tyrima.
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3. EMPIRINIS TYRIMAS IR DISKUSIJOS

Disertacijos treCiajame skyriuje pateikti skaitiniai eksperimentai ir taikymai.
Sioje dalyje trumpai pateikiami eksperimenty rezultatai.

AER jverCiai naudojami siekiant jvertinti diskriminantinés funkcijos
tiksluma klasifikuojant biisimus stebéjimus. AER jverciai priklauso nuo
mokymo imties steb¢jimy reikSmiy ir jy erdvés viety, kuriose buvo surinkti
steb¢jimai. EER, apibréztos (1.10), jvertinimai gaunami apskaiciuojant AER
vidurkj, atsizvelgiant | mokymo imties pasiskirstymga. Empirinis EER
jvertinimas, naudojamas disertacijoje, apibréziamas taip:

=== - s
EER" = le Poo (¥)/M (3.1)
¢ia Poi(i) (‘i’) yra AER jveréiai; & zymi skirtingus skai¢iavimo metodus; M

yra simuliacijy skai¢ius. Lyginant ﬁ(b) reikSmes atlickamas klasifikavimo
metody palyginimas.

Pirmame empirinio tyrimo etape atliktas GRF stebinio klasifikavimas
dviejy klasiy atveju, kai nezinomy modelio parametry vertinimui naudojami
BA ir ML metodai. Tyrimas atliktas simuliuotiems duomenims, 0 metody

palyginimas atliktas analizuojant indekso x, = EER " / EER reikimes.

2,25 £
=1

PA

3.3 pav. Indekso « reik§més skirtingoms TLC, M =10*.

Pateikiami rezultatai, kai simuliacijy skai¢ius M =10 ir &, k=12 Zymi
simetring ir asimetring mokymo Zzymiy konfigtiracija (angl. Training Labels
Configuration, TLC). 3.3. pav. matomos dvi vienodo elgesio augimo kreivés,
kurios atspindi BA metodo pranasumg prie§ ML metoda. Sis pranasumas

140



reikSmingesnis labiau besiskirian¢ioms populiacijoms (didesnés A
reik§mes). Sios i§vados galioja tiek simetrinei, tiek asimetrinei TLC.
Kitame tyrimo etape atliktas GRF stebinio keliy klasiy klasifikavimo

uzdavinio sprendimas. Klasifikavimo tikslumas vertinimas naudojant EER
(3.1) reikSmes, nagringjant situacijas su STL struktiromis: grupuota STL
(angl. Grouped STL, STLG) ir misria (angl. Mixed STL, STLM). Nustatyta, kad

EER mazéja didéjant klasiy atskiriamumui. Taip pat nustatyta, kad grupuotai
klasiy Zymiy struktirai EER mazéja didéjant erdvinés koreliacijos plociui ¢

(angl. range). EER reikSmiy santykio grafikas pateikiamas 3.7 pav.
Skirtingos kreivés atspindi skirtingas kovariacines funkcijas, kurios skiriasi
plocio parametru ¢ .

15 b 45

3.7 pav. EER reiksmiy santykis skirtingoms STL strukttiroms.

Tyrimas parodo STLG naudojanc¢io metodo pranaSumg prie§ metoda su
STLM. Sis prana§umas yra reikmingesnis labiau besiskirian¢iomis
populiacijoms (didesnés b reik§més) nei artimoms populiacijoms. Rezultatai
suteikia argumenty, leidZianciy tikétis, kad populiacijos STLG struktiira gali
biti veiksmingai panaudota erdviniy Gauso duomeny klasifikavime naudojant
BDF paremtg metoda.

Kitame tyrimo etape PBDF (2.2) funkcija pritaikyta stebéjimo i§ TRF
klasifikavimo uzdaviniui, kai parametry vertinimui naudojamas ML ir LS
metodai. Tiriama, kaip skirtingi statistiniai parametrai veikia klaidingo
klasifikavimo tikimybe. Taip pat tirta priklausomybé nuo klasiy Zymiy
struktiiros. Nustatytas ML pranasumas prie§ LS metoda; visais nagrinétais
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atvejais EERLszEERML. 3.9 pav. ir 3.10 pav. pateikiamos indekso
x=EER"/EER" kreivés.

11

0s 53 ——13
5

81
05 o7 08 11 wA s o1 08 11 16 21 26 ¢ 31

3.9 pav. xreikSmes, ¢ ir S,,. 3.10 pav. x reikSmeés, A ir S,,.

Tyrimas parodo ML vertinimu pagrjsto PBDF pranasuma, palyginti su tuo,
kuris pagrjstas LS vertinimu. Sis pranagumas yra reikimingesnis tais atvejais,
kai erdviné priklausomybé tarp stebéjimy yra didesné (t.y. didesnés ¢
reik§més). Si isvada galioja skirtingiems atstumams tarp populiacijy A .
Rezultatai suteikia svariy argumenty, kad daznai sudétingi erdviniy vidutiniy
parametry ML jverCiai turéty biiti naudojami labiau koreliuojantiems
erdviniams duomenims, modeliuojamiems TRF, o paprastesnis LS vertinimas
galéty pakeisti Siuos silpnai korelivojanéiy erdviniy duomeny jvercius be
reikSmingo PBDF nasumo praradimo.

Kitame tyrimo etape atliktas BDF (2.8) funkcijos taikymas stebéjimo i§
beta skirstinio atsitiktinio lauko simuliuoty duomeny klasifikavimo

uzdaviniui. Tiriama EER priklausomybé nuo klasiy zymiy tikimybiy
vertinimo esant skirtingoms parametrinéms struktiiroms. Pritaikyti trys klasiy
zymiy vertinimo metodai: 1 metodas, kai klasiy tikimybés laikomos lygiomis,
2 metodas, kai klasiy tikimybés skaiciuojamos pagal (1.2), FO kaimynais
laikant visus mokymo aibés taskus, ir 3 metodas, kai skaic¢iuojama pagal (1.2),
jtraukiant kaimynus, esancius iki ketvirtos eilés. Analizuotos dvi skirtingos
parametrinés struktliros. A struktGra naudojama, kai vertinamos klaidos

tikimybés didéjant skirtumui f° tarp regresijos parametry, apibrézianciy
skirtingas klases. B struktiira naudojama, kai vertinamos klaidos tikimybés

didéjant skirtumui 77" tarp erdvinés priklausomybés parametry, aprasanéiy
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priklausomybe nuo kaimyniniy tasky Siaurés—piety kryptimi ir vakary-ryty
kryptimi. Sie parametrai tarp klasiy nesiskiria. EER  reikimés, Kai
simuliacijy skai¢ius M =100, pateikiamos 3.13 pav.

=

metodais: A strukttra (kairéje) ir B struktiira (deSingje).

3.13 pav. kairéje puséje, matoma, kad didéjant S, EER' reik$més mazéja.
Visy kreiviy tendencija rodo mazéjancig klasifikavimo klaidos tikimybe,
taCiau sunku pastebéti klasés Zymiy tikimybiy skai¢iavimo metodo jtaka
gautiems jverciams. Dél §ios prieZasties 3.14 pav. pateikiamas EER reikSmiy
santykis, kai K zymi 3-ojo metodo santykj su 1-uoju ir 2-uoju. Siame grafike
matoma, kad didéjant ", santykio reikimés mazéja. Galima daryti iSvada,
kad naudojant 3 metoda, klasifikavimas atlickamas tiksliau. Pagal 3.13 pav.
desinéje esantj grafikg matyti, jog didéjant 77°, ﬁB reik§més taip pat didéja.
Tai reiskia, kad klasifikavimo tikslumas mazéja. I$siskiria situacija, kai klasiy

tikimybés skaiiuojamos pagal 3 metoda. EER  reiksmés didéja ne taip
sparciai, kaip kitais nagrinétais atvejais.

3rdf1st

Srd/2nd

0,67
05 55 105 155 205 255 30,5 355 405 455 g
3.14 pav. « reikSmiy kreives su skirtingais klasiy Zymiy skai¢iavimo
metodais naudojant A strukttirg.
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Klasifikavimas buvo taip pat atliktas taikant modifikuota LDF. Wilcoxon
(angl. Wilcoxon signed rank) testas naudojamas statistiskai jvertinti skirtuma
tarp klasifikavimo metody su BDF ir LDF. Gauti rezultatai pateikiami 3.5
lenteléje.

3.5 lentelé. Wilcoxon testas.

Klasiy zymiy tikimybés
Struktiira . Atvirks. atstumo, Atvirkstinio atstumo, NN
Lygios . . N
tikimybés NN su Yléals su kal.m.ynln.laTls steb.

mokymo aibés steb. iki 4 eilés
A V =136, V =120, V =126,

(3,052e-05) (0,0007265) (0,0 02942)
B V =153 V =103,5 V =475,
(0,0003204) (0,07023) (0,1769)

Cia V yra Wilcoxon testo statistika, 0 skliaustuose pateikiamos p- reik§més
(angl. p-values). Pagal gautus rezultatus galima teigti, kad analizuojant
situacijas apibréziama struktira A su reikSmingumo lygmeniu (0,002942).

LDF ir BDF EER reikSmés statistiskai skiriasi prie skirtingy klasés zymiy

tikimybiy skai¢iavimo metody. Strukttroje B LDF ir BDF EER reik§més
statistiSkai skiriasi taikant vienodas klasés Zymiy tikimybes ir kai klasés
zymiy tikimybés jvertinamos atvirkstiniu atstumu, naudojant visus mokymo
aibés steb¢jimus (0,070023).

Remiantis gautais rezultatais, galima daryti iSvada, kad iSankstinés
informacijos, susijusios su FO padétimi erdvéje ir mokymo aibés taSky
padétimi erdvéje jtraukimas j modelius turi jtakos klasifikavimo klaidai. Si
jtaka Zymiai padidéja, kai klasés zymiy tikimybés skai¢iuojamos naudojant
pasirinkta NN aibe i§ mokymo aibés.

Kitoje empirinio tyrimo dalyje atliktas generatyviniy algoritmy, pagrjsty
disertacijoje pasitilytomis PBDF, taikymas dugno tipo nustatymui vertinant
Sakotojo banguolio dumbliy (angl. black carrageen, lot. Furcellaria
lumbricalis) padengimg Baltijos jiros pietry¢iy priekrantés zonoje. Taip pat
atliktas AER vertinimas.

Dumbliy padengimo duomenys buvo surinkti 641 1 m? plotuose,

fiksuojant jy padengimg procentais. Buvo pasirinkti beta skirstinio ir ZIB
skirstinio modeliai. Beta skirstiniy Seima sitilo daug tankiy ribotame intervale
[a, b]. Dél savo universalumo Sie skirstiniai tampa svarbia skirstiniy klase
analizuojant tokio tipo duomeny tyrimus, kaip santykiy, proporcijy ar
koncentracijos. Dél Sios priezasties darbe tirti auto-beta modeliai tampa
erdviniy duomeny analizei reikSminga modeliy klase. Nagrinéjamuose
duomenyse yra daugiau nei 70 % nuliniy reik§Smiy. Tokiu atveju yra nattralu
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duomenis modeliuoti naudojant dviejy skirstiniy miSinj: beta skirstinj ir
i§sigimusj skirstinj, kurio verté 0 (angl. degenerate distribution in a value 0).
Dél sios priezasties pasirinktas ZIB skirstinio modelis.

Buvo isskirtos dvi dugno pavirSiaus klasés: |=1, kai dugno pavirsiy
sudaro ne rieduliai, ir 1 =2, kai dugno pavir$iy sudaro rieduliai. Erdviné
kontekstin¢ informacija j modelj jtraukiama trimis skirtingais btidais: aprasant
determinuoto trendo modelj jtraukiamos klasifikuojamo erdvés taSko
koordinatés, aprasant erdving priklausomybe apibréziamos NN sritys bei
vertinant klasiy Zymiy tikimybes.

Tikslas yra remiantis turima mokymo imtimi sudaryti tiksliausiag modelj,
kurj buty galima taikyti testavimo imties pozymio reikSmiy klasifikavimui
dugno pavirSiaus nustatymui. leskant geriausio modelio disertacijoje buvo
varijuojama NN srities parinkimu pasirenkant sglyginio tankio funkcijos
iSraiskas. Klasiy zymiy tikimybés buvo skaiiuojamos trimis metodais. 1
metodas pagal stebéjimy skaiciy kiekvienoje populiacijoje, 2 metodas pagal
(1.2) formule, kai FO NN sritis apibréziama maziausiu galimu atstumu taip,
kad joje buity bent po 1 mokymosi aibés taska i§ kiekvienos populiacijos. 3
metodas pagal (1.2) kai FO NN sritis apima visus mokymosi aibés taskus.

Klasifikavimo metody su BDF (2.8) ir LDF EER reikSmiy santykio

K= ﬁs / ﬁl- palyginimas pateiktas 3.20 pav. Kai atstumas tarp kaimyny

yra nuo 20 iki 50 m, tikimybés koeficientas artéja prie 1. Kai atstumas yra 100
m, santykis yra didesnis nei 1. Siuo atveju LDF pagristas klasifikavimo
metodas turi pranasumg. Kai atstumas didéja, K indeksas mazéja ir BDF
pagristas klasifikavimo metodas jgyja pranasuma. Taip pat lyginant skirtingus
klasiy Zymiy tikimybiy vertinimo metodus, kai atstumas didéja, BDF
pranasumas matomas, kai klasés zZymés tikimybés skaiiuojamos pagal 2
metodg.

Set size nv. dist. Alltrain set nv. dis. Max mindst

3.20 pav. « reikSmiy kitimas atsizvelgiant § NN atstuma.
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Remiantis gautais rezultatais galima daryti iSvada, kad ankstesnés
informacijos, susijusios su FO vietomis ir mokymo aibés stebéjimy vietomis,
itraukimas j modelius turi jtakos klaidos tikimybiy jver¢iams, o $i jtaka zymiai
padidéja, kai klasés zymés tikimybés jvertinamos naudojant (1.2). 3.10

lenteléje pateikiamos EER reik§més pritaikius pertekliniy nuliy auto-beta
modelj, kai AER jverc¢iai skai¢iuojami pagal BDF (2.10) zenkla testinei aibei.
3.10 lentelé EER reik§més pertekliniy nuliy auto-beta modeliui.

Klasés zymiy tikimybé Artimiausiy kaimyny (NN) sritis
1km 3 km 7 km all sample
Imties dydis 0,2435 0,2642 0,2487 0,2435
Atvirk. atst.su maks. min 0,2021 0,2383 0,2228 0,2176
Atvirk. atst. visa mok. aibe 0,2228 0,2487 0,2435 0,2383

Nustatyta, kad maziausi klaidy jver¢iai gaunami j modelj jtraukiant 1 km
atstumu esanciy kaimyniniy erdvés tasky informacijg. Taip pat pastebéta, kad
vertinant klasiy zymiy tikimybes yra tikslinga jtraukti tik artimiausiy kaimyny
duomenis. Remiantis gautais rezultatais galima daryti iSvada, kad
kontekstinés informacijos jtraukimas j modelius turi jtakos klaidos tikimybiy
jveréiams. Klasifikavimas yra tikslesnis, kai klasiy Zymiy tikimybés
skai¢iuojamos jtraukiant kaimyniniy taSky erdving informacija.
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BENDROSIOS ISVADOS

v —

taikymg pozymiams su erdvinés kontekstinés informacijos skirstiniais,
aprasomais GRF ir ne GRF modeliais. Sukurtas BDF paremtas algoritmas,
leidziantis panaudoti prizitirimojo generatyvinio Klasifikavimo modelius
pozymiams, kuriy skirstinys priklauso eksponentinei (Puasono, binominis,
gama, beta, ZIB) ir eliptinei (t-skirstinio) Seimoms. Toliau pateikiamos atlikto
tyrimo metu gautos iSvados.

1.

sve—

GRF stebiniy klasifikavimui ir istirti jy efektyvumg, atliktas EER
jverCiy palyginimas atskleid¢ BA populiacijy parametry vertinimo
metodo pranasuma prie§ ML metoda, kai klasifikuojami GRF
stebiniai 2 klasiy atveju. Sis pranasumas yra reik§mingesnis stipriai
atskirtoms populiacijoms nei artimoms populiacijoms, tiek su
simetrine, tiek su asimetrine TLC. Esant asimetrinei TLC, santykio

EER / EER reik§més monotoniskai didéja nuo 1,0221 iki 1,3938,

kai atstumas tarp populiacijy auga nuo 0,5 iki 1,9. Rezultatai suteikia
svariy argumenty, leidzianciy tikétis, kad erdviniy populiacijos
parametry BA jverCiai gali buti veiksmingai naudojami PBDF
atliekant GRF stebiniy klasifikavima.

generatyviniy modeliy taikyma GRF stebiniy klasifikavimui 3 klasiy
atveju ir istirti jy efektyvuma, parodé STLG pranasumg prie§ STLM.
Sis pranasumas yra reik§mingesnis stipriai atskirtoms populiacijoms
nei artimoms populiacijoms tirtose situacijose su kovariacinémis
funkcijomis, besiskirian¢iomis ploc¢io parametru ¢, kuris jgyja

———STLM

reiksmes 1, 2 arba 3. Kai #=3, santykio EER . /EER

reik§meés mazéja nuo 0,7618 iki 0,0029, kai atstumas tarp populiacijy
didéja. Rezultatai suteikia svariy argumenty, leidzianciy tikétis, kad
erdvinés populiacijos STLG struktira gali buti veiksmingai
panaudota GRF klasifikavime, naudojant PBDF.

Palyginus sukonstruoto modelio realizavimo algoritmo TRF stebiniy
klasifikavimui 2 klasiy atveju, kai naudojami prizidirimieji
generatyviniai modeliai, siekiant praplésti jy panaudojima,
pritaikymo metu gautus EER jver¢ius, nustatytas ML parametry
vertinimo metodo pranasumas prie§ LS metoda. PranaSumas did¢ja
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didéjant atstumui tarp populiacijy, taip pat did¢jant kovariacinés
funkcijos plo¢io parametrui ¢ . Kai atstumas tarp populiacijy A =1,5,

santykio EER / EER reik§més monotoniskai mazéja nuo 1 iki

0,8159, kai kovariacinés funkcijos plocio parametras ¢ auga nuo 0,1

iki 3,3. Rezultatai suteikia svariy argumenty, kad daznai sudétingi
erdviniy duomeny vidurkio parametry ML jverciai turéty bati
naudojami  labiau  Kkoreliuojantiems erdviniams duomenims,
modeliuojamiems TRF, o paprastesnis LS metodas galéty pakeisti
Siuos jvercius silpnai koreliuojanciy erdviniy duomeny atveju be
reik§mingo PBDF nasumo praradimo.

Modelio realizavimo algoritmo, sukonstruoto siekiant praplésti
skirstinys erdvéje aprasomas auto-Puasono, auto-binominiu, auto-
gama ar auto-beta modeliu, klasifikavimui 2 klasiy atveju ir istirti jy
efektyvuma, pritaikymo metu gauty EER jveréiy palyginimas
atskleidé modelio realizavimo algoritmo, paremto BDF, pranasuma
pries algoritmg, paremta modifikuota LDF, kai pozymio skirstinys

apraSomas auto-beta modeliu. Sis skirtumas statistiSkai reikSmingas,
LDF

———BDF
kai klasés yra labiau besiskirian¢ios. Santykio EER / EER

reik§més mazéja nuo 1,0018 iki 0,0262, kai skirtumas tarp regresijos
parametry skirtingoms klaséms didéja nuo 0,5 iki 49. Gauti rezultatai
suteikia argumenty, leidzianciy tikétis, kad sitlomas BDF paremtas
algoritmas gali bti veiksmingai naudojamas klasifikuoti pozymius,
kuriy skirstinys erdvéje aprasomas auto-beta modeliu.

Siekiant jvertinti erdvinés informacijos jtraukimo per klasiy zymiy
tikimybiy skaiCiavima efekta atliktas EER jverciy palyginimas
atskleidé metodo, kai klasés Zzymés tikimybés skaiCiuojamos
naudojant atvirksStinio atstumo funkcijg su apibrézta NN sritimi (3
metodas), pranasuma prie$ metoda, kai tikimybés laikomos lygiomis

(1 metodas). Santykio EER " /EER"" reik§més mazéja nuo 0,8608

iki 0,6766. Tai taip pat patvirtino ir Sakotojo banguolio dumbliy (angl.
black carrageen) dugno padengimo duomeny tyrimas. Sudarius
pertekliniy nuliy auto-beta modelj, EER jverciai gauti maziausi, kai j
FO skirstinio modelj jtraukiami 1 km atstumu esantys kaimyniniai
taskai. Kai klasés zymés tikimybés skaiiuojamos naudojant
atvirkstinio atstumo funkcija su apibrézta NN sritimi, EER jvertis yra
0,2021, o kai klasés zymés tikimybés skaiCiuojamos naudojant
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mokymo imties dydj, jis lygus 0,2435. Rezultatai suteikia argumenty,
leidzianciy teigti, kad iSankstinés informacijos, susijusios su FO ir
mokymo aibés vietomis, jtraukimas ] modelius sumazina
klasifikavimo klaida.
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SUMMARY

The dissertation is devoted to supervised generative classification algorithms
for the contextual classification of data with statistical spatial dependence.
Original discriminant functions based on the plug-in Bayes classification rule
and Actual Error Rate (AER) expressions of these classifiers are proposed.
This doctoral thesis consists of the introduction, three chapters, conclusions,
bibliography, and summary in lithuanian language. The introduction presents
the research and an overview of the dissertation. The first chapter is designated
for related work analysis. The Contextual classification rule based on the
Bayes rule, general forms of Bayes Discriminant Function (BDF) and AER,
spatial data models and their descriptions by conditional density (mass)
functions are submitted. Chapter 2 presents the main results of the dissertation
related to the supervised generative classification algorithm based on BDF.
The BDFs are constructed using the log ratio of univariate conditional density
(probability) functions by incorporating the spatial context information into
the data models. The Actual Error Rate (AER) expressions of these classifiers
are proposed. The last chapter introduces the numerical experiments and
applications.
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