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ABSTRACT

Almost every programming language implementation contains a parser, which

is the software component that takes the program source code and builds a data

structure that can be used to process and translate the input programs. One re-

cent category of programming languages is extensible programming languages.

These are languages whose syntax (and possibly semantics) can be extended

without having to modify the compiler. Because the syntax of the language can

be changed dynamically, special parsing algorithms that support dynamically

changing grammar are needed to analyse such languages. After carrying out a

detailed analysis of existing parsing algorithms, we found that no single parsing

algorithm (as of the time of writing this work) fully satisfies our requirements

for parsing extensible languages. Therefore, we set out to create a new parsing

method that would be suitable for parsing such languages. The Earley virtual

machine (EVM) is the first iteration of such a parsing method. It is a gen-

eralised context-free parsing algorithm that can parse dynamically changing

grammars. We carefully describe how such an algorithm was constructed. To

ensure that the EVM can parse languages with acceptable performance, a suc-

cessor to EVM was created: the scannerless Earley virtual machine (SEVM).

The SEVM is an enhanced version of the EVMwith a focus on optimisation and

parsing performance. Finally, to ensure that the SEVM can be used for practi-

cal applications, an implementation of the SEVMwas developed and compared

to various existing parser implementations.

Keywords: Adaptive grammars, extensible programming language, extensible

parsing, Earley parser, generalised parsing, just-in-time compiler, reflective

parsing, scannerless parsing.
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1 INTRODUCTION

1.1 Importance and Motivation

Programming languages is one of the earliest topics of computer science.

Over the last 70 years, this field arose from non-existence to the abundance and

variety of programming languages we have today. This is arguably one of the

most important topics of computer science even today. A good programming

language enables the programmer to avoid mistakes while making the process

of programming and maintaining existing projects easier and cheaper. That

becomes even more apparent when considering the current direction of where

computing is headed: bigger and more complicated systems, the Internet of

things, and more distributed and parallel systems that are unlike anything seen

in our history. Even the tiniest home appliance may have a microprocessor

that runs a fragment of computer code written in one programming language

or another.

Much like everything else relating to computer science, programming lan-

guages are subject to constant change and evolution. It is worthwhile to re-

member that even ideas that are taken for granted today, such as structural

programming, procedures, and even variables, were a novelty at one point in

computing history. However, updating an existing programming language to

support new features is often a difficult and time-consuming endeavour.

One of the most popular and widely used programming languages, C++

has had four standards over the last two decades: C++98, C++11, C++14,

and C++17 (not counting the upcoming C++20). Hundreds of people from

all around the world participated in creating each of these four standards. Ev-

ery proposal had to be submitted in a specific format and had to be reviewed by

a committee comprising experts from various technology corporations, such as

Microsoft, Google, and Red Hat. To many people, this process may appear

daunting or off-putting, which could push potential participants away from

developing a future version of this language. Although it may appear that it

is certainly possible for a user to modify one of several existing open-source

C++ compilers and implement personalised changes, practically, it is infeasi-

ble because advanced knowledge of poorly documented compiler internals is

required to implement the desired changes. Furthermore, it is even more diffi-
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cult to maintain these changes because compiler fixes and updates are created

hourly for a language as large and complex as C++.

This is one of the reasons new programming languages are created every

year. Many developers find it easier to develop a new programming language

rather than to adapt an existing one to suit their particular needs. While this is

not inherently an issue because specialised programming languages are often

better suited to solve more particular problems, it does present a unique set of

challenges.

With larger and more complex projects being created every day, it is not

unusual for a project to use multiple programming languages at the same time.

Sometimes snippets of one computer language are embedded into another.

Even a website of moderate complexity may use five or more computer lan-

guages at the same time: HTML for data structuring, CSS for page appearance,

JavaScript for defining client-side behaviours, Ruby for page generation, SQL

for data lookup, and so on. Because of this, the aspect of integrating different

computer languages becomes increasingly important.

Often, the code of one programming language is represented as character

string literals in another. This is particularly common when using SQL from

another general-purpose programming language to access databases. When

processing text, regular expressions are used in a similar fashion. This ap-

proach of different integrations of computer languages is neither convenient

nor error-proof because errors in an embedded language code can only be de-

tected during runtime, and special symbols used in these ‘second-class’ lan-

guages often must be manually escaped.

However, what if one language could be properly embedded into another?

What if some desired functionality could be added to a target programming

language without having to modify the source code of the compiler? These

questions are a few of the primary motivators for researching a class of pro-

gramming languages called extensible programming languages. The core idea

behind such languages is that the language designers and implementers will

never be able to conceive of all the possible use cases of their programming

language. As such, the extensible language or its implementation should pro-

vide a means for the user to adapt and extend it without having to understand

every aspect of the language or its implementation and without having to mod-

ify the source code of the language compiler.
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Depending on the level of extensibility provided, extensible languages al-

low users to define new linguistic features. Some of these features may contain

completely new syntax and semantics that are not present in the base program-

ming language. More powerful extensibility methods may even allow the def-

inition of a new programming language within an existing one, thus enabling

a composition of programming languages that was previously impossible.

Unfortunately, the topic of extensible programming languages is a fairly

new one; thus, very few extensible programming languages exist. One of the

reasons for this is the lack of suitable parsing algorithms for such languages.

As a result, the focus of this work is the first part of implementing such a lan-

guage: parsing. It is a process that gives structure and meaning to an otherwise

seemingly random sequence of characters. Parsing them requires specialised

parsing algorithms because extensible languages can change while they are be-

ing used.

In this thesis, the scannerless Earley virtual machine (SEVM)method is pre-

sented. It is a new parsingmethod that is scannerless,1 can parse all context-free

languages, and supports dynamically changing (adaptable) grammars while

maintaining an acceptable parsing performance. Furthermore, the grammar

definition language for the SEVM is designed with extensibility in mind and

offers constructs that enable extending and reusing the existing grammars with-

out requiring manual modifications to the original grammars. All of these fea-

tures make the SEVM a perfect candidate for parsing extensible languages.

1.2 Problem Statement

The problem: virtual-machine-based scannerless parsing of reflectively

extensible programming languages, where dynamically changing grammars

with local grammar extensions are supported and grammars can be decom-

posed into several smaller grammars and their extensions.

Reflectively extensible programming (REP) languages are programming

languages whose syntax and semantics can be extended dynamically during

compilation without any compiler modifications. Because the grammars of

such programming languages can change dynamically during parsing, spe-

1Scannerless parsers perform tokenisation (breaking a stream of characters into words) and

parsing (arranging words into phrases) in a single step, rather than breaking it up into a pipeline

of a lexer followed by a parser.

19



cialised parsing methods are needed, which must satisfy the following require-

ments (see Section 3.1.1) for more a detailed explanation):

1. support for dynamically changing grammars,

2. scannerless parsing,

3. unrestricted context-free grammar support,

4. support for local grammar extensions, and

5. reasonable performance.

In traditional parsing methods, grammars are internally represented using

transition tables, which are used to encode the structure of a pushdown automa-

ton. These tables are then used to drive the parsing process. However, such

simple internal grammar representations are insufficient to encode the more

complex actions needed to support dynamically changing grammars.

For the parsing method to support dynamically changing grammars during

runtime, both the grammar definition language and its internal representation

must contain the additional elements needed to manipulate the actively used

grammar during parsing. Furthermore, to enable the grammar definition via

a smaller grammar composition, the parsing method must not use a dedicated

lexer (i.e. it must be scannerless). This further complicates the parsing process

because the lexical ambiguities that are normally resolved during the lexical

analysis must be eliminated within the parser. This further necessitates an ad-

ditional grammar definition language and its internal representation extensions.

As a result, a new internal grammar representation is proposed: instruction se-

quences, which are executed or interpreted by a virtual machine.

1.3 Research Goal and Objectives

The research object is the extensible programming language syntax analy-

sis. The research goal is the creation of a syntax analysis method suitable for

parsing reflectively extensible programming (REP) languages.

Objectives:

1. Definition of a grammar definition language,

2. Creation of a virtualmachine that would be suitable for generalised context-

free parsing with local grammar extensions,
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3. Definition of the overall parsing method (SEVM),

4. Lexical analysis integration (scannerless parsing),

5. SEVM proof-of-concept implementation, and

6. SEVM performance evaluation.

1.4 Defended Claims

1. No existing parsing algorithm matches the criteria needed to implement

a general REP language.

2. The Earley parser or its derivatives can be extended to support parsing

REP languages.

3. The proposed SEVM parser offers acceptable parsing performance for

practical use.

The requirements for an REP language parser are presented in Section 3.1.1.

The parsing performance is considered acceptable if the parse time is within one

order of magnitude of similar parser parse times. In the case of the SEVM, the

parsing performance would be considered acceptable if it can parse input at a

speed (within one order of magnitude) similar to other generalised context-free

parsing methods.

1.5 Research Methods

The first claim is proved by performing a critical literature survey and us-

ing conceptual analysis methods. First, the review criteria are defined (Sec-

tion 3.1.1). Then, all parsing methods that satisfy even some of the defined

requirements are analysed. Because no parsing method that satisfies all our

requirements is found, one parser family is chosen as a basis for constructing

an improved parsing method.

In the second phase of this work, research by design is applied. Two new

parsing methods based on the chosen parser family (Earley) are created. First,

the Earley virtualmachine (EVM) is constructed. The EVM is a parsingmethod

that satisfies the first four REP language analysis requirements. Then, the flaws

of the EVM are identified, which are then resolved in an improved version of

the EVM – the scannerless Earley virtual machine (SEVM).
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In the third and final phase of this research, a controlled experiment is con-

ducted. The SEVM is implemented and its performance is compared to other

parsing methods to demonstrate that the SEVM provides sufficient parsing per-

formance for practical application. To perform this comparison, two research

tools are implemented: bench_parsers and north_cli.

1.6 Results

The research results are the following:

• The new parsing method (SEVM) is suitable for REP language syntax

analysis.

• The SEVM grammar definition language is not only suitable for defining

real programming languages but REP languages as well.

• The bench_parsers research tool can be used to compare the perfor-

mance of different parser implementations.

• The north_cli research tool can be used to analyse and inspect the in-

ternal state of the SEVM parser.

1.7 Scientific Contribution of the Research

• The SEVM is a virtual-machine-based parsing method. Whereas virtual-

machine-based parsing methods have existed before, this is the first in-

stance in which a virtual machine is used to parse grammars as com-

plex as C or Rust. In parsing approaches based on virtual machines,

grammars are internally represented by a low-level computer language.

These grammars can then be subjected to domain-specific optimisation

and transformation that would allow an increase in the parsing expres-

siveness or performance (for example, by inlining the grammar rule call

targets).

• The deterministic finite automata extraction method that is used to speed

up the SEVM grammars can be adapted to other parsing methods (in

particular: Earley and generalized LR or GLR) to enable performance-

wise cheaper (faster) token-level disambiguation.

• SEVMgrammar definition language enablesmore flexible computer lan-
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guage and their extension definition using grammar composition.

1.8 Practical Significance of the Results

The key practical result of this research is the SEVM parsing method, which

has significant benefits over the existing parsing methods:

• Good parsing performance (as shown in Section 6.6.1).

• Generalised context-free parsing. This enables writing grammars more

concisely because the grammar developers no longer need to abide by

arbitrary parser limitations (such as no left recursion in recursive descent

parsers, which makes defining the infix and postfix operators needlessly

cumbersome).

• Because it is a scannerless parser, the entirety of the input grammar can

be defined using a single language (unlike the commonly used LEX/Y-

ACC approach, where tokens are defined in one language and then gram-

mars that use these tokens are defined using a separate language), thus

further simplifying the grammar implementation.

• The SEVM grammar language allows defining grammars in a modular

fashion. The base grammars can be extended by adding additional ab-

stract rule implementations (e.g. by defining additional statement types

and expression types separately from the main grammar). This would

enable easier language extension development because users no longer

need to rewrite the entirety of the grammars they are trying to extend.

Such a grammar definition approach could be used already in compilers

that support procedural macros (e.g. the Rust programming language

allows implementing macros in external modules, which could use the

SEVM to parse their input, which then can be transformed into a valid

Rust code).

• The SEVM parser supports dynamically changing grammars. Using the

SEVM in a new programming language (or an existing one) would at

the very least allow more flexible macro systems, where the syntax of

each macro can be defined by the user. More importantly, the SEVM is

one of the few available parsing methods that can be used to implement

extensible programming languages.
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• Using virtual machines for grammar representation offers an additional

benefit. It is possible to include general-purpose computations within

grammar byte code, which enables one to drive the parsing process man-

ually using user-written procedural code, thus further extending the recog-

nised grammar class.

Some parts or ideas of the SEVMmay be used independently of the SEVM

itself:

• The DFA extraction method may be used to speed up (or expand the

recognised classes of grammars) the existing parsing algorithms by al-

lowing a simpler token-level disambiguation scheme.

• Using virtual-machine instructions to represent grammars internally al-

lows the use of domain-specific optimisation to further optimise gram-

mars (possibly even bymixing different parsing algorithms and selecting

the one that is most appropriate for each situation).

• The SEVM implementation proves that it is feasible to use just-in-time

compilers to transform grammars into native machine code for increased

parsing performance.

1.9 Approbation

The results of this dissertation were presented at the following international

conferences:

• FedCSIS 2017, 6th Workshop on Advances in Programming Languages

(WAPL’17), Prague, Czech Republic, 2017.09.03–07.

• FCSIT 2019, European Conference on Frontiers of Computer Science

and Information Technology, Amsterdam, Netherlands, 2019.09.22–24.

1.10 Publications

The main results of this dissertation were published in the following papers:

• Šaikūnas A. (2017). Critical Analysis of Extensible Parsing Tools and

Techniques. Baltic J. Modern Computing, Vol. 5 (2017), No. 1, pp.

136–145.
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• Šaikūnas A. (2019). Parsing with Scannerless Earley Virtual Machines.

Baltic J. Modern Computing, Vol. 7 (2019), No. 2, pp. 171–189.

Other papers:

• Šaikūnas A. (2017). Parsing with Earley Virtual Machines. Communi-

cation Papers of the 2017 Federated Conference on Computer Science

and Information Systems, Vol. 13 (2017), pp. 165–173.

• Šaikūnas A. (2019). Just-in-time Parsing with Scannerless Earley Vir-

tual Machines (accepted for publishing).

1.11 Outline

This thesis is split into seven main chapters:

• In Chapter 1, the research context is given: the introduction, motivation,

research goal, and so on.

• In Chapter 2, the basic concepts for understanding this work are pre-

sented, including the definition of the REP term.

• In Chapter 3, the current state of art is provided. First, the requirements

for an REP language parser are formulated. Then, various existing pars-

ing methods and related tools are analysed to find the closest one capable

of parsing an REP language. After an exhaustive search, we conclude

that no single parsing method satisfies our requirements; however, two

main candidates (the Earley and Yakker parsers) are found that can be

used as a basis for building a more suitable parsing method.

• In Chapter 4, we incrementally construct a new parsing method, EVM,

that is based on the Earley/Yakker parsers and that satisfies our require-

ments for parsing REP languages. Furthermore, the EVM grammar lan-

guage for defining new (extensible) languages, EVM optimisations, and

other considerations are presented in this chapter.

• In Chapter 5, we use the observations made by testing the EVM pro-

totype and the knowledge learned by constructing the original EVM to

create a successor to EVM called SEVM. One of the primary goals of

the SEVM is practical parsing performance (while maintaining the pre-

vious requirements for parsing REP languages). To achieve this per-
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formance, additional optimisations and changes are implemented (most

notably, DFA extraction, token-level disambiguation, and just-in-time

grammar compilation) that enable the SEVM to achieve this practical

performance.

• In Chapter 6, we evaluate an implementation of the SEVM parser called

north. The performance influence of various described and implemented

optimisations is measured, and the SEVMparser implementation is com-

pared with other parsing methods. Additionally, arguments for the inter-

nal and external validity of the achieved results are given as well.

• Finally, in Chapter 7, the general conclusions of this thesis are presented.
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2 PREREQUISITES

In this chapter, we present the basic concepts required to understand the

rest of this work. Additionally, the term reflectively extensible programming

(REP) language is introduced in this chapter.

2.1 Compilers and Programming Languages

In the early days of computers, computer programs were written in machine

languages that directly corresponded to the underlying hardware. Such pro-

gramswere read from punched cards, magnetic tape, or even physical hardware

switches that encoded the underlying program in binary form. Such languages

are now called first-generation programming languages.

As computers became more advanced, so did the programming languages

that were used to program them. Because writing programs in binary (or simi-

lar) form was difficult and error-prone, the idea of a compiler was introduced.

A compiler is a program that reads another programwritten in a human-readable

text form and produces the corresponding binary code that can be executed by

the computer hardware. This was the principle behind the second-generation

programming languages. Languages from this generation still closely mim-

icked the underlying computer architecture andwere called assembly languages.

Assembly languages primarily consist of instructions that directly manipulate

computer processor registers, memory, and other devices. Most of the assem-

bly instructions, when compiled, are directly translated into corresponding bi-

nary code. Because of this one-to-one correspondence from assembly instruc-

tion to binary code, assembly languages are used even today in compiler code

generators and to visualise binary code in a more readable form.

As computer memory and processing power became more abundant, com-

puter programs became larger and more complex, and as such, it became much

more difficult to write and maintain these kinds of programs. Additionally,

competing computer architectures, each with their own assembly languages,

emerged. To make a program that was written in a second-generation pro-

gramming language work on a different computer architecture, such a program

had to be rewritten in a different assembly language, often from scratch. To

solve these issues, third-generation programming languageswere created. Lan-
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guages from this generation often mimicked mathematical notation and pro-

vided features that did not exist in underlying computer hardware. Variables,

subroutines, and data structures are all abstract elements that had no direct-to-

hardware correspondents. Instead, they existed only as abstract constructs in

third-generation programming languages that would essentially disappear into

a sea of instructions when compiled into binary programs.

Almost all programming languages that are in use today are third-generation

programming languages. However, not all languages that are currently in use

are classified as programming languages. As computers became more capa-

ble of solving increasingly advanced problems, new computer languages were

created to ease the solution of these problems. For example, the computer lan-

guage CSS is used to describe the appearance of webpages. Another language

called JSON is used to structure, transfer, and store arbitrary information that

can then be manipulated within other programming languages. Yet another

language, Markdown, is used to describe formatted text. It is not uncommon

for one or several specialised languages (such as JSON, XML, etc.) to be used

within a program or system written in one or more programming languages.

Specialised languages that are used to encode or describe information concern-

ing a specific problem or domain are called domain-specific languages. Most

programming languages can be split into two categories: interpreted program-

ming languages and compiled programming languages.

Compiled programming languages, as the name implies, are translated from

human-readable text into low-level machine or binary code. Most early third-

generation programming languages were compiled into machine code. How-

ever, later, new languages appeared that were compiled into a kind of binary

code called byte code, which was either interpreted or further translated into

machine code within a program called a virtual machine. Java and C# are two

well-known examples of such languages. The primary advantage that these

languages provide is portability, the ability to run the same program across

different computer architectures or platforms without having to recompile the

program itself.

Interpreted programming languages, on the other hand, instead of compil-

ing the source code of a program into binary or machine code, attempt to di-

rectly execute it. A program that executes or interprets such programs is called

an interpreter. Some interpreters still use compilation for byte code or ma-

28



chine code to execute the source programs, but this process is hidden from the

user. Interpreted programming languages also tend to provide additional fea-

tures (such as the possibility of dynamic typing) that are not found in traditional

compiled programming languages. This and the lack of a separate compilation

step makes it faster to develop programs written in interpreted programming

languages, although often with a significant runtime performance penalty be-

cause interpreted programs tend to be much slower compared to their compiled

alternatives.

2.2 Compiler Architecture

Many new programming languages have been created over the years. Wiki-

pedia (as of the time of writing this) lists at least 700 that are publicly available.

Many of these languages have several compilers or implementations. Natu-

rally, during the development of these languages, some common patterns have

emerged. Usually, a compiler of a programming language is split into four

major parts:

• A lexer is a compiler component that converts the source code of a pro-

gram (a string of characters) into a sequence of tokens. This process

is called tokenisation. A token is essentially a word of a programming

language. Common token types include identifiers, numeric constants,

string constants, and operators. Lexers are also responsible for removing

comments and whitespace (all characters that do not represent a visible

symbol, such as spaces, tabs, etc.) from the analysed source code.

• The parser takes the sequence of tokens and produces an abstract syntax

tree (AST). As the name suggests, an AST is a tree that structurally rep-

resents the current program. Each node within this tree corresponds to a

basic element of the language within the input program. Common exam-

ples of AST nodes are nodes that represent constants, variables, function

calls, declarations, and so on.

• A semantic analyser is primarily used in preparation for code generation.

It adds enough information to the AST to be suitable for code generation.

Commonly, during semantic analysis, variable references and function

calls are resolved and types are checked (in statically typed programming

languages). In addition, this is where semantic errors are detected (such
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as attempts to use a variable or a function that does not exist).

• A code generator traverses the final AST and, if no errors were found,

produces the corresponding binary code for the source code that is being

compiled.

2.3 Lexing and Parsing

Formal languages are defined using formal grammars. A formal grammar

primarily consists of production rules for strings in an input language. While

formal grammars are widely used in formal language theory to analyse formal

languages and algorithms that deal with formal languages, they are not conve-

nient enough to define computer languages in practice. Instead, special gram-

mar languages are used to define computer languages, which resemble formal

grammars but provide additional features that make language definition easier.

Many of the existing parsing (and lexing) algorithms during analysis rely

on special data derived from the language grammar. Because writing lexers

and parsers (and creating the respective parser data) manually is difficult and

error-prone, parser (and lexer) generators are used to generate the source code

of a parser (or a lexer). Parser/lexer generators read the language grammar

specified in a grammar language and produce the source code used to compile

the resulting parser/lexer. Lexer and parser grammar languages are generally

distinct. Lexer tokens are typically defined using regular expressions, whereas

parser productions are defined using a variant of the BNF language.

Even though most computer languages are analysed using both a lexer and a

parser, a dedicated lexer is not really required, as tokens used within a lexer can

be expressed in terms of parser productions. Most lexers usually run in linear

time and can recognise only regular languages, which is enough to define the

tokens of most languages. Parsers generally recognise a subset of context-free

languages but often have much higher algorithmic complexity. This is one of

the reasons the distinction between a lexer and parser exists. By offloading

some of the more trivial syntactic analysis steps to a lexer, the overall parsing

and compiler performance is increased.

However, in more modern times with the advent of more powerful com-

puters, new parsing algorithms have emerged that no longer require a separate

lexer step, and instead, tokenisation is merged into the parser. Such parsers are
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called scannerless. Removal of the lexer reduces the overall compiler complex-

ity and increases the variety of possible input grammars at the cost of reduced

parsing performance.

Most of the existing parsing algorithms can be divided into the following

three categories:

• Top-down parsers attempt to perform input recognition from the top of

the parse tree by rewriting the rules of the language grammar. Essen-

tially, the goal of a top-down parser is to find a sequence of rewrite rule

applications, which starts with a single non-terminal symbol that repre-

sents the whole program and ends with the terminal symbol sequence

that represents the initial source code.

• Bottom-up parserswork in the opposite way compared to top-down parsers.

The algorithms start with a sequence of terminal symbols that represent

the initial source code and attempt to merge (or reduce) a sub-sequence

of these symbols into a single non-terminal symbol. The process repeats

until there is only a single non-terminal symbol left that represents the

whole program.

• Hybrid parsers try to combine both of these approaches.

In other words, one of the jobs of a parser is to recognise whether or not

the input source code matches the specified grammar. However, to use such

a parser within a compiler, it also needs to construct the AST for the parsed

input. Parsers that do not construct the AST and only perform recognition are

called recognisers.

2.4 Code Generation

Each compiler has at least one target architecture for which it generates byte

code or machine code. Early compilers were very specialised and supported

only a single target architecture. However, with multiple competing processor

architectures becoming prominent, rewriting the whole compiler just to support

some new processor architecture or even rewriting the code generator portion

of the compiler was becoming increasingly difficult. To make it easier to port

compilers to new platforms, intermediate representation (IR) languages were

created.

Instead of supporting multiple different architectures, compilers would only
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have to support a single low-level intermediate language to which all of the

source code would be compiled. Then, the code generator for a specific target

would translate the generated intermediate code into the final machine code.

The use of the IR code not only eases the design and porting of compilers but

also makes it easier to perform optimisations of the compiled code. Currently,

the most prominent IR language/code generation framework is the LLVM tool-

chain,1 which provides a custom IR language and libraries that allow the opti-

misation of this code, the generation of equivalent machine code, the provision

of debugging tools, etc. Many new languages and compilers are based on this

toolchain, such as the new C++ compiler, Clang, Apple’s general-purpose lan-

guage Swift, Mozilla’s systems programming language Rust, and others.

2.5 Extensibility

Most of the existing programming languages have fixed syntax and seman-

tics. The syntax of a programming language is usually defined using grammar

languages when generating a parser for that language compiler, and semantics

are expressed as arbitrary code that performs checks and transformations on

the AST of a compiled program. This limitation of having a fixed syntax and

semantics was understood even in the early days of third-generation program-

ming languages. Attempting to use a language that is ill-equipped to solve a

specific problem usually results in code that is sometimes trivial but repeat-

ing and difficult to modify and maintain, which is sometimes referred to as

boilerplate code. To avoid having to manually write boilerplate code, several

solutions are used in practice:

• Specialised/domain-specific languages. General-purpose languages,

such as C/C++, are ill-suited for defining computer-language grammars.

This is why grammar languages and parser generators are used to cre-

ate lexers and parsers. String pattern matching is difficult to perform in

general-purpose languages as well. Therefore, to ease this task, instead,

regular expressions are used that make it easier to define the structure of

a string pattern that is being searched/matched. Query languages, such as

SQL, make it more convenient to access and extract specific information

from databases.

1LLVM compiler infrastructure homepage: https://llvm.org/
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• Macros allow the definition of rule (or pattern) and replacement pairs,

which are then applied to compiled source code. When a compiler de-

tects macro invocation by finding matching patterns, it replaces (ex-

pands) the found code sequence into the appropriate body of a macro.

This allows reducing the amount of repeating code in the source files,

as commonly used patterns can be defined as macros. Multiple varia-

tions of macrosystems exist; for example, the C programming language

performs macro substitution only on a textual level, while the Rust pro-

gramming language allows defining patterns that operate directly on the

AST of the compiled program.

• Templates can be considered a more advanced version of macros, which

also have access to the type information. They allow a parametrised def-

inition of various language objects (such as functions and structures),

which then can be instantiated by invoking a template and providing

parameter values, which are inserted into the original object definition.

This way, each template invocation may result in the creation of a new

language object, which, in a language without macros or templates, must

be defined manually. Templates allow further reduction of code dupli-

cation but often result in additional code complexity.

• Metaprogramming is a method that allows treating computer programs

as their data. Multiple types of metaprogramming exist, but in this work,

we refer to metaprogramming as an ability of a code fragment (metapro-

gram) to write a new program. Some languages, such as Haskell, have

built-in support for compile-time metaprogramming, which allows pro-

grammers to invoke metaprograms that generate parts of the program

that are currently being compiled. Many scripting languages provide a

function called eval(), which allows the dynamic evaluation of the lan-

guage code in the provided text strings. This way, a metaprogram can

construct a code fragment of a program in a string and then pass it to the

eval() function, which then could include the provided code fragment

in the currently running program. This approach to metaprogramming is

also referred to as generative programming.

• Compiler plugins allow even more free-form changes to the language

syntax and semantics. Compilers that support compiler plugins typically
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provide anAPI that could be used to implement these plugins. The power

and flexibility of a plugin are directly determined by the API, which dif-

fers on a compiler-to-compiler basis.

Next, there are extensible programming languages. Some early third-generation

languages were considered to be extensible if they supported even one of the

previously listed features (most notably macros). Even languages that sup-

ported procedures at one time were considered to be extensible when procedu-

ral programming was a novelty. Standish [27] provided one of the first defini-

tions of an extensible programming language; an extensible language simply

allows users to define new language features. However, such a general defini-

tion is not that useful, and several new terms have been created to differentiate

between languages with varying degrees of extensibility.

Extensible syntax programming languages are languages that allow their

syntax to be extended, often using a specialised grammar language. Languages

that allow their syntax extensions to be specified within the normal code and

inside external files/plugins both fall into this category. However, in this work,

we primarily focus on the former type of languages. To further differenti-

ate between these two types of languages, we introduce a new term: reflec-

tively extensible programming languages. Reflectively extensible program-

ming (REP) languages are languages whose syntax and semantics can be mod-

ified at compile time by providing syntactic and semantic extensions with the

regular code.
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3 STATE OF THE ART

3.1 Parsing Methods

In this chapter, we investigate various existing parsingmethods to determine

whether any can be used or extended to parse REP languages.

3.1.1 Requirements for a reflectively extensible programming

language parser

It is fairly obvious that an REP language requires a specialised parser. First,

an REP language parser must support mutable grammars. This requirement

arises from our definition of REP languages. Theoretically, it is possible to

adapt any existing parsing method to support partially mutable grammars using

the algorithm displayed in Fig. 1. This algorithm simply divides the input

source code into blocks and then uses a separate parser to parse each block. In

practice, however, there are several challenges to using this algorithm:

• Poor grammar mutation performance. Many parsing algorithms rely

on data that are derived from the original language grammar. For exam-

ple, LR parsers use transition tables that are generated from the initial

grammar productions. In most cases, this table generation is performed

by parser generators; however, it is possible to embed the algorithm that

computes the required parser data into the REP language parser itself.

However, this means that every time the language grammar is updated,

all of the parser datamust be regenerated. Even trivial syntactic additions

to the initial language would result in having to re-analyse the entire in-

put grammar. Furthermore, several successive grammar modifications

even in the same source file would result in an equal number of parser

data regenerations. This would make adding syntactic extensions to the

base language prohibitively computationally expensive and thus would

defeat the purpose of using an REP language.

• Clear block boundaries. For the naive parsing algorithm to transition

from one grammar to the next, it must be able to identify where the scope

of the first grammar ends and where the scope of an updated grammar

begins. In other words, there must be a clear and unambiguous boundary
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1 . Le t G0 be t h e i n i t i a l grammar and A0 t h e r e s p e c t i v e

p a r s e r d a t a ( e . g . , such as t r a n s i t i o n t a b l e s used i n LR

p a r s e r s ) .

2 . D iv ide i n p u t s o u r c e i n t o n t op l e v e l b l o c k s B0 − Bn−1 (

such as t op l e v e l d e c l a r a t i o n s i n C /C++) .

3 . P a r s e and s em a n t i c a l l y a n a l y s e Bi wi th c u r r e n t p a r s e r

d a t a Ai . I f t h e c u r r e n t b l ock c o n t a i n s a new s y n t a c t i c

e x t e n s i o n , t h en produce a new grammar compos i t i o n Gi+1
based on Gi and t h e e x t e n s i o n . Update t h e new p a r s e r

d a t a Ai+1 based on grammar Gi+1 .

4 . P a r s e t h e s ub s e qu en t b l ock Bi+1 u s i ng p a r s e r d a t a Ai+1 .

5 . Repea t s t e p s 2−4 u n t i l c omp l e t i o n .

Figure 1: Naive extensible parsing algorithm

between the original and updated language segments within the initial

source code.

• Limited support for scoped grammar mutations. In some cases, it

may be necessary to enable a syntactic extension only for a limited por-

tion of the AST. For example, a user may wish to enable a specific gram-

mar extension only for the next statement within the initial program.

Such a grammar mutation would be impossible in the native extensi-

ble parsing algorithm because it only allows grammar modifications be-

tween top-level AST nodes.

• Limited local ambiguity support. In the event that the chosen base

parsing algorithm supports ambiguities within the selected language, all

of these ambiguities would need to be resolved before the current top-

level block terminates. This requirement arises from the fact that ev-

ery top-level block could be parsed with an updated grammar; therefore,

the internal structure of the original parser that represents the ambiguity

would be lost when transitioning from one grammar to the next.

Second, we wish for the parsing algorithm to support scannerless parsing.

The elimination of a dedicated lexer allows the use of a single unified language

to define both tokens and regular grammar productions. This makes it easier

and more concise to specify new syntactic extensions.

While having a separate lexer does have some advantages, the primary of

which is increased performance, the introduction of syntactic extensions with

lexical ambiguities means that all of the ambiguities must be propagated to-
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wards the parser, which must be specially modified to support such ambiguous

tokens. This would result in increased lexer and parser performance.

Third, we require the REP language parsing algorithm to support unre-

stricted context-free grammars. One of the primary reasons for restricting the

allowed input grammars is, yet again, increased performance. Generalised

parsing algorithms, such as the GLR and Earley algorithms, are too slow to

be used practically. However, with improvements to computer hardware and

further refinements of parsing algorithms, we believe that the historical per-

formance motivations for restricting allowed input grammars no longer apply.

Additionally, the users of the REP languagemay not be parser experts, and they

should not be forced to understand the inner workings of the parsing algorithm

just so they can write a syntactic extension.

To summarise, we propose the following requirements for an REP language

parser:

1. support for dynamically changing grammars,

2. scannerless parsing,

3. unrestricted context-free grammar support,

4. support for local grammar extensions, and

5. reasonable performance.

3.1.2 The LR(k) parsers

The LR(k) is a family of table-based, bottom-up parsers. It is one of the

earlier parsing algorithms and is indirectly still widely used even today. It

was first described by [18]. It runs in linear time when parsing deterministic

context-free languages.

The algorithm starts the parse in an initial state. Then, it reads a single

symbol from the input and looks up the appropriate action from the action table

ATs. Three possible actions can be taken:

• The shift action, denoted by S(n), indicates that the current symbol a
must be pushed onto the stack, a new symbol must be read from the

input, and the parser must move to state n.

• The reduce action, denoted byR(r), indicates that the reduction based on
grammar rule r must be performed. If the rule is denoted by lhs← rhs,
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a← read_sym()

s← 0
loop

action← ATs(a)
if S(s1)← action then . Shift

push(a)
s← s1
a← read_sym()

else if R(r)← action then . Reduce

(lhs→ rhs)← ruler
pop(sizeof(rhs))
push(lhs)
s← GTs(lhs)

else if A()← action then . Accept

return

else

error( )

end if

end loop

Figure 2: The LR(0) parser algorithm

then the top |rhs| stack symbols must be replaced with a single non-

terminal product lhs. Additionally, the parser must move to a state indi-
cated by GTs(lhs), where GTs is the go-to table for state s.

• The accept action, denoted by A(), indicates that the input has been suc-
cessfully recognised and that the parsing algorithm must terminate.

The tables ATs and GTs used in the parsing algorithm can be constructed

from the DFA built from the initial grammar. An algorithm allows dynamically

growing or shrinking these tables, as described in [7], thus making it possible

to mutate the grammar that is used during parsing.

The letter k in LR(k) determines how many symbols the algorithm can

lookahead before deciding on which action to take. The LR(0) parsers per-

form no lookahead and select the action to be taken immediately based on the

current input symbol (see Fig. 2). In most cases, this makes LR(0) practi-

cally inapplicable because the algorithm cannot distinguish input x + y from x

(when + is right-associative) because the parser must lookahead a single sym-

bol to determine which action to take (reduce x as an expression or attempt to

read the next symbol). This situation when a single action table cell has both a

shift and a reduce action is called a shift/reduce conflict.

Therefore, in practice, LR(1) or lookahead LR(1) (LALR(1)) parsers are
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used instead. The LALR(1) is a modified version of LR(1) that accepts a

smaller class of grammars compared to LR(1) but uses significantly smaller

parse tables. Because the size of the parse tables increases exponentially with

k, any value higher than 1 is generally not used. Even though k = 1 for some

existing languages is enough, plenty of languages require higher or even un-

bounded k values.
Another limitation to LR(k) parsers is that they cannot be used for scan-

nerless parsing. The LR(k) parser cannot differentiate conditional if(a) from
a function call if(a) because no simple way exists to reject identifiers that

overlap with reserved keywords. As a result, if scannerless parsing is required,

more general parsing algorithms (such as GLR) are used. Because of the fixed

lookahead and inability to use the algorithm for scannerless parsing, LR(k) does
not meet our criteria for REP language parsing.

3.1.3 The generalised LR family of parsers

The generalised LR (GLR) parser is an extension to the LR parser that al-

lows parsing most non-nullable context-free languages. Masaru Tomita [29]

first described it and intended to use it for natural language parsing, but since

then, it was also adapted and used to parse computer languages.

The GLR parsers share most of the key ideas with LR parsers. They are still

based on tables, which are used to select an action to be performed based on

the current input symbol. Tables also contain shift, reduce, and accept actions.

In addition, tables for GLR parsers are generated almost exactly the same as

LR(0) tables.

The primary difference between LR(k) and GLR parsers is how they treat

conflicts. A single GLR action table item may contain a single shift and sev-

eral reduce actions, all of which are executed when an appropriate symbol is

found. This means that the GLR parser is no longer deterministic and may be in

multiple states at once. Additionally, GLR parsers use a graph-structured stack

(GSS) instead of a regular stack to represent alternative parse paths. Because

of this change, the parser no longer requires a lookahead to operate correctly

(even though LR(1)/LALR(1) parse tables with conflicts may still be used to

reduce parsing ambiguity for performance reasons). This also means that the

parser is now suitable for scannerless parsing.

Unfortunately, the original GLR algorithm contains a flaw that prevents the
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E→ F + E | F

F→ I * F | I

I→ a

Figure 3: A grammar for a language that supports+, ∗ operators and the vari-
able a

algorithm from terminating when the initial grammar contains hidden left re-

cursion. This was discovered by [24], and a modification of the GLR algorithm

was proposed (called the RNGLR), which correctly handles the hidden left re-

cursion and supports more effective handling of ε-reductions. However, the

modified parser uses a different variation of LR tables, which means that the

incremental LR table generation approach that was described by [7] is no longer

directly applicable to RNGLR parsing. Thus, to support the mutable grammars

that are required for REP language parsing, the algorithm for incremental LR

table generation would need to be modified first to allow the dynamic genera-

tion of right-nulled parse tables.

The authors of the RNGLR parser also presented an even more radical mod-

ification of the RNGLR called the reduction incorporated GLR (RIGLR) [23],

which incorporates additional information into the RNGLR parser that reduces

the parser stack activity to further boost parsing performance. However, in

our opinion, the performance gains observed while testing the RIGLR do not

warrant a significant increase in the parse table size. As such, the only vi-

able candidate from the LR/GLR parser family for REP language parsing is

the RNGLR parser.

3.1.4 Recursive descent parser

The recursive descent parser [6] is a top-down parser. The parser for a spe-

cific grammar is split into several mutually recursive functions, where each

function parses one non-terminal symbol from the grammar. To parse the

whole input, a function corresponding to the initial grammar symbol is invoked,

which in turn calls other functions that correspond to other non-terminal sym-

bols, which consume terminal symbols from the input upon encountering them.

See Fig. 3 for an example grammar and Fig. 4 for the corresponding re-

cursive descent parser implementation. The function accept(a) used by the

parser consumes the next non-terminal symbol if it matches the provided sym-
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def E()

F()

if accept('+'); E(); end

end

def F()

I()

if accept('*'); F(); end

end

def I()

expect('0')

end

Figure 4: A corresponding Ruby program that parses the provided grammar

with the help of the accept() and expect() functions

bol a. The function expect(b) consumes the next input symbol and fails if it

does not match the provided symbol b.
Because of the simplistic nature of the implementation, the recursive de-

scent parsers are often implemented manually without resorting to using a

parser generator. The provided parser example is called a predictive recur-

sive descent parser because it does not use backtracking; thus, it executes in

linear time. However, in cases of more complex grammars, the use of back-

tracking may be necessary and would result in an exponential execution time

because some fragments of the code may be analysed multiple times with the

same function.

It is also possible to use the backtracking recursive descent parser to imple-

ment mutable grammars. This can be achieved using a single parsing function

with three arguments: first for the current grammar, second for the current pars-

ing position, and third to indicate the non-terminal symbol that must be parsed

next. A positive return value of this function would indicate the current pars-

ing position after the provided symbol has been parsed. The parsing starts by

calling the function with the initial grammar and the initial grammar symbol

at position zero. Then, this function calls itself to parse other non-terminals

from the current grammar, while consuming all terminal symbols. Failure to

consume an expected terminal symbol leads to backtracking.

Such a parsing algorithm is not only easy to implement but also allows pars-

ing languages where grammar extensions are applied to specific scopes. Fur-

thermore, it can be used without a dedicated lexer and can operate directly with

41



characters from the initial source code, thus fulfilling two out of four require-

ments for an REP language parser. Unfortunately, that is where the advantages

of the recursive descent parser end.

Backtracking, as mentioned before, leads to exponential performance. Fur-

thermore, because the parser is implemented as a series of mutually recursive

functions (or a single function in the mutable grammar case), it does not sup-

port left recursion. Attempting to use left recursion in grammars would cause

infinite recursion in the corresponding parse functions, eventually exhausting

the stack memory and thus terminating the parser program.

Another issue is ambiguous grammars. With the current parsing algorithm,

it is impossible to support ambiguous parses because each function for the cor-

responding non-terminal must always terminate after a fixed amount of input

characters (even if that number is 0). However, with ambiguous grammars that

may not be the case because, depending on the selected production rule alterna-

tive, the parse for the specified non-terminal symbol may terminate at differing

positions.

As a result, the recursive descent parser, even with mutable grammar sup-

port, is not applicable for implementing the REP language because it does not

provide reasonable performance and restricts the allowed class of grammars

too severely.

3.1.5 Packrat parser

The primary problem that all context-free language parsing algorithms at-

tempt to solve is the production rule selection. Context-free languages are de-

fined using context-free grammars, which are composed of production rules.

Depending on the grammar, some non-terminals may have multiple produc-

tion rules. Selecting the correct one (or multiple ones in the case of ambiguous

grammars) is the key context-free language parsing problem. Different pars-

ing algorithms attempt to solve it differently. The LR algorithms build a table

that lists all possible terminal symbols that may be encountered at any given

moment and use it to perform reductions. The backtracking recursive descent

parser tries each production in succession, essentially brute-forcing the possi-

ble solution. Moreover, the Earley parser tries to mix those two approaches

together.

However, it has been noted that using context-free grammars to define com-
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puter languages may not be the most intuitive way to do it. Therefore, a new

grammar definition formalismwas created called parsing expression grammars

(PEGs) [12]. The PEGs eliminate the source of context-free grammar ambigu-

ity by replacing the choice operator | with an ordered choice operator \. In
the production A← B\C\D, this indicates that the non-terminal B is matched

first. If B matches successfully, then the remaining production alternatives are

ignored. Otherwise, C is matched next.

It is fairly easy to spot the correspondence between the ordered choice oper-

ator and the way the recursive descent parser works. As a result, backtracking

recursive descent parsers can be used to parse all PEGs. However, a modifi-

cation of the recursive descent parser called the packrat parser allows parsing

PEGs in linear time, which is one of the reasons PEGs have become so popular

in recent years.

The packrat parser [11] is a modification of the recursive descent parser that

memorises all intermediate results of non-terminal parser functions. Because

of this, the same source location using the same parsing rule may be parsed

only once in the packrat parser, which is one of the reasons the algorithm runs

in linear time.

Unfortunately, a simple implementation of the parser and good performance

comes at a price:

• No left-recursion support. Because the packrat parser is essentially a

recursive descent parser, left-recursive rules (including indirect or tran-

sitive left recursion) would cause infinite recursion.

• High memory usage. Because the packrat parser must memorise all in-

termediate parsing results, this causes fairly high memory usage. Some

variations of the parser do exist that attempt to optimise the memory

management of the packrat parser, such as [13].

• No ambiguity support. The PEGs are unambiguous by definition, and it

is impossible to represent ambiguous languages using them. As a result,

parsing a language such as C++ using just PEGs is impossible.

• No true grammar union. Consider grammars G0 and G1 displayed in

Fig. 5. Both grammars are valid and describe their respective languages

correctly. What happens when both grammars are combined into one?

Depending on the order of the union, we obtain different results. If we
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G0:
E → "if" E "then" E "else" E

/ "if" E "then" E

G1:
E → "if" E "then" E

G2 = G0∪G1:
E → "if" E "then" E "else" E

/ "if" E "then" E

/ "if" E "then" E

G3 = G1∪G0:
E → "if" E "then" E

/ "if" E "then" E "else" E

/ "if" E "then" E

Figure 5: Two example parsing expression grammars that define conditional

expressions and their unions

combine G0 and G1, then the resulting grammar G2 is identical to G0, as

the newly appended rule is a duplicate of an existing one inG0. However,

if G1 is combined with G0, then we obtain G3, which breaks all if-else

conditionals in the G0 language because the newly prepended rule from

G1 will consume all the input and thus the ‘else’ E part will never ob-

tain a match. This issue is explored in more detail in [17]. This means

that the extension designer must be aware of all existing definitions of

the target non-terminal and upon extension must correctly specify the

order in which the existing and new non-terminal production rules are to

be applied. Failure to do so may result in breakage of the base language

grammar.

Because of these issues, we find that PEGs and the packrat parser are insuf-

ficient for implementing the REP language parser.

3.1.6 Adaptable parsing expression grammars

Adaptable parsing expression grammars (APEG) [22] comprise an exten-

sion to the PEG that allows parsing mutable or adaptable grammars. These are

grammars whose production rules can be added, removed, or modified mid-

parse. As a result, such grammars can be used to specify the syntax of extensi-

ble languages. Furthermore, APEGs contain additional extensions that enable
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the specification of context-dependent constraints:

• Binding expressions that allow saving context-dependent information

during parsing.

• Updated expressions that allow updating existing attribute bindings.

• Constraint expressions that use other attribute bindings to restrict specific

parse paths.

The article’s authors present an interesting approach regarding the APEG

parser implementation [22]. First, a modified packrat parser is generated that

is capable of parsing the base grammar of the language. This generated parser

also contains hooks that can be used to invoke dynamically defined rules during

parsing. This mixture of a statically generated base language and dynamically

interpreted grammar extensions allows the parser to very efficiently recognise

the base language while also recognising the extensions to the base language

at a somewhat reduced performance. Because of this, such a parsing model is

applicable to languages that contain a fairly large base language and possibly

several smaller language extensions. However, it is not so well suited where

the base language is minimal and where the majority of the language is defined

through extensions that (possibly) reside in external libraries or modules.

Although the APEG parser presents a viable option for implementing an

REP language, the APEG model is still based on the original PEGs and thus

inherits most of its restrictions, namely the following:

• no left-recursion support,

• no support for ambiguous languages, and

• no true grammar union.

3.1.7 Specificity parser

The metafront system [3] is a tool for program transformation that also sup-

ports extensible parsing. It employs a novel method for parsing, called a speci-

ficity parser. The specificity parser is a scannerless top-down parser. At any

point during analysis, the parser keeps track of the remainder of the input that

has not been parsed yet and a set of candidates, which are remainders (tails) of

the production rules. The parsing process is divided into challenge rounds, and

during each round, the most lexically specific candidate is selected and used to
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advance the parser, which consumes some of the input and the matching parts

of the current production tails. The process is repeated until the remaining

string is empty.

Because the current candidate production tail set is maintained at any given

moment during parsing, this information allows generating informative error

messages in the event of a parsing error. This parsing method also prohibits

ambiguities, which are resolved whenever new productions are added. If an

ambiguity is found during the declaration of a new production that depends on

an existing one, an error is generated forcing the user to adjust the newly de-

fined grammar. While this method of handling ambiguities is convenient for

defining fully deterministic languages, not all languages (and thus possible lan-

guage extensions) that are used in practice are context-free and deterministic.

As a result, the inability to support ambiguous grammars is a shortcoming.

Furthermore, the specificity parser has additional difficulties when parsing

binary operators with matching prefixes, but with different precedences, such

as C++’s logic && and binary &. For example, the parser fails to recognise input

x && y. Because the operator & has higher precedence than &&, it is parsed

first and consumes the & symbol from the input, leaving & y, which then fails

to parse. To resolve this issue, the parser’s authors introduced a special form

of lookahead called traps, which are then used to restrict the parsing of the

operator & by ensuring that it is not followed by an additional & terminal symbol.

This issue becomes even more relevant when considering the scenario in which

a lower-precedence operator && is added in an extension. Then, to ensure that

this operator parses correctly, the original rule for the binary operator & would

have to be modified with an appropriate trap. Because of the lack of ambiguous

language parsing support, the requirement for a mandatory lookahead in certain

situations, and no left-recursion support, we do not believe that this parsing

method is a viable candidate for REP language parsing.

3.1.8 Earley parser

The Earley parser [8] is a top-down chart parser. The original algorithm can

parse all non-nullable context-free grammars. Amodified version of the Earley

parser supports nullable grammars as well, but with reduced performance.

The parsing algorithm has two inputs: the source code that is meant to be

parsed and a list of grammar production rules G used for parsing. Unlike most
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for all input symbols a do

for all (X → α •Y β , j) ∈ S(k) do . Prediction

for all (Y → γ) ∈ G do

add (Y →•γ,k) to S(k)

end for

end for

for all (X → α •aβ , j) ∈ S(k) do . Scanning

add (X → αa•β , j) to S(k + 1)

end for

for all (X → γ•, j) ∈ S(k) do . Completion

for all (Y → α •Xβ , i) ∈ S( j) do

add (Y → αX •β , i) to S(k)

end for

end for

end for

Figure 6: Earley parser algorithm

other parsing algorithms, these productions are not preprocessed in any way

before parsing.

The Earley parser maintains a state S(i) for every terminal input symbol

ai. The list of states for every input symbol is called a chart. Each state S(i)
contains one or more items in the form (X → α •β , j). Each item contains a

production rule, the current parsing position within that rule (represented by

•) and the origin state j. Initially, S(0) contains only the starting production
(S→•α,0). After executing the Earley algorithm (see Fig. 6), the chart S has
enough information to construct the parse tree for the provided input.

The algorithm is split into three logical steps that are repeated in sequence

for every input symbol:

• The prediction step finds all items in the current state in the form (X →
α •Y, j), where Y is a non-terminal symbol, and adds every production

rule with product Y to the current state. This is where the top-down na-

ture of the Earley algorithm becomes apparent. If we view this algorithm

from a procedural point of view, then this step may be considered a rule

call, where the caller rule is suspended to complete the called produc-

tions.

• The scanning step finds all items in the current state in the form (X →
α • aβ , j), where a is current input symbol, and after advancing, adds

those items to the following state. In other words, this is the step where

the terminal symbols are matched with the appropriate production parts.
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• The completion step finds all production rules that have been fully parsed

in the current state and resumes the parsing of the caller productions that

have been previously suspended in the prediction step.

Based on the steps that the algorithm performs, it becomes apparent that

it is very easy to modify the list of production rules that are used for parsing.

The grammar is accessed only in the prediction step when looking for appro-

priate product right-hand sides. By modifying the list of the production rules

used while parsing, it is possible to augment the syntax of the parsed language

mid-parse. This property of the Earley parser makes it very suitable for imple-

menting an REP language parser. However, this flexibility comes at the cost

of low overall parsing performance because the grammar and production rules

it contains must be traversed by the algorithm many times during parsing.

The Earley algorithm makes no assumptions about the nature of the input

symbols. These symbols can be characters of the original language or lexer

tokens. However, when using the Earley parser as a scannerless parser, the

performance considerations of using unprocessed grammar productions within

the prediction step become even more important because defining language

tokens as productions would further increase the depth of the AST and cause

dramatically reduced performance. This makes the algorithm practically un-

suitable for scannerless parsing.

Additionally, because the Earley parser supports all non-nullable context-

free grammars, it means that it is possible to provide a grammar that results in

parsing ambiguities. This means that, just like in the case of the GLR parsers,

a single AST is not sufficient to express the structure of an ambiguous parse

and that more sophisticated data structures, such as shared packed parse forests

(SPPFs), are required. However, the original paper in which the parser was first

described does not address this issue in enough detail. This discrepancy was

first observed by [25], where a modified version of the algorithm is provided,

which produces SPPF for ambiguous parses.

3.1.9 Parsing reflective grammars

The idea that the Earley parsing algorithm can be extended to support mu-

table grammars was noticed by [28]. The paper’s authors presented a modified

version of the Earley recogniser, which supports parsing reflective grammars.

Reflective grammars are a type of grammar that can modify themselves by
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for all input symbols a do

for all (X → α •Y β , j,G) ∈ S(k) do . Prediction

for all (Y → γ) ∈ G do

add (Y →•γ,k,G) to S(k)

end for

end for

for all (X → α •aβ , j,G) ∈ S(k) do . Scanning

add (X → αa•β , j,G) to S(k + 1)

end for

for all (X → γ•, j,G0) ∈ S(k) do . Completion

for all (Y → α •Xβ , i,G) ∈ S( j) do

add (Y → αX •β , i,G) to S(k)

end for

end for

end for

Figure 7: The modified Earley algorithm

plus(4, plus(5,

{{ grammar <Expr>

<Expr> ::= <SimpleExpr> "+" <Expr> ;

end

6 + plus(1, 2 + 3) }}

), 7)

Figure 8: An example expression that uses the reflective capabilities of the

modified Earley parser to add the binary infix + operator
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adding additional productions mid-parse from the recognised symbols within

the parsed input. This is achieved by adding the following modifications to the

original parsing algorithm (see Fig. 7):

• State items now have an additional element that represents the current

grammar. If the original Earley parser uses items in the form (X →
α • β , j), then the modified recogniser uses items in the form (X →
α •β , j,G), where G is the current grammar.

• The prediction step, instead of using a single global grammar for the

whole input, now uses the grammar from the current item. This enables

the algorithm to use multiple grammars at the same time.

• A specialmeta-grammar for defining grammars is introduced. Thismeta-

grammar, among other things, provides a production rule that can be

used to both define an extension and invoke it with a specified starting

symbol. The non-terminal product for this production can be included

in user-defined grammars, thus giving users the ability to control where

the newly defined symbol can be placed within the initial language syn-

tax extensions. Figure 8 shows an example of using this non-terminal to

introduce a binary addition operator to the initial language.

Some important observations are as follows:

• The parsing algorithm handles even cases where the user-defined gram-

mar overlaps with the extension grammar. In this case, ambiguities may

arise, but the parsing algorithm would continue to work correctly.

• Even though the modified algorithm based on its definition requires the

extension grammars to be provided together with their invocations, it

is possible to further modify the algorithm and separate the extension

definition from the invocation.

• The modified algorithm is almost identical performance-wise to the orig-

inal Earley parser. Because of this, the same considerations for using this

algorithm as a scannerless parser apply, thus making the reflective and

scannerless version of the Earley parser just as unusable as the original

in any practical environment.
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(1) E→ E + F

(2) E→ F

(3) F→ F * I

(4) F→ I

(5) I→ 0

Figure 9: An example of a grammar that supports infix + and * operators with

the appropriate operator precedence

3.1.10 Efficient Earley parsing

The primary reason for not using the original Earley parser in practice is

its lower unambiguous language parsing performance. Consider the grammar

provided in Fig. 9. Every time an expression E is to be parsed at input posi-

tion j, the items shown in Fig. 10 must be added to the current state. In other
words, the whole expression hierarchy must be expanded every time a possi-

bility exists to encounter an expression in the current input position. A similar

situation arises when attempting to parse statements as well. It is common for a

programming language to have more than 20 different operators, and the pro-

ductions for each would have to be expanded every time an expression may

begin.

When using the Earley parser for a scannerless parser, the performance de-

crease would be even grimmer. Because the parser does not have any mecha-

nism to perform a lookahead, when parsing an identifier that is part of a larger

expression, it must prepare to both continue parsing the current identifier and

attempt to parse the operator that comes after the identifier ends. As a result, on

every parsed character of an identifier or numeric constant, it must reduce the

current identifier (or constant) to an expression and advance all the previous

productions that depend on that expression. In the case of parsing C++, which

has 16 different operator precedences, the Earley parser would have to perform

at least 16 reductions and 16 completions for every identifier expression or con-

stant expression in the whole input file. Obviously, such an implementation is

simply infeasible.

Several modifications to the original Earley parser have been proposed to

increase its performance. The first one [2] observes that the Earley sets closely

correspond to LR(0) DFAs. By using DFAs computed from grammar produc-

tions instead of raw grammar productions to perform recognition, the parser
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E→•E + F, j

E→•F, j

F→•F * I, j

F→•I, j

I→•0, j

Figure 10: Earley items for expanding non-terminal E in position j with the
grammar from the expression grammar

no longer needs to traverse the entire expression/statement hierarchy when en-

countering such non-terminals. As a result, the Earley item now contains (q, j),
where q is the state number of the corresponding DFA node, and j is the origin
state (i.e. the position in which the parsing of the current non-terminal began).

While such an optimisationmassively boosts the Earley parser performance,

it also eliminates the simplicity of adding new grammar productions. Because

the efficient variation of the Earley parser uses DFAs to internally represent

the grammar structure, incremental construction to generate these DFAs on-

demand must be applied to use the modified parser for REP language parsing.

3.1.11 Yakker parser

Another parsing algorithm that attempts to make Earley parsing more ef-

ficient has been described by [15]. The authors of this paper observed that

each production rule can be represented by a nondeterministic finite automaton

(NFA) like that displayed in Fig. 11. Additionally, treating production rules as

automatons enables the use of regular expression operators in these productions

to make their definition more convenient. Furthermore, these productions can

be interconnected by call edges, which eliminate the need to dynamically look
up productions of a specific non-terminal in the prediction step (see Fig. 12).

Because the parser is now represented by a single NFA, it is possible to opti-

mise it by performing specialised minimisation, which treats Sa
call−−→ Sb

call−−→ Sc

as Sa
call−−→ Sb

ε−→ Sc. After applying such an optimisation, all items in Fig. 10

are merged into a single state, thus solving the previously described problem

of having to traverse the entire expression hierarchy each time a possible ex-

pression is encountered.

At this point, the optimised DFA resembles the LR(0) DFA used by the op-

timised Earley parser described in 3.1.10. The same authors then use this new

parsing algorithm as a basis for the Yakker parser [14], which introduces new
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Figure 11: Earley deterministic finite automata for production rules from the

expression grammar

features that are not present in the original or modified Earley parser, the pri-

mary of which is the ability to recognise data-dependent grammars. To support

such grammars, new grammar definition primitives are introduced:

• Attribute bindings in the form x = e, where x is a variable and e is an
expression.

• Non-terminal symbol invocations with bindings in the form x = A(e),
where A is a non-terminal symbol. This grammar construct allows it to

not only parse non-terminal symbols by supplying them arguments but

also store the result of a parse in a variable that may be later used to form

a semantic data-dependent constraint.

• Constraints in the form [e], which can be considered ε symbols, which

are accepted only if expression e is true.

To support such grammar primitives, corresponding additional Yakker au-

tomaton nodes are introduced. Additionally, the Earley item is extended to hold

environment E, which stores all local variable bindings, resulting in items in
the form (q, j,E). An example Yakker grammar that describes the fixed-length
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int(n) = [n = 0] | ([n > 0] digit int(n - 1))

Figure 13: An exampleYakker grammar that allows parsing fixed-length num-

bers

numbers is provided in Fig. 13.

Yakker is themost general and flexible of all analysed parsing algorithms. It

supports regular right-hand sides (the ability to use regular expression operators

to define grammar productions). The parser exhibits acceptable performance

even when used without a lexer and can parse all context-free languages even

without using data-dependent constraints. Using data-dependent constraints

allows it to parse an evenwider class of grammars. For example, the parser may

be used to recognise well-formed XML files without using external automatons

to match the opening and closing tags of this language.

A common task that is performed during parsing is AST construction. In

the case of LR/GLR parsers, the AST nodes for some parsed input are con-

structed either automatically during reduction execution or manually by invok-

ing a user-defined semantic action during the reduction process. In the case of

Earley or Yakker parsers, this can be done in the same way during the comple-

tion step. However, in the case of ambiguous grammars or no lookahead, many

intermediate parse results might be constructed and then immediately discarded

after entering an invalid parse path. Depending on the type of semantic action,

this operation may be memory intensive and could be a resource drain, thus

slowing the overall parsing process. To combat this, delayed semantic actions

are introduced to the Yakker parser in [16], which can be executed to construct

the AST after successfully parsing some or all of the input, thus eliminating the

unnecessary construction of invalid AST nodes.

This parsing algorithm fulfils all the requirements for an REP language

parser except one: mutable grammar support. To support mutable grammars,

the automata of Yakker would have to be generated incrementally. Further-

more, new grammar constructs would have to be introduced similar to the ones

described in [28] to support parsing reflective grammars. Even despite the re-

quired effort to implement such functionality, the Yakker parser is a good can-

didate for implementing an REP language parser because the provided feature-

set, generality, and parsing performance combination cannot be matched by

any other parsing algorithm.
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Table 1: Summary of the analysed parsing methods
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LR(1) (G)LR ✔

LALR(1) (G)LR ✔

GLR (G)LR ✔

RNGLR (G)LR ✔ ✔

SGLR (G)LR ✔ ✔ ✔

Recursive descent ✔

Packrat PEG ✔ ✔

APEG PEG ✔ ✔

Specificity ✔ ✔

Earley Earley ✔

Reflective Earley ✔ ✔ ✔

Efficient Earley Earley ✔ ✔

Yakker Earley ✔ ✔

3.1.12 Parsing method summary

The summary of all reviewed parsing methods is shown in Table 1. For

each listed parsing method, the parser family is shown together with the re-

quirements that each parser satisfies.

3.2 Related Tools and Languages

3.2.1 Katahdin

Katahdin [26] is one of the very fewREP languages that exist. It is a dynam-

ically typed language that allows the mutation of the base language syntax and

semantics. The dynamic nature of the language also allows the definition of

extensions in external libraries. A simple Katahdin program that uses multiple

language extensions is provided in Fig. 14.

Every language extension within Katahdin is composed of two elements:

the syntax definition and evaluation rules, which are both placed within a class
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import "fortran.kat";

import "python.kat";

fortran {

SUBROUTINE ADD(A, B)

INTEGER A

INTEGER B

A = A + B

RETURN

END

}

python {

total = 0

for i in range(10):

ADD(total, i)

print total

}

Figure 14: An example Katahdin program that uses Fortran and Python lan-

guage extensions

class IncrementExpression: Expression

{

pattern

{

option recursive = false;

expression:Expression "++"

}

method Get()

{

value = this.expression.Get...() + 1;

this.expression.Set...(value);

return value;

}

}

Figure 15: An example Katahdin extension that implements the unary suffix

increment operator ++
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that represents the AST node for the newly defined construct. Syntactic exten-

sions are defined using PEGs, which are later used by a backtracking recursive

descent parser. Evaluation rules are defined as a series of methods with direct

access to the parse tree that allow the interpretation of the current AST node.

For example, all expressions in the base language and in its extensions have

a Get() method that evaluates the current node and returns the value for that

node. Similarly, all statements have a Run()method that executes the provided

statement. An example of implementing a simple extension is provided in Fig.

15.

While such a method for defining language extensions is very intuitive to

use, it has quite a few limitations as well:

• Katahdin uses PEGs to define the syntax for new language constructs.

This results in no support for left recursion, no local ambiguity support,

and no true language union support. The limitations of PEGs in relation

to the REP languages are explored in more detail in Section 3.1.5.

• The choice of a recursive descent parser is questionable as well. A recur-

sive descent parser with backtracking, while easy to implement, is no-

torious for exhibiting poor performance because backtracking may take

exponential time to execute.

• Syntax extensions are global. It is not possible to activate an extension

for a selected scope only, like when using other parsing methods, such

as the one described in Section 3.1.9.

• Katahdin is fully dynamically typed. The author of the language claims

that this choice allows the language to support both dynamically and stat-

ically typed extensions because dynamically typed extensions provide

more generality. However, this may not be true. It is entirely possible

to mix static typing with dynamic typing by introducing dynamic types

within a statically typed language. The choice of dynamic typing, be-

sides having poorer performance, defeats one of the key motivators for

using an REP language: compile-time error checking that ensures that

two code fragments from two different languages integrate correctly.

• It has poor performance. Because Katahdin is a dynamic programming

language, its libraries are provided in a textual (non-binary) format. That

means that each time a language library is imported, it must be parsed
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with a fairly inefficient parsing method. After imported libraries are

parsed and the constructs within them are evaluated, the actual user pro-

gram may only then begin execution. With the current Katahdin imple-

mentation, it takes several seconds just to parse the standard library. In

addition, the performance of user programs even after parsing them is

low because Katahdin uses AST interpretation to execute its programs.

Because of these restrictions, we do not believe that Katahdin is a true con-

tender for a practical REP language.

3.2.2 SugarJ

SugarJ [10] is a programming language that supports library-based syntac-

tic language extensibility. The language’s authors introduce a new type of li-

braries, called sugar libraries, which in addition to exporting classes and func-

tions, also export syntactic extensions. Even though the authors claim that the

sugar library concept is novel, a less formal variation of sugar libraries was also

implemented previously in Katahdin.

Unlike Katahdin, which uses interpretation to execute its programs, SugarJ

transforms all of its programs into Java code than can then be compiled by

a regular Java compiler. Syntax extensions in SugarJ are defined using new

language constructs called sugars.

A sugar in SugarJ is a declaration (just like a class in Java), which defines the

syntax of an extension using context-free grammars and provides desugaring

rules, which rewrite theAST nodes of new constructs tomostly JavaAST nodes

(see Fig. 16 for an example of a sugar declaration). This allows adding only

paraphrase extensions to the base language.

SugarJ is implemented by dividing the translation process into the following

steps:

1. Parsing. The translator parses a single top-level declaration using Strat-

ego/SDF with the current grammar. Stratego [5] is a language trans-

formation framework that allows defining grammar using context-free

grammars. It also provides the capability to define rewrite rules, which

are used directly in SugarJ to transform ASTs. The actual parsing pro-

cess within Stratego is done using a scannerless GLR parser [9].

2. Desugaring. This is the transformation step, where all sugar AST nodes
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package pair;

import org.sugarj.languages.Java;

import concretesyntax.Java;

public sugar Sugar {

context-free syntax

"(" JavaType "," JavaType ")" -> JavaType{cons("PType")}

"(" JavaExpr "," JavaExpr ")" -> JavaExpr{cons("PExpr")}

desugarings

desugar-pair-expr

desugar-pair-type

rules

desugar-pair-expr:

PExpr(e1, e2) -> |[ pair.Pair.create(~e1, ~e2) ]|

desugar-pair-type:

PType(t1, t2) -> |[ pair.Pair<~t1, ~t2> ]|

}

Figure 16: An example of a SugarJ extension that implements the unary suffix

increment operator ++

within the previously parsed declaration are replaced with appropriate

SugarJ nodes based on transformation rules in sugar definitions.

3. Splitting. At this point, the AST contains only SugarJ nodes. The AST

is then split into fragments of Java, import statements, and sugar declara-

tions. Fragments of Java contribute to the final translated Java program.

The import statements are used to load external sugar libraries, while the

sugar declarations are passed to Stratego.

4. Adaptation. During this step, new sugar declarations are merged with

the current desugaring rules. In the same fashion, newly defined pro-

duction rules are composed using the current grammar to form a new

grammar that is capable of recognising newly defined sugars. This new

grammar and new sugars are then used to parse the subsequent top-level

declaration.

In other words, SugarJ uses naive extensible parsing in conjunction with a

scannerless GLR parser. This means that sugars are applied globally to all

subsequent top-level blocks. This prohibits the creation of extensions that

only work in specific scopes. Furthermore, the performance of such a pars-

ing method is not ideal (see Section 3.1.1 for more details). As such, there is

room for improvement regarding syntactic extensibility.

In addition, because SugarJ supports only syntax extensions, it is not a true
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Table 2: Summary of analysed tools and languages
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Katahdin ✔ ✔

SugarJ ✔ ✔ ✔ ✔

Neverlang ✔ ✔ ✔

REP language. However, the AST transformationmethod used in this language

is rather general and thus applicable to REP languages as well. Unfortunately,

the same cannot be said about SugarJ’s parsing method.

3.2.3 Neverlang

Neverlang [30] is a framework for sectional compiler construction. It intro-

duces the concept of splitting the definition of a compiler into slices, where each

slice defines a single feature for the target language. Each slice contains the

syntax definition, type-checking rules, and evaluation rules. Eventually, mul-

tiple named slices are composed into a single language, and the compiler for

that language is generated. Neverlang uses a dedicated lexer with an incremen-

tally generated LALR(1) parser to parse the target language, which means that

it does not support scannerless parsers and arbitrary context-free grammars.

Thus, it does not meet our criteria for REP language parsing. However, the

idea of dividing the definition of a language into mostly self-contained slices

provides a clean way to manage different extensions that may exist within the

REP language and should be eventually investigated withmore detail regarding

using slices in an REP language compiler.

3.2.4 Tool and language summary

The summary of all reviewed related tools and languages is shown in Table

2. This table also includes a column on acceptable grammar change perfor-

mance that indicates whether the selected language or tool is capable of mak-

ing rapid changes to active grammars without regenerating the entire internal
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grammar representation with each (potentially minor) grammar change.

3.3 Conclusions

In this chapter, we defined the requirements for an REP language parser

and investigated various parsing algorithms to meet these requirements. After

conducting the literature analysis, we found that no single parsing algorithm

or programming language fully satisfies our requirements, but several were

almost satisfactory.

Only one of the analysed extensible programming languages uses an algo-

rithm specifically designed for extensible grammars: Neverlang. However,

the parsing method of Neverlang is based on an incremental LALR(1) with a

dedicated lexer and thus severely limits the grammar extension flexibility (be-

cause not all extension grammars may be LALR(1)). The other two analysed

languages (Katahdin and SugarJ) use more traditional parsing methods, which

were ‘naively’ extended to support extensible grammars (by either regenerat-

ing entire parse tables after each grammar change in SugarJ’s case or using a

very inefficient backtracking recursive descent parser that does not preprocess

or optimise the grammar rules in Katahdin).

The closest parsing algorithms to meet our criteria are the reflective parser

and Yakker. The reflective parser (as described in 3.1.9) is the only one that

supports dynamic grammar updates with local grammar extensions, but it lacks

support for scannerless grammars and, more importantly, is rather inefficient.

On the other hand, Yakker does not support any kind of dynamic grammar

updates; however, it is rather fast. Both of these parsing algorithms are derived

from the Earley parser. As a result, we believe that the Earley parser (and its

derivatives) would serve as a good basis for constructing a modified version

of the algorithm that would fully satisfy all the requirements for parsing REP

languages.
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4 EXTENSIBLE PARSING WITH THE EARLEY VIRTUAL

MACHINE

4.1 Earley Virtual Machine

4.1.1 Introduction to the Earley virtual machine

The Earley virtual machine (EVM) is a new approach to parsing that is based

on virtual machines and is heavily inspired by the Earley parser. The core idea

behind EVM is to separate the two grammar representations used by the parser:

the user writes source grammars in a plain-text format, which are then parsed

and compiled into compiled grammars that are then executed by the parser.

The EVM consists of the following elements, each of which will be de-

scribed in more detail in future chapters:

• Source grammars are parser grammars in plain-text format. These gram-

mars are written by the user of the parser and describe the parsed lan-

guage in terms of grammar rules. Additionally, source grammars may

contain the AST construction instructions, which allow controlling the

process of AST construction in fine detail.

• Compiled grammars or grammarmodules are internal representations

of source grammars. As the name implies, compiled grammars are com-

piled from source grammars. Compiled grammars contain a sequence of

low-level instructions that drive the parsing process.

• The interpreter is one of the primary elements of the EVM. It interprets

or executes the instructions contained in one or more grammar modules.

As a result, an AST is constructed based on the parse input. The process

of interpreting compiled grammars is synonymous to parsing the input

data in the context of the EVM.

• The states of the EVM are internal structures used by the interpreter to

track the execution of the interpreter. These EVM states have a close

resemblance to the Earley parser states. One EVM state may exist per

terminal symbol.

• The EVM fibers have a close relationship with the Earley parser items.
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Each fiber represents a task of grammar rule execution. A fiber may be

thought of as a thread of a general-purpose programming language in

which one grammar rule is executed.

• The fiber queue is a queue of fibers that are ready for execution. The

interpreter works by removing the first fiber from the queue and executes

it until it yields. At this point, the next fiber is removed from the queue

and the execution of it commences. An empty fiber queue indicates a

parse error.

4.1.2 Earley virtual machine grammars

Much like formal grammars, basic EVM grammars consist of production

rules, where each production rule defines how to parse a single non-terminal

symbol. More formally, a basic EVM grammar is a set of productions in the

form sym→ body, where sym is a non-terminal symbol and body is a grammar
expression.

A grammar expression is defined recursively as follows:

• a is a terminal grammar expression, where a is a terminal symbol;

• A is a non-terminal grammar expression, where A is a non-terminal sym-

bol;

• ε is an epsilon grammar expression;

• (e) is a brace (grouping) grammar expression, where e is a grammar ex-
pression; and

• e1e2 is a sequence grammar expression, where e1 and e2 are grammar

expressions.

The EVM compiled grammar is a tuple 〈instrs,rule_map〉. Moreover, instrs
is the sequence of instructions that represent the source grammar. In addition,

rule_map is the mapping from the non-terminal symbols to locations in the

instruction sequence, which represents entry points for the grammar program.

It is used to determine the start locations of compiled rules for specific non-

terminal symbols.
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4.1.3 Earley virtual machine states

An EVM state is a structure that tracks the progress of the interpreter at a

particular point in the terminal symbol input sequence. Each EVM state has an

index that corresponds to an appropriate position of the input sequence. Each

EVM state Si is a tuple 〈susp, trace,reductions〉, where the following condi-
tions apply:

• The term i is the position of the input sequence.

• Susp is a list of suspended tasks at position i. When one rule calls an-

other, the caller is suspended until one or more of the callees are com-

plete. Each entry of the suspended task list is a pair 〈 f iber,symbol_map〉,
where f iber is the suspended fiber. symbol_map represents the reason

for the suspension: it contains the set of non-terminal symbols that the

callee expects to parse. Upon parsing any of these symbols, the caller

fiber is resumed by adding its copy to the fiber queue (thus signalling

that the target non-terminal symbol has been parsed successfully and that

the parsing of the caller rule may resume).

• Trace is the execution trace set (ETS). It is a set of pairs 〈ip,stack〉.
Whenever a new fiber is created (either by calling a new non-terminal

symbol or by resuming a suspended fiber), the instruction pointer ip and
the stack of the candidate fiber is checked against the ETS. If the pair is
not present in the ETS, then the creation of the fiber commences, and this

pair is added to the ETS. Otherwise, the creation of the fiber is aborted.

This mechanism ensures that the input position is parsed with the same

grammar rule and the same context only once, thus avoiding the expo-

nential parsing complexity found in certain variations of the recursive

descent parser. The ETS also blocks infinite left recursion.

• Reductions is a multimap that stores successful reductions that originate
from the state/offset i. The key of the multimap is a non-terminal sym-
bol that indicates the target symbol, where the value of the map is a tuple

〈o f f set1, priority,value〉. In addition, o f f set1 indicates the end position
of the reduction, and the priority indicates the priority of the reduction.
This value is used in conjunction with negative reductions and is de-

scribed in more detail later. The value is the user-specified value of the

65



reduction. It usually contains the AST node of the reduction or, when de-

layed semantic actions are used, the label of the reduction. The primary

purpose of the reductions is to store the intermediate parsing results. Ad-
ditionally, it is used to merge reductions whose starting positions, ending

positions, and non-terminal symbols match. This avoids the exponential

complexity explosion in the case of ambiguous grammars or inputs.

4.1.4 Earley virtual machine fibers

A fiber represents the task of parsing a single non-terminal symbol. When-

ever a non-terminal symbol needs to be parsed, one or more fibers are created

to parse the symbol. More specifically, a fiber is the tuple 〈origin,o f f set, ip〉:

• The origin is the origin input position of the fiber. It indicates the starting
position of the target non-terminal symbol in the terminal symbol input

sequence. This value is used when completing reductions. A successful

non-terminal symbol reduction is recorded in the variable reductions of
the Sorigin of the state. Additionally, appropriate suspended threads of

the Sorigin of the state are resumed in the So f f set of the state.

• The o f f set indicates the input position of the current fiber. When a sin-

gle terminal symbol is parsed successfully, the current fiber is advanced

by increasing this offset by 1.

• The term ip indicates the instruction pointer of the current fiber.

4.1.5 Earley virtual machine interpreter

Parsing terminal symbols

Terminal symbols in the EVMare parsedwith the instruction i_match_char.

This instruction has a single operand that contains a jump table. This jump ta-

ble consists of pairs 〈symbol, target_ip〉, where symbol is a terminal symbol to
be matched. In addition, target_ip is the target instruction pointer to jump to

if the symbol is matched successfully.
Inmost basic cases, this instruction can be used only with a single entry in its

jump table. However, when using a subset construction optimisation, multiple

i_match_char instructions can be merged into one by combining their jump

tables. In the case of a successful terminal symbol match, the ip of the current
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Table 3: Terminal symbol sequence parsing example

Grammar rule Instruction sequence

S -> a b c

...

20: i_match_char a -> 21

21: i_match_char b -> 22

22: i_match_char c -> 23

23: i_reduce S, 0

24: i_stop

...

fiber is set to the appropriate instruction pointer provided in the jump table.

Additionally, the current fiber is advanced by increasing the o f f set by 1. In the
case of matching failure (when no terminal symbol in the jump table matches

the one in the o f f set position of the input), the current fiber is immediately
discarded. The execution of the fiber is halted, and the fiber yields. An example

of a simple source grammar and its instruction sequence is provided in Table

3.

Parsing non-terminal symbols

Parsing non-terminal symbols in EVM is significantly more involved. Mul-

tiple instructions are used to facilitate matching non-terminal symbols:

• i_call_dyn S is used to initiate parsing non-terminal symbol S. This

instruction creates one or more fibers. The instruction pointers of newly

created fibers are set to the entry points of the compiled rules that de-

fine the non-terminal symbol S. The origin of the new fibers is set to

the o f f set of the caller. Finally, newly created fibers are added to the
fiber queue. It is important to note that the fiber creation process is still

subject to the ETS rules. Multiple i_call_dyn invocations to the same

non-terminal symbol S will not result in creating additional fibers. Af-

ter executing the i_call_dyn instruction, the caller fiber continues its

execution normally.

• i_match_sym S1 → ip1, ...,Sn → ipn is used to match successful non-

terminal symbol parses that have been previously initiated by the i_call

family of instructions. Whenever a i_match_sym is executed, the current

fiber is suspended by adding it to the list of suspended fibers susp in the
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Table 4: Non-terminal symbol sequence parsing example

Grammar rule Instruction sequence

S -> A B C

...

30: i_call_dyn A

31: i_match_sym A -> 32

32: i_call_dyn B

33: i_match_sym B -> 34

34: i_call_dyn C

35: i_match_sym C -> 36

36: i_reduce S, 0

37: i_stop

...

So f f set state. Additionally, the interpreter attempts to pre-emptively re-

sume the suspended fiber in case any of the target non-terminal symbols

have been successfully parsed prior to executing the current i_match_sym

instruction.

• i_reduce S, prio is used to perform reduction of the non-terminal symbol

S. First, this instruction records the presence of a new reduction with

priority prio in the Sorigin state. If there have been other reductions with

the same length and a non-terminal symbol in the Sorigin state, but with

greater priority, the current reduction is abandoned. This mechanism is

used to implement negative reductions that can be used to exclude certain

undesirable parses (for example, certain keywords can be excluded from

identifiers). If the reduction is not abandoned, then this instruction finds

all the suspended fibers in the Sorigin state that have been waiting for S
and attempts to resume them. After completing the i_reduce instruction,

the current fiber continues executing normally.

• The i_stop instruction discards the current fiber.

A simple example of matching several non-terminal symbols is provided in

Table 4.

Resuming suspended fibers

TheEVM fibers can be resumed in two circumstances: during the i_match_sym

or i_reduce instruction execution. In both cases, the suspended fibers can be

resumed with the following steps:
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1. The suspended thread is duplicated.

2. The term ip of the copy is set to target the instruction pointer, which is

retrieved from symbol_map.

3. The o f f set of the copy is set to the o f f set of the fiber that executes
i_reduce. In the case of a pre-emptive resumption in i_match_sym, the

new o f f set value is retrieved from the reductions entry in the So f f set

state.

4. The new fiber is traced by recording its presence in the state’s So f f set

execution trace set. If a matching entry already exists, the resumption of

the fiber is aborted.

5. The new fiber is added to the fiber queue to be executed later by the

interpreter.

4.2 Compiling Basic Earley Virtual Machine Grammars

The rules for compiling basic source grammars to corresponding instruction

sequences are shown in Table 5. The notation codeI refers to the correspond-
ing sequence of instructions when compiling grammar element e. Instruction
i_accept signals the interpreter that a matching input has been parsed. More-

over, main is the name of the starting non-terminal symbol of the grammar that
is being compiled.

4.3 General-Purpose Computation in the Earley Virtual Machine

The current model of the EVM is quite flexible and can be extended to

support general-purpose computation during parsing. This general-purpose

computation may be used to imperatively control the parsing process and thus

implement some of the required functionality to support data-dependent con-

straints.

The EVM fibers already support stacks that can be used to store intermediate

general-purpose computation results. The following instructions are required

to enable general-purpose execution during parsing:

• i_br ip. Unconditional branch to instruction pointer ip.

• i_bz ip. Conditional branch to instruction pointer ip. The branch con-
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Table 5: Basic source grammar compilation rules

Grammar element Instruction sequence

Grammar:

G = {P1, ..., Pn}

i_call_dyn main
i_match_sym main→ laccept

laccept :
i_accept

i_stop

code(P1)
...

code(Pn)

Production rule:

P→ e

code(e)
i_reduce P, 0
i_stop

Terminal grammar expression:

a
i_match_char a→ ipnext

Non-terminal grammar expression

(dynamic):

A

i_call_dyn A
i_match_sym A→ ipnext

Epsilon grammar expression:

ε

Brace grammar expression:

(e)
code(e)

Sequence grammar expression:

e1e2

code(e1)
code(e2)

dition value is popped from the top of the current fiber stack.

• i_pop. Remove and discard the top stack element of the current fiber.

• i_peek n. Duplicate stack element n and push it to the top of the stack.

• i_int_add. Integer addition; pop two values from the top of the stack

and add them as integers and push the result to the top of the stack.

• i_int_sub. Integer subtraction.

• i_int_neg. Integer negation.

• i_int_push. Push the immediate integer constant to the top of the stack.

• i_int_more. Integer comparison.
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• i_str_push. Push the reference of the string constant to the stack.

• i_call_foreign id, n. Call the foreign method identified by index id
with n arguments. Push the result of the call to the stack. Foreign meth-
ods are methods implemented in the host environment of the EVM and

can be used to extend the functionality of the EVM without having to

directly modify the way the EVM is implemented.

The list of instructions is non-exhaustive, and additional instructions may

be added based on the requirements.

4.4 Improving Source Grammar Flexibility

4.4.1 Regular right-hand sides in production rules

Regular right-hand sides is a feature commonly found in the recursive de-

scent and packrat family of parsers [11]. It allows the usage of regular opera-

tors on the right-hand sides of production rules. This simplifies the definition

of new grammars because repeated and optional grammar elements no longer

need to be expressed solely via alternation and recursion.

To support such operators in EVM grammars, the definition of the EVM

grammar expression needs to be expanded. In addition to the existing grammar

expressions, the following elements are also considered grammar expressions:

• e? is an optional grammar expression, where e is a grammar expression.

• e+ is one or more grammar expressions, where e is a grammar expres-
sion.

• e∗ is zero or more grammar expressions, where e is a grammar expres-
sion.

• e1|e2 is an alternative grammar expression, where e1 and e2 are grammar

expressions.

All of these new grammar elements can be implemented in the EVM by

adding one additional instruction:

• The i_fork ipnew instruction clones (forks) the current fiber and sets the

instruction pointer of the new fiber to ipnew. The newly created fiber

is scheduled to be executed by adding it to the fiber queue, while the

existing one continues executing normally.
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Table 6: Regular operator compilation rules

Grammar element Instruction sequence

Optional grammar expression:

e?

i_fork lend
code(e)
lend :

One-or-more grammar expression:

e+
lstart : code(e)
i_fork lstart

Zero-or-more grammar expression:

e∗

lstart : i_fork lend
code(e)
i_br lstart

lend :

Alternative grammar expression:

e1|e2

i_fork lother
code(e1)
i_br lend
lother: code(e2)
lend :

S -> E

E -> E "+" F | E "-" F | F

F -> F "*" T | F "/" T | T

T -> "0" | "1"

Figure 17: A grammar that defines simple expressions with binary operators

The rules for compiling the new operators into instruction sequences are

provided in Table 6.

4.4.2 Rule and operator precedence

Almost every existing programming language supports the notion of binary

operators with differing precedences. In grammars, such operators with dif-

ferent precedences are commonly implemented via operator expression hierar-

chies, as shown in Fig. 17. Each different operator precedence level has a sepa-

rate non-terminal symbol, under which the operators with that precedence level

are defined. While such an operator with this precedence definition method is

simple and easy to understand, it quickly becomes cumbersome when deal-

ing with real-world programming languages, such as C++, Ruby, and similar

languages, which often have over 15 different levels of operator precedences.
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Furthermore, extending such language grammars to include additional op-

erators becomes difficult, especially when the new operator has a precedence

level that is between two existing neighbouring precedence levels. In that case,

a new non-terminal symbol for the new operator precedence level must be de-

fined, and the existing rule that defines lower-precedence operators must be

updated to use the newly defined operator.

Because the definition of operators (either unary or binary) is such a funda-

mental task when defining new grammars for programming languages, newer

parser generators and language translation frameworks often allow specify-

ing the precedences of operators directly by either assigning each operator a

numeric precedence value or using the operator definition order to infer the

precedence of each operator [9]. As such, it would be beneficial for the EVM

to support the specification of operator precedence levels natively, especially

because one of the goals of the EVM is to support adaptable grammars that can

be extended dynamically during runtime.

In the EVM, the term operator precedence is generalised to rule precedence,

as any grammar rule can have an explicit precedence value. All rules that have

no explicit precedence definition have a default precedence value of 0.

When compiling source grammars, the precedences are stored in the rule_map
entry of the compiled grammar. As a result, rule_map contains a multimap

from non-terminal symbols to the rule instruction entry point and rule prece-

dence pairs.

Furthermore, the instruction for invoking non-terminal symbols i_call_dyn

needs to be extended to include the minimum rule precedence operand, which

is then used to filter out rules with lower precedence than requested. The source

grammar compiler can use this operand when detecting that a grammar rule is

recursively invoking itself. In that case, only rules with greater precedence in

comparison to the precedence of the current rule should be invoked. Such a

mechanism emulates the behaviour of the operator hierarchy without having to

explicitly define it.

Changing just i_call_dyn to support rule precedences is insufficient be-

cause the i_match_sym instruction has no notion of rule precedence and, as

such, will interpret any successful match of the target non-terminal symbol as

a valid one, even when the callee expects only a non-terminal symbol with a

specific minimum precedence. Therefore, a new instruction is needed to match
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the non-terminal symbols with a specified precedence:

• The i_match_dyn S, precmin instructionmatches successful parses of only

a non-terminal symbol with minimum precedence precmin. Just like the

original i_call_dyn, it suspends the current fiber and attempts to pre-

emptively resume it by checking the existing reductions in the So f f set

state. When resuming the fiber, its instruction pointer is set to ip+1.

4.4.3 Specifying operator associativity

Operator associativity can be considered a separate edge case of rule prece-

dence. The left-associative operator E +E means that the left non-terminal E
can be expanded recursively into itself, while the right E must be expanded into

an expression only with higher precedence. As such, the operator associativity

specification can be implemented using the operator precedence mechanism.

A new grammar element must be added to the grammar expression to indi-

cate when a non-terminal symbol is allowed to recursively expand into itself:

• ∗A is non-terminal associative grammar expression, where A is a non-

terminal symbol. When used in a production rule whose head is A, this
grammar expression indicates that ∗A can be expanded recursively with

the current production rule.

As indicated above, by default, all recursive non-terminal invocations are

non-associative. This is because, if a user has forgotten to explicitly specify

the associativity of an E +E expression, it would become ambiguous because

it could be interpreted both as left and right-associative at the same time.

The example grammar in Fig. 17 can now be rewritten using the explicit

rule precedences and non-terminal associative symbols as shown in Fig. 18.

New operators can be added as needed by specifying the new production rules

with explicit precedences. When adding new operators, no existing rules need

to be changed or altered in any way.

The updated rules for generating instruction sequences for non-terminal

symbols are provided in Table 7. In addition, the prec value refers to the prece-
dence of the current rule that is being compiled. By default, this value is 0 if it

is not specified explicitly using square bracket notation.
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S -> E

E[10] -> *E "+" E

E[10] -> *E "-" E

E[20] -> *E "*" E

E[20] -> *E "/" E

E[30] -> "0" | "1"

Figure 18: Rewritten grammar that defines simple expressions with binary

operators

Table 7: Updated non-terminal symbol compilation rules

Grammar element Instruction sequence

Non-terminal grammar

expression (non-recursive):

A

i_call_dyn A, 0
i_match_sym A→ ipnext

Non-terminal grammar

expression (recursive):

A

i_call_dyn A, prec+1
i_match_dyn A, prec+1

Non-terminal associative

grammar expression (recursive):

∗A

i_call_dyn A, prec
i_match_dyn A, prec

4.5 Parsing with Regular Lookahead

4.5.1 Fixed-length lookahead

Parsing using lookahead is a useful feature that can simplify specifying

grammars. When using a parser in scannerless mode, lookahead becomes

mandatory because it is needed to implement greedy-matching when defining

the language tokens. For example, an identifier can be defined as a sequence of

alphanumerical characters that terminate on the first non-alphanumerical sym-

bol. As such, to correctly specify the termination point of an identifier, a single-

character lookahead is required.

In the EVM, the fixed-length lookahead could be mostly implemented us-

ing the existing i_match_char instruction that is used to match the terminal

symbols. All that is needed is to backtrack to correct the input offset after per-

forming the lookahead. This could be implemented using a new instruction:

• The i_advance n instruction advances the current fiber by n symbols.
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Table 8: Fixed-length lookahead example

Grammar rule Instruction sequence

A -> a+ &b

40: i_match_char a -> 41

41: i_fork 40

42: i_match_char b -> 43

43: i_advance -1

44: i_reduce A

45: i_stop

id -> [a-zA-Z_] [a-zA-Z_0-9]* &[^a-zA-Z_0-9]

Figure 19: Grammar rule that defines identifier using fixed-length lookahead

Table 9: Fixed-length lookahead compilation rules

Grammar element Instruction sequence

Fixed-length lookahead:

&e
code(e)
i_advance −length(e)

This operand may be negative to perform fixed-length backtracking.

To use this instruction, the definition of a grammar expression must be ex-

tended to include the following:

• The &e expression is a positive lookahead grammar expression, where e
is a grammar expression.

An example of the usage of a positive lookahead operator is provided in

Table 8. Figure 19 shows an example where the positive lookahead feature

can be used in a real-world scenario when defining identifiers.

The rule for compiling fixed-length lookahead grammar expressions is pro-

vided in Table 9. In addition, length(e) refers to the character (terminal sym-
bol) length of grammar expression e.

4.5.2 Variable-length lookahead

Variable-length lookahead in the EVM can be implemented in a similar

fashion. However, in this case, the difficulty is not knowing howmany terminal

symbols to backtrack after performing the lookahead operation. As such, this

information can be recorded and used dynamically by leveraging the general-

purpose computation capability of the EVM.
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Table 10: Variable-length lookahead compilation rules

Grammar element Instruction sequence

Variable-length lookahead:

&e

i_push_offset

code(e)
i_pop_offset

To support the variable-length lookahead operation, two additional instruc-

tions are required:

• i_push_offset pushes the o f f set value of the current fiber to its stack.

• i_pop_offset pops the o f f set value of the current fiber from its stack.

The rules for compiling variable-length lookahead grammar expressions are

provided in Table 10. Both fixed and variable-length lookahead expressions

share the same notation. It is up to the source grammar compiler to determine

when the lookahead operation is a fixed length and to use the appropriate com-

pilation rule. It is also possible to use the variable-length lookahead operation

even in situations where the fixed-length lookahead operation would be more

suitable, but with an additional performance cost because the variable-length

lookahead operation uses the fiber stack.

4.6 Parsing with Data-Dependent Constraints

4.6.1 Earley virtual machine grammar language

We have already shown that the EVM is capable of performing general-

purpose computation and have hinted that a conditional control transfer can be

used to drive the parsing process. However, the current grammar language is

only capable of specifying simple production rules that are composed of gram-

mar expressions. Therefore, to be able to use a conditional control transfer, the

source grammar language must be extended to include control flow statements.

Table 11 presents the updated grammar elements and their instruction se-

quence compilation rules. The list of new grammar elements is non-exhaustive

and does not include additional variations of existing elements (e.g. various in-

teger operations can be implemented in a similar fashion to integer addition just

by changing the final instruction).

Every variable defined within the rule body is assigned a stack slot. A stack
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Table 11: Extended grammar language elements and their compilation rules

Element name Syntax Instruction sequence

Grammar rule

rule sym(a1, ...,an)
stmt1
...

stmtn
end

code(stmt1)
...

code(stmtn)
i_reduce sym, 0
i_stop

Block statement

stmt1
...

stmtn

code(stmt1)
...

code(stmtn)

If statement

if cond
body

end

code(cond)
i_bz lend
code(body)
lend :

Parse statement parse g_expr code(g_expr)

Return statement return expr
code(expr)
i_reduce_r sym, 0
i_stop

While statement

while cond
body

end

lstart : code(cond)
i_bz lend
code(body)
i_br lstart

lend :

Variable decl. statement var v = expr code(expr)

Integer addition expression e1 + e2

code(e1)
code(e2)
i_int_add

Integer constant expression value i_push_int value
Variable read expression v i_peek stack_slotv

Variable write expression: v = e
code(e)
i_poke stack_slotv

Parameterized non-terminal

grammar expression
A(a1,a2, ...,an)

code(a1)
code(a2)
...
code(an)
i_call_dyn A, precmin, n
i_match_dyn A, precmin

78



slot is a position in the fiber stack where the value for the variable is stored.

Moreover, stack_slotv refers to the stack slot number for variable v.
In the new grammar language, all grammar elements are divided into several

categories:

• Top-level declarations are used to define new grammar rules.

• Statements are used to control the execution flow. In the extended gram-

mar language, the bodies of rules are composed of statements.

• Expressions are used to perform general-purpose computations, much

like in traditional programming languages.

• Grammar expressions are used to perform parsing. Grammar expres-

sions can be executed using a parse statement.

Grammar rule definitions are now extended to support parameters that can

be used to control the execution flow. To implement this, additional instruction

changes are required:

• The i_call_dyn instruction needs to be extended to include the argument

number to copy to the callee. The copied arguments are discarded from

the caller’s stack frame after the call is complete.

• The i_reduce_r (reduce and return) instruction needs to be created to

allow returning values from the callee. It behaves exactly the same as

i_reduce but also pops a value from the current fiber frame and stores

it in the reductions entry of the Sorigin state. This value can be accessed

later by the i_match_dyn_r instruction.

• The i_match_dyn_r instruction behaves exactly the same as i_match_dyn

but also pushes the return value of the callee to the current fiber stack.

Parse and other control statements can be mixed and matched to parse com-

plex data-dependent grammars that cannot be parsed with traditional context-

free parsers. For example, Table 12 shows how to parse fixed-length fields

commonly found in binary formats.

4.6.2 Matching input against dynamic content

While the mechanism for dependent parsing described in the previous chap-

ter is powerful, it is not sufficient to parse languages like XML. To be able to
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Table 12: Parsing fixed-length fields

Grammar rule Instruction sequence

rule field(n)

while n > 0

parse "a"

n = n - 1

end

end

10: i_peek 0

11: i_push_int 0

12: i_int_more

13: i_bz 20

14: i_match_char a -> 15

15: i_peek 0

16: i_push_int 1

17: i_int_sub

18: i_poke 0

19: i_br 10

20: i_reduce "field", 0

21: i_stop

parse XML, it is necessary to be able to extract a fragment of the parsed input

and then use that extracted fragment for further matching.

As a result, two additions to the grammar expression are required:

• The v@e expression is a capturing grammar expression, where e is a

grammar expression, and v is a name (identifier) for a new variable. After

successfully matching e, this operator will store the range (the start and
end offsets) of the matched input.

• The = v expression is a dynamic match grammar expression, where v is
a variable that stores the input range. This operator is used to match the

input against the one that is referenced by the range.

To implement these new constructs, only one new instruction is needed:

• From the fiber stack, the i_match_range instruction pops two integer

values that represent the input range and the attempts to match the input

at the current position against the characters referenced by the range. In

the case of a successful match, the current fiber is advanced by the length

of the range. In the case of a failure, the current fiber is discarded. This

instruction is fairly unique in the EVM because it is the only one that can

match more than one terminal symbol at the same time.

A grammar rule example that can match the simplified XML tags is pro-

vided in Fig. 20. This rule combines multiple key elements of the EVM to

successfully parse the XML tags: the fixed-length lookahead, associative non-

terminals, and dynamic matching.
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rule xml_element()

parse "<" start@([a-zA-Z_] [a-zA-Z_0-9]* &[^a-zA-Z_0-9])

xml_attrs ">"

parse (*xml_element)*

parse "</" =start ">"

end

Figure 20: Simplified XML tag grammar rule

Table 13: Rules for compiling capturing dynamic match grammar expressions

Grammar element Instruction sequence

Capturing grammar expression:

v@e

i_push_offset

code(e)
i_push_offset

Dynamic match grammar expression:

= v

i_peek stack_slotv0
i_peek stack_slotv1
i_match_range

Rules for compiling newly added grammar expressions into instruction se-

quences are provided in Table 13. In addition, stack_slotv0 and stack_slotv1

refer to the stack slot indices of the values produced by the i_push_offset

instructions.

4.7 Abstract Syntax Tree Construction

4.7.1 Automatic abstract syntax tree construction

The EVM in its current iteration cannot be called a parser because it only

currently performs input recognition. As such, for the EVM to be truly use-

ful and applicable, a method is needed to construct the AST of the matched

input. The AST can be constructed in the EVM in multiple ways, and in this

section, we describe the automatic AST construction that requires no grammar

modifications or any additional input from the user to construct the AST.

Such a method of AST construction can be implemented by augmenting

the definition of the EVM fiber. An additional stack can be added to each fiber

that can store the child nodes of the current non-terminal symbol that is being

parsed. To use such a stack, the following instructions must be updated:

• In addition to performing reduction, i_reduceA, prio constructs theAST
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node for the non-terminal symbol that is being reduced. The newly con-

structed node is composed of nodes found in the child node stack. Ad-

ditionally, the node is tagged with the non-terminal symbol A. Further-
more, the source range for the non-terminal can be added by including a

copy of the pair 〈origin,o f f set〉, where origin refers to the starting po-
sition and o f f set refers to the current (and thus ending) position of the
non-terminal. Finally, i_reduce registers the newly constructed node.

• Additionally, i_match_dyn adds the corresponding node index to the

child AST stack, thus making these indices available during AST node

construction in the i_reduce instruction.

The EVM is capable of parsing ambiguous grammars, in which case, the

size of the AST may grow exponentially. To avoid this, shared packed parse

forests (SPPFs) can be used [25]. In SPPFs, subtrees that refer to alternative

parse paths are packed into a single ambiguous node.

The key difficulty in constructing such SPPFs within the EVM is that the

corresponding reductions may not happen sequentially. It is entirely possible

that two reductions that refer to alternative parses may be separated by several

completely unrelated reductions. As such, the SPPF cannot be constructed in

a single pass because any node that was previously constructed may become

ambiguous as more reductions complete.

Therefore, a layer of indirection is necessary to ensure that the nodes can be

changed from non-ambiguous to ambiguous after they have been constructed.

In the case of EVM, each node is assigned a unique index. Nodes in the EVM

are internally referred to by storing and passing these indices around. The child

node stack of each fiber stores the node indices, and the i_reduce instruction

uses the node indices to compose new nodes. The actual node data (such as the

child node vectors) are stored separately.

To allow the changing of the node type, the node-registration process within

i_reduce is used:

• If a reduction is unique (i.e. no other reductions share the same source

interval and same non-terminal symbol), then a normal child node is con-

structed. It is assigned a unique index, and this index is stored within the

reductions entry in an appropriate state.

• If a reduction is non-unique (or ambiguous), then a normal child node

82



is created, and it is assigned a unique index. However, this time, the

existing node is converted to an ambiguous packed node, and the newly

created node is added as its child.

The conversion of a non-ambiguous node to an ambiguous node works by

duplicating the target node, assigning it a new unique index, and changing the

target node type to ambiguous. The duplicate of the original is then added as

the only child of the converted node.

These node-registration and conversion processes ensure that the node ref-

erences are not broken when node conversion occurs. This enables incremental

construction of SPPFs when no prior knowledge exists of which nodes will be-

come ambiguous.

While this approach of AST construction is simple, it has two primary flaws:

• Inclusion of undesirable AST child nodes. The EVM is primarily a scan-

nerless parser and will be used to parse whitespace. It is common to de-

fine a non-terminal symbol for recognising whitespace and then use that

within other grammar rules. During automatic AST construction, nodes

that represent whitespace will be added to the resulting AST, possibly

unnecessarily increasing the overall size of the AST and littering it with

nodes that carry no semantic information.

• Rigid and inflexible AST node type. Every normal node of the AST cur-

rently shares the same type and thus the same structure. Such behaviour

may not be desirable because different non-terminal symbols represent

different language elements with unique behaviours. Furthermore, it is

common to use the AST to store semantic information when performing

a semantic analysis of the AST during the later stages of compilation.

The current node model has no space reserved for such semantic infor-

mation. Moreover, changing the node type would require changing the

internals of the EVM itself. The most flexible way to use the parsed re-

sult would be to convert the EVM AST to a possibly polymorphic user-

defined AST type that includes all the necessary fields and behaviours

to perform a semantic analysis.
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4.7.2 Manual abstract syntax tree construction

Manual AST construction is the polar opposite of automatic AST construc-

tion. Instead of requiring the EVM to define and construct the AST automati-

cally, the responsibility of the AST definition and construction is moved com-

pletely to the user. Because the EVM supports general-purpose computation,

it would be logical to assume that this method could be extended to enable

manual and imperative construction of the AST.

First, the EVM grammar language must be extended with the following

constructs:

• v : E is a capturing non-terminal grammar expression, where v is the

variable name for storing the captured result, andE is one of the available

non-terminal grammar expressions (plain or associative).

• <name arg1 ... argn> is a node construction expression. The node is

constructed with head name and arguments arg1 ... argn. Arguments

can be other nodes, integer values, or string values.

An additional instruction i_new_node n is needed that constructs a newAST

node with n arguments/children. The head (type) of the node must be provided
in the stack before pushing the arguments. As a result, i_new_nodewill always
pop n+ 1 elements from the stack. This instruction is needed to implement a

node construction expression. However, it can be implemented as a foreign

call as well.

An example usage of a manual AST construction is provided in Table 14.

To avoid exponential AST growth in ambiguous cases, a similar mechanism

for constructing SPPFs, as described in the previous section, should be used.

In addition, i_new_node should return a node index, and i_reduce_r should

include the node-registration logic that would enable the merger of ambiguous

subtrees into packed nodes.

However, if it is known that the grammar is unambiguous or that the ambi-

guitywill beminimal, then direct node references could be used, and i_reduce_r

would no longer need to include the node-registration logic. Furthermore,

nodes could be constructed in the host environment via foreign calls, thus al-

lowing the user to manually define and use different node types where desir-

able. Thus, both weaknesses of the automatic AST node construction could be

avoided at a cost of having to manually specify (both within the grammars and
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Table 14: Grammar rule for parsing and abstract syntax tree node construction

of binary addition

Grammar rule Instruction sequence

rule expr[10]

parse l:*expr "+" r:expr

return <add l r>

end

60: i_call_dyn "expr", 10

61: i_match_dyn_r "expr", 10

62: i_match_char '+' -> 63

63: i_call_dyn "expr", 11

64: i_match_dyn_r "expr", 11

65: i_str_push "add"

66: i_peek 0

67: i_peek 1

68: i_new_node 2

69: i_reduce_r "expr", 0

70: i_stop

possibly within the host environment) how to construct the AST.

Although this approach has numerous advantages for automatic AST con-

struction, one key flaw still persists:

• Wasted resources during speculative parsing. As the EVM performs

parsing breadth-first, quite a few parse paths are discarded. Consider

the parsing expression 2+ 3 ∗ 4. Upon parsing the 2+ 3 portion of the

input, a complete addition node would be constructed and stored within

the reductions entry of S1. However, this node would never be used be-

cause the remainder of the input would eventually be parsed, and two ad-

ditional nodes would be constructed (one for 3∗4 and one for the whole
expression). The problem is two-fold: the highly speculative nature of

the EVMand the too-eager construction of the resulting nodes. The prob-

lem becomes even more significant when using more ‘heavy’ nodes that

contain fields that are meant to be used during the later stages of compi-

lation (such as source ranges for error reporting or typing information for

semantic analysis). In that case, both the memory usage of the unused

nodes and the time it takes to construct them may become a significant

performance drain on the overall parsing process.

Thus, it would be useful if the node construction could be delayed only until

the parser is sure that the node will not be discarded.
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4.7.3 Delayed semantic actions

Arguments for delayed semantic actions

The delayed semantic actions [16] are an attempt to avoid the too-eager

computation within non-terminal rules that may not contribute to the parsing

result in the Yakker parser [14]. In this section, we present an adaptation of

the delayed semantic actions for the EVM. The core idea behind the delayed

semantic actions is to separate parsing into two distinct phases:

• The early and non-deterministic phase performs parsing and constructs

an execution history.

• The late and deterministic phase consumes the execution history and

uses it to execute any necessary semantic actions (possibly for AST con-

struction).

Consider the example in Table 14. It contains three semantic actions, whose

executions can be delayed: the assignment of the l variable, the assignment of
the r variable, and finally, the construction of the AST node. In the case of

the EVM, delaying these three actions would mean that the fiber stack in many

situations would become optional, thus making the fiber-suspension process

more efficient because it is no longer necessary to both allocate and store the

stacks of suspended fibers.

The advantage of delaying the AST construction becomes even more ap-

parent in the example provided in Fig. 21. Both operators in the EVM that

provide repetition (+ and ∗) are implemented in the EVM using the i_fork

instruction, which makes a copy of the current fiber with an altered instruc-

tion pointer. In the case that the actual argument list consists of n elements,

the EVM will perform n forks and reductions in the arg_list rule alone. As a
result, n+ 1 arg_list nodes will be constructed, out of which n will be never

used again (assuming that the grammar is non-ambiguous). As such, delaying

the AST construction is of vital importance in the EVM.

Constructing the execution history labels

As mentioned previously, the core idea behind the delayed semantic actions

is to construct the execution history composed of labels that somewhat mirror
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rule arg_list

parse (a0:arg ("," a1:arg)*)?

return <arg_list a0 *a1>

end

Figure 21: Grammar rule for parsing the argument list separated by commas

the structure of the AST but with one key difference. Whereas the AST nodes

are heavyweight and contain a significant amount of information, the individual

labels are small and lightweight. These labels can be replayed (either in a

separate late phase or in parallel during parsing), thus executing the semantic

actions that have been previously delayed.

Several different label types are required:

• The tag label is a unary label. It stores a reference to the previous la-

bel and a general-purpose numeric value. The semantic meaning of the

numeric value depends on other nearby labels.

• The call label is a binary label that indicates a call branch. It stores a

reference to the previous label and a reference to the reduction label of

the callee.

• The normal reduction label is a unary label that indicates a successful

non-ambiguous reduction. It stores a reference to the previous label and

the reduction tag. The reduction tag is a value that uniquely identifies a

reduction. The normal reduction label may be mutated to an ambiguous

reduction label.

• The ambiguous reduction label is a binary label that indicates an ambigu-

ous reduction. It stores two references to the reduction labels, which may

also be ambiguous.

• The resolved reduction label is a 0-ary label that stores the result of the

reduction, which is computed by executing the corresponding delayed

actions. The normal and ambiguous reduction labels can be mutated into

resolved labels after they have been replayed. The use of the resolved

labels avoids replaying the same reduction labels several times.

• The nil label is a 0-ary label that terminates the tag or call label chain.

• The range label is a unary label that holds a source range. It is used
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when parsing language tokens to hold the starting and ending positions

of a token, thus avoiding the need for two separate tag labels.

To facilitate the construction of labels, the definition of a fiber is extended

to include a current label. The general-purpose stack is not used for holding la-
bels because the fiber stack is a variably sized structure, thus requiring separate

allocation.

Furthermore, additional instructions and existing instruction changes are

required:

• The i_trace tag constructs a new tag label 〈label, tag〉 and sets the label
of the current fiber to the newly constructed one. This instruction is

used to delay the execution of statements and expressions within the rule

definition.

• The i_trace_offset instruction sets label to 〈label,o f f set〉. It is used
to capture the current parsing location so that it may be used when re-

playing the labels.

• The i_trace_range instruction sets label to 〈label,origin,o f f set〉. It is
used to capture the input range of the current non-terminal so that it may

be used when replaying labels.

• The i_reduce A and i_reduce_r A instructions now construct a normal

reduction label l1 = 〈label,A〉. Then, this label is registered by check-
ing whether the new reduction is ambiguous. If this is true, the existing

reduction label l0 is duplicated, and a new ambiguous label 〈l0, l1〉 is con-
structed in place of the old one.

• The i_match_sym, i_match_dyn, i_reduce, and i_reduce_r instructions

now construct a call label when resuming the suspended fibers.

All newly constructed fibers (usually with the i_call* family of instruc-

tions) are initialised with the nil label.

Compilation of grammars that use delayed semantic actions

The rules for compiling grammars with delayed semantic actions are pro-

vided in Table 15.

A fully capturing parse statement is a parse statement that contains a single

capturing grammar expression that captures the entire input of a non-terminal
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Table 15: Rules for compiling grammars with delayed semantic actions

Element name Grammar element Instruction sequence

Fully capturing

parse statement
parse r@g_expr

code(g_expr)
i_trace_range

Delayed return statement return expr
i_reduce_r sym, 0
i_stop

Capturing grammar

expression
v@e

i_trace_offset

code(e)
i_trace_offset

Capturing non-terminal

grammar expression
v : E

code(E)
i_trace labelnext

symbol. It is meant to be used in language token definitions. A fully captur-

ing parse statement is an optimised variation of the original parse statement.

If a rule contains a single parse statement and the grammar expression of that

statement is a capturing one, then the original parse statement may be substi-

tuted with a fully capturing one. This is an important optimisation for parsing

tokens because it avoids the need for processing. In other words, when com-

piling the statement, the i_trace_range instruction is only added as a suffix.

This becomes especially important when using i_trace_range in conjunction

with the subset construction optimisation.

In Table 15, labelnext refers to the next label index. Labels in capturing

non-terminal grammar expressions are indexed from 100 to differentiate them

from the ones generated with the i_trace_offset instruction. These labels

are referred to as action labels because they refer to a delayed action (in this

case, the assignment of a variable). Action labels are specifically defined to

be locally but not globally unique. That means that, in every non-terminal

rule action, the labels are numbered from 100. This further aids in performing

instruction subset constructions because the i_trace instructions with the same

tag may be merged together.

Replaying labels

The execution history labels are created within the EVM, often using spe-

cialised label creation instructions. However, they can be replayed outside of

the EVM, possibly in the host environment. This reduces the difficulty of the
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AST construction because the native data structures and method or function

calls may be used to construct the AST.

When the EVMcompletes parsing, the reduction label of the starting symbol

may be found in the reductions entry of state S1, whose length matches the

total length of the input. This label is the result of parsing and can be used

independently of the EVM to perform semantic action playback.

The label playback process consists of several steps:

1. Collection. During the collection step, the labels for a single non-terminal

symbol are collected into an array (essentially flattening a linked list of

labels into an array). The first label in the resulting array is always the

normal (non-ambiguous) reduction label that contains the unique reduc-

tion tag. The rest of the labels are added to the array in the order they

were constructed. Call labels are added to the resulting array without

traversing the callee labels.

2. Replay function selection. Once the label sequence is collected, the

replay function based on the non-terminal symbol tag is selected. Every

non-terminal rule has a corresponding replay function that can be used

to replay labels for that non-terminal rule.

3. Execution. The appropriate replay function is invoked. Within its body,

the necessary local variables are initialised and the label array is iterated

and the corresponding semantic action for each label is executed. This

step may invoke label playback recursively when resolving call labels.

4. Disambiguation. If the original reduction label was ambiguous, then

the disambiguation function is invoked, which must produce a single

value from all possible alternatives. When constructing SPPFs, the result

of the disambiguation step is an SPPF node that combines all possible

alternatives.

5. Resolution. The original reduction label is replacedwith a resolved label

that stores the result of the playback.

Depending on the current label, a different action is performed during the

resolution step:

• For call labels, the label playback process is invoked recursively. The

resulting resolved label is recorded as the previous label.
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Table 16: The grammar rule and corresponding instruction sequence for binary

addition when delayed semantic actions are used

Grammar rule Instruction sequence

rule expr[10]

parse l:*expr "+" r:expr

return <add l r>

end

60: i_call_dyn "expr", 10

61: i_match_dyn_r "expr", 10

62: i_trace 100

63: i_match_char '+' -> 64

64: i_call_dyn "expr", 11

65: i_match_dyn_r "expr", 11

66: i_trace 101

67: i_reduce_r "expr", 0

68: i_stop

• For range labels, the label is only recorded as the previous label.

• For tag labels, the appropriate semantic action is executed based on the

numeric value of the tag.

• Other labels may not be encountered in a properly constructed execution

history during the execution step.

The grammar rule example provided in Table 14 can now be compiled into

a different instruction sequence, which is shown in Table 16, when delayed

semantic actions are used.

The replay function for the rule, which is implemented in Ruby program-

ming language, is shown in Fig. 22. The method each_action iterates over the

collected labels (starting from the second label). In addition, prev_result ac-

cesses the resolved value of the previously resolved label. The create_add_node

is a user-defined method that constructs the binary addition AST node. It is im-

portant to note that the replay function can be implemented in any language and

that it is not in any way bound just to the Ruby programming language. For

example, the same replay function can be implemented in the C programming

language, as shown in Fig. 23.

4.8 Parsing Reflective Grammars

One of the key reasons for choosing the Earley parser as the basis for con-

structing the parsing method for an REP language is its flexibility and limited

need for grammar preprocessing. In this chapter, we describe how the EVM

can be extended to support adaptable grammars. The approach for implement-
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def action_expr(replay)

l = nil

r = nil

each_action(replay) do |action_id|

case action_id

when 100

l = prev_result

when 101

r = prev_result

end

end

return create_add_node(l, r)

end

Figure 22: The replay function for binary addition in the Ruby programming

language

void action_expr(replay_t* replay) {

node_t* l = NULL;

node_t* r = NULL;

REPLAY_ITERATE(label, replay) {

switch (label_action_id(label)) {

case 100:

l = (node_t*) replay_prev_result(replay);

break;

case 101:

r = (node_t*) replay_prev_result(replay);

break;

}

}

return create_add_node(l, r);

}

Figure 23: The replay function for binary addition in the C programming lan-

guage
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ing adaptable grammar support in the EVM is inspired by [28].

4.8.1 Dynamic grammar composition

Because the EVM is primarily a scannerless parser, a dynamic syntactic

extension can be achieved by dynamically loading additional grammars during

the parsing process. Moreover, EVM grammars are composed of grammar

rules, so the dynamic syntactic extension consists of extending the active set of

grammar rules.

The current version of the EVM is fairly dynamic: non-terminal symbols are

invoked via the i_call_dyn instruction, which spawns possibly several fibers

to parse the target non-terminal. The successful completion of a non-terminal

is detected by a corresponding i_match_dyn instruction. There is no reason

the list of active grammar rules used by these instructions must be static. By

adding additional instructions that manipulate this list, the active language that

is being parsed can be dynamically extended or constrained.

Unfortunately, a single global list of active grammar rules is insufficient to

correctly parse any context-free grammar because the statement for grammar

rule activation may be ambiguous. Thus, in such a situation, a parser must

be able to parse the same input with two separate sets of grammar rules: one

when the recognised statement activates new grammar rules and another for an

ordinary statement. Therefore, the active list of grammar rules must be bound

to a specific fiber.

To avoid having to make multiple copies of the active grammar rules, the

target language can be divided into domains. A domain is a part of a grammar.

Each grammar rule is assigned a set of domains. Each fiber has a set of active

domains. If the set of rule domains is a subset of active fiber domains, then

that grammar rule is considered active within the context of the domain. By

manipulating the set of active domains, it is possible to dynamically extend and

constrain the current language.

Additionally, this method of grammar division and domain activation can be

used to eliminate certain flaws present in traditional parsers: for example, there

is no reason that break should be a reserved keyword in the C programming

language. Because the break keyword is meaningless outside of the loop and

switch constructs, it should only be recognised as a keyword inside the bodies

of such constructs. However, due to lexer and parser limitations, that is not
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Table 17: Additional grammar language elements to support reflective gram-

mars

Element name Element syntax

Domain definition domain dom1

Grammar rule with

domain annotation

@domains dom1 dom2 dom3

rule name

stmt1

...

stmtN

end

Domain activation statement

with_domains dom1 dom2 dom3

stmt1

...

stmtN

end

the case. However, using the EVM, it would become possible to dynamically

activate the rule for only the break keyword inside a looping construct body.

Similarly, the return keyword (and the grammar rule for it) could be activated

only within a function body and so on.

4.8.2 Extensions of the Earley virtual machine grammar language

To enable domain manipulation within the EVM, additional grammar ele-

ments are required. They are listed in Table 17:

• Domain definitions are used to create new domains within a grammar.

• Domain annotations for grammar rules allow the specification of the do-

main set under which the grammar rule should be considered active. If

the domain annotation is not provided, then the rule is considered always

active.

• Domain activation statements are used to temporarily activate new do-

mains. If there are parse statements within the domain activation body,

then the active domain set is inherited by the callees.

An example of a simplified grammar that uses domains to enable a break

statement only within the body of a loop statement is provided in Fig. 24. By

adding every rule of a language extension to a specific domain, it is possible to

enable or disable the entire language extension with a single statement.
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domain loop

@domains loop

rule statement

parse "break"

end

rule while_loop

parse "while" expr

with_domains loop

parse statement+

end

parse "end"

end

Figure 24: Example domain usage

4.8.3 Compiling Earley virtual machine grammars with domains

The most complex operation in the EVM regarding domains is new domain

activation. It is not enough just to add a simple instruction pair to enable and

disable new domains. Additionally, with_domains statements may be nested

recursively because such repeated domain activations should not affect the ac-

tive domain set. Similarly, upon leaving the with_domains block, only those

domains that have been previously enabled within the same block should be

disabled.

Therefore, the following new instructions are required to enable domain

support in the EVM:

• i_dom_push_active pushes the active domain set to the stack of the cur-

rent fiber.

• i_dom_enable dom enables the domain dom by adding it to the active

domain set.

• i_dom_enable_dyn pops the target domain from the stack and enables it

by adding the domain to the active domain set.

• i_dom_disable dom disables the domain dom by removing it from the

active domain set.

• i_dom_restore n restores the active domain set by retrieving it from

stack slot n of the current fiber.
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Table 18: Rule for compiling domain activation statements

Element name Grammar element Instruction sequence

Domain

activation

statement

with_domains d1 ... dn

body
end

i_dom_push_active

i_dom_enable d1
...

i_dom_enable dn

code(body)
i_dom_restore stack_slotdom

These instructions can be used to compile the with_domains statement, as

shown in Table 18. Furthermore, stack_slotdom refers to the stack slot that

contains the previous active domain set pushed by i_dom_push.

4.8.4 Loading multiple grammar modules in Earley virtual machine

When using the EVM to parse a language, the base variant of that language

will most likely be contained in a single compiled grammar module that will

be loaded into the EVM during EVM initialisation. Language extensions then

could be contained in separate grammar modules that can be both generated

and loaded dynamically during parsing.

Loading multiple grammar modules in the EVM is not trivial because each

grammarmodule has its own address space. To support multiple address spaces

within the EVM, the instruction pointer can be extended to include the module

index. That way each instruction pointer in the EVM that is stored internally

(e.g. the ip of a fiber) is a pair 〈idmod , ip〉, where idmod is the module index

and ip is the relative instruction pointer to the start of the module. All existing
instructions use relative instruction pointers (e.g. i_fork, i_match_char, etc.).

In practice, for performance reasons, several bits of the instruction pointer can

be reserved for storing the module index. Thus, the instruction pointer could

remain word-sized.

Additionally, all the grammar rules of any language extension should belong

to a corresponding extension domain. That way the language extensions could

be enabled dynamically only for the desired scopes with the i_dom_enable_dyn

instruction. Additional instructions that workwith absolute instruction pointers

may be added in the future, if necessary, for performance reasons.
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4.8.5 Parsing reflective grammars in the Earley virtual machine

The mechanisms described in this chapter can be used to implement adapt-

able/reflective grammars by applying the following steps:

1. Define the base language. During this step, the grammar for the base

programming language should be defined. This could be an existing pro-

gramming language (such as C) or an entirely new one.

2. Define the extension metalanguage within the base language. The EVM

does not provide a specific extension metalanguage because the exten-

sion metalanguage should be defined to match the syntax of the base

language. However, the extension metalanguage could be designed to

be similar to the EVM grammar language. The extension metalanguage

should include an extension activation construct to activate the defined

language extensions.

3. Implement the compilation of the extension metalanguage node into a

grammar module, as described in this chapter. If the extension language

matches the EVM grammar language, then the rules for compiling the

EVM grammar language elements can be used directly to implement this

compilation step.

4. Implement the extension activation construct by adding a foreign call,

whichwould look up the target extension grammarmodule in the host en-

vironment. After finding the target grammar module, it should be loaded

into the EVM. The foreign call should return the domain index for the

extension. The domain of the extension can then be activated with the

i_dom_enable_dyn instruction within the extension activation construct.

At this point, the EVM becomes capable of parsing constructs defined in

the previously specified extension.

4.9 Earley Virtual Machine Performance Improvements

In this chapter, we describe several EVMoptimisations that significantly in-

crease the overall parsing performance both in terms of CPU time and memory

usage.
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4.9.1 Garbage collection of suspended fibers

The EVM currently creates a state for every input position where other non-

terminal rules are invoked with the i_call instruction family. This state infor-

mation is then used to record the execution trace, store the reduction informa-

tion, and, most importantly, park the suspended fibers so they may be resumed

later. All this information over time adds up to a significant amount. How-

ever, not all of it is needed for further parsing. There are several important

observations to make:

• Most states and fibers will never be needed again after suspension during

parsing. Along with the suspended fibers they contain, some states that

are unnecessary may be discarded before the parsing process completes.

• Only the reduction instructions access variables from previous states.

• The state index sid of a fiber is always equal to or higher than the lowest

value sid in the fiber queue. In other words, new fibers are always created

with monotonically increasing state indices.

Based on these observations, the following optimisations can be performed:

• Execution trace sets may be discarded from states with indices from in-

terval [1,sidmin), where sidmin is the lowest state index in fiber queue Q.
These sets are only needed in states where new fibers may be created

to avoid creating duplicate fibers. Because new fibers are created with

monotonically increasing state indices, the sets are no longer needed.

• Unreachable states with indices [2,sidmin)may be discarded completely.

A state with index sid is reachable if a fiber exists (either running or sus-

pended) with the origin state index origin equal to sid. As such, a mark-and-
sweep garbage collector may be employed to identify reachable and unreach-

able states.

Such a garbage collector discards all states with the fibers they contain that

are not part of any parse rule/active reduction that can be traced back to the

starting non-terminal symbol. To reduce the influence of the performance of

the garbage collector on the parsing process, the garbage collector could be run

every n parsed terminal symbols.
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4.9.2 Eliminating dynamic non-terminal call indirection

Rules for parsing non-terminals in the EVM are invoked with i_call_dyn

and then are matched with the i_match_dyn instruction. However, both of

these instructions perform a significant amount of redundant work:

• The list of candidate rules is fetched from the rule_map map.

• The candidate rules are filtered based on the currently active domain set.

• The candidate rules are filtered based on the minimum rule precedence.

If the active domain set for a specific call is known during compile time,

then the instruction pointers for target rule entry points and reduction tags can

be computed during compile time. Thus, it is no longer necessary to perform

dynamic rule lookup and filtering during parse time. Therefore, the dynamic in-

structions i_call_dyn and i_match_dyn can be replaced with the correspond-

ing static instructions: i_call and i_match_sym. Furthermore, i_call iptarget ,

n is a new instruction that invokes a non-terminal rule with the entry point

iptarget and n arguments.

4.9.3 On-demand instruction subset construction

Importance of subset construction

The EVM is based on the Earley parser and therefore inherits some of its

flaws. One of the main reasons the Earley parser in its original form is not used

for parsing programming languages is its inefficiency. One of the common

tasks of parsing programming languages is parsing expressions. Even older

programming languages (such as C++) have huge operator hierarchies with

many precedence levels. For example, the C++ language has a total of 44

distinct operators:

• 12 arithmetic operators,

• 6 comparison operators,

• 3 logical operators.

• 6 bitwise operators,

• 10 compound operators, and
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• 7 member and pointer operators.

This list does not include around 20 more operators that are more difficult

to classify. Thus, if the EVMwas used to implement a C++ parser and if every

operator was defined in a separate rule, every time an expression could be en-

countered, the EVMwould create around 50 fibers to parse a single expression.

Roughly a quarter of these expressions are prefix operators, so the correspond-

ing fibers would be discarded as soon as the first character was parsed. The

remaining fibers would be suspended to parse the first operands of the unary

(postfix) and binary operators. After completing that operand and parsing the

characters that represent the binary operator (such as +, -, *, etc.), all but one

of the remaining fibers would be discarded.

This is a huge issue that prevents the usage of the EVM for any practical

application. Fifty fiber creations, 35 suspensions, and an additional 35 fiber

creations after resuming the suspended fibers are used just to parse a single

binary expression. This problem also affects the original Earley parser. To

combat this inefficiency, an efficient variation of the Earley parser has been

produced.

The way the EVM currently operates can be similar to a non-deterministic

finite automaton; just like an NFA can be in multiple states at the same time,

the EVM can execute multiple fibers at the same time. However, it is well

known that any NFA can be converted into a DFA by applying the process

known as subset construction. The faster Earley parser [20] or efficient Earley

parser with regular right-hand sides [15] are both based on this algorithm. By

applying such parsing algorithms to parse C++, it would no longer take 50

distinct fibers (or items in the Earley parser case) to parse a single expression.

Instead, all 50 grammar rules could be merged into one optimised rule.

The EVM is unique because it uses instruction sequences to represent gram-

mars. The traditional subset construction or the modifications for the Earley

parser cannot be applied directly to the EVM. Furthermore, the EVM is ca-

pable of loading and enabling additional grammars during parsing; therefore,

subset construction must be applied on demand for only those grammar rules

that are about to be used for parsing. As such, a specialised subset construction

algorithm for EVM grammar modules that supports all existing features of the

EVM needs to be created.
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Instruction ε-closures

The first step of subset construction is the computation of an ε-closure. An

ε-closure in automata theory is a set of states in the NFA that are reachable

from an initial state by ε transitions. The ε-closure always includes the initial

state as well.

Similarly, in the EVM, we can define the instruction ε-closure as a set of

instruction pointers and active domain set pairs, which are reachable from the

initial instruction pointer with the initial activate domain set by executing only

unordered instructions.

The order of execution of unordered instructions does not affect the out-

come of the computation (or parsing). For example, i_call and i_fork are

unordered instructions because a block of such instructions can be executed in

any order without affecting the result.

For efficiency reasons, i_dom_enable is considered partially unordered. By

including this instruction in the set of unordered instructions, it can be opti-

mised away completely by tracking the changes of the currently active domain

set. This way, the overhead of being able to parse adaptable grammars can be

mostly eliminated (adaptable grammars must still be compiled into grammar

modules and then loaded into the EVM).

The instruction closure computation begins with a set of initial domain ad-

dresses. A domain address is an instruction pointer and active domain set pair.

All of the initial domain addresses are placed into a queue. Then, appropriate

actions are executed for each element of the queue based on the instruction,

which is referenced by the instruction pointer of the current element.

There are two possible actions:

• The continue da action adds the domain address da to the queue if it is
not already present.

• The relevant da action adds the domain address da to the resulting in-

struction closure set.

The actions to be executed for each instruction are provided in Table 19.

Furthermore, ip and ads refer to the instruction pointer and active domain set
of the current entry, respectively, and entries(A,ads) refers to the set of rule
entry points for non-terminal A with the currently active domain set ads.
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Table 19: Rules for computing instruction closures

Instruction Action

i_br target continue 〈target,ads〉

i_call target, n

If call visitation is disabled:

relevant 〈ip,ads〉
continue 〈ip+1,ads〉

If call visitation is enabled:

continue 〈target,ads〉
continue 〈ip+1,ads〉

i_call_dyn A, n

If call visitation is disabled:

relevant 〈ip,ads〉
continue 〈ip+1,ads〉

If call visitation is enabled:

continue 〈target,ads〉,∀target ∈ entries(A,ads)
continue 〈ip+1,ads〉

i_dom_disable dom continue 〈ip+1,ads\dom〉
i_dom_enable dom continue 〈ip+1,ads∪dom〉

i_fork target
continue 〈target,ads〉
continue 〈ip+1,ads〉

i_reduce A, n
relevant 〈ip,ads〉
continue 〈ip+1,ads〉

i_stop

All others relevant 〈ip,ads〉

Merging instruction ε-closures

The goal of merging instruction ε-closures is two-fold: the merger of simi-

lar instructions to avoid duplicate computation and the elimination of dynamic

elements that can reduce parsing performance. Because of the second goal, dy-

namic instructions like i_call_dyn and i_match_dyn are replaced with their

static counterparts. In general, all instructions are merged based on the instruc-

tion merger key. If two instructions share the same instruction merger key, then

they can be merged into a single instruction. The instruction merger keys can

be derived from the rules provided in Table 20.

Once the merger keys have been computed for all instructions in the ε-

closure, similar instructions can be merged. Each type of instruction is merged

differently:
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Table 20: Rules for computing instruction merger keys

Instruction Merger key

i_call target, n 〈”call”,n〉
i_call_dyn A, n 〈”call”,n〉
i_match_chars table 〈”match_chars”〉
i_match_dyn A, precmin 〈”match_syms”〉
i_match_syms table 〈”match_syms”〉
i_reduce A, prio 〈”reduce”,A〉
i_reduce_r A, prio 〈”reduce_r”,A〉
All others:

instr arg1, ...,argn
〈instr,arg1, ...,argn〉

• i_match_chars table instructions are merged by merging their jump

tables. Transitions that share the same character are merged by com-

puting their ε-closure and optimising it. The resulting instruction is a

i_match_chars.

• i_match_dyn and i_match_syms instructions are merged into a single

i_match_syms. The merger process works similarly to the merger of

i_match_chars. The instructions are merged by merging their jump ta-

bles. In the case of i_match_dyn (which has no jump table argument),

jump tables are computed based on the i_match_dyn operands and active

domain set. Then, transitions that share the same non-terminal symbol

are merged by computing and optimising their ε-closure.

• i_call and i_call_dyn are merged into a single i_call_opt or i_call

instruction. This is done by computing the ε-closure of the entry points

of the target non-terminal. If the optimised instruction sequence for the

resulting ε-closure already exists, then a direct call with i_call to that

instruction sequence is generated. Otherwise, i_call_opt closure is

generated. Moreover, closure refers to the target ε-closure. This in-

struction is used to avoid the subset construction of the entire grammar

module. The optimised (subset constructed) version for the closure is

generated only upon executing i_call_opt, thus making the instruction

subset construction process only run on demand.

• i_reduce A instructions are merged simply based on the reduction non-

terminal into a single i_reduce instruction. This way, duplicate reduc-
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tions with the same non-terminal are eliminated.

Other instructions are merged by adding them to instruction blocks and

merging the matching prefixes of these blocks. An instruction block is a se-

quence of instructions that terminates with a terminator instruction. All control

transfer instructions are block terminator instructions. That includes instruc-

tions like i_br, i_match_chars, i_match_syms, and so on. This is necessary

because many EVM instructions are executed sequentially and have no way to

transfer control to an arbitrary position.

Once instructions are merged, they can be output to a target grammar mod-

ule. The resulting instructions are output in a specific order:

1. The unordered instructions: i_call and i_reduce,

2. The n−1 i_fork instructions for the following n ordered instructions,

3. The n ordered instructions, and

4. The i_stop instruction if n = 0.

An example of an optimised (subset constructed) instruction sequence is

provided in Table 21. The resulting instruction sequence is longer but more

deterministic. For example, at offset 16 of the optimised instruction sequence,

prefixes for addition and multiplication have been merged successfully. It will

take a single instruction at offset 16 to match the binary operator, at which point

parsing diverges based on the matched operator.

4.10 Conclusions

The following conclusions were reached:

• The EVM parser satisfiers all REP language analysis functional require-

ments. As a result, it is suitable for REP language parsing.

• Terminal symbol matching in EVM is not efficient because at least one

instruction must be interpreted and one fiber must be registered in the

ETS to parse a single terminal character.

• To further improve EVM performance, additional ambiguity elimination

methods must be implemented.

• Information contained in ETS is superfluous and may be computed from

other EVM data structures (mainly, the list of suspended tasks). As a re-
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Table 21: Subset construction example

Grammar Compiled grammar Optimized grammar

rule A[0]

parse A

parse "+"

parse *A

end

rule A[5]

parse A

parse "*"

parse *A

end

rule A[10]

parse "b"

end

10: i_call_dyn "A", 1

11: i_match_dyn "A", 1

12: i_match_char

'+' -> 13

13: i_call_dyn "A", 0

14: i_match_dyn "A", 0

15: i_reduce "A0", 0

16: i_stop

20: i_call_dyn "A", 6

21: i_match_dyn "A", 6

22: i_match_char

'+' -> 23

23: i_call_dyn "A", 5

24: i_match_dyn "A", 5

25: i_reduce "A1", 0

26: i_stop

30: i_match_char

'+' -> 31

31: i_reduce "A2", 0

32: i_stop

01: i_call 30

03: i_fork 25

05: i_match_syms "A1" -> 7,

"A2" -> 16

07: i_match_chars '+' -> 9

09: i_call 38

11: i_match_syms "A0" -> 13,

"A1" -> 13, "A2" -> 13

13: i_reduce "A0"

15: i_stop

16: i_match_chars '*' -> 18,

'+' -> 9

18: i_call 30

20: i_match_syms "A1" -> 22,

"A2" -> 22

22: i_reduce "A1"

24: i_stop

25: i_match_chars 'b' -> 27

27: i_reduce "A2"

29: i_stop

30: i_fork 36

32: i_match_syms "A2" -> 34

34: i_match_chars '*' -> 18

36: i_match_chars 'b' -> 27

38: i_fork 42

40: i_match_syms "A1" -> 7,

"A2" -> 16

42: i_match_chars 'b' -> 27

sult, this information duplication should be eliminated to further improve

EVM performance.
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5 IMPLEMENTATION OF SCANNERLESS EARLY VIRTUAL

MACHINE

5.1 Scannerless Earley Virtual Machine

5.1.1 Flaws of the original Earley virtual machine

Each parser implementation has severalmajor characteristics bywhich these

parsing methods can be compared:

• Recognised grammar class. Different parsing methods can recognise

different classes of input languages. For example, LR(0) parsers can

only recognise LR(0) grammars. More generalised methods, such as the

GLR [29] can recognise a wider class of input languages (all context-free

languages in the case of the GLR). However, even then, it is possible

that such parsing methods may not be able to recognise all programming

languages used in practice because not all programming languages are

context-free languages. The size of the recognised grammar class deter-

mines how many real-world computer languages can be recognised by

this parser.

• Expressiveness of the grammar language. Parser development typi-

cally starts with the creation of a target language grammar. This gram-

mar is written in a specific grammar description language, which is read

by a parser or parser generator, which then is responsible for generat-

ing and/or configuring the parser so it can recognise the target language.

These grammar description languages often provide additional features

beyond just production rules to express the target grammar in a more

clear and concise fashion. For example, the Bison parser generator sup-

ports operator precedence declarations, which provide a clearer andmore

compact method to describe operator precedence. The existence of such

operator precedence declarations does not permit parsing additional lan-

guages but merely allows expressing the already recognisable languages

in a more intentional fashion. As a result, the greater expressiveness of

the grammar language makes the development of new grammars easier.

• Performance. The performance of the parsing method and its imple-
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mentation is one of the primary factors determining whether or not such

a parser is suitable for parsing real-world computer languages. Gener-

alised parsing methods have existed for decades; however, even today,

they are not widely used due to their lacklustre performance. The same

is even more true for scannerless parsing methods. Not a single scanner-

less parser is used to parse any high-profile programming language. For

example, GCC, Clang, and Lua use hand-written recursive descent parsers

[6], and the MRI Ruby implementation uses LALR(1) Bison, whereas

CPython uses a custom bottom-up tokeniser and parser combination.

• Support for scannerless parsing. This determines whether or not two

grammars can be effortlessly combined. If two grammars can be com-

bined during runtime, then such a parser can be used to parse extensi-

ble languages. Additionally, scannerless parsers must provide additional

features to eliminate character-level ambiguity.

• Presented description of errors. Any parser used in practice should be

able to provide informative feedback when a parsing error occurs, so the

user of such a parser can correct the errors in the parser input. The more

descriptive and informative the error messages are, the less time the user

needs to determine why the error occurred and how to fix it.

The original EVM and its prototype implementation have several flaws that

need to be rectified before a proper comparison of the EVM with other parsing

methods can be made:

• The original research prototype for the EVM was implemented in the

Ruby programming language. Because Ruby is interpreted, any parser

written in this language will be orders of magnitude slower due to the

overhead of the interpreter. Thus, a new EVM implementation is needed

if the performance of the EVM is to be compared to other parsing meth-

ods.

• While the EVM was created with scannerless parsing in mind, one key

issue will severely limit the performance of the EVM, even if the EVM

is implemented in a non-interpreted language. During parsing, the EVM

creates a state for each terminal input symbol. This means that, to parse

the input of length n, n ∗ size_o f (State) bytes of memory are needed

to represent the parser states. These states will then contain additional
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dynamically allocated structures, such as the list of suspended tasks and

reductions and the trace.

• The EVM is a scannerless parser; therefore, a method is needed to disam-

biguate the identifiers from keywords in languages that have such gram-

mar elements. Furthermore, a way to disambiguate operators that consist

of more than one character is needed (e.g. the logical operator && in C

may be incorrectly interpreted as a pair of & operators). While this dis-

ambiguation can be performed post-parse by eliminating invalid parse

paths in the resulting parse forest [4], both ambiguous parsing and in-

valid parse elimination would incur additional performance costs. As

such, simple character-level ambiguities should be resolved as early as

possible during parsing to avoid ‘useless’ work that yields invalid parse

trees.

• Regarding trace simplification, in the current EVM version, the EVM

records previous parse positions in a set called trace. This trace contains

a set of complete snapshots of fiber states at various positions during

parsing. Consequently, a significant overlap of information is stored in

trace along with the list of suspended tasks and reductions in each state.

5.1.2 Overview of the internal structure of the scannerless Earley

virtual machine

In this section, we provide a description of the internal structure of the scan-

nerless EVM (SEVM). The SEVM is a further modification of the EVM that

attempts to improve its performance and extend the parser to recognise real-

world computer languages.

The SEVM consists of the following primary components:

• The grammar compiler translates the textual representation of input

grammar into a medium-level intermediate representation (MIR). It also

detects any syntax or semantic errors of the input grammar.

• The optimiser is responsible for merging grammar rules in MIR form.

The optimiser takes a list of grammar rules to bemerged inMIR form and

produces a combined MIR that implements all of the merged grammar

rules, but with their prefixes merged.
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• The resolver is responsible for invoking the optimiser and translating

the resulting MIR into machine code.

• The runtime is responsible for coordinating the execution of the parser.

The SEVM consists of the following data structures:

• The MIR tree is an AST with intermediate language representation of

SEVM grammars.

• The chart is the primary data structure of the parser runtime. It closely

corresponds to the EVM state list. The chart is a sparse index map from

the input positions to the chart entries.

• The chart entry stores all information about the parsing progress at a

specific input position. Each chart entry contains the following: a re-

duction list reductions, a list of suspended tasks suspended, a list of
currently active tasks running, and an activity indicator queued.

• The reduction component contains information about a single reduction:

kind, reduce_id, length, and tree_id. The reduction kind determines

whether the current reduction is an accept or reject reduction. This in-

formation is used to implement negative reductions. The reduction in-

dex reduce_id determines the non-terminal symbol associated with the

reduction. The reduction length indicates the reduction length in bytes.

Finally, tree_id stores the index of the resulting parse node.

• The task directly corresponds to the fiber in the original EVM. Each

task is responsible for parsing one or more non-terminal symbols. A task

contains at least the following: state_id, origin, position, tree_id, and
grammar_id. Semantically, a task can be viewed as a function closure
in other programming languages. The state_id determines the current

state of the task. This value is used to implement task suspension and

resumption. In addition, origin is the index of the chart entry in which

this task was initially created. In other words, it represents the starting

position of the non-terminal that this task will parse. Moreover, position
indicates the current parsing position. It is an offset from the beginning of

the parse input. The tree_id is the node index of the partially constructed
parse tree so far, and grammar_id stores the active grammar index.
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• The suspended task represents a task that was suspended and is await-

ing successful completion of the child task. Tasks are suspended when

calling other tasks or non-terminal symbols and are resumed when these

child tasks complete successfully with reductions. Each suspended task

contains: task, resumes, pos_match, and neg_match. A task is a copy
of the suspended task data. In addition, resumes records the occurrences
each time this specific task is resumed, and pos_match represents pos-

itive match conditions for resuming this task. Moreover, neg_match
represents the negative match conditions for resuming this task. Both

pos_match and neg_match are referred to as match specifiers.

• The resume component stores information about a single occurrence of

task resumption: the index of reduction that woke the task (reduce_id),
the length of that reduction, and the parse-tree node index that was ap-

pended to the newly awakened task. This information is used to eliminate

some duplicate parse paths that may lead to exponential complexity. See

Section 5.5 for more about eliminating exponential complexity.

• Thematch specifier is a map frommatch_id and the precedence interval
to the state_id. When a reduction occurs at a position pos with the re-
duction index reduce_id and precedence prec, then all suspended tasks
in the chart entry with position pos, whosematch_id matches reduce_id,
are resumed in state state_id. In other words, the match specifier stores
the conditions for when to resume a suspended task (when the awaited

reduction happens) and what to do when the resumption occurs (move

the tasks into the provided state_id).

• The reduce index represents a non-terminal symbol. Each non-abstract

rule has a unique reduction index. Reduction indices are used only when

performing reductions.

• The match index also represents a non-terminal symbol, but these in-

dices are used on the caller side. This separation of reduction and match

indices allows it to dynamically add new grammar rules becausemultiple

reduction indices can be matched against a single match index.

• The call specifier represents a set of grammar rules that are meant to

be invoked during parsing. The optimiser uses the call specifier and the

grammar MIR as inputs to produce an optimised MIR in which multiple
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rules are merged. Internally, the call specifier is a sequence of match_id
and minimum precedence min_prec value pairs.

• The grammar component stores amapping between the reduce andmatch

indices. Each grammar has a unique index.

• The parse tree stores the automatically constructed parse tree during

parsing. Section 5.6 details how parse trees are encoded.

• The call stack is a stack of chart indices that represents the call stack of

the parser.

• The DFA is a data structure that encodes a deterministic finite automata,

which is used to parse non-ambiguous intervals of input languages.

5.2 Improving Grammar Expressiveness

In this section, we present and justify several extensions to the grammar

language of the SEVM.

5.2.1 Abstract grammar rules

Abstract grammar rules are a new type of grammar rule that has several

purposes:

• They provide an alternative method to declare production rules, such as

Z = A|B|C.

• They provide an extension point for extending grammars. The origi-

nal EVM grammar language provided no grammar construct to specify

extension points. The EVM only provided low-level infrastructure to

implement such extension points but provided no metalanguage at the

grammar level to specify such extension points.

Abstract rules may be viewed as non-terminals in the form Z = A1|A2|...|An,

where Z is the name of the abstract rule and Ai indicates its members. Abstract

rules in the north language can be declared with the keyword rule_dyn. Upon

declaration, the newly created abstract rule is empty, and new members to it

can be added by annotating the member rules with the part_of attribute. Addi-

tionally, the part_of attribute may specify the precedence of this rule member.

The precedence value is used when the rule member directly and recursively
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rule_dyn expr();

#[part_of(expr, 10)]

rule expr_add() { parse (expr!, "+", expr); }

#[part_of(expr, 20)]

rule expr_mult() { parse (expr!, "*", expr); }

#[part_of(expr, 30)]

rule expr_zero() { parse "0"; }

Figure 25: Abstract grammar rule example

calls itself via the abstract rule to determine whether this rule should be part of

the call.

It is also important to note that a single non-abstract rule may be a member

of multiple abstract rules. In other words, a single rule item may have multiple

part_of attributes.

Figure 25 shows an example of grammar that uses an abstract grammar rule

to implement an expression hierarchy, which contains + and ∗ operators with
the appropriate precedence.

Each abstract rule (like a normal rule) has a unique match_id that may be

used to construct calls or perform non-terminal matches. However, unlike nor-

mal rules, abstract rules have no reduction indices reduce_id. Because of this,
the resulting parse forest contains no nodes that represent abstract rules.

When a rule is annotated with the part_of attribute, a new entry is added to

the grammar match map that associates the match_id of the abstract rule with

the reduce_id and precedence value of the target rule.

Compared to the traditional notation A1|A2|...|An, the usage of abstract syn-

tax rules has a number of advantages:

• Increased performance. Abstract grammar rules do not perform reduc-

tions and are matched directly against the callee match_ids.

• Rule precedence. Abstract rules provide a simpler method to specify

operator hierarchies.
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5.2.2 Named precedence groups

The named precedence group is a grammar feature closely related to abstract

rules. Named precedence groups provide a method to call an abstract rule with

a custom precedence value. Consider the ANSI C grammar fragment provided

in Fig. 26.

The expressions that have the highest precedence in the ANSI C language

are primary expressions. Below them are postfix expressions with slightly re-

duced precedence. Unary expressions have even lower precedence followed

by cast expressions, and so on. In expression hierarchies with precedence,

rules that represent expressions with lower precedence only refer to expres-

sions with higher precedence. This, however, is not always true. In the ANSI

C case, unary_expression refers to cast_expression, which has lower prece-

dence. Similar situations can be observed in the grouping expression of

primary_expression, which refers to expression, which is the top of the ex-

pression hierarchy.

To be able to represent such expression hierarchies with abstract syntax

rules, there must be a way to name and invoke a specific level of rule hierarchy.
This is what named precedence groups are for. In essence, named precedence

groups are callable names attached to a specific precedence level (value) of an

abstract grammar rule.

Named precedence groups may be declared with the keyword group, which

is then followed by the group name, the abstract rule name, and the precedence

level of that abstract rule. If the abstract rule represents a set of concrete/normal

rules, then the named precedence group is a subset of that set.

The grammar fragment in Fig. 26may be rewritten in north as shown in Fig.

27. In north, the ANSI C expression is an abstract grammar rule. Different

precedence levels are just named precedence groups (primary_expression,

postfix_expression, unary_expression, and cast_expression).

There are several types of calls in north:

• Concrete rule calls. These are in the form of a unary_operator, where

the unary_operator refers to a concrete rule.

• Abstract rule calls (non-associative). These are in the form of an expression

, where the expression refers to an abstract rule. If the call is directly

recursive from the callee with precedence prec, then the same abstract
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primary_expression

: IDENTIFIER

| CONSTANT

| STRING_LITERAL

| '(' expression ')'

;

postfix_expression

: primary_expression

| postfix_expression '(' ')'

| postfix_expression INC_OP

| postfix_expression DEC_OP

;

unary_expression

: postfix_expression

| INC_OP unary_expression

| DEC_OP unary_expression

| unary_operator cast_expression

;

cast_expression

: unary_expression

| '(' type_name ')' cast_expression

;

Figure 26: A simplified fragment of C99 grammar
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rule_dyn expression();

group primary_expression: expression(100) {

rule identifier_expression() { parse IDENTIFIER; }

rule constant_expression() { parse CONSTANT; }

rule string_literal_expression() { parse STRING_LITERAL; }

rule grouping_expression() { parse ("(", expression!0, ")"); }

}

group postfix_expression: expression(90) {

rule call_expression() { parse (expression!, '(', ')'); }

rule inc_expression() { parse (expression!, INC_OP); }

rule dec_expression() { parse (expression!, DEC_OP); }

}

group unary_expression: expression(80) {

rule unary_inc_expression() { parse (INC_OP, expression!); }

rule unary_dec_expression() { parse (DEC_OP, expression!,); }

rule unary_op_expression() { parse (unary_operator,

cast_expression); }

}

group cast_expression: expression(70) {

rule cast_expression_() { parse ("(", type_name, ")",

expression!); }

}

Figure 27: A fragment of C99 grammar rewritten in North
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rule with precedence prec+1 is invoked. If the call is non-recursive or
transitively recursive, then the abstract rule is invoked with the minimum

precedence value of 0.

• Abstract rule calls (associative). These are in the form of expression!.

They are statically ensured to be directly recursive. If the callee has the

precedence value prec, then an abstract rule with the same precedence
value prec is invoked.

• Abstract rule calls with explicit precedence value. These are in the form

of expression!prec, where prec is an integer value. In such calls, the
callee precedence level (if it exists) is ignored, and an abstract rule with

precedence prec is invoked.

• Named precedence group calls. These are in the form of cast_expression

, where cast_expression refers to a named precedence group. In this

case, the abstract rule is invoked that is provided in the definition of the

referenced named group with the appropriate precedence level.

Because it is now possible to express expression hierarchies using only ab-

stract grammar rules (without having to manually declare concrete grammar

rules representing different precedence levels), such hierarchies can be ex-

tended by either:

• adding new rules to the existing precedence levels with the part_of at-

tribute, or

• adding entirely new levels (that may exist between other precedence lev-

els) with their respective grammar rules.

Because of this, any non-trivial alternative grammar expression A1|A2|...|An

in north should be implemented using abstract grammar rules to maximise the

extensibility of the implemented grammar.

5.2.3 Dominating terminals

Multi-line comments in the ANSI C programming language start with the

characters /* and terminate with */. In North, such comments may be parsed

with a rule shown in Fig. 28. However, such a simple rule is not entirely

correct. The comment terminator */ will be ambiguously matched both as a

comment terminator and as a comment body, forking the rest of the input into
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rule comment() {

parse ("/*", ANY*, "*/");

}

Figure 28: A north grammar rule for parsing ANSI C multi-line comments

(Attempt 1)

rule comment() {

parse ("/*", (r"^*" | ("*", r"^/"))*, "*/");

}

Figure 29: A north grammar rule for parsing ANSI C multi-line comments

(Attempt 2)

two distinct paths: one where the comment never terminates and another where

*/ was interpreted as a comment terminator.

To avoid this ambiguity, the rule may be redefined as shown in Fig. 29.

In this case, the character sequence */ is excluded from the comment body by

first allowing the comment body to only contain non-* characters (r"^*"), and

then requiring that character *must not be followed by a slash (*, r"^/"). Such

a rule correctly and unambiguously parses C comments; however, it is not as

clear as the initial rule shown in Fig. 28.

It would be ideal if a method existed to specify that the slash in the com-

ment terminator */ would take precedence over the one possibly found in the

comment body. This would enable retaining the correct and non-ambiguous

semantics of the grammar rule in Fig. 29 while keeping the simpler definition

in Fig. 28.

Such precedence or priority in the SEVM can be specified using dominating

terminal symbols. In north grammars, the user may annotate grammar expres-

sions with the dom_g specifier, which would cause the last characters or all

descendant string grammar sub-expressions to parse with higher precedence.

That way, the grammar rule for parsing C comments may be rewritten as shown

rule comment() {

parse ("/*", ANY*, dom_g "*/");

}

Figure 30: A north grammar rule for parsing ANSI C multi-line comments

(Attempt 3)
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#0 CtlMatchChar '/' => #1

#1 CtlMatchChar '*' => #2

#2 CtlFork #3, #5

#3 CtlMatchClass 0..255 => #4

#4 CtlBr #2

#5 CtlMatchChar '*' => #6

#6 CtlMatchChar '/' => #7, DOM

#7 StmtReduce REDUCE_ID(:comment), NORMAL

CtlStop

Figure 31: Unoptimised MIR for the ANSI C multi-line comment rule

in Fig. 30.

The primary reason for implementing dominating terminals is that they can

simplify the definition of various grammar rules without any reduction of pars-

ing performance. Such behaviour may be implemented statically in the SEVM

optimiser. The rule shown in Fig. 30 may be translated to an unoptimised MIR

graph, as shown in Fig. 31.

Then, this MIR would be optimised via subset construction, during which

the following ε-closures would be constructed: [#0], [#1], [#3, #5], [#3,

#5, #6], and [#3, #5, #7].

The most important closure of the set is [#3, #5, #7] because that is where

the ambiguity occurs. It is important to note this closure is constructed as the

successor of [#3, #5], which is reachable via the character /.

By modifying the SEVM optimiser implementation and annotating instruc-

tion #6 with the domination flag DOM (that was added as a result of the dom_g

specifier), we may request that all the outgoing edges from instruction #6

should take precedence over all other edges. As a result of this change, the

closure [#3, #5, #7] now becomes [#3, #5, DOM #7], thus making it pos-

sible to simply filter the closure and retain only the instruction nodes with the

highest priority, which becomes [DOM #7] after filtering. Such an implemen-

tation of dominating terminals is not only simple and effective but also enables

using dominating symbols to disambiguate tokens at the character level, as de-

scribed in Section 5.3.6.

5.3 Ambiguity Elimination

Even though the original EVM could parse real-world programming lan-

guages, it could not do so without ambiguities. As such, before the resulting
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parse tree could be used, it needed to be filtered by disambiguation filters [4]to

remove the parse nodes that represent invalid parse paths. This approach causes

two main issues:

• The invalid parse paths still needed to be parsed, thus potentially wasting

performance on invalid parse paths.

• It increases the overall parser complexity because additional code is needed

to perform ambiguity elimination at the parse-tree level.

To reduce the influence of both of these issues, some of the ambiguity elim-

ination may be performed during parsing. This chapter details several of the

techniques used in the SEVM to perform such ambiguity elimination.

5.3.1 Negative reductions

Negative reductions are an adaptation of the scannerless GLR’s reject re-

ductions [9] for the SEVM. In the scannerless GLR family of parsers, the reject

reductions/productions are used to disambiguate the reserved keywords from

the identifiers.

In general, negative reductions work by annotating every reduction in the

SEVM with the reduction kind. The reduction kind specifies whether a reduc-

tion is a normal or reject reduction. When a new reduction occurs, as part of the

exponential parse complexity mitigation, the parser runtime checks whether a

matching reduction happened before. If a matching reduction already exists,

then any further reduction processing (such as resuming suspended tasks) is

aborted.

An existing reduction A and a new reduction B are considered to match if

any of the following statements are true:

• They have the same reduce_id, reduce_kind, and length:

Areduce_id = Breduce_id ∧Areduce_kind = Breduce_kind ∧Alength = Blength

• They have the same reduce_id, but the new reduction has a higher reduce_kind:

Areduce_id = Breduce_id ∧Areduce_kind < Breduce_kind

The first condition is used for identical reduction de-duplication. The sec-

ond condition implements reduction priorities: if a reduction with higher pri-

ority already exists, then the new, lower priority reduction is rejected. For this
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Table 22: Reduction kind values

Reduction kind Value

REJECT 0

PREFER 1

NORMAL 2

AVOID 3

rule ident() {

reject ("if", " ", R1);

parse (r"a-zA-Z"+, " ", R1);

}

Figure 32: A grammar rule that defines an identifier followed by a space

approach to work, all code that implements higher priority reductions must be

executed first; otherwise, it is possible for lower reductions to ‘slip through’. If

this does occur during parsing, then such an event is called a reduction slip. Re-

duction slips can only happen in ill-formed grammars with recursive negative

reduction cycles.

To compare reduction kinds, each reduction kind is assigned a unique inte-

ger value (see Table 22). Then, the reduction kinds are compared using these

integer values.

From the user’s perspective, negative reductions can be defined in gram-

mars with the reject keyword, which is then followed by a grammar expres-

sion. If this grammar expression matches, then all subsequent reductions that

happen in the same rule are rejected.

The grammar shown in Fig. 32 defines a rule for parsing identifiers, which

may be composed of lowercase or uppercase characters followed by a space.

However, if the identifier matches the keyword if, then a negative reduction

is produced, which prevents any other normal identifier reductions from being

added. This effectively disambiguates identifiers from the keyword if (see Fig.

33 for the MIR of the same grammar rule). By adding more complex gram-

mar expressions to the reject statement, it is possible to disambiguate several

keywords or even more complex grammar expressions from identifiers.
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#0: CtlFork #1, #5

#1: CtlMatchChar 'i' => #2

#2: CtlMatchChar 'f' => #3

#3: CtlMatchChar ' ' => #4

#4: StmtRewind 1

StmtReduce REDUCE_ID(:ident), REJECT

CtlStop

#5: CtlMatchClass 'a'..'z' => #6, 'A'..'Z' => #6

#6: CtlFork #5, #7

#7: CtlMatchChar ' ' => #8

#8: StmtRewind 1

StmtReduce REDUCE_ID(:ident), NORMAL

CtlStop

Figure 33: Unoptimised medium-level intermediate representation for a gram-

mar rule that defines an identifier

5.3.2 Strict execution ordering in scannerless Earley virtual machine

runtime

TheEVM,much like the original Earley parser [8], performsmostly breadth-

first searches (with the exception of when fiber priorities are involved, which

are used primarily to implement a regular lookahead). Other than this, the rest

of the execution of the parser is unordered: the i_fork instruction for creat-

ing duplicate fibers queues the fiber for execution but in arbitrary order. The

i_call family of instructions also behaves similarly; the newly created tasks

are also queued in an unspecified order.

While this arbitrary execution model works well in the EVM, it is no longer

suitable for the SEVM. The SEVMmust ensure that the reductions with higher

priority execute first to avoid reduction slips. To that end, the entire execution

model for the SEVM must be shifted to depth-first execution:

• The CtlFork B1,B2, ...,BN instruction must ensure that the basic blocks

B1,B2, ...,BN complete in the same order as they are given to the CtlFork

instruction.

• The StmtCall family of instructions must ensure that the callee will be-

gin execution immediately after the current task completes or is sus-

pended with CtlMatchSym.

Internally, this is implemented using a two-layer stack:
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1. The primary call stack stores all chart entry indices that have at least one

active task.

2. Each chart entry has a secondary call stack, which ensures proper exe-

cution ordering in entries that have more than one active task.

When a new task is created, it is added to the top of the appropriate sec-

ondary stack. Then, the index of that chart entry is added to the top of the pri-

mary call stack if the index does not already exist in the primary stack. To avoid

having to perform a linear search in the primary stack to determine whether an

index already exists, each chart entry contains an indicator queued, which is set
to true whenever the corresponding chart entry index is added to the primary
call stack.

Then, the algorithm for executing SEVM tasks comprises the following

steps:

1. Locate the currently active chart entry by retrieving its chart index from

the top of the primary call stack. If the primary stack is empty, then the

parser terminates.

2. If the secondary stack is empty, then attempt to populate it by failing

the current entry (see Section 5.3.3). If failing yields no new tasks, then

remove the top element from the primary stack index and go to Step 1.

3. Pop a task from the secondary stack stored in the current chart entry.

4. Resume the task.

5. Go to Step 1.

This algorithm simulates how the call stacks work in traditional imperative

programming languages but also adds the ability to execute several tasks in

parallel. Because of the north grammar to MIR translation rules and the above

SEVM execution algorithm, the following grammar expressions now have or-

dered execution:

• Members’ grammar expressions E1,E2, ,En of the alternative grammar

expression E1|E2|...|En now complete in the order in which they are

given.

• Call grammar expressionC, whereC is a valid call target, now fully com-

pletes (all of the possible alternative parse paths are analysed) before re-
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suming the caller. This happens because each call grammar expression

is translated into a pair of StmtCall and CtlMatchSym instructions. The

first one queues the callee for immediate execution, and the second one

causes the current task (caller) to be suspended, effectively yielding ex-

ecution control to the callee. If the callee creates new subtasks (e.g. as a

result of CtlFork or StmtCall), they are placed on the top of the current

secondary stack (if the call is left recursive) or on top of another sec-

ondary call stack, which causes the currently active chart entry to shift.

• Reject statements reject E, where E is another grammar expression,

now complete before any subsequent statement completes. This is be-

cause the reject statements fork execution with CtlFork into two parse

paths: the primary parse path, which contains the code for grammar ex-

pression E and terminates with the REJECT reduction, and the secondary

parse path, which contains the remainder of the current parse rule. Be-

cause of this, it is guaranteed that the REJECT reductions will always hap-

pen before the NORMAL reductions, thus fulfilling the strict execution or-

dering requirement for negative reduction implementation.

5.3.3 Negative matches

When applied to rule calls, the strict execution ordering has an additional

positive side effect thatmay be used to implement negative non-terminalmatch-

ing. Because the caller of a grammar rule is only resumedwhen all of the callees

and their subtasks are fully complete, it is possible to determine whether a par-

ticular non-terminal failed to match.

To detect such negative matches at the MIR level, match specifiers in the

CtlMatchSym instruction are split into two parts: the positive and negative

match parts. Each part lists the conditions for resuming the suspended task.

For example, in the match_id, min_prec, state_id tuple, match_id indirectly

represents a set of accepted reductions,min_prec specifies the minimum prece-

dence value of those reductions, and state_id indicates the task state index in

which the suspended task should be resumed. The positive part of the match

specifiers is used only when resuming tasks as a result of new reductions. The

negative part is used during chart entry failure.

In the SEVM, negative (failed) matches are detected when selecting a task
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for execution. When the secondary stack of a chart entry is empty and the

runtime attempts to pop a task from it, the following conclusions can be made:

• All active tasks from the current chart entry have been completed (be-

cause the secondary stack is empty).

• The current chart entry is active (its index is stored at the top of the pri-

mary call stack).

In other words, the parsing process at the current entry/position has reached

a dead end because all of the possible parse paths starting at CEposition have

been explored to their completion, whereCE is the current chart entry. At this

point, during parsing, SEVM fails the current chart entry by performing the

following steps:

1. The newest suspended task T from the current chart entryCE is selected.

2. If the suspended task has at least one negative match (its negative match

specifier is not empty), then it goes to the next step. Otherwise, it dis-

cards the currently suspended task because all of its subtasks have failed.

Then, it goes to Step 1.

3. The last entry MS of the negative match specifier of task T is selected.

4. The last entry MS is matched against the list of all reductions ofCE. If at
least one positive match exists, the suspended task T has been resumed

at least once and a negative match cannot be performed. As a result, MS
is removed from the negative match specifier of T . Then, it continues to
Step 2; otherwise, it proceeds to the next step.

5. If no positive match for MS was found, the specific match_id with min-

imum precedence min_prec failed to match at position CEposition. As a

result, task T is resumed in state state_id by pushing a copy of T to the

secondary stack of E. Further chart entry failure is aborted.

In essence, during chart entry failure, each suspended task from the newest

to oldest is failed in turn. Each suspended task is either discarded if no negative

matches have been detected or resumed otherwise. The process continues until

at least one task is resumed or the list of suspended tasks in the current chart

entry is empty.

It is important to note that, because of the negative matches, the order of sus-

pended tasks must be preserved in order for recursive negative matches to work
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correctly. In addition, the order of the resume conditions in the negative match

specifiers is also important. Negative matches in the SEVM/north implemen-

tation are not directly accessible to the user, but they are used to implement

greedy non-terminal repetition operators.

5.3.4 Greedy non-terminal repetition

Greedy repetition in the SEVM is accessible via parse_g statements, which

are similar to regular parse statements, but certain operations within the pro-

vided grammar expression are replaced with greedy equivalents. Greedy non-

terminal repetition is implemented using negative matches. The call rule gram-

mar expression R, where R is a valid call target, is normally compiled as a pair

of CallRuleDyn and CtlMatchSym instructions. However, if the R grammar

expression is a descendant of parse_g and a child of one of the repetition op-

erators (?, *, or +), then the call is compiled differently. The CtlMatchSym in-

struction now contains the callees’ match_id in both the positive and negative

parts of the match specifier. This means that the statement parse_g (A*, B)

fully completes parsing the sequence of A non-terminals, and only when pars-

ing A fails, the control is transferred to parse B, effectively enabling it to parse
greedy sequences of non-terminals.

This, however, has an undesirable side effect. Because A and B are parsed

separately, their prefixes cannot be merged. This may potentially lower the

performance of the SEVM. Thus, greedy non-terminal repetitions should be

used sparingly to avoid interfering with the optimiser’s subset construction.

5.3.5 Strict execution ordering in the scannerless Earley virtual

machine optimiser

So far, we have described how the runtime north preserves the strict ex-

ecution order that is required to implement negative reductions and negative

matches. However, ensuring proper execution ordering just in runtime is not

enough. The SEVM relies heavily on its optimiser, which can merge multiple

grammar rules by performing a variation of subset construction on MIR graphs

(the algorithm inspired by the efficient Earley parser [15]). In this chapter, the

description is given regarding how the strict execution ordering is preserved

during the optimizer’s subset construction.
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This is a simplified version of the subset construction algorithm used by the

original EVM:

1. Add the instruction pointers to be merged into an initial set SI .

2. Add this set into resolution queue Q.

3. Remove one set S0 from the Q.

4. Find the ε-closure of the set S0 and store it as set S1.

5. Go back to Step 2 if S1 was merged already by looking up its entry in

subset construction cache C.

6. Store the mapping S1 to ipend in subset construction cacheC, where ipend

refers to the end of the grammar program. This is where the merge result

of S1 will be stored.

7. Merge the instructions of the set S1 and write the result to ipend . This

step may queue additional elements to Q.

8. Continue until Q is empty.

Much like the original subset construction for converting NFAs to DFAs

[21], the one used for the EVM uses sets to represent instruction ε-closures

and a queue to control the order of individual subset construction steps.

Because the SEVM has strict execution ordering, sets no longer suitably

represent SEVM ε-closures. Instead, the ε-closure in the SEVM is a sequence

of unique MIR node indices. The ε-closures in the SEVM optimiser are con-

structed recursively, essentially by simulating the function call behaviour of

imperative programming languages. Because of this, it is possible to have sev-

eral distinct ε-closures with the same elements, but with different orderings of

those elements.

Rules for constructing ε-closures in the SEVMare given in Table 23. When-

ever one of the given instructions is encountered, the appropriate actions are

executed:

• VISIT E recursively visits the entity E:

– If E is an instruction, then it is visited according to the rules pro-

vided in Table 23.
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Table 23: Rules for computing scannerless Earley virtual machine ε-closures

Instruction Action

CtlBr target VISIT target

CtlFork B1, B2, ..., BN
VISIT B1
VISIT B2
...

VISIT BN

CtlMatchChar ... RELEVANT

CtlMatchClass ... RELEVANT

CtlStop IGNORE

StmtCallRuleDyn T , min_prec
VISIT T , if the call is at origin
RELEVANT, otherwise

VISIT next

StmtReduce reduce_id, kind RELEVANT

VISIT next
StmtRewind num RELEVANT

– If E is a basic block, then the first instruction of that basic block is

visited.

– IfE is a concrete rule, then the first basic block of that rule is visited.

– If E is an abstract rule, then all of its implementations are visited.

• IGNORE ignores the current instruction.

• RELEVANT I adds instruction I to the resulting ε-closure.

Once an ε-closure is obtained, its instructions are merged much like in the

original EVM. One key difference in the SEVM subset construction is that the

initial merge sequence may only contain other concrete rules. In other words,

during the SEVM subset construction, one or more concrete rules are merged

into a new rule, which remains entirely separate from the rules constructed in

previous iterations. As a result, the constructed and optimised rules are entirely

independent and isolated from any other code.

The primary advantage of this is that the calls that start at the rule origin

may be partially incorporated, thus increasing the reduction performance. The

main disadvantage is that this results in a significantly higher amount of code

generated. In the original EVM, the generated rule suffixes were reused possi-

bly several times across the entire grammar. In the SEVM, the reuse may only
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rule ident() { parse (r"a-z"+, " ", R1); }

rule kw_self() { parse ("self", " ", R1); }

Figure 34: A grammar for parsing identifiers and keywords

rule ident() { parse (r"a-z"+, " ", R1); }

rule kw_self() { parse ("self", dom_g " ", R1); }

Figure 35: A modified grammar for parsing identifiers and keywords

happen internally within one generated rule. In other words, if the optimiser

constructs a merged rule for parsing A | B and later for A | C, then no code

between these two generated rules will be shared, whereas the EVMmay reuse

some part of A | B, which represents a unique suffix of A in A | C. To combat

this duplication of code, matching state transition tables in DFAs are cached

and de-duplicated, as described Section in 5.4.3.

5.3.6 Token-level ambiguity elimination

An unexpected side effect of implementing dominating terminals is that

these terminals can have an effect beyond just a single rule in which they are

used because the optimizer may potentially merge multiple rules into one com-

bined rule, and a terminal from one rule may dominate over nodes found in the

other rules. Because of this, dominating terminals may be used to disambiguate

identifiers from keywords without using more computationally expensive neg-

ative reductions.

Consider the grammar shown in Fig. 34. It defines two grammar rules: one

for parsing identifiers and another for parsing the reserved keyword self, both

of which must be followed by a space. If these non-terminals are used in a

grammar expression, such as ident | kw_self, then the result would be am-

biguous, because both rules would match. To resolve this ambiguity, negative

reductions can be used.

Alternatively, the grammar may be modified as shown in Fig. 35. In this

case, the terminating whitespace symbol (in practice an alphanumerical bound-

ary symbol is typically used instead) is changed to be dominating with the

dom_g specifier. As a result, when the ident | kw_self expression is encoun-

tered, the ident and kw_self rules are merged. The subset construction con-

tinues until the terminating symbol is encountered, at which point the lower
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rule_dyn kw();

#[token_group]

group _: kw(0) {

rule ident() { parse (r"a-z"+, " ", R1); }

rule kw_if() { parse ("self", dom_g " ", R1); }

rule kw_self() { parse ("self", dom_g " ", R1); }

}

rule expr_if() {

parse (kw_if, ...);

}

Figure 36: A grammar that uses token groups to disambiguate keywords from

identifiers

Table 24: Identifier-keyword disambiguation performance cost comparison

Approach Resulting symbol Total reduction count

Negative reductions Identifier 1

Negative reductions Keyword 3

Token groups Identifier 1

Token groups Keyword 1

priority (non-dominating) terminating symbol for ident is filtered-out, allow-

ing only kw_self reduction to occur, thus eliminating the ambiguity.

This scenario only works when it is guaranteed that ident is merged with all

other keywords (in this example, kw_self). Under normal circumstances, no

such guarantee can be made; however, the SEVM can be extended to enforce

this condition.

For this reason, the #[token_group] attribute is introduced in the north

implementation, which can be used to annotate named precedence groups.

When a call is made to a rule that is part of a #[token_group] group, then the

call to that rule is replaced with a call to the whole group, without changing the

way the CtlMatchSym instruction is generated. This means that the members of

a token group are always guaranteed to be merged during subset construction.

As a result, combining token groups with dominating terminals allows it to

effectively disambiguate keywords from identifiers (see Fig. 36).

Comparing this approach to negative reductions reveals significant perfor-

mance gains for parsing reserved keywords. Table 24 shows the performance
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cost (in terms of total reductions needed) to recognise disambiguated keywords

and identifiers for both of the described approaches. Disambiguating keywords

from identifiers with negative reductions requires three separate reductions to

be performed:

1. Keyword reduction (kw_if, kw_self, etc.).

2. Negative identifier reduction performed as a result ofmatching keywords

within a reject statement. This reduction may be avoided by manually

listing all keywords within the identifier definition, but such an approach

is impractical.

3. Positive identifier reduction that is eventually rejected.

When using token groups (in combination with dominating terminals), only

one reduction is needed. Another positive effect of token groups is that it results

in a significantly lower amount of generated code for the following reasons:

• No separate parse path for matching keywords and performing negative

reductions is needed.

• Token group disambiguation can happen as part of the DFA extraction

process (see Section 5.4.3 for more), which reuses matching transition

tables across different rules.

• Replacing all direct calls to individual keyword rules into corresponding

token groups results in a lower number of unique call specifiers, which

means that fewer optimised rules need to be generated and translated to

machine code in total (but the ones that include any keyword become

larger because, instead of parsing a single keyword, these rules will be

capable of recognising every keyword defined in a token group).

5.4 Parser Optimisations

5.4.1 Profiling the Earley virtual machine

During research and development of the SEVM and north, the following

profiling methods were used:

• Built-in performance counters. During various steps of the north execu-

tion, execution times for the most important components are measured
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and stored. This information is then optionally displayed after the exe-

cution to the user.

• The callgrind code profiler. This is a tool designed to profile program

performance. It works by instrumenting input programs and keeping de-

tailed logs of their execution. As a result, the input program is executed

significantly more slowly, but the additional instrumentation allows it to

obtain detailedmetrics about the entire process of the program execution.

• The massif heap profiler. This is a tool that allows it to measure and

observe the changes in overall memory usage.

• The bench_parsers tool. This was developed as part of the north imple-

mentation and allows it to compare the performance of different parser

implementations with great accuracy.

Built-in performance counters were used to quickly measure and detect the

changes in performance as a result of the north implementation/configuration

or input grammar adjustments.

Callgrind was used to identify the critical paths of the north execution. It

allows it to observe howmany times each function is called, how long each call

takes on average, and similar aspects. This tool has enabled it to identify the

parts of the north implementation that were running the slowest and thus focus

the optimisation attempts at such locations by either optimising such functions

or adjusting the parsing method to reduce the number of calls to such functions.

Massif was used to identify the parts of the code that allocate the most

memory. As a result of massif’s measurements, the garbage collector for the

SEVMwas implemented to significantly reduce the memory usage of north.

5.4.2 Just-in-time grammar compilation

To minimise the overhead of interpreting the EVM’s instructions, in north,

a just-in-time compiler is used to translate optimised-rule MIRs into native ma-

chine code that can be directly executed by the processor. The machine code

in north is generated by the LLVM library. At first, the SEVM’s MIR is trans-

lated into an LLVM intermediate representation (IR), which then is translated

by LLVM into machine code.

Some changes have been made to the SEVM to simplify the translation of

MIR to an LLVM IR:
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• The MIR instructions are organised into basic blocks. Each basic block

contains zero or more statement instructions and must terminate exactly

by one control instruction. All operations that affect the flow of the ex-

ecution are control instructions. This approach somewhat mimics the

LLVMdesign, where the instructions are also organised into basic blocks.

• TheMIR rules comprise basic blocks instead of instructions. Thismatches

the LLVM functions, which comprise LLVM basic blocks.

Each task is compiled into a single native function, which takes the parser

context and a pointer to the current task as parameters. This function is re-

ferred to as the resume or task resumption function. The resume function of

a rule always starts with a preamble, which loads commonly used values into

temporaries to reduce code duplication and terminates with a switch statement,

which transfers the execution to the appropriate state based on the task state_id
value. The state_id values correspond to the matchingMIR basic block indices

to ease the debugging process. Each SEVM basic block is translated by trans-

lating the individual instructions of that basic block directly into the LLVM IR.

Some MIR instructions can be translated into several LLVM IR instructions or

even several LLVM IR basic blocks.

Most of the statement instructions (such as StmtCallRuleDyn, StmtReduce

, and StmtRewind) are compiled into LLVM IR function calls (call instruc-

tions), which invoke the north runtime. The context of the parser runtime, a

pointer to the current task, and the instruction-specific operands are passed as

arguments to those functions.

The CtlMatchChar instructions are compiled into several LLVM instruc-

tions:

1. load: First, the current input position pointer is loaded from the current

task.

2. icmp, br: The current input position pointer is checked against the end

of the input pointer, and a conditional jump is made as a result.

3. load: The input character at the current position is loaded.

4. getelementptr, store: The current position pointer is increased by 1

and written into the current task.

5. icmp, br: The input character is compared with the target character, and
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a conditional jump is made as a result.

The CtlMatchClass instruction is compiled similarly: the first four steps

are the same as in CtlMatchChar, but the input character is compared using an

unrolled binary search: each bound of search space is compared with a pair of

icmp and br instructions. The CtlReduce instruction is translated into a call

to an appropriate runtime function and unconditional jump to a target location.

CtlMatchSym is translated into a call instruction to an appropriate runtime func-

tion, which takes ownership of the current task and (potentially) adds it to the

list of suspended tasks, and the ret instruction, which stops the current task.

CtlStop is translated into a single ret, which terminates the current task.

5.4.3 Deterministic finite automata extraction

Terminal symbol matching shortcomings

In the current version of SEVM, the terminals are matched with the

CtlMatchChar and CtlMatchClass instructions. CtlMatchChar can match a

single input character against another character, whereas CtlMatchClass can

match a single input character against several different symbols. By anal-

ogy, CtlMatchChar can be viewed as an imperative if statement, whereas

CtlMatchClass would be a switch.

Both of these instructions are replaced with the CtlMatchClass during the

subset construction, which is later translated into LLVM IR. The compiled

CtlMatchClass performs a binary search to match the input character against

several possible alternatives. As a result, the resulting LLVM IR code contains

at least the following:

• three basic blocks;

• three comparison instructions: one to test for the end-of-stream, one to

test the lower bound, and one to test the upper bound;

• three conditional jumps;

• one addition that is used to increase the position value of the current task;

• two memory loads used to load the current position and the character at

the current position; and

• one memory store used to store the updated position of the current task.
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This means that matching a single input character, when translating the

SEVM MIR to LLVM IR requires a significant number of instructions and

basic blocks. The Rust language grammar for north, as of the time of writing

this, contains 41 distinct keywords and 48 operators. On average, each key-

word contains 4.3 characters, and each operator contains 1.5 characters. All

keywords and operators occupy 250 characters when concatenated. Some of

these characters would bemerged during subset construction. However, even if

all keywords and operators required 125 distinct CtlMatchClass instructions,

they would occupy at least 375 LLVM IR basic blocks. This does not include

other token-like non-terminals, such as comments, literals, and whitespace.

The problem is further compounded due to the way subset construction

works; only complete rules are merged to form another complete optimised

rule. Because of this, each distinct operator precedence level would be opti-

mised at least once, each time including every keyword of the grammar, result-

ing in massive amounts of generated code.

Another yet unsolved issue in the SEVM is an extensible way to disam-

biguate operators. Keywords from identifiers can now be effectively disam-

biguated with token groups and dominating terminals, but this method only

enables it to disambiguate tokens of the same length. As a result, an additional

method is needed to disambiguate operator && from a pair of &’s. For example,

the expression a && b in the C language without any disambiguation can be

interpreted both as a && b (logical and) and as a & (&b) (bitwise and where

the right-hand side is the address of the variable b).

A simple solution to this problem would be to add a negative lookahead to

operator &, so it may not be followed by another &. This can be effectively

implemented in the SEVM with the rewind directive R1, but such an approach

requires the grammar author to know all the possible operators beforehand, thus

making extensions to the language more limited. Another issue is that such

an operator definition breaks rule encapsulation because the rule for parsing

operator & must contain knowledge about operator &&.

All of these issues described in this chapter can be solved (to an extent) by

comparing the current method for matching terminals in the SEVM with tra-

ditional lexers. During subset construction, the SEVM optimiser essentially

constructs an embedded lexer each time a terminal symbol (or terminal sym-

bol sequence) is to be matched. By isolating these deterministic fragments of
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rule_dyn kw();

group _: kw(0) {

rule kw_self() { parse ("self", " ", R1); }

rule kw_static() { parse ("static", " ", R1); }

rule kw_struct() { parse ("struct", " ", R1); }

}

Figure 37: A north grammar for matching three keywords

sequences of instructions, it would be possible to extract them and to perform

terminal symbol matching in a lexer-like environment, isolated from the rest

of the virtual machine. We call this approach of separating terminal matching

deterministic finite automata extraction (DFA extraction).

Simple deterministic finite automata extraction

Consider the grammar shown in Fig. 37. It defines three keywords: self

, static, and struct. During subset construction, shared prefixes of these

keywords are merged, and the MIR shown in Fig. 38 is produced. This MIR

may also be visualised as a deterministic finite automaton, as shown in Fig.

39, which captures the essence of the DFA extraction method. The segments

of the deterministic source MIR are extracted into a separate DFA, which is

used for matching terminal symbols. Then, instead of CtlMatchClass (and

CtlMatchChar) instructions, the resulting MIR contains a new CtlExecDFA in-

struction, which executes the DFA and transfers the control based on the suc-

cess or failure of the DFA match result.

An optimised MIR for the abstract rule kw with DFA extraction enabled is

shown in Fig. 40, and the corresponding extracted DFA is shown in Fig. 41.

The CtlExecDFA instruction takes two operands: the DFA to be executed and

the transition table that pairs the result of the DFA with the target state_id of

the task. Note the significant reduction of basic blocks in this version of the

optimised MIR.

Every CtlExecDFA instruction is translated into two LLVM IR instructions:

a single call to the north runtime, which simulates the DFA and returns the

result, and a switch statement, which transfers the control of the execution

based on the DFA simulation result.

It is also important to note that the states in the SEVM DFA are classified
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#0: CtlMatchClass 's' => #1

#1: CtlMatchClass 'e' => #2, 't' => #7

#2: CtlMatchClass 'l' => #3

#3: CtlMatchClass 'f' => #4

#4: CtlMatchClass ' ' => #5

#5: StmtRewind 1

StmtReduce REDUCE_ID(:kw_self), NORMAL

CtlStop

#7: CtlMatchClass 'a' => #8, 'r' => #14

#8: CtlMatchClass 't' => #9

#9: CtlMatchClass 'i' => #10

#10: CtlMatchClass 'c' => #11

#11: CtlMatchClass ' ' => #12

#12: StmtRewind 1

StmtReduce REDUCE_ID(:kw_static), NORMAL

CtlStop

#14: CtlMatchClass 'u' => #15

#15: CtlMatchClass 'c' => #16

#16: CtlMatchClass 't' => #17

#17: CtlMatchClass ' ' => #18

#18: StmtRewind 1

StmtReduce REDUCE_ID(:kw_struct), NORMAL

CtlStop

Figure 38: An optimised medium-level intermediate representation for match-

ing three keywords
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Figure 39: Traditional deterministic finite automata for matching three key-
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#0: CtlExecDFA <DFA:0>, 0 => #1, 1 => #2, 2 => #3

#1: StmtRewind 1

StmtReduce REDUCE_ID(:kw_self), NORMAL

CtlStop

#2: StmtRewind 1

StmtReduce REDUCE_ID(:kw_static), NORMAL

CtlStop

#3: StmtRewind 1

StmtReduce REDUCE_ID(:kw_struct), NORMAL

CtlStop

Figure 40: Optimised medium-level intermediate representation for matching

three keywords (with the deterministic finite automata extraction enabled)
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Figure 41: Scannerless Earley virtual machine deterministic finite automata

for matching three keywords
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by their type:

• Shift (S) states only consume a single input symbol and move to a dif-

ferent state. Each shift state contains a transition table.

• Fail (F) states fail the DFA simulation immediately upon entering. Typ-

ically, each DFA contains exactly one fail state, which is reachable from

all other states with unexpected terminals. They are not shown in any of

the DFA visualisations because there would be an edge from each shift

state to the fail state with all other characters from the ASCII range 0 to

255.

• Complete (C) states terminate the DFA simulation with a given result.

The result is a number that is used in the MIR to transfer the control of

the execution.

• Lookahead (L) states are used to implement a lookahead (see Section

5.4.3 for more information).

Furthermore, shift state transition tables are split into two parts: a transition

index table and a transition state table. The transition index table stores the

indices of the transition state table, which stores the actual destination state

indices. This two-layer transition-table approach allows it to de-duplicate and

reuse transition index tables. All transition index tables have 256 entries (1

byte each), where one entry is reserved for each possible input character. The

size of the transition state table is variable and corresponds to the number of

unique transition destinations from a specific state. This significantly reduces

the size of the generated DFAs because the largest parts of each DFA can be

reused. The largest DFA used to parse the Rust language is composed of 237

distinct states, 136 of which are shift states. Of these, ≈95% are reused in at

least one other DFA.

Dominating terminals in extracted deterministic finite automata

Dominating terminals in extracted DFAs works just like in the original

CtlMatchClass instructions because the north optimiser uses the same ε-closure

computation algorithm for both subset construction and DFA extraction. As

a result, a token-group-based approach for identifier-keyword disambiguation

works with DFA extraction without any additional modifications.
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rule op_dot() { parse shift_p "."; }

rule op_dot_dot_dot() { parse shift_p "..."; }

rule main() { parse op_dot | op_dot_dot_dot; }

Figure 42: A north grammar for parsing . and ... operators

Greedy tokens

Extracting the terminal matching algorithm from the virtual machine has

one additional benefit: it allows us to implement greedy token matching. This

would enable it to disambiguate the operator && from a pair of &s, a pair of

divisions / from a one-line comment start, and similar ambiguities.

The way the extracted DFA works already resembles traditional lexers. By

extending this analogy further, we can implement greedy tokens. In the case

in which multiple token matches are available (such as & and &&), we select

the longest. In the SEVM, this can be done by adding an additional indicator

to the CtlMatchChar and CtlMatchClass instructions to specify the longest

match preference. At the grammar level, the shift_p (prefer shift) directive is

needed to express the desire to traverse only the longest match when multiple

character-level parse paths are available.

Normally, the divergence of two parser paths is detected immediately after

constructing the ε-closure when building DFAs. If all members of the con-

structed ε-closure are CtlMatchChar or CtlMatchClass instructions, then they

are merged into a single shift state in the DFA. If additional instructions (such

as StmtCallRuleDyn, StmtReduce, or CtlReduce) are used, then a complete

state is generated instead, which hands the execution control back to the SEVM,

which will split the execution (typically) into two different paths: one task with

another DFA that performs character matching and one that contains other in-

structions.

To implement the longest input match in the SEVM DFA, the completion

states can be replaced with lookahead states. Each lookahead state will recur-

sively start another DFA at a given state. If a child DFA completes success-

fully, then it means that a longer match has been found, and the result of that

DFA is returned from the primary DFA. However, if the child DFA fails, it

means that matching an alternative parse path with a potentially longer input

was unsuccessful, and the original completion value is returned instead.

An example grammar for parsing and disambiguating the operators . and
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...
1,L(0) 3,S2,S0,S 4,C(1)

Figure 43: SEVM DFA for the triple dot grammar

... is shown in Fig. 42. During subset construction, terminal symbol matching

will be extracted into the DFA shown in Fig. 43. After matching a single dot

character (.), lookahead State 1 will be reached, which will spawn a child DFA

that will start in State 2. If two additional dots are found, then the child DFA

will complete with Result 1 in State 4; otherwise, it will fail, which will cause

the main DFA to complete successfully with Result 0.

Several levels of lookahead states can exist, allowing it to disambiguate

complex tokens. For example, greedy tokens are used in the grammar of the

Rust programming language to disambiguate all of Rust’s tokens:

• Raw string literals r"text" are disambiguated from identifier r and the

text literal "text" sequence.

• Operators of varying lengths are disambiguated (., .., ..., ..=, =, etc.).

• In combination with dominating terminals, base-16 integer literals, such

as 0x1234ABCD, are disambiguated from base-10 integers with the suffix

(10i32).

Because of the SEVM greedy tokens, the north parser can fully replicate

the behaviour of a lexer in a scannerless parser, thus allowing it to parse the

languages that depend on such behaviours without ambiguities.

5.4.4 Partially incorporated reductions

Reduction incorporated parsers

The LR family of parsers [18] uses a stack to track the execution of the

overall parsing process. The stack contains state indices that represent the path

through which the current parser position was reached from the initial parsing

position. Additional elements to the stack are added with shift actions, and

multiple stack entries are removed and consolidated into one with a reduce

action. The top element of the stack always represents the current parsing state.

Out of the two actions, the reduce action is computationally more expensive.
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During a single reduction of length N, the following steps are performed:

1. The top N elements from the stack are removed.

2. The newly exposed top element is used to determine the current parser

state.

3. The transition table, current parser state, and reduced non-terminal are

used to determine the next parser state.

4. This state is pushed to the top of the stack.

Because a reduction is so expensive performance-wise, the performance of

LR parsers is typically entirely bound by the total number of reductions per-

formed during parsing. In general, the performance of LR parsers can be con-

sidered bound by the amount of stack activity needed to parse the input. As

such, numerous approaches to reduce the overall stack activity during pars-

ing have been used to increase parsing throughput. Typically, left recursion is

favoured over right recursion because it leads to lower stack growth.

A more involved and recent approach for reducing stack activity is using

reduction incorporated parsers [23]. At the cost of significantly increasing the

number of parser states (and thus the transition table), it is possible to record

the target state index as part of the reduction entry in transition tables. As a

result, such parsers, in many cases, no longer need two separate transition-

table lookups to perform a single reduction. Where a typical reduction entry

contains only the non-terminal symbol being reduced and the reduction length,

an incorporated reduction entry additionally contains a target state index, which

determines the next state of the parser, thus eliminating the third step of the

reduction sequence.

The cost of a reduction in the scannerless Earley virtual machine

Just like in LR parsers, reductions in the SEVM are computationally quite

expensive. During each reduction, the following steps are executed:

1. The newly created reduction is checked against existing reductions. If a

matching reduction exists, further reduction processing is aborted.

2. The positivematch specifier part of each suspended task is checked against

the new reduction, and if any matches are found, the task is resumed.
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rule A() { parse "a"; }

rule B() { parse "b"; }

rule C() { parse "c"; }

rule D() { parse "d"; }

rule AB() { parse A | B; }

rule CD() { parse C | D; }

rule ABCD() { parse AB | CD; }

rule main() { parse ABCD; }

Figure 44: A simple north grammar

3. The new reduction is added to the reduction list of the current chart entry.

The second step of the reduction process is very costly. In particular, each

suspended task may be awakened more than once, if the suspended task’s pos-

itive match specifier contains several abstract rules that match the same reduc-

tion. In addition, under certain conditions, this step can be avoided entirely due

to the way subset construction works in the SEVM.

Reduction incorporation in SEVM

Optimised rules in the SEVM are entirely defined by a call specifier and

the currently used grammar. Consider the grammar shown in Fig. 44. When

optimising a main rule, the direct call to rule ABCD is replaced with a dynamic

call with call specifier [REDUCE_ID(:ABCD), 0]. Then, the optimiser uses this

call specifier to drive the subset construction and generate the optimised version

of ABCD.

Because ABCD starts with both AB and CD rules, both of these rules are merged

into an optimised version of ABCD. Continuing this process recursively, the

optimiser merges ABCD, AB, A, B, CD, C, and D rules in this order. Eventually,

the MIR code, which is shown in Fig. 45, is produced (to make the MIR more

readable, DFA extraction was disabled).

Consider the following step sequence, which is executed for parsing char-

acter a:

1. Task 0 starts the execution in basic block #0.

2. Task 0 is forked (queued) into Task 1 with State #2.

3. Task 0 is suspended in #1.

4. Task 1 executes #2 and matches character a, which transfers control to

142



#0: CtlFork #1, #2

#1: CtlMatchSym :AB => #9, :A => #7, :B => #7, :CD => #9, :C =>

#8, :D => #8

#2: CtlMatchClass 'a' => #3, 'b' => #4, 'c' => #5, 'd' => #6

#3: StmtReduce REDUCE_ID(:A), NORMAL

CtlStop

#4: StmtReduce REDUCE_ID(:B), NORMAL

CtlStop

#5: StmtReduce REDUCE_ID(:C), NORMAL

CtlStop

#6: StmtReduce REDUCE_ID(:D), NORMAL

CtlStop

#7: StmtReduce REDUCE_ID(:AB), NORMAL

CtlStop

#8: StmtReduce REDUCE_ID(:CD), NORMAL

CtlStop

#9: StmtReduce REDUCE_ID(:ABCD), NORMAL

CtlStop

Figure 45: Optimised medium-level intermediate representation for the ABCD

grammar rule

#3.

5. Task 1 reduces A, spawning a copy of Task 0 (now named Task 2) in

State #7 as a result.

6. Task 1 is discarded with CtlStop.

7. Task 2 reduces AB, spawning a copy of Task 0 (now named Task 3) in

State #9.

8. Task 2 is discarded with CtlStop.

9. Task 3 reduces ABCD, causing the callee of ABCD to be resumed.

10. Task 3 is discarded with CtlStop.

Tasks 2 and 3 were created only to perform a single reduction, after which

both were terminated. Another important observation is that all merged rules

ABCD, AB, A, B, CD, C, and D share their origin. In other words, they start at the

same input position during parsing. Because of this, we can statically determine

which internal reductions lead to which states.

An internal reduction is a reduction that occurs within an optimised MIR

but is not a part of the call specifier. In the current example, reductions for A,

B, C, D, AB, and CD are internal. Reductions that are part of the call specifier are
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#0: CtlMatchClass 'a' => #1, 'b' => #2, 'c' => #3, 'd' => #4

#1: CtlReduceShort REDUCE_ID(:A), NORMAL => #5

#2: CtlReduceShort REDUCE_ID(:B), NORMAL => #5

#3: CtlReduceShort REDUCE_ID(:C), NORMAL => #6

#4: CtlReduceShort REDUCE_ID(:D), NORMAL => #6

#5: CtlReduceShort REDUCE_ID(:AB), NORMAL => #7

#6: CtlReduceShort REDUCE_ID(:CD), NORMAL => #7

#7: StmtReduce REDUCE_ID(:ABCD), NORMAL

CtlStop

Figure 46: Optimised medium-level intermediate representation for the ABCD

grammar rule (with partial reduction incorporation)

called external reductions because the effect of the reduction will be transferred

beyond the current optimised rule.

All control transfers for internal reductions during the reduction process

may be resolved statically. By definition, the effect of internal reductions does

not extend beyond the current rule. The rule that performs an internal reduction

must have also been invoked from the same optimised (merged) rule. Further-

more, only rules that are part of the rule prefix are merged into an optimised

rule. Because of this, the StmtReduce of internal reductions will always match

the match specifier of the CtlMatchSym instruction, which will always be lo-

cated at the start of the optimised MIR.

To statically resolve the reductions in the SEVM, a new instruction is needed:

CtlReduceShort. In addition to performing a shortened version of the reduc-

tion process, which is only suitable for internal reductions, this instruction will

also transfer control to a statically resolved target state, bypassing the normal

reduction process of the SEVM.

Figure 46 shows the optimised MIR for ABCD, but with partial reduction

incorporation enabled. With this MIR, the parsing character a is significantly

more straightforward:

1. Task 0 starts execution in basic block #0.

2. Task 0 executes #0 and matches character a, which transfers control to

#1.

3. Task 0 internally reduces A, transferring control to #5.

4. Task 0 internally reduces AB, transferring control to #7.

5. Task 0 reduces ABCD, causing the callee of ABCD to be resumed.
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6. Task 0 is discarded with CtlStop.

Only a single instance of a task is now needed (instead of four instances).

Furthermore, calls that are part of the prefix no longer require CtlMatchSym

because the control transfer of internal reductions is handled directly using

CtlReduceShort. As a result, the reduction incorporated version of ABCD per-

forms three fewer reductions and one fewer task suspension. This optimisa-

tion also yields significant performance gains in real-world programming lan-

guages, as shown in Section 6.6.3.

On a final note, the reductions in the SEVM are only partially incorporated

because only reductions that are part of the optimised-rule prefix (and not part

of the call specifier) are incorporated. All other reductions are processed nor-

mally.

5.4.5 Garbage collection

The purpose of the garbage collector in the SEVM, just like the EVM, is

to remove information that is no longer needed from the memory so it may

be reused again. Because of the changes in the SEVM structure, the origi-

nal garbage collector of the EVM is no longer suitable. The memory in the

SEVM is freed up by removing potentially unneeded chart entries from the

parser chart. The condition for removing entries from the chart is based on

a heuristic and thus may remove entries that may still be needed later during

parsing. Ideally, such a situation would not occur often, and if it did, these

chart entries would have to be recreated by reparsing fragments of the input.

The heuristic for determining the usefulness of a chart entry is based on the

following observations:

• Entries that have active tasks within them will always be needed later

and thus must not be freed.

• Parsing is typically done sequentiallywith relatively few significant jumps

due to ambiguities or backtracking.

• Ambiguities and backtracking are typically localised.

The current parsing position can be determined by inspecting the currently

active chart entry, whose index will be stored on top of the primary execution

stack. All entries whose positions are lower than the current position and do
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not contain any active tasks are marked for removal during garbage collection.

Garbage collection occurs every GCiter number of resume invocations. A

higher GCiter means that the garbage collector will run more rarely and thus

may lead to higher memory usage. A too-low GCiter may lead to premature

chart entry elimination, which may cause the SEVM to re-parse the same input

fragments repeatedly.

The desired GCiter is chosen by manually inspecting the parse times of the

sample inputs and setting it to a value higher than GCmin (typically 3∗GCmin),

where GCmin refers to the minimum value of GCiter, below which a significant

number of premature entry removals occur.

The number of premature entry removals can be measured in north by run-

ning in a mode that partially disables the garbage collector. In this mode, the

garbage collector only marks them as removed instead of removing those en-

tries. If an entry with a remove flag set is reused in the future, then the remove

flag is unset, and the number of premature entry removals is increased by 1.

Such a strategy of garbage collection may not be optimal (and may lead to

significant slowdowns in worst-case ambiguity scenarios); however, it works

well when usedwith real-world programming language grammars: the heap us-

age and processor time profiling reveal that the parser runtime uses only minor

amounts of memory, while taking an insignificant amount of time to execute

(less than 5% of the total execution time with ANSI C and Rust grammar tests).

With the garbage collector enabled, the parse tree becomes the largest memory

consumer in north, followed by the index map of the chart.

5.5 Avoiding Exponential Complexity

The original EVM had one primary way to avoid exponential parsing com-

plexity: the trace. The trace in the EVMwas a set stored in each state containing

fiber snapshots of the previous parse positions. Whenever a new fiber was cre-

ated, the contents of that fiber were checked against the trace. If the new fiber

was a duplicate of a previously created fiber, the creation process was aborted;

otherwise, the copy of the new fiber was added to the trace, and the new fiber

was readied for execution.

This had several positive effects:

• Any form of infinite left recursion was eliminated because it would result

in two identical fibers in the same state.
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• The exponential complexity of parsing was eliminated when using trace

with reduction duplication and incremental parse-tree construction. Mul-

tiple reductions of the same type and length were merged together, and

multiple resumptions of the same task with a different reduction were

also merged when the task was resumed in the same instruction pointer.

However, while using trace for reduplicating fibers was simple and pow-

erful, it also meant that creating new fibers was expensive performance-wise

because each fiber had to be checked against the trace first, and then a copy

of that fiber had to be made in case the newly created fiber was unique. As a

result, a new method for avoiding exponential complexity is needed.

First, it is important to identify the situations that can lead to exponential

complexity (and potentially hidden infinite recursion). We call these situations

conflicts (the term is inspired by the shift/reduce and reduce/reduce conflicts of

the (G)LR parsers [18]), as they potentially may lead to multiple parse paths.

There are four types of conflicts in the SEVM:

• Reduce/reduce conflict. These conflicts occur when two reductions of

the same type and length occur at the same starting origin. Resuming

a task with both reductions may lead to exponential parsing complexity

because the same task will be resumed with duplicate reduction twice,

which may lead to further conflicts.

• Resume/resume conflict. These conflicts are closely related to the re-

duce/reduce conflicts. They occur when two reductions of the same

length but with a different reduce_id occur and result in the resumption

of the same task in the same state_id twice. The existence of a resume/re-
sume conflict indicates that a rule has an ambiguous but fixed-length pre-

fix with a matching suffix. Performing both resumptions means that the

matching suffix is parsed multiple times, potentially leading to further

conflicts.

• Call/call conflict. These conflicts occur when the same non-terminal

rule is called multiple times in the same position. Executing both calls

would mean that the same input segment is parsed multiple times with

the same grammar rules. The callees may perform further calls that may

lead to more conflicts and/or infinite hidden recursion.

• Match/match conflict. These conflicts occur when the same task is sus-
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pended in the same position twice. Accepting both matches may lead to

a scenario where one reduction would awaken both tasks, which may

lead to other conflicts (and exponential parsing complexity).

Reduce/reduce conflicts can be solved by merging reductions: when an am-

biguous reduction occurs (this can be trivially detected because the list of all

reductions is stored in each chart state), then the tree_ids of both reductions
can be merged to form an ambiguous node, representing two alternative parse

paths. Then, further reduction processing is aborted so that ambiguous reduc-

tions do not wake additional suspended tasks.

Resume/resume conflicts can be eliminated by keeping a list of resumptions

in each suspended task. Only the reduce_id, reduction length, and reduction
tree_id need to be stored. Whenever a duplicate resumption occurs (with same

reduce_id and length pair), instead of resuming the task again, the correspond-
ing tree_ids are merged, forming an ambiguous shift node in the parse tree.

Call/call conflicts can be eliminated using the following observation. When-

ever a new task is called, its callee is soon after suspended with a CtlMatchSym

instruction. As a result, it is possible to reconstruct the list of called tasks at a

specific position based on match specifiers stored in the list of suspended tasks.

This can be implemented by pairing eachmatch specifier with a bitmask, where

the bitmask represents the set of concrete rules that were called. By performing

the bitwise-or operator between these masks, it is possible to efficiently recre-

ate a set that represents all the concrete rules that have been called so far at this

position. If the newly called task is a subset of the previously called concrete

rules, then the completion of the call can be aborted because all of the currently

called rules have been called before.

Finally, match/match conflicts can be eliminated by ensuring that newly

added suspended tasks are unique to that state. However, it is possible to com-

pletely remove this conflict mitigation (or make it optional) to increase the

overall parsing performance because match/match conflicts are quite rare and

only happen when a task is resumed twice at the same position, but with reduc-

tions of two different lengths.

5.6 Parse-tree Construction

The SEVM constructs SPPFs automatically, as described in Section 4.7.1.

Automatic parse-tree construction was chosen over manual AST construction
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for the following reasons:

• Less-noisy grammars. Including AST construction statements and ex-

pressions in the source grammars makes them less readable.

• Universal node format. Forcing a specific node storage format makes

the parser more predictable because each grammar names and constructs

the resulting parse tree in the same fashion. This also enables an easier

grammar merger because it is now guaranteed that all grammars will use

the same node format, thus eliminating any node type-mismatch con-

flicts.

• Higher parsing performance. The automatically constructed SPPFs

are designed to use aminimal amount of memory and are laid out sequen-

tially in a heap (the same cannot be said about traditional ASTs, which

may contain additional fields needed for further compilation steps). This

ensures that the creation of new SPPF nodes is cheap. Furthermore, all

constructed SPPF nodes can be erased from memory in one sweep.

In the typical usage of the SEVM, after parsing, the user takes the con-

structed SPPF, ‘manually’ removes ambiguous nodes (if there are any) using

disambiguation filters, and converts the SPPF to AST (in the host language

environment). This may contain additional fields needed for further AST pro-

cessing, such as fields that contain information needed for type-checking or

code generation.

5.7 Conclusions

The following conclusions were reached:

• Direct instruction interpreter substitution to an equivalent JIT compiler

may result in unexpectedly low parsing performance because many size-

able instructions are needed to encode the instructions used for terminal

symbol matching.

• The DFA extraction enables not only reducing the number of generated

machine-code instructions but also extending the parsing-method func-

tionality because the extracted DFAs may be augmented with additional

functionality, which otherwise would be difficult to implement in the

primary virtual machine.
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• The SEVM subset construction further increases the size of the optimised

grammar rules because it frequently inlines significant portions of source

grammars. This may be avoided using DFA extraction with DFA state

caching and deduplication.

• Replacing full execution tracing with more precise task deduplication

avoids exponential parsing complexity (5.5) and provides yet another

parsing performance boost.

• All these changes extend the SEVM functionality and improve its perfor-

mance without removing any features present in the EVM or imposing

new restrictions. As a result, the SEVM satisfies our functional require-

ments for an REP parser (generalised parsing, scannerless parsing, dy-

namically extensible grammars, and local grammar extensions) and, with

additional optimisations, should exhibit acceptable performance, which

was the final requirement for the REP language parser.
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6 EVALUATION OF THE SCANNERLESS EARLEY VIRTUAL

MACHINE

In this chapter, we present an evaluation of the SEVM. The primary focus

is to evaluate the relative performance of the SEVM compared to other parsing

implementations.

6.1 Language Selection

Because one of the goals of north is to prove that a scannerless generalised

parsing algorithm may be used for parsing in practice, two existing program-

ming languages were chosen to be used in comparison:

• ANSI C. It is one of the most widely used programming languages. As

such, any parsing algorithm with the goal of parsing programming lan-

guages should be able to parse such a language. It is also commonly used

for comparing parser performance.

• Rust. Rust is a relatively new programming language but one that is

quickly gaining popularity. Its grammar is significantly larger compared

to ANSI C and is also mostly ambiguity-free (when viewed as a context-

free grammar).

An additional note regarding parsing ANSI C: it is often claimed that ANSI

C is a simple language, and this statement is true with respect to the grammar

size of ANSI C (when compared to other programming languages). However,

one key aspect that makes parsing ANSI C deterministically more complicated

is the fact that most grammars used to parse ANSI C (including the one speci-

fied in the ANSI C standard) depend on the ability to disambiguate identifiers

from type names during lexing/parsing. In other words, to parse the ANSI

C code deterministically, the parsing method needs to perform a limited ver-

sion of semantic analysis (namely, name resolution) during parsing. Otherwise,

statements such as a * b; may be both interpreted as multiplication and as a

declaration of pointer b with type a. This happens to be the case where gen-

eralised methods become more useful. They are capable of parsing this input

with both interpretations and can produce a parse forest, which then can be fil-

tered after parsing based on semantic predicates. As such, using generalised
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parsing methods to parse the C programming language allows the separation of

parsing from semantic analysis and thus improves the separation of concerns.

In this comparison, the ANSI C parser implemented with Bison performs

a limited semantic analysis during parsing because it is used as an LALR(1)

parser. Other ANSI C parser implementations support generalised parsing and

instead produce parse forests when ambiguities are encountered.

In this sense, the Rust programming language is the complete opposite of

ANSI C. Its grammar is larger, but it does not require performing any semantic

analysis during parsing. As a result, these two languages, ANSI C and Rust,

should sufficiently cover both ambiguous and unambiguous use cases of pars-

ing.

6.2 Implementation Selection

The following parser implementations are included in this evaluation:

• North: it is the implementation of the SEVM described in this work,

which was written in the Rust programming language.

• Bison with Flex: Bison is a Yacc-compatible LALR(1) parser genera-

tor. It is perhaps a de-facto LALR(1) parser generator. It has been used

in various prominent open-source projects, such as Bash, GCC before

v3.4, Perl 5, PHP, and others. It is commonly taught in universities and

has integrations for a wide variety of programming languages. Because

Bison works only with tokens (it is not a scannerless parser), a lexer is

needed to be able to parse textual inputs. As such, lex-compatible Flex

was chosen, which is commonly used in conjunction with Bison.

• Yaep with Flex: Yaep is one of the few complete (as of writing this

work) implementations of the Earley parser with various optimisations

to make it suitable for use in practice. It is also a nonscannerless imple-

mentation and thus is used in conjunction with Flex during evaluation.

• Dparser: Dparser is a scannerless implementation of the GLR parsing

algorithm. It is one of the very few still maintained projects capable of

generalised scannerless parsing. Therefore, Dparser is the closest match

in this list to North.

• Syn: Syn is a parser for the Rust programming language, implemented
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with a hand-written recursive descent parser. It is a nonscannerless pars-

ing method but comes with its own lexer. As such, no external lexer

is needed. Syn is primarily used as a library for developing language

extensions for the Rust programming language.

6.3 Comparison Method

To compare multiple parser implementations, a tool called bench_parsers

was created. The tool works by executing a series of scenarios, where each

scenario is repeated multiple times to gain reliable measurement data. See Ap-

pendix A to learn how to use the tool or how to reproduce the results of this

evaluation.

Each scenario comprises the following steps:

1. An input file containing the source code to be parsed is read.

2. The system time is accurately measured, called start_time.

3. The input file is lexed if the parsing method being tested requires a ded-

icated lexer. Otherwise, this step is skipped.

4. The input is parsed. Some of the parsing methods may produce parse

trees or ASTs during parsing.

5. The system time is accurately measured, called end_time.

6. Finally, the end_time− start_time of each scenario is added to a vector.

As mentioned above, each scenario is run multiple times. After these runs

are complete, the results are stored in a CSV file, which can be analysed later.

Before each set of scenarios, the current parsing implementation is run for at

least 3 seconds (potentially by repeating the current test multiple times) as a

warm-up to avoid any resulting irregularities related to input/output caching

(either at the hardware level or at the kernel/file system level), dynamic CPU

frequency scaling, and others.

To evaluate north on its own, an additional tool called north_cli was de-

veloped. It allows it to observe the internal state of the SEVMparser and obtain

other metrics (such as the number of shortened reductions that were performed

during parsing). See Appendix B for more information about this tool.
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6.4 Test Environment

The test results described in this chapter were obtained on a machine with

the following specifications:

• Processor: Intel i7-3930k.

• Memory: 16 GB of DDR3 RAM, 1333 MHz.

• Operating system: Ubuntu 18.04.1 LTS.

• Linux kernel: 4.15.0-36.

• GCC: version 7.3.0.

• Rustc: version 1.30.0-nightly (90d36fb59 2018-09-13).

• Flex: version 2.6.4.

• Bison: version 3.0.4.

• Dparser: version 1.30.

• Yaep: obtained from GitHub with revision 1f19d4f5.

6.5 Test Data

Two primary files were used as inputs for benchmarking north and other

parsing methods:

1. The file input_gcc_470k.i is an ANSI C source file from the Yaep

parser benchmark suite. It contains preprocessed source code of the

entire GCC 4.0 compiler. The file is 14.8 MB in size and consists of

∼475000 lines of code.

2. The file input_rust_650k.rs is a Rust source file that contains the en-

tire implementation of the Rust compiler. The file is created by concate-

nating every Rust source file (excluding tests, some of which may not

be syntactically correct) of the GitHub Rust repository. Minor modifica-

tions were performed on the resulting file to ensure that the concatenated

file is still syntactically correct (some Rust language constructs may only

appear in the beginning in the file; thus, not all source files can be simply

concatenated and result in a valid Rust source code). These modifica-

tions were primarily performed so that the Syn parser would be capable
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Table 25: The median time needed to parse sample inputs

Parser Language N IQR % Outliers Median

bison ANSI C 50 0.0008 20.0 0.4974

dparser ANSI C 50 0.0104 20.0 16.1007

north ANSI C 50 0.0162 0.0 4.6132

yaep ANSI C 50 0.0737 0.0 1.7231

north Rust 50 0.0197 0.0 6.3258

syn Rust 50 0.0346 0.0 5.5434

of parsing the resulting file without any additional modifications. The

file is 22.3 MB in size and consists of ∼650000 lines of code.

Both of these input files represent larger-than-average projects and should

cover every use of ANSI C and Rust grammars.

6.6 Test Results

6.6.1 Relative performance comparison

The relative performance comparison results of different parser implemen-

tations are shown in Table 25. Out of all tested ANSI C parsing methods, Bison

was unsurprisingly the fastest. It is a token-based, fully deterministic parsing

method that performs no variable-length lookahead or backtracking. Because

it is an LALR(1) parser, a limited form of semantic analysis was performed

during parsing to disambiguate identifiers from type names. The ANSI C Bi-

son parser only performs recognition and constructs no parse tree or AST as a

result. The Yaep parser is slightly less performant than Bison, but it is signifi-

cantly more general because it is an Earley parser. It still requires the use of a

dedicated lexer; however, no semantic analysis was performed during parsing

because the Earley parsers can produce ambiguous parse forests to represent

different parse paths. north is ≈9.3 times slower than Bison, but it is the first
parser in the list that is not only fully general but also scannerless. Just like

in the case of Yaep, SPPF is used to represent ambiguous parses. Finally, the

scannerless, GLR-based Dparser comes last in this list.

For testing Rust grammars, only one other parsing method was tested be-

cause Rust is a relatively new programming and complex language and, beyond

the parser used in the Rust compiler itself, only one additional Rust parser im-
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Table 26: The median time needed to parse input_gcc_470k.iwith and with-

out garbage collection in north

Benchmark N IQR % Outliers Median

ANSI C 10 0.0150 0.0 5.3165

ANSI C (with GC) 10 0.0035 0.0 4.6139

Table 27: The median time needed to parse input_rust_650k.rs with and

without garbage collection in north

Benchmark N IQR % Outliers Median

Rust 10 0.0069 0.0 6.9651

Rust (with GC) 10 0.0198 0.0 6.3965

plementation exists: the Syn parser, which is a hand-written predictive recur-

sive descent parser. While it is faster than north for parsing Rust, it is only

faster by a narrow margin.

The amount of time it takes for north to optimise just-in-time and other-

wise preprocess grammars is included in the final running time in all of the

north benchmarks. If all of the preprocessing was done statically before pars-

ing, then significant gains of parsing performance may be achieved at a cost of

sacrificing grammar extensibility, which is one of the key factors that sets the

SEVM/north implementation apart from other parsing algorithms and imple-

mentations.

6.6.2 Performance influence of garbage collector

The primary purpose of the garbage collector in the SEVM/north imple-

mentation is to reduce memory usage of the parser. As described in Section

5.4.5, it works by periodically scanning all of the currently existing chart en-

tries and removing the ones that are believed to no longer be needed. Because

the unneeded entries are identified by a heuristic, it is possible that the garbage

collector may remove a chart entry that will be needed in the future. When

that happens, the SEVM runtime must recreate the required chart entries by

reparsing the corresponding input fragments.

Initially, it may seem that the garbage collector should reduce the overall

parsing performance for the following reasons:
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• Scanning all the existing chart states and deleting the unneeded ones

takes additional processor time.

• If a required entry is removed, that entry will have to be recreated in the

future.

To see the actual performance influence of parsing ANSI C and Rust, ad-

ditional tests were conducted. The ANSI C (input_gcc_470k.i) and Rust

(input_rust_650k.rs) inputs were parsed both with and without a garbage

collector. The results of these tests are displayed in Tables 26 and 27.

Surprisingly, enabling the garbage collector not only lowered the overall

memory usage but also improved the overall performance. The parsing times of

ANSI C and Rust input are faster by approximately 13% and 8%, respectively,

for the following reasons:

• Enabling the garbage collector allows the reuse of previously allocated

memory fragments and therefore ismore processor cache-friendly, which

significantly improves the overall performance of the parser.

• Because the parser uses less overall memory, fewer system calls are

needed for allocating new memory blocks.

Because of the improved performance and lowermemory usage, the garbage

collector in north is enabled by default.

6.6.3 Performance influence of incorporated reductions

Partial reduction incorporation (described in Section 5.4.4) is a further op-

timisation made possible by performing an MIR subset construction. In short,

whenever a reduction is performed, the SEVM runtime checks the list of sus-

pended tasks in the origin entry of the task that is performing the reduction and

resumes the appropriate task. This process consists of several steps that are

computationally expensive:

• Iterating through all suspended tasks requires Nsusp steps, where Nsusp is

the number of suspended tasks in the origin entry.

• To determine whether a suspended task needs to be resumed, its match

specifier must be matched against the reduce_id of the reduction. This

matching is performed using a hash table.

157



Table 28: The time needed to parse input_gcc_470k.i with and without re-

duction incorporation in north

Benchmark N IQR % Outliers Median

ANSI C 10 0.0054 0.0 6.9844

ANSI C (with RI) 10 0.0060 0.0 4.6619

Table 29: The time needed to parse input_rust_650k.rs with and without

reduction incorporation in north

Benchmark N IQR % Outliers Median

Rust 10 0.0101 0.0 9.1468

Rust (with RI) 10 0.0076 0.0 6.4659

• Finally, when it is known that a suspended task can be resumed, a copy

of it is made in the target state.

To test the effect of reduction incorporation on parsing performance, addi-

tional tests were conducted. The files for ANSIC andRust inputs (input_gcc_470k.i

and input_rust_650k.rs) were parsed both with and without enabling partial

reduction incorporation. The results of these tests are shown in Tables 28 and

29.

Reduction incorporation on average improves the parsing times in both tests

by approximately 33% and 29%, respectively. This significant performance

boost comes from two primary sources:

• The short reductions make up a significant part of all reductions and are

less expensive computationally.

• Rules with all reductions partially incorporated no longer need to be sus-

pended at the origin position. Therefore, each call to a rule with partially

incorporated reductions results in one fewer task suspension. This means

that fewer tasks are suspended overall, which causes new (normal) reduc-

tions to execute faster because each reduction needs to traverse a shorter

suspended task list.

Reduction incorporation has one key negative effect; the optimised MIR

grammars become language (grammar_id) dependent and can be no longer

reused when dynamically switching to other grammars. As such, in workloads

where a parser must parse input that is described by several closely related
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rule_dyn expr();

group _: expr(0) {

rule expr_base() { parse "a"; }

rule expr_suffix() { parse (expr!, expr_base) }

}

rule main() {

parse ((expr, ";")+, "\n");

}

Figure 47: Left-recursive north grammar test

rule_dyn expr();

group _: expr(0) {

rule expr_base() { parse "a"; }

rule expr_prefix() { parse (expr_base, expr!) }

}

rule main() {

parse ((expr, ";")+, "\n");

}

Figure 48: Right-recursive north grammar test

grammars, it may be desirable to disable partial reduction incorporation.

6.6.4 Performance influence of recursion type

To test the performance influence of the recursion type, two additional syn-

thetic test inputs were created:

• input_a_1k.txt contains 1000 characters of a, followed by a semicolon

and a new line.

• input_5a_10k.txt contains 10000 lines of text, where each line contains

aaaaa;.

The first file is meant to test the worst-case scenario with deep recursion.

The second file is designed to test a more realistic scenario, where recursion

depth is not as high; however, more instances of recursion are used, such as

binary expressions of various programming languages.

The inputs are then parsed with grammars shown in Fig. 47 and Fig. 48 both

with andwithout reduction incorporation. The results for parsing input_a_1k.txt
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Table 30: The benchmark results for parsing input_a_1k.txt with left and

right-recursive grammars

Benchmark N IQR % Outliers Median

Left assoc. 10 0.0001 0.0 0.0089

Left assoc. (with RI) 10 0.0001 0.0 0.0076

Right assoc. 10 0.0101 10.0 0.7660

Right assoc. (with RI) 10 0.0020 0.0 0.7527

Table 31: The benchmark results for parsing input_5a_10k.txt with left and

right-recursive grammars

Benchmark N IQR % Outliers Median

Left assoc. 10 0.0001 20.0 0.0371

Left assoc. (with RI) 10 0.0003 10.0 0.0311

Right assoc. 10 0.0002 10.0 0.0522

Right assoc. (with RI) 10 0.0004 0.0 0.0373

are shown in Table 30. This test scenario triggers quadratic complexity when

performing right recursion; therefore, right recursion is, on average, two orders

of magnitude slower than left recursion. This is a well-known characteristic of

Earley parsers and is inherited by the SEVM/north implementation as well.

Optimisations to eliminate the quadratic complexity of right recursion in the

Earley parser exist [19]; however, they are not implemented in north.

The results for parsing input_5a_10k.txt are shown in Table 31. In this

scenario, the difference in parsing times between left and right recursion is

significantly lower because the recursion depth is limited to five layers of rule

calls (as opposed to 1000 in the previous test). This represents a more realistic

scenario because of the following observations:

• Repetition in the SEVM (unlike in most other parsing methods) is per-

formed with repetition operators and not recursion.

• Recursion is still used for binary expression operators; however, most

operators in common languages (such as C, C++, Java, and Rust) are left

recursive.

As expected, left recursion is faster than right recursion in all scenarios;

however, when the recursion depth is low, the difference is not that large (≈17%
when the recursion depth is 5).
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Partial reduction incorporation also provides a significant performance im-

provement (15% to 30%) in both left- and right-recursive grammars. This is

because, whenever a call to a rule is part of the caller prefix (when it is part of

the FIRST set), that call can be incorporated. In right-recursive grammars, calls

from main to expr and from expr_prefix to expr_base can be incorporated.

6.7 Validity

6.7.1 Internal validity

The following steps were taken to ensure the internal validity of the evalu-

ation results:

• All benchmarks are executed in Linux at run-level 3. This means that no

desktop applications were running in the backgroundwhile executing the

tests. Thus, any potential unwanted influences of the operating system

and the environment are minimised.

• All tests were run in the same environment with the same configuration.

• Each benchmark/test scenario was runmultiple times to obtainmore con-

sistent data.

• Before running a set of benchmarks, each test scenario was warmed up

for at least 3 seconds to reduce any influence of hardware-level/file-

system-level caching and to ensure that the dynamic CPU frequency scal-

ing policy would not influence the results.

• After running all of the scenarios, outlier detection (IQR method) was

conducted to ensure the consistency of the data: even though the tests

were performed in a fairly isolated environment, it was still possible for

the operating system background services to awaken during execution of

the tests and interfere with the execution, potentially lowering the per-

formance of an individual test run and causing an anomaly in the test

results. As such, a large number of outliers would suggest the existence

of unwanted external influences.

• Other tests that are not performance-dependent tests are deterministic

and only depend on the parser’s input and grammar. As such, no external

influences can interfere with such tests.

161



6.7.2 External validity

To test the performance of north, two grammars of popular programming

languages were chosen as test objects: ANSI C and Rust. Both of these lan-

guages are widely used in practice (especially ANSI C). As such, two primary

questions regarding the generalisation of results exist:

1. Do the benchmark results of north generalise to other inputs in the con-

text of the ANSI C and Rust languages?

2. Do the benchmark results of north generalise to other untested languages

and their grammars that are used in practice?

The first question is easier to answer. The chosen test inputs (the source

files used for parsing) represent significantly larger-than-average inputs. The

input files are made of unique concatenated input source files and cover the

majority (if not the entirety) of the input grammars. That means that it is highly

likely that any potential slow paths that negatively affect the performance of

the parser would have been reached during parsing these files. Indeed, during

the early stages of development of north, several occurrences of exponential

complexity behaviour occurred, but that was before the current exponential

complexity avoidance techniques were implemented.

It is still possible that some edge cases remain in the existing parser im-

plementation that may result in unexpected performance loss; however, they

would then be regarded as implementation bugs rather than systemic issues

with the overall parsing method of the SEVM or its implementation north.

Another important observation is that the only way to achieve a significant

performance loss in north is to increase the ambiguity of the input grammar.

Otherwise, the performance of northwould be linear. To lower the probability

of such performance issues, additional metrics are generated during parsing in

north, which would highlight potential areas of ambiguity within test inputs.

These metrics primarily indicate the number of suspended tasks and completed

reductions per chart entry. High average values of suspended tasks and reduc-

tions indicate the high overall ambiguity of input grammars, while unexpect-

edly high peaks of suspensions and reductions indicate a potential problem

area, with higher than linear-asymptotic complexity. However, during testing,

all of the collected metrics remained in line with the expectations.

It is also important to note that parsing performance is a concern only when
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parsing such large inputs because parsing anything several orders of magnitude

smaller would result in insignificant CPU time. As such, no tests with tests

of a minor size were conducted. Therefore, the performance of north will

generalise to other inputs of ANSI C and Rust.

The other question is whether or not the performance of north will gener-

alise to other grammars used in practice? To answer this question, additional

observations need to be made:

• Many existing programming and mark-up languages have been designed

with simpler parsing methods in mind. Primarily, many of these lan-

guages can be parsed either with simple LALR(1) parsers or with recur-

sive descent parsers.

• Very few languages require any semantic analysis to be performed dur-

ing parsing (C/C++ are the exceptions to this rule). The languages that

do require semantic analysis for parsing can be parsed in north or other

generalised parsing methods ambiguously and can be filtered after pars-

ing [4]. The ANSI C language and its input can be considered the worst-

case real-world scenario regarding the ambiguity of the input grammar

in north.

As a result, ANSI C covers the ambiguous case of inputs and tests the code

paths in north that deal with such ambiguities. Conversely, Rust represents the

non-ambiguous case, where the input is deterministic and covers the real-world

languages and inputs that are non-ambiguous. Further differences of perfor-

mance in north arise from different recursion use (left versus right recursion)

and the depth of the overall grammar. While left recursion is more efficient in

the SEVM, primarily because left recursion can be partially incorporated and

can avoid much of the complex machinery of new reduction handling, right

recursion still offers acceptable performance (as indicated by synthetic tests,

the performance of right recursion is lower by a constant factor).

The grammar depth is another factor that affects the overall parsing perfor-

mance, but this happens in every parsing algorithm and implementation. Re-

cursive descent parsers require more calls and returns to parse grammars with

higher depth, while bottom-up parsers, such as LR/LALR/GLR, require more

reductions.

Finally, an important takeaway of these test results is not the exact absolute

163



performance values but the relative performance of north compared to other

parsing implementations because the goal is for the SEVM to be a suitable

replacement for such parsers. Even if minor performance fluctuations were to

occur, they would not significantly affect the overall result of this study. The

SEVM is becoming a viable alternative to more traditional parsing methods,

even though it still requires some further research and improvements in certain

areas.

6.8 Conclusions

We have created an implementation for the SEVM parser called north.

Then, we implemented ANSI C and Rust grammars for north, which then

were used for the performance evaluation. We compared north’s performance

against several other parser implementations and found that a proper SEVM

may be used in practice to parse real-world programming languages because it

offers sufficiently high performance and grammar flexibility for such tasks.

On the other hand, further research should clear up the following topics:

• Further SEVM optimisations. The SEVM may be further optimised by

eliminating external stacks and driving the execution with native recur-

sion, much like in packrat parsers [11].

• Greedy calls and ordered choice. These additional operations should be

added to the SEVM to boost its disambiguation capabilities.

• Error reporting. north currently implements no error reporting, but this

can be done by analysing the contents of the susp_list in the final chart
entry.

• Error recovery. The SEVM aborts execution upon encountering the first

parse error. It should be modified so that the parsing process may con-

tinue (by skipping fragments of invalid input). Error recovery algorithms

for the Earley parser exist but are not designed for scannerless parsing

[1]. Some work on error recovery in SGLR parsers [31] has been done,

but it is uncertain how well such a method may translate to the SEVM.
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7 GENERAL CONCLUSIONS

The primary conclusion is that the goal of this research has been achieved.

The scannerless Earley virtual machine (SEVM) is suitable for parsing reflec-

tively extensible programming (REP) languages because this parsing method

satisfies all REP language parsing requirements (supports dynamically chang-

ing grammars with local grammar extensions and enables generalised scan-

nerless parsing). Additionally, this parsing method provides flexibility and

sufficient performance for practical application even when used to parse non-

extensible programming languages.

Additional conclusions include the following:

• The SEVM can more effectively eliminate lexical parsing ambiguities

than the SGLR.

• The DFA extraction improves overall parsing performance. It also can

be used to augment other parsing methods (such as Earley or SGLR) to

enable more efficient scannerless parsing.

• The garbage collector not only reduces the overall memory usage but

also improves parsing performance.

• Left-recursion (and left calls) is more efficient than right-recursion (due

to subset construction and partial reduction incorporation).

• The LLVM ORC JIT is not suitable for dynamic grammar compila-

tion into machine code because its code generator is too slow. It pro-

duces high-quality low-level code even when optimisations are turned

off, which is unnecessary for SEVM.

Possible future research directions include the following:

• Automatic error recovery,

• More performant MIR grammar for machine-code compilation (without

using LLVM JIT),

• More recursion and stack memory usage in SEVM to reduce the number

of dynamic memory allocations needed during parsing, and

• Layout-sensitive programming language parsing support.
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APPENDICES

A bench_parsers Utility

The bench_parsers utility is designed to obtain accurate benchmarks of

various parsing methods, north included. The bench_parsers may be run

with the cargo utility of the Rust programming language with:

cargo bench -p bench_cli -- <TEST_NAME>

The following benchmarks are available:

• assoc_a: recursion performance test A.

• assoc_b: recursion performance test B.

• benches: a relative parser performance comparison.

• gc: a benchmark for testing the influence of garbage collection to parsing

performance.

• ri: a benchmark for testing the influence of partial reduction incorpora-

tion to parsing performance.

B north_cli Utility

The north_cli utility enables the testing of the north implementation of

the SEVM. Users can inspect the SEVM parsing process, resulting parse tree,

and additional metrics by providing an input grammar file and input data file.

To parse a sample file with a provided grammar, north_cli must be launched

by supplying the following required options:

./north_cli parse -g <grammar_file> -i <input_file>

This will cause the input grammar file to be parsed and analysed, after which

the grammar MIR will be generated, which will then be used during parsing/-

subset construction to parse the provided input file. No output will be printed

if the parsing was successful. There are additional options that can be supplied

to north_cli to augment the parsing process and/or reported information:

• -G disables the garbage collector. This will cause the parser to use sig-

nificantly more memory.
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• -I disables the partial reduction incorporation.

• -p prints the timing information for significant parts of the parsing pro-

cess.

• -m shows the unoptimised MIR which is directly constructed from the

input grammar.

• -o shows optimisedMIR fragments immediately after they are constructed.

• -r shows the reduction trace. This allows tracing the execution of the

parser.

• -t shows the resulting parse tree. It will only be printed if the parsing

process was successful.

• -e shows the additional metrics after parsing. Some of the shown met-

rics are the number of reductions per chart entry histogram, number of

suspended tasks per chart entry histogram, number of reductions, num-

ber of duplicate reductions, allocator information, and others. Some of

this information may bemeaningful only when parsing when the garbage

collector is disabled.

It should be noted that the MIR printed by north_cli is shown in a slightly

different dialect compared to the rest of this work. The dialect for visualising

the MIR was simplified to make it more compact and suitable for embedding

fragments of it in this work.
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